xref: /llvm-project/mlir/lib/Conversion/PDLToPDLInterp/PredicateTree.cpp (revision 138803e017739c81b43b73631c7096bfc4d097d8)
1 //===- PredicateTree.cpp - Predicate tree merging -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PredicateTree.h"
10 #include "RootOrdering.h"
11 
12 #include "mlir/Dialect/PDL/IR/PDL.h"
13 #include "mlir/Dialect/PDL/IR/PDLTypes.h"
14 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
15 #include "mlir/IR/BuiltinOps.h"
16 #include "mlir/Interfaces/InferTypeOpInterface.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/TypeSwitch.h"
19 #include "llvm/Support/Debug.h"
20 #include <queue>
21 
22 #define DEBUG_TYPE "pdl-predicate-tree"
23 
24 using namespace mlir;
25 using namespace mlir::pdl_to_pdl_interp;
26 
27 //===----------------------------------------------------------------------===//
28 // Predicate List Building
29 //===----------------------------------------------------------------------===//
30 
31 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
32                               Value val, PredicateBuilder &builder,
33                               DenseMap<Value, Position *> &inputs,
34                               Position *pos);
35 
36 /// Compares the depths of two positions.
37 static bool comparePosDepth(Position *lhs, Position *rhs) {
38   return lhs->getOperationDepth() < rhs->getOperationDepth();
39 }
40 
41 /// Returns the number of non-range elements within `values`.
42 static unsigned getNumNonRangeValues(ValueRange values) {
43   return llvm::count_if(values.getTypes(),
44                         [](Type type) { return !type.isa<pdl::RangeType>(); });
45 }
46 
47 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
48                               Value val, PredicateBuilder &builder,
49                               DenseMap<Value, Position *> &inputs,
50                               AttributePosition *pos) {
51   assert(val.getType().isa<pdl::AttributeType>() && "expected attribute type");
52   pdl::AttributeOp attr = cast<pdl::AttributeOp>(val.getDefiningOp());
53   predList.emplace_back(pos, builder.getIsNotNull());
54 
55   // If the attribute has a type or value, add a constraint.
56   if (Value type = attr.type())
57     getTreePredicates(predList, type, builder, inputs, builder.getType(pos));
58   else if (Attribute value = attr.valueAttr())
59     predList.emplace_back(pos, builder.getAttributeConstraint(value));
60 }
61 
62 /// Collect all of the predicates for the given operand position.
63 static void getOperandTreePredicates(std::vector<PositionalPredicate> &predList,
64                                      Value val, PredicateBuilder &builder,
65                                      DenseMap<Value, Position *> &inputs,
66                                      Position *pos) {
67   Type valueType = val.getType();
68   bool isVariadic = valueType.isa<pdl::RangeType>();
69 
70   // If this is a typed operand, add a type constraint.
71   TypeSwitch<Operation *>(val.getDefiningOp())
72       .Case<pdl::OperandOp, pdl::OperandsOp>([&](auto op) {
73         // Prevent traversal into a null value if the operand has a proper
74         // index.
75         if (std::is_same<pdl::OperandOp, decltype(op)>::value ||
76             cast<OperandGroupPosition>(pos)->getOperandGroupNumber())
77           predList.emplace_back(pos, builder.getIsNotNull());
78 
79         if (Value type = op.type())
80           getTreePredicates(predList, type, builder, inputs,
81                             builder.getType(pos));
82       })
83       .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto op) {
84         Optional<unsigned> index = op.index();
85 
86         // Prevent traversal into a null value if the result has a proper index.
87         if (index)
88           predList.emplace_back(pos, builder.getIsNotNull());
89 
90         // Get the parent operation of this operand.
91         OperationPosition *parentPos = builder.getOperandDefiningOp(pos);
92         predList.emplace_back(parentPos, builder.getIsNotNull());
93 
94         // Ensure that the operands match the corresponding results of the
95         // parent operation.
96         Position *resultPos = nullptr;
97         if (std::is_same<pdl::ResultOp, decltype(op)>::value)
98           resultPos = builder.getResult(parentPos, *index);
99         else
100           resultPos = builder.getResultGroup(parentPos, index, isVariadic);
101         predList.emplace_back(resultPos, builder.getEqualTo(pos));
102 
103         // Collect the predicates of the parent operation.
104         getTreePredicates(predList, op.parent(), builder, inputs,
105                           (Position *)parentPos);
106       });
107 }
108 
109 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
110                               Value val, PredicateBuilder &builder,
111                               DenseMap<Value, Position *> &inputs,
112                               OperationPosition *pos,
113                               Optional<unsigned> ignoreOperand = llvm::None) {
114   assert(val.getType().isa<pdl::OperationType>() && "expected operation");
115   pdl::OperationOp op = cast<pdl::OperationOp>(val.getDefiningOp());
116   OperationPosition *opPos = cast<OperationPosition>(pos);
117 
118   // Ensure getDefiningOp returns a non-null operation.
119   if (!opPos->isRoot())
120     predList.emplace_back(pos, builder.getIsNotNull());
121 
122   // Check that this is the correct root operation.
123   if (Optional<StringRef> opName = op.name())
124     predList.emplace_back(pos, builder.getOperationName(*opName));
125 
126   // Check that the operation has the proper number of operands. If there are
127   // any variable length operands, we check a minimum instead of an exact count.
128   OperandRange operands = op.operands();
129   unsigned minOperands = getNumNonRangeValues(operands);
130   if (minOperands != operands.size()) {
131     if (minOperands)
132       predList.emplace_back(pos, builder.getOperandCountAtLeast(minOperands));
133   } else {
134     predList.emplace_back(pos, builder.getOperandCount(minOperands));
135   }
136 
137   // Check that the operation has the proper number of results. If there are
138   // any variable length results, we check a minimum instead of an exact count.
139   OperandRange types = op.types();
140   unsigned minResults = getNumNonRangeValues(types);
141   if (minResults == types.size())
142     predList.emplace_back(pos, builder.getResultCount(types.size()));
143   else if (minResults)
144     predList.emplace_back(pos, builder.getResultCountAtLeast(minResults));
145 
146   // Recurse into any attributes, operands, or results.
147   for (auto it : llvm::zip(op.attributeNames(), op.attributes())) {
148     getTreePredicates(
149         predList, std::get<1>(it), builder, inputs,
150         builder.getAttribute(opPos,
151                              std::get<0>(it).cast<StringAttr>().getValue()));
152   }
153 
154   // Process the operands and results of the operation. For all values up to
155   // the first variable length value, we use the concrete operand/result
156   // number. After that, we use the "group" given that we can't know the
157   // concrete indices until runtime. If there is only one variadic operand
158   // group, we treat it as all of the operands/results of the operation.
159   /// Operands.
160   if (operands.size() == 1 && operands[0].getType().isa<pdl::RangeType>()) {
161     // Ignore the operands if we are performing an upward traversal (in that
162     // case, they have already been visited).
163     if (opPos->isRoot() || opPos->isOperandDefiningOp())
164       getTreePredicates(predList, operands.front(), builder, inputs,
165                         builder.getAllOperands(opPos));
166   } else {
167     bool foundVariableLength = false;
168     for (const auto &operandIt : llvm::enumerate(operands)) {
169       bool isVariadic = operandIt.value().getType().isa<pdl::RangeType>();
170       foundVariableLength |= isVariadic;
171 
172       // Ignore the specified operand, usually because this position was
173       // visited in an upward traversal via an iterative choice.
174       if (ignoreOperand && *ignoreOperand == operandIt.index())
175         continue;
176 
177       Position *pos =
178           foundVariableLength
179               ? builder.getOperandGroup(opPos, operandIt.index(), isVariadic)
180               : builder.getOperand(opPos, operandIt.index());
181       getTreePredicates(predList, operandIt.value(), builder, inputs, pos);
182     }
183   }
184   /// Results.
185   if (types.size() == 1 && types[0].getType().isa<pdl::RangeType>()) {
186     getTreePredicates(predList, types.front(), builder, inputs,
187                       builder.getType(builder.getAllResults(opPos)));
188   } else {
189     bool foundVariableLength = false;
190     for (auto &resultIt : llvm::enumerate(types)) {
191       bool isVariadic = resultIt.value().getType().isa<pdl::RangeType>();
192       foundVariableLength |= isVariadic;
193 
194       auto *resultPos =
195           foundVariableLength
196               ? builder.getResultGroup(pos, resultIt.index(), isVariadic)
197               : builder.getResult(pos, resultIt.index());
198       predList.emplace_back(resultPos, builder.getIsNotNull());
199       getTreePredicates(predList, resultIt.value(), builder, inputs,
200                         builder.getType(resultPos));
201     }
202   }
203 }
204 
205 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
206                               Value val, PredicateBuilder &builder,
207                               DenseMap<Value, Position *> &inputs,
208                               TypePosition *pos) {
209   // Check for a constraint on a constant type.
210   if (pdl::TypeOp typeOp = val.getDefiningOp<pdl::TypeOp>()) {
211     if (Attribute type = typeOp.typeAttr())
212       predList.emplace_back(pos, builder.getTypeConstraint(type));
213   } else if (pdl::TypesOp typeOp = val.getDefiningOp<pdl::TypesOp>()) {
214     if (Attribute typeAttr = typeOp.typesAttr())
215       predList.emplace_back(pos, builder.getTypeConstraint(typeAttr));
216   }
217 }
218 
219 /// Collect the tree predicates anchored at the given value.
220 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
221                               Value val, PredicateBuilder &builder,
222                               DenseMap<Value, Position *> &inputs,
223                               Position *pos) {
224   // Make sure this input value is accessible to the rewrite.
225   auto it = inputs.try_emplace(val, pos);
226   if (!it.second) {
227     // If this is an input value that has been visited in the tree, add a
228     // constraint to ensure that both instances refer to the same value.
229     if (isa<pdl::AttributeOp, pdl::OperandOp, pdl::OperandsOp, pdl::OperationOp,
230             pdl::TypeOp>(val.getDefiningOp())) {
231       auto minMaxPositions =
232           std::minmax(pos, it.first->second, comparePosDepth);
233       predList.emplace_back(minMaxPositions.second,
234                             builder.getEqualTo(minMaxPositions.first));
235     }
236     return;
237   }
238 
239   TypeSwitch<Position *>(pos)
240       .Case<AttributePosition, OperationPosition, TypePosition>([&](auto *pos) {
241         getTreePredicates(predList, val, builder, inputs, pos);
242       })
243       .Case<OperandPosition, OperandGroupPosition>([&](auto *pos) {
244         getOperandTreePredicates(predList, val, builder, inputs, pos);
245       })
246       .Default([](auto *) { llvm_unreachable("unexpected position kind"); });
247 }
248 
249 static void getAttributePredicates(pdl::AttributeOp op,
250                                    std::vector<PositionalPredicate> &predList,
251                                    PredicateBuilder &builder,
252                                    DenseMap<Value, Position *> &inputs) {
253   Position *&attrPos = inputs[op];
254   if (attrPos)
255     return;
256   Attribute value = op.valueAttr();
257   assert(value && "expected non-tree `pdl.attribute` to contain a value");
258   attrPos = builder.getAttributeLiteral(value);
259 }
260 
261 static void getConstraintPredicates(pdl::ApplyNativeConstraintOp op,
262                                     std::vector<PositionalPredicate> &predList,
263                                     PredicateBuilder &builder,
264                                     DenseMap<Value, Position *> &inputs) {
265   OperandRange arguments = op.args();
266   ArrayAttr parameters = op.constParamsAttr();
267 
268   std::vector<Position *> allPositions;
269   allPositions.reserve(arguments.size());
270   for (Value arg : arguments)
271     allPositions.push_back(inputs.lookup(arg));
272 
273   // Push the constraint to the furthest position.
274   Position *pos = *std::max_element(allPositions.begin(), allPositions.end(),
275                                     comparePosDepth);
276   PredicateBuilder::Predicate pred =
277       builder.getConstraint(op.name(), allPositions, parameters);
278   predList.emplace_back(pos, pred);
279 }
280 
281 static void getResultPredicates(pdl::ResultOp op,
282                                 std::vector<PositionalPredicate> &predList,
283                                 PredicateBuilder &builder,
284                                 DenseMap<Value, Position *> &inputs) {
285   Position *&resultPos = inputs[op];
286   if (resultPos)
287     return;
288 
289   // Ensure that the result isn't null.
290   auto *parentPos = cast<OperationPosition>(inputs.lookup(op.parent()));
291   resultPos = builder.getResult(parentPos, op.index());
292   predList.emplace_back(resultPos, builder.getIsNotNull());
293 }
294 
295 static void getResultPredicates(pdl::ResultsOp op,
296                                 std::vector<PositionalPredicate> &predList,
297                                 PredicateBuilder &builder,
298                                 DenseMap<Value, Position *> &inputs) {
299   Position *&resultPos = inputs[op];
300   if (resultPos)
301     return;
302 
303   // Ensure that the result isn't null if the result has an index.
304   auto *parentPos = cast<OperationPosition>(inputs.lookup(op.parent()));
305   bool isVariadic = op.getType().isa<pdl::RangeType>();
306   Optional<unsigned> index = op.index();
307   resultPos = builder.getResultGroup(parentPos, index, isVariadic);
308   if (index)
309     predList.emplace_back(resultPos, builder.getIsNotNull());
310 }
311 
312 static void getTypePredicates(Value typeValue,
313                               function_ref<Attribute()> typeAttrFn,
314                               PredicateBuilder &builder,
315                               DenseMap<Value, Position *> &inputs) {
316   Position *&typePos = inputs[typeValue];
317   if (typePos)
318     return;
319   Attribute typeAttr = typeAttrFn();
320   assert(typeAttr &&
321          "expected non-tree `pdl.type`/`pdl.types` to contain a value");
322   typePos = builder.getTypeLiteral(typeAttr);
323 }
324 
325 /// Collect all of the predicates that cannot be determined via walking the
326 /// tree.
327 static void getNonTreePredicates(pdl::PatternOp pattern,
328                                  std::vector<PositionalPredicate> &predList,
329                                  PredicateBuilder &builder,
330                                  DenseMap<Value, Position *> &inputs) {
331   for (Operation &op : pattern.body().getOps()) {
332     TypeSwitch<Operation *>(&op)
333         .Case([&](pdl::AttributeOp attrOp) {
334           getAttributePredicates(attrOp, predList, builder, inputs);
335         })
336         .Case<pdl::ApplyNativeConstraintOp>([&](auto constraintOp) {
337           getConstraintPredicates(constraintOp, predList, builder, inputs);
338         })
339         .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
340           getResultPredicates(resultOp, predList, builder, inputs);
341         })
342         .Case([&](pdl::TypeOp typeOp) {
343           getTypePredicates(
344               typeOp, [&] { return typeOp.typeAttr(); }, builder, inputs);
345         })
346         .Case([&](pdl::TypesOp typeOp) {
347           getTypePredicates(
348               typeOp, [&] { return typeOp.typesAttr(); }, builder, inputs);
349         });
350   }
351 }
352 
353 namespace {
354 
355 /// An op accepting a value at an optional index.
356 struct OpIndex {
357   Value parent;
358   Optional<unsigned> index;
359 };
360 
361 /// The parent and operand index of each operation for each root, stored
362 /// as a nested map [root][operation].
363 using ParentMaps = DenseMap<Value, DenseMap<Value, OpIndex>>;
364 
365 } // namespace
366 
367 /// Given a pattern, determines the set of roots present in this pattern.
368 /// These are the operations whose results are not consumed by other operations.
369 static SmallVector<Value> detectRoots(pdl::PatternOp pattern) {
370   // First, collect all the operations that are used as operands
371   // to other operations. These are not roots by default.
372   DenseSet<Value> used;
373   for (auto operationOp : pattern.body().getOps<pdl::OperationOp>()) {
374     for (Value operand : operationOp.operands())
375       TypeSwitch<Operation *>(operand.getDefiningOp())
376           .Case<pdl::ResultOp, pdl::ResultsOp>(
377               [&used](auto resultOp) { used.insert(resultOp.parent()); });
378   }
379 
380   // Remove the specified root from the use set, so that we can
381   // always select it as a root, even if it is used by other operations.
382   if (Value root = pattern.getRewriter().root())
383     used.erase(root);
384 
385   // Finally, collect all the unused operations.
386   SmallVector<Value> roots;
387   for (Value operationOp : pattern.body().getOps<pdl::OperationOp>())
388     if (!used.contains(operationOp))
389       roots.push_back(operationOp);
390 
391   return roots;
392 }
393 
394 /// Given a list of candidate roots, builds the cost graph for connecting them.
395 /// The graph is formed by traversing the DAG of operations starting from each
396 /// root and marking the depth of each connector value (operand). Then we join
397 /// the candidate roots based on the common connector values, taking the one
398 /// with the minimum depth. Along the way, we compute, for each candidate root,
399 /// a mapping from each operation (in the DAG underneath this root) to its
400 /// parent operation and the corresponding operand index.
401 static void buildCostGraph(ArrayRef<Value> roots, RootOrderingGraph &graph,
402                            ParentMaps &parentMaps) {
403 
404   // The entry of a queue. The entry consists of the following items:
405   // * the value in the DAG underneath the root;
406   // * the parent of the value;
407   // * the operand index of the value in its parent;
408   // * the depth of the visited value.
409   struct Entry {
410     Entry(Value value, Value parent, Optional<unsigned> index, unsigned depth)
411         : value(value), parent(parent), index(index), depth(depth) {}
412 
413     Value value;
414     Value parent;
415     Optional<unsigned> index;
416     unsigned depth;
417   };
418 
419   // A root of a value and its depth (distance from root to the value).
420   struct RootDepth {
421     Value root;
422     unsigned depth = 0;
423   };
424 
425   // Map from candidate connector values to their roots and depths. Using a
426   // small vector with 1 entry because most values belong to a single root.
427   llvm::MapVector<Value, SmallVector<RootDepth, 1>> connectorsRootsDepths;
428 
429   // Perform a breadth-first traversal of the op DAG rooted at each root.
430   for (Value root : roots) {
431     // The queue of visited values. A value may be present multiple times in
432     // the queue, for multiple parents. We only accept the first occurrence,
433     // which is guaranteed to have the lowest depth.
434     std::queue<Entry> toVisit;
435     toVisit.emplace(root, Value(), 0, 0);
436 
437     // The map from value to its parent for the current root.
438     DenseMap<Value, OpIndex> &parentMap = parentMaps[root];
439 
440     while (!toVisit.empty()) {
441       Entry entry = toVisit.front();
442       toVisit.pop();
443       // Skip if already visited.
444       if (!parentMap.insert({entry.value, {entry.parent, entry.index}}).second)
445         continue;
446 
447       // Mark the root and depth of the value.
448       connectorsRootsDepths[entry.value].push_back({root, entry.depth});
449 
450       // Traverse the operands of an operation and result ops.
451       // We intentionally do not traverse attributes and types, because those
452       // are expensive to join on.
453       TypeSwitch<Operation *>(entry.value.getDefiningOp())
454           .Case<pdl::OperationOp>([&](auto operationOp) {
455             OperandRange operands = operationOp.operands();
456             // Special case when we pass all the operands in one range.
457             // For those, the index is empty.
458             if (operands.size() == 1 &&
459                 operands[0].getType().isa<pdl::RangeType>()) {
460               toVisit.emplace(operands[0], entry.value, llvm::None,
461                               entry.depth + 1);
462               return;
463             }
464 
465             // Default case: visit all the operands.
466             for (const auto &p : llvm::enumerate(operationOp.operands()))
467               toVisit.emplace(p.value(), entry.value, p.index(),
468                               entry.depth + 1);
469           })
470           .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
471             toVisit.emplace(resultOp.parent(), entry.value, resultOp.index(),
472                             entry.depth);
473           });
474     }
475   }
476 
477   // Now build the cost graph.
478   // This is simply a minimum over all depths for the target root.
479   unsigned nextID = 0;
480   for (const auto &connectorRootsDepths : connectorsRootsDepths) {
481     Value value = connectorRootsDepths.first;
482     ArrayRef<RootDepth> rootsDepths = connectorRootsDepths.second;
483     // If there is only one root for this value, this will not trigger
484     // any edges in the cost graph (a perf optimization).
485     if (rootsDepths.size() == 1)
486       continue;
487 
488     for (const RootDepth &p : rootsDepths) {
489       for (const RootDepth &q : rootsDepths) {
490         if (&p == &q)
491           continue;
492         // Insert or retrieve the property of edge from p to q.
493         RootOrderingEntry &entry = graph[q.root][p.root];
494         if (!entry.connector /* new edge */ || entry.cost.first > q.depth) {
495           if (!entry.connector)
496             entry.cost.second = nextID++;
497           entry.cost.first = q.depth;
498           entry.connector = value;
499         }
500       }
501     }
502   }
503 
504   assert((llvm::hasSingleElement(roots) || graph.size() == roots.size()) &&
505          "the pattern contains a candidate root disconnected from the others");
506 }
507 
508 /// Returns true if the operand at the given index needs to be queried using an
509 /// operand group, i.e., if it is variadic itself or follows a variadic operand.
510 static bool useOperandGroup(pdl::OperationOp op, unsigned index) {
511   OperandRange operands = op.operands();
512   assert(index < operands.size() && "operand index out of range");
513   for (unsigned i = 0; i <= index; ++i)
514     if (operands[i].getType().isa<pdl::RangeType>())
515       return true;
516   return false;
517 }
518 
519 /// Visit a node during upward traversal.
520 static void visitUpward(std::vector<PositionalPredicate> &predList,
521                         OpIndex opIndex, PredicateBuilder &builder,
522                         DenseMap<Value, Position *> &valueToPosition,
523                         Position *&pos, unsigned rootID) {
524   Value value = opIndex.parent;
525   TypeSwitch<Operation *>(value.getDefiningOp())
526       .Case<pdl::OperationOp>([&](auto operationOp) {
527         LLVM_DEBUG(llvm::dbgs() << "  * Value: " << value << "\n");
528 
529         // Get users and iterate over them.
530         Position *usersPos = builder.getUsers(pos, /*useRepresentative=*/true);
531         Position *foreachPos = builder.getForEach(usersPos, rootID);
532         OperationPosition *opPos = builder.getPassthroughOp(foreachPos);
533 
534         // Compare the operand(s) of the user against the input value(s).
535         Position *operandPos;
536         if (!opIndex.index) {
537           // We are querying all the operands of the operation.
538           operandPos = builder.getAllOperands(opPos);
539         } else if (useOperandGroup(operationOp, *opIndex.index)) {
540           // We are querying an operand group.
541           Type type = operationOp.operands()[*opIndex.index].getType();
542           bool variadic = type.isa<pdl::RangeType>();
543           operandPos = builder.getOperandGroup(opPos, opIndex.index, variadic);
544         } else {
545           // We are querying an individual operand.
546           operandPos = builder.getOperand(opPos, *opIndex.index);
547         }
548         predList.emplace_back(operandPos, builder.getEqualTo(pos));
549 
550         // Guard against duplicate upward visits. These are not possible,
551         // because if this value was already visited, it would have been
552         // cheaper to start the traversal at this value rather than at the
553         // `connector`, violating the optimality of our spanning tree.
554         bool inserted = valueToPosition.try_emplace(value, opPos).second;
555         (void)inserted;
556         assert(inserted && "duplicate upward visit");
557 
558         // Obtain the tree predicates at the current value.
559         getTreePredicates(predList, value, builder, valueToPosition, opPos,
560                           opIndex.index);
561 
562         // Update the position
563         pos = opPos;
564       })
565       .Case<pdl::ResultOp>([&](auto resultOp) {
566         // Traverse up an individual result.
567         auto *opPos = dyn_cast<OperationPosition>(pos);
568         assert(opPos && "operations and results must be interleaved");
569         pos = builder.getResult(opPos, *opIndex.index);
570 
571         // Insert the result position in case we have not visited it yet.
572         valueToPosition.try_emplace(value, pos);
573       })
574       .Case<pdl::ResultsOp>([&](auto resultOp) {
575         // Traverse up a group of results.
576         auto *opPos = dyn_cast<OperationPosition>(pos);
577         assert(opPos && "operations and results must be interleaved");
578         bool isVariadic = value.getType().isa<pdl::RangeType>();
579         if (opIndex.index)
580           pos = builder.getResultGroup(opPos, opIndex.index, isVariadic);
581         else
582           pos = builder.getAllResults(opPos);
583 
584         // Insert the result position in case we have not visited it yet.
585         valueToPosition.try_emplace(value, pos);
586       });
587 }
588 
589 /// Given a pattern operation, build the set of matcher predicates necessary to
590 /// match this pattern.
591 static Value buildPredicateList(pdl::PatternOp pattern,
592                                 PredicateBuilder &builder,
593                                 std::vector<PositionalPredicate> &predList,
594                                 DenseMap<Value, Position *> &valueToPosition) {
595   SmallVector<Value> roots = detectRoots(pattern);
596 
597   // Build the root ordering graph and compute the parent maps.
598   RootOrderingGraph graph;
599   ParentMaps parentMaps;
600   buildCostGraph(roots, graph, parentMaps);
601   LLVM_DEBUG({
602     llvm::dbgs() << "Graph:\n";
603     for (auto &target : graph) {
604       llvm::dbgs() << "  * " << target.first.getLoc() << " " << target.first
605                    << "\n";
606       for (auto &source : target.second) {
607         RootOrderingEntry &entry = source.second;
608         llvm::dbgs() << "      <- " << source.first << ": " << entry.cost.first
609                      << ":" << entry.cost.second << " via "
610                      << entry.connector.getLoc() << "\n";
611       }
612     }
613   });
614 
615   // Solve the optimal branching problem for each candidate root, or use the
616   // provided one.
617   Value bestRoot = pattern.getRewriter().root();
618   OptimalBranching::EdgeList bestEdges;
619   if (!bestRoot) {
620     unsigned bestCost = 0;
621     LLVM_DEBUG(llvm::dbgs() << "Candidate roots:\n");
622     for (Value root : roots) {
623       OptimalBranching solver(graph, root);
624       unsigned cost = solver.solve();
625       LLVM_DEBUG(llvm::dbgs() << "  * " << root << ": " << cost << "\n");
626       if (!bestRoot || bestCost > cost) {
627         bestCost = cost;
628         bestRoot = root;
629         bestEdges = solver.preOrderTraversal(roots);
630       }
631     }
632   } else {
633     OptimalBranching solver(graph, bestRoot);
634     solver.solve();
635     bestEdges = solver.preOrderTraversal(roots);
636   }
637 
638   // Print the best solution.
639   LLVM_DEBUG({
640     llvm::dbgs() << "Best tree:\n";
641     for (const std::pair<Value, Value> &edge : bestEdges) {
642       llvm::dbgs() << "  * " << edge.first;
643       if (edge.second)
644         llvm::dbgs() << " <- " << edge.second;
645       llvm::dbgs() << "\n";
646     }
647   });
648 
649   LLVM_DEBUG(llvm::dbgs() << "Calling key getTreePredicates:\n");
650   LLVM_DEBUG(llvm::dbgs() << "  * Value: " << bestRoot << "\n");
651 
652   // The best root is the starting point for the traversal. Get the tree
653   // predicates for the DAG rooted at bestRoot.
654   getTreePredicates(predList, bestRoot, builder, valueToPosition,
655                     builder.getRoot());
656 
657   // Traverse the selected optimal branching. For all edges in order, traverse
658   // up starting from the connector, until the candidate root is reached, and
659   // call getTreePredicates at every node along the way.
660   for (auto it : llvm::enumerate(bestEdges)) {
661     Value target = it.value().first;
662     Value source = it.value().second;
663 
664     // Check if we already visited the target root. This happens in two cases:
665     // 1) the initial root (bestRoot);
666     // 2) a root that is dominated by (contained in the subtree rooted at) an
667     //    already visited root.
668     if (valueToPosition.count(target))
669       continue;
670 
671     // Determine the connector.
672     Value connector = graph[target][source].connector;
673     assert(connector && "invalid edge");
674     LLVM_DEBUG(llvm::dbgs() << "  * Connector: " << connector.getLoc() << "\n");
675     DenseMap<Value, OpIndex> parentMap = parentMaps.lookup(target);
676     Position *pos = valueToPosition.lookup(connector);
677     assert(pos && "connector has not been traversed yet");
678 
679     // Traverse from the connector upwards towards the target root.
680     for (Value value = connector; value != target;) {
681       OpIndex opIndex = parentMap.lookup(value);
682       assert(opIndex.parent && "missing parent");
683       visitUpward(predList, opIndex, builder, valueToPosition, pos, it.index());
684       value = opIndex.parent;
685     }
686   }
687 
688   getNonTreePredicates(pattern, predList, builder, valueToPosition);
689 
690   return bestRoot;
691 }
692 
693 //===----------------------------------------------------------------------===//
694 // Pattern Predicate Tree Merging
695 //===----------------------------------------------------------------------===//
696 
697 namespace {
698 
699 /// This class represents a specific predicate applied to a position, and
700 /// provides hashing and ordering operators. This class allows for computing a
701 /// frequence sum and ordering predicates based on a cost model.
702 struct OrderedPredicate {
703   OrderedPredicate(const std::pair<Position *, Qualifier *> &ip)
704       : position(ip.first), question(ip.second) {}
705   OrderedPredicate(const PositionalPredicate &ip)
706       : position(ip.position), question(ip.question) {}
707 
708   /// The position this predicate is applied to.
709   Position *position;
710 
711   /// The question that is applied by this predicate onto the position.
712   Qualifier *question;
713 
714   /// The first and second order benefit sums.
715   /// The primary sum is the number of occurrences of this predicate among all
716   /// of the patterns.
717   unsigned primary = 0;
718   /// The secondary sum is a squared summation of the primary sum of all of the
719   /// predicates within each pattern that contains this predicate. This allows
720   /// for favoring predicates that are more commonly shared within a pattern, as
721   /// opposed to those shared across patterns.
722   unsigned secondary = 0;
723 
724   /// The tie breaking ID, used to preserve a deterministic (insertion) order
725   /// among all the predicates with the same priority, depth, and position /
726   /// predicate dependency.
727   unsigned id = 0;
728 
729   /// A map between a pattern operation and the answer to the predicate question
730   /// within that pattern.
731   DenseMap<Operation *, Qualifier *> patternToAnswer;
732 
733   /// Returns true if this predicate is ordered before `rhs`, based on the cost
734   /// model.
735   bool operator<(const OrderedPredicate &rhs) const {
736     // Sort by:
737     // * higher first and secondary order sums
738     // * lower depth
739     // * lower position dependency
740     // * lower predicate dependency
741     // * lower tie breaking ID
742     auto *rhsPos = rhs.position;
743     return std::make_tuple(primary, secondary, rhsPos->getOperationDepth(),
744                            rhsPos->getKind(), rhs.question->getKind(), rhs.id) >
745            std::make_tuple(rhs.primary, rhs.secondary,
746                            position->getOperationDepth(), position->getKind(),
747                            question->getKind(), id);
748   }
749 };
750 
751 /// A DenseMapInfo for OrderedPredicate based solely on the position and
752 /// question.
753 struct OrderedPredicateDenseInfo {
754   using Base = DenseMapInfo<std::pair<Position *, Qualifier *>>;
755 
756   static OrderedPredicate getEmptyKey() { return Base::getEmptyKey(); }
757   static OrderedPredicate getTombstoneKey() { return Base::getTombstoneKey(); }
758   static bool isEqual(const OrderedPredicate &lhs,
759                       const OrderedPredicate &rhs) {
760     return lhs.position == rhs.position && lhs.question == rhs.question;
761   }
762   static unsigned getHashValue(const OrderedPredicate &p) {
763     return llvm::hash_combine(p.position, p.question);
764   }
765 };
766 
767 /// This class wraps a set of ordered predicates that are used within a specific
768 /// pattern operation.
769 struct OrderedPredicateList {
770   OrderedPredicateList(pdl::PatternOp pattern, Value root)
771       : pattern(pattern), root(root) {}
772 
773   pdl::PatternOp pattern;
774   Value root;
775   DenseSet<OrderedPredicate *> predicates;
776 };
777 } // namespace
778 
779 /// Returns true if the given matcher refers to the same predicate as the given
780 /// ordered predicate. This means that the position and questions of the two
781 /// match.
782 static bool isSamePredicate(MatcherNode *node, OrderedPredicate *predicate) {
783   return node->getPosition() == predicate->position &&
784          node->getQuestion() == predicate->question;
785 }
786 
787 /// Get or insert a child matcher for the given parent switch node, given a
788 /// predicate and parent pattern.
789 std::unique_ptr<MatcherNode> &getOrCreateChild(SwitchNode *node,
790                                                OrderedPredicate *predicate,
791                                                pdl::PatternOp pattern) {
792   assert(isSamePredicate(node, predicate) &&
793          "expected matcher to equal the given predicate");
794 
795   auto it = predicate->patternToAnswer.find(pattern);
796   assert(it != predicate->patternToAnswer.end() &&
797          "expected pattern to exist in predicate");
798   return node->getChildren().insert({it->second, nullptr}).first->second;
799 }
800 
801 /// Build the matcher CFG by "pushing" patterns through by sorted predicate
802 /// order. A pattern will traverse as far as possible using common predicates
803 /// and then either diverge from the CFG or reach the end of a branch and start
804 /// creating new nodes.
805 static void propagatePattern(std::unique_ptr<MatcherNode> &node,
806                              OrderedPredicateList &list,
807                              std::vector<OrderedPredicate *>::iterator current,
808                              std::vector<OrderedPredicate *>::iterator end) {
809   if (current == end) {
810     // We've hit the end of a pattern, so create a successful result node.
811     node =
812         std::make_unique<SuccessNode>(list.pattern, list.root, std::move(node));
813 
814     // If the pattern doesn't contain this predicate, ignore it.
815   } else if (list.predicates.find(*current) == list.predicates.end()) {
816     propagatePattern(node, list, std::next(current), end);
817 
818     // If the current matcher node is invalid, create a new one for this
819     // position and continue propagation.
820   } else if (!node) {
821     // Create a new node at this position and continue
822     node = std::make_unique<SwitchNode>((*current)->position,
823                                         (*current)->question);
824     propagatePattern(
825         getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
826         list, std::next(current), end);
827 
828     // If the matcher has already been created, and it is for this predicate we
829     // continue propagation to the child.
830   } else if (isSamePredicate(node.get(), *current)) {
831     propagatePattern(
832         getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
833         list, std::next(current), end);
834 
835     // If the matcher doesn't match the current predicate, insert a branch as
836     // the common set of matchers has diverged.
837   } else {
838     propagatePattern(node->getFailureNode(), list, current, end);
839   }
840 }
841 
842 /// Fold any switch nodes nested under `node` to boolean nodes when possible.
843 /// `node` is updated in-place if it is a switch.
844 static void foldSwitchToBool(std::unique_ptr<MatcherNode> &node) {
845   if (!node)
846     return;
847 
848   if (SwitchNode *switchNode = dyn_cast<SwitchNode>(&*node)) {
849     SwitchNode::ChildMapT &children = switchNode->getChildren();
850     for (auto &it : children)
851       foldSwitchToBool(it.second);
852 
853     // If the node only contains one child, collapse it into a boolean predicate
854     // node.
855     if (children.size() == 1) {
856       auto childIt = children.begin();
857       node = std::make_unique<BoolNode>(
858           node->getPosition(), node->getQuestion(), childIt->first,
859           std::move(childIt->second), std::move(node->getFailureNode()));
860     }
861   } else if (BoolNode *boolNode = dyn_cast<BoolNode>(&*node)) {
862     foldSwitchToBool(boolNode->getSuccessNode());
863   }
864 
865   foldSwitchToBool(node->getFailureNode());
866 }
867 
868 /// Insert an exit node at the end of the failure path of the `root`.
869 static void insertExitNode(std::unique_ptr<MatcherNode> *root) {
870   while (*root)
871     root = &(*root)->getFailureNode();
872   *root = std::make_unique<ExitNode>();
873 }
874 
875 /// Given a module containing PDL pattern operations, generate a matcher tree
876 /// using the patterns within the given module and return the root matcher node.
877 std::unique_ptr<MatcherNode>
878 MatcherNode::generateMatcherTree(ModuleOp module, PredicateBuilder &builder,
879                                  DenseMap<Value, Position *> &valueToPosition) {
880   // The set of predicates contained within the pattern operations of the
881   // module.
882   struct PatternPredicates {
883     PatternPredicates(pdl::PatternOp pattern, Value root,
884                       std::vector<PositionalPredicate> predicates)
885         : pattern(pattern), root(root), predicates(std::move(predicates)) {}
886 
887     /// A pattern.
888     pdl::PatternOp pattern;
889 
890     /// A root of the pattern chosen among the candidate roots in pdl.rewrite.
891     Value root;
892 
893     /// The extracted predicates for this pattern and root.
894     std::vector<PositionalPredicate> predicates;
895   };
896 
897   SmallVector<PatternPredicates, 16> patternsAndPredicates;
898   for (pdl::PatternOp pattern : module.getOps<pdl::PatternOp>()) {
899     std::vector<PositionalPredicate> predicateList;
900     Value root =
901         buildPredicateList(pattern, builder, predicateList, valueToPosition);
902     patternsAndPredicates.emplace_back(pattern, root, std::move(predicateList));
903   }
904 
905   // Associate a pattern result with each unique predicate.
906   DenseSet<OrderedPredicate, OrderedPredicateDenseInfo> uniqued;
907   for (auto &patternAndPredList : patternsAndPredicates) {
908     for (auto &predicate : patternAndPredList.predicates) {
909       auto it = uniqued.insert(predicate);
910       it.first->patternToAnswer.try_emplace(patternAndPredList.pattern,
911                                             predicate.answer);
912       // Mark the insertion order (0-based indexing).
913       if (it.second)
914         it.first->id = uniqued.size() - 1;
915     }
916   }
917 
918   // Associate each pattern to a set of its ordered predicates for later lookup.
919   std::vector<OrderedPredicateList> lists;
920   lists.reserve(patternsAndPredicates.size());
921   for (auto &patternAndPredList : patternsAndPredicates) {
922     OrderedPredicateList list(patternAndPredList.pattern,
923                               patternAndPredList.root);
924     for (auto &predicate : patternAndPredList.predicates) {
925       OrderedPredicate *orderedPredicate = &*uniqued.find(predicate);
926       list.predicates.insert(orderedPredicate);
927 
928       // Increment the primary sum for each reference to a particular predicate.
929       ++orderedPredicate->primary;
930     }
931     lists.push_back(std::move(list));
932   }
933 
934   // For a particular pattern, get the total primary sum and add it to the
935   // secondary sum of each predicate. Square the primary sums to emphasize
936   // shared predicates within rather than across patterns.
937   for (auto &list : lists) {
938     unsigned total = 0;
939     for (auto *predicate : list.predicates)
940       total += predicate->primary * predicate->primary;
941     for (auto *predicate : list.predicates)
942       predicate->secondary += total;
943   }
944 
945   // Sort the set of predicates now that the cost primary and secondary sums
946   // have been computed.
947   std::vector<OrderedPredicate *> ordered;
948   ordered.reserve(uniqued.size());
949   for (auto &ip : uniqued)
950     ordered.push_back(&ip);
951   llvm::sort(ordered, [](OrderedPredicate *lhs, OrderedPredicate *rhs) {
952     return *lhs < *rhs;
953   });
954 
955   // Build the matchers for each of the pattern predicate lists.
956   std::unique_ptr<MatcherNode> root;
957   for (OrderedPredicateList &list : lists)
958     propagatePattern(root, list, ordered.begin(), ordered.end());
959 
960   // Collapse the graph and insert the exit node.
961   foldSwitchToBool(root);
962   insertExitNode(&root);
963   return root;
964 }
965 
966 //===----------------------------------------------------------------------===//
967 // MatcherNode
968 //===----------------------------------------------------------------------===//
969 
970 MatcherNode::MatcherNode(TypeID matcherTypeID, Position *p, Qualifier *q,
971                          std::unique_ptr<MatcherNode> failureNode)
972     : position(p), question(q), failureNode(std::move(failureNode)),
973       matcherTypeID(matcherTypeID) {}
974 
975 //===----------------------------------------------------------------------===//
976 // BoolNode
977 //===----------------------------------------------------------------------===//
978 
979 BoolNode::BoolNode(Position *position, Qualifier *question, Qualifier *answer,
980                    std::unique_ptr<MatcherNode> successNode,
981                    std::unique_ptr<MatcherNode> failureNode)
982     : MatcherNode(TypeID::get<BoolNode>(), position, question,
983                   std::move(failureNode)),
984       answer(answer), successNode(std::move(successNode)) {}
985 
986 //===----------------------------------------------------------------------===//
987 // SuccessNode
988 //===----------------------------------------------------------------------===//
989 
990 SuccessNode::SuccessNode(pdl::PatternOp pattern, Value root,
991                          std::unique_ptr<MatcherNode> failureNode)
992     : MatcherNode(TypeID::get<SuccessNode>(), /*position=*/nullptr,
993                   /*question=*/nullptr, std::move(failureNode)),
994       pattern(pattern), root(root) {}
995 
996 //===----------------------------------------------------------------------===//
997 // SwitchNode
998 //===----------------------------------------------------------------------===//
999 
1000 SwitchNode::SwitchNode(Position *position, Qualifier *question)
1001     : MatcherNode(TypeID::get<SwitchNode>(), position, question) {}
1002