1 //===- PDLToPDLInterp.cpp - Lower a PDL module to the interpreter ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/PDLToPDLInterp/PDLToPDLInterp.h" 10 #include "../PassDetail.h" 11 #include "PredicateTree.h" 12 #include "mlir/Dialect/PDL/IR/PDL.h" 13 #include "mlir/Dialect/PDL/IR/PDLTypes.h" 14 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h" 15 #include "mlir/Pass/Pass.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/TypeSwitch.h" 22 23 using namespace mlir; 24 using namespace mlir::pdl_to_pdl_interp; 25 26 //===----------------------------------------------------------------------===// 27 // PatternLowering 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 /// This class generators operations within the PDL Interpreter dialect from a 32 /// given module containing PDL pattern operations. 33 struct PatternLowering { 34 public: 35 PatternLowering(pdl_interp::FuncOp matcherFunc, ModuleOp rewriterModule); 36 37 /// Generate code for matching and rewriting based on the pattern operations 38 /// within the module. 39 void lower(ModuleOp module); 40 41 private: 42 using ValueMap = llvm::ScopedHashTable<Position *, Value>; 43 using ValueMapScope = llvm::ScopedHashTableScope<Position *, Value>; 44 45 /// Generate interpreter operations for the tree rooted at the given matcher 46 /// node, in the specified region. 47 Block *generateMatcher(MatcherNode &node, Region ®ion); 48 49 /// Get or create an access to the provided positional value in the current 50 /// block. This operation may mutate the provided block pointer if nested 51 /// regions (i.e., pdl_interp.iterate) are required. 52 Value getValueAt(Block *¤tBlock, Position *pos); 53 54 /// Create the interpreter predicate operations. This operation may mutate the 55 /// provided current block pointer if nested regions (iterates) are required. 56 void generate(BoolNode *boolNode, Block *¤tBlock, Value val); 57 58 /// Create the interpreter switch / predicate operations, with several case 59 /// destinations. This operation never mutates the provided current block 60 /// pointer, because the switch operation does not need Values beyond `val`. 61 void generate(SwitchNode *switchNode, Block *currentBlock, Value val); 62 63 /// Create the interpreter operations to record a successful pattern match 64 /// using the contained root operation. This operation may mutate the current 65 /// block pointer if nested regions (i.e., pdl_interp.iterate) are required. 66 void generate(SuccessNode *successNode, Block *¤tBlock); 67 68 /// Generate a rewriter function for the given pattern operation, and returns 69 /// a reference to that function. 70 SymbolRefAttr generateRewriter(pdl::PatternOp pattern, 71 SmallVectorImpl<Position *> &usedMatchValues); 72 73 /// Generate the rewriter code for the given operation. 74 void generateRewriter(pdl::ApplyNativeRewriteOp rewriteOp, 75 DenseMap<Value, Value> &rewriteValues, 76 function_ref<Value(Value)> mapRewriteValue); 77 void generateRewriter(pdl::AttributeOp attrOp, 78 DenseMap<Value, Value> &rewriteValues, 79 function_ref<Value(Value)> mapRewriteValue); 80 void generateRewriter(pdl::EraseOp eraseOp, 81 DenseMap<Value, Value> &rewriteValues, 82 function_ref<Value(Value)> mapRewriteValue); 83 void generateRewriter(pdl::OperationOp operationOp, 84 DenseMap<Value, Value> &rewriteValues, 85 function_ref<Value(Value)> mapRewriteValue); 86 void generateRewriter(pdl::ReplaceOp replaceOp, 87 DenseMap<Value, Value> &rewriteValues, 88 function_ref<Value(Value)> mapRewriteValue); 89 void generateRewriter(pdl::ResultOp resultOp, 90 DenseMap<Value, Value> &rewriteValues, 91 function_ref<Value(Value)> mapRewriteValue); 92 void generateRewriter(pdl::ResultsOp resultOp, 93 DenseMap<Value, Value> &rewriteValues, 94 function_ref<Value(Value)> mapRewriteValue); 95 void generateRewriter(pdl::TypeOp typeOp, 96 DenseMap<Value, Value> &rewriteValues, 97 function_ref<Value(Value)> mapRewriteValue); 98 void generateRewriter(pdl::TypesOp typeOp, 99 DenseMap<Value, Value> &rewriteValues, 100 function_ref<Value(Value)> mapRewriteValue); 101 102 /// Generate the values used for resolving the result types of an operation 103 /// created within a dag rewriter region. 104 void generateOperationResultTypeRewriter( 105 pdl::OperationOp op, SmallVectorImpl<Value> &types, 106 DenseMap<Value, Value> &rewriteValues, 107 function_ref<Value(Value)> mapRewriteValue); 108 109 /// A builder to use when generating interpreter operations. 110 OpBuilder builder; 111 112 /// The matcher function used for all match related logic within PDL patterns. 113 pdl_interp::FuncOp matcherFunc; 114 115 /// The rewriter module containing the all rewrite related logic within PDL 116 /// patterns. 117 ModuleOp rewriterModule; 118 119 /// The symbol table of the rewriter module used for insertion. 120 SymbolTable rewriterSymbolTable; 121 122 /// A scoped map connecting a position with the corresponding interpreter 123 /// value. 124 ValueMap values; 125 126 /// A stack of blocks used as the failure destination for matcher nodes that 127 /// don't have an explicit failure path. 128 SmallVector<Block *, 8> failureBlockStack; 129 130 /// A mapping between values defined in a pattern match, and the corresponding 131 /// positional value. 132 DenseMap<Value, Position *> valueToPosition; 133 134 /// The set of operation values whose whose location will be used for newly 135 /// generated operations. 136 SetVector<Value> locOps; 137 }; 138 } // namespace 139 140 PatternLowering::PatternLowering(pdl_interp::FuncOp matcherFunc, 141 ModuleOp rewriterModule) 142 : builder(matcherFunc.getContext()), matcherFunc(matcherFunc), 143 rewriterModule(rewriterModule), rewriterSymbolTable(rewriterModule) {} 144 145 void PatternLowering::lower(ModuleOp module) { 146 PredicateUniquer predicateUniquer; 147 PredicateBuilder predicateBuilder(predicateUniquer, module.getContext()); 148 149 // Define top-level scope for the arguments to the matcher function. 150 ValueMapScope topLevelValueScope(values); 151 152 // Insert the root operation, i.e. argument to the matcher, at the root 153 // position. 154 Block *matcherEntryBlock = &matcherFunc.front(); 155 values.insert(predicateBuilder.getRoot(), matcherEntryBlock->getArgument(0)); 156 157 // Generate a root matcher node from the provided PDL module. 158 std::unique_ptr<MatcherNode> root = MatcherNode::generateMatcherTree( 159 module, predicateBuilder, valueToPosition); 160 Block *firstMatcherBlock = generateMatcher(*root, matcherFunc.getBody()); 161 assert(failureBlockStack.empty() && "failed to empty the stack"); 162 163 // After generation, merged the first matched block into the entry. 164 matcherEntryBlock->getOperations().splice(matcherEntryBlock->end(), 165 firstMatcherBlock->getOperations()); 166 firstMatcherBlock->erase(); 167 } 168 169 Block *PatternLowering::generateMatcher(MatcherNode &node, Region ®ion) { 170 // Push a new scope for the values used by this matcher. 171 Block *block = ®ion.emplaceBlock(); 172 ValueMapScope scope(values); 173 174 // If this is the return node, simply insert the corresponding interpreter 175 // finalize. 176 if (isa<ExitNode>(node)) { 177 builder.setInsertionPointToEnd(block); 178 builder.create<pdl_interp::FinalizeOp>(matcherFunc.getLoc()); 179 return block; 180 } 181 182 // Get the next block in the match sequence. 183 // This is intentionally executed first, before we get the value for the 184 // position associated with the node, so that we preserve an "there exist" 185 // semantics: if getting a value requires an upward traversal (going from a 186 // value to its consumers), we want to perform the check on all the consumers 187 // before we pass control to the failure node. 188 std::unique_ptr<MatcherNode> &failureNode = node.getFailureNode(); 189 Block *failureBlock; 190 if (failureNode) { 191 failureBlock = generateMatcher(*failureNode, region); 192 failureBlockStack.push_back(failureBlock); 193 } else { 194 assert(!failureBlockStack.empty() && "expected valid failure block"); 195 failureBlock = failureBlockStack.back(); 196 } 197 198 // If this node contains a position, get the corresponding value for this 199 // block. 200 Block *currentBlock = block; 201 Position *position = node.getPosition(); 202 Value val = position ? getValueAt(currentBlock, position) : Value(); 203 204 // If this value corresponds to an operation, record that we are going to use 205 // its location as part of a fused location. 206 bool isOperationValue = val && val.getType().isa<pdl::OperationType>(); 207 if (isOperationValue) 208 locOps.insert(val); 209 210 // Dispatch to the correct method based on derived node type. 211 TypeSwitch<MatcherNode *>(&node) 212 .Case<BoolNode, SwitchNode>([&](auto *derivedNode) { 213 this->generate(derivedNode, currentBlock, val); 214 }) 215 .Case([&](SuccessNode *successNode) { 216 generate(successNode, currentBlock); 217 }); 218 219 // Pop all the failure blocks that were inserted due to nesting of 220 // pdl_interp.iterate. 221 while (failureBlockStack.back() != failureBlock) { 222 failureBlockStack.pop_back(); 223 assert(!failureBlockStack.empty() && "unable to locate failure block"); 224 } 225 226 // Pop the new failure block. 227 if (failureNode) 228 failureBlockStack.pop_back(); 229 230 if (isOperationValue) 231 locOps.remove(val); 232 233 return block; 234 } 235 236 Value PatternLowering::getValueAt(Block *¤tBlock, Position *pos) { 237 if (Value val = values.lookup(pos)) 238 return val; 239 240 // Get the value for the parent position. 241 Value parentVal; 242 if (Position *parent = pos->getParent()) 243 parentVal = getValueAt(currentBlock, parent); 244 245 // TODO: Use a location from the position. 246 Location loc = parentVal ? parentVal.getLoc() : builder.getUnknownLoc(); 247 builder.setInsertionPointToEnd(currentBlock); 248 Value value; 249 switch (pos->getKind()) { 250 case Predicates::OperationPos: { 251 auto *operationPos = cast<OperationPosition>(pos); 252 if (operationPos->isOperandDefiningOp()) 253 // Standard (downward) traversal which directly follows the defining op. 254 value = builder.create<pdl_interp::GetDefiningOpOp>( 255 loc, builder.getType<pdl::OperationType>(), parentVal); 256 else 257 // A passthrough operation position. 258 value = parentVal; 259 break; 260 } 261 case Predicates::UsersPos: { 262 auto *usersPos = cast<UsersPosition>(pos); 263 264 // The first operation retrieves the representative value of a range. 265 // This applies only when the parent is a range of values and we were 266 // requested to use a representative value (e.g., upward traversal). 267 if (parentVal.getType().isa<pdl::RangeType>() && 268 usersPos->useRepresentative()) 269 value = builder.create<pdl_interp::ExtractOp>(loc, parentVal, 0); 270 else 271 value = parentVal; 272 273 // The second operation retrieves the users. 274 value = builder.create<pdl_interp::GetUsersOp>(loc, value); 275 break; 276 } 277 case Predicates::ForEachPos: { 278 assert(!failureBlockStack.empty() && "expected valid failure block"); 279 auto foreach = builder.create<pdl_interp::ForEachOp>( 280 loc, parentVal, failureBlockStack.back(), /*initLoop=*/true); 281 value = foreach.getLoopVariable(); 282 283 // Create the continuation block. 284 Block *continueBlock = builder.createBlock(&foreach.region()); 285 builder.create<pdl_interp::ContinueOp>(loc); 286 failureBlockStack.push_back(continueBlock); 287 288 currentBlock = &foreach.region().front(); 289 break; 290 } 291 case Predicates::OperandPos: { 292 auto *operandPos = cast<OperandPosition>(pos); 293 value = builder.create<pdl_interp::GetOperandOp>( 294 loc, builder.getType<pdl::ValueType>(), parentVal, 295 operandPos->getOperandNumber()); 296 break; 297 } 298 case Predicates::OperandGroupPos: { 299 auto *operandPos = cast<OperandGroupPosition>(pos); 300 Type valueTy = builder.getType<pdl::ValueType>(); 301 value = builder.create<pdl_interp::GetOperandsOp>( 302 loc, operandPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy, 303 parentVal, operandPos->getOperandGroupNumber()); 304 break; 305 } 306 case Predicates::AttributePos: { 307 auto *attrPos = cast<AttributePosition>(pos); 308 value = builder.create<pdl_interp::GetAttributeOp>( 309 loc, builder.getType<pdl::AttributeType>(), parentVal, 310 attrPos->getName().strref()); 311 break; 312 } 313 case Predicates::TypePos: { 314 if (parentVal.getType().isa<pdl::AttributeType>()) 315 value = builder.create<pdl_interp::GetAttributeTypeOp>(loc, parentVal); 316 else 317 value = builder.create<pdl_interp::GetValueTypeOp>(loc, parentVal); 318 break; 319 } 320 case Predicates::ResultPos: { 321 auto *resPos = cast<ResultPosition>(pos); 322 value = builder.create<pdl_interp::GetResultOp>( 323 loc, builder.getType<pdl::ValueType>(), parentVal, 324 resPos->getResultNumber()); 325 break; 326 } 327 case Predicates::ResultGroupPos: { 328 auto *resPos = cast<ResultGroupPosition>(pos); 329 Type valueTy = builder.getType<pdl::ValueType>(); 330 value = builder.create<pdl_interp::GetResultsOp>( 331 loc, resPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy, 332 parentVal, resPos->getResultGroupNumber()); 333 break; 334 } 335 case Predicates::AttributeLiteralPos: { 336 auto *attrPos = cast<AttributeLiteralPosition>(pos); 337 value = 338 builder.create<pdl_interp::CreateAttributeOp>(loc, attrPos->getValue()); 339 break; 340 } 341 case Predicates::TypeLiteralPos: { 342 auto *typePos = cast<TypeLiteralPosition>(pos); 343 Attribute rawTypeAttr = typePos->getValue(); 344 if (TypeAttr typeAttr = rawTypeAttr.dyn_cast<TypeAttr>()) 345 value = builder.create<pdl_interp::CreateTypeOp>(loc, typeAttr); 346 else 347 value = builder.create<pdl_interp::CreateTypesOp>( 348 loc, rawTypeAttr.cast<ArrayAttr>()); 349 break; 350 } 351 default: 352 llvm_unreachable("Generating unknown Position getter"); 353 break; 354 } 355 356 values.insert(pos, value); 357 return value; 358 } 359 360 void PatternLowering::generate(BoolNode *boolNode, Block *¤tBlock, 361 Value val) { 362 Location loc = val.getLoc(); 363 Qualifier *question = boolNode->getQuestion(); 364 Qualifier *answer = boolNode->getAnswer(); 365 Region *region = currentBlock->getParent(); 366 367 // Execute the getValue queries first, so that we create success 368 // matcher in the correct (possibly nested) region. 369 SmallVector<Value> args; 370 if (auto *equalToQuestion = dyn_cast<EqualToQuestion>(question)) { 371 args = {getValueAt(currentBlock, equalToQuestion->getValue())}; 372 } else if (auto *cstQuestion = dyn_cast<ConstraintQuestion>(question)) { 373 for (Position *position : cstQuestion->getArgs()) 374 args.push_back(getValueAt(currentBlock, position)); 375 } 376 377 // Generate the matcher in the current (potentially nested) region 378 // and get the failure successor. 379 Block *success = generateMatcher(*boolNode->getSuccessNode(), *region); 380 Block *failure = failureBlockStack.back(); 381 382 // Finally, create the predicate. 383 builder.setInsertionPointToEnd(currentBlock); 384 Predicates::Kind kind = question->getKind(); 385 switch (kind) { 386 case Predicates::IsNotNullQuestion: 387 builder.create<pdl_interp::IsNotNullOp>(loc, val, success, failure); 388 break; 389 case Predicates::OperationNameQuestion: { 390 auto *opNameAnswer = cast<OperationNameAnswer>(answer); 391 builder.create<pdl_interp::CheckOperationNameOp>( 392 loc, val, opNameAnswer->getValue().getStringRef(), success, failure); 393 break; 394 } 395 case Predicates::TypeQuestion: { 396 auto *ans = cast<TypeAnswer>(answer); 397 if (val.getType().isa<pdl::RangeType>()) 398 builder.create<pdl_interp::CheckTypesOp>( 399 loc, val, ans->getValue().cast<ArrayAttr>(), success, failure); 400 else 401 builder.create<pdl_interp::CheckTypeOp>( 402 loc, val, ans->getValue().cast<TypeAttr>(), success, failure); 403 break; 404 } 405 case Predicates::AttributeQuestion: { 406 auto *ans = cast<AttributeAnswer>(answer); 407 builder.create<pdl_interp::CheckAttributeOp>(loc, val, ans->getValue(), 408 success, failure); 409 break; 410 } 411 case Predicates::OperandCountAtLeastQuestion: 412 case Predicates::OperandCountQuestion: 413 builder.create<pdl_interp::CheckOperandCountOp>( 414 loc, val, cast<UnsignedAnswer>(answer)->getValue(), 415 /*compareAtLeast=*/kind == Predicates::OperandCountAtLeastQuestion, 416 success, failure); 417 break; 418 case Predicates::ResultCountAtLeastQuestion: 419 case Predicates::ResultCountQuestion: 420 builder.create<pdl_interp::CheckResultCountOp>( 421 loc, val, cast<UnsignedAnswer>(answer)->getValue(), 422 /*compareAtLeast=*/kind == Predicates::ResultCountAtLeastQuestion, 423 success, failure); 424 break; 425 case Predicates::EqualToQuestion: { 426 bool trueAnswer = isa<TrueAnswer>(answer); 427 builder.create<pdl_interp::AreEqualOp>(loc, val, args.front(), 428 trueAnswer ? success : failure, 429 trueAnswer ? failure : success); 430 break; 431 } 432 case Predicates::ConstraintQuestion: { 433 auto *cstQuestion = cast<ConstraintQuestion>(question); 434 builder.create<pdl_interp::ApplyConstraintOp>( 435 loc, cstQuestion->getName(), args, cstQuestion->getParams(), success, 436 failure); 437 break; 438 } 439 default: 440 llvm_unreachable("Generating unknown Predicate operation"); 441 } 442 } 443 444 template <typename OpT, typename PredT, typename ValT = typename PredT::KeyTy> 445 static void createSwitchOp(Value val, Block *defaultDest, OpBuilder &builder, 446 llvm::MapVector<Qualifier *, Block *> &dests) { 447 std::vector<ValT> values; 448 std::vector<Block *> blocks; 449 values.reserve(dests.size()); 450 blocks.reserve(dests.size()); 451 for (const auto &it : dests) { 452 blocks.push_back(it.second); 453 values.push_back(cast<PredT>(it.first)->getValue()); 454 } 455 builder.create<OpT>(val.getLoc(), val, values, defaultDest, blocks); 456 } 457 458 void PatternLowering::generate(SwitchNode *switchNode, Block *currentBlock, 459 Value val) { 460 Qualifier *question = switchNode->getQuestion(); 461 Region *region = currentBlock->getParent(); 462 Block *defaultDest = failureBlockStack.back(); 463 464 // If the switch question is not an exact answer, i.e. for the `at_least` 465 // cases, we generate a special block sequence. 466 Predicates::Kind kind = question->getKind(); 467 if (kind == Predicates::OperandCountAtLeastQuestion || 468 kind == Predicates::ResultCountAtLeastQuestion) { 469 // Order the children such that the cases are in reverse numerical order. 470 SmallVector<unsigned> sortedChildren = llvm::to_vector<16>( 471 llvm::seq<unsigned>(0, switchNode->getChildren().size())); 472 llvm::sort(sortedChildren, [&](unsigned lhs, unsigned rhs) { 473 return cast<UnsignedAnswer>(switchNode->getChild(lhs).first)->getValue() > 474 cast<UnsignedAnswer>(switchNode->getChild(rhs).first)->getValue(); 475 }); 476 477 // Build the destination for each child using the next highest child as a 478 // a failure destination. This essentially creates the following control 479 // flow: 480 // 481 // if (operand_count < 1) 482 // goto failure 483 // if (child1.match()) 484 // ... 485 // 486 // if (operand_count < 2) 487 // goto failure 488 // if (child2.match()) 489 // ... 490 // 491 // failure: 492 // ... 493 // 494 failureBlockStack.push_back(defaultDest); 495 Location loc = val.getLoc(); 496 for (unsigned idx : sortedChildren) { 497 auto &child = switchNode->getChild(idx); 498 Block *childBlock = generateMatcher(*child.second, *region); 499 Block *predicateBlock = builder.createBlock(childBlock); 500 builder.setInsertionPointToEnd(predicateBlock); 501 unsigned ans = cast<UnsignedAnswer>(child.first)->getValue(); 502 switch (kind) { 503 case Predicates::OperandCountAtLeastQuestion: 504 builder.create<pdl_interp::CheckOperandCountOp>( 505 loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest); 506 break; 507 case Predicates::ResultCountAtLeastQuestion: 508 builder.create<pdl_interp::CheckResultCountOp>( 509 loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest); 510 break; 511 default: 512 llvm_unreachable("Generating invalid AtLeast operation"); 513 } 514 failureBlockStack.back() = predicateBlock; 515 } 516 Block *firstPredicateBlock = failureBlockStack.pop_back_val(); 517 currentBlock->getOperations().splice(currentBlock->end(), 518 firstPredicateBlock->getOperations()); 519 firstPredicateBlock->erase(); 520 return; 521 } 522 523 // Otherwise, generate each of the children and generate an interpreter 524 // switch. 525 llvm::MapVector<Qualifier *, Block *> children; 526 for (auto &it : switchNode->getChildren()) 527 children.insert({it.first, generateMatcher(*it.second, *region)}); 528 builder.setInsertionPointToEnd(currentBlock); 529 530 switch (question->getKind()) { 531 case Predicates::OperandCountQuestion: 532 return createSwitchOp<pdl_interp::SwitchOperandCountOp, UnsignedAnswer, 533 int32_t>(val, defaultDest, builder, children); 534 case Predicates::ResultCountQuestion: 535 return createSwitchOp<pdl_interp::SwitchResultCountOp, UnsignedAnswer, 536 int32_t>(val, defaultDest, builder, children); 537 case Predicates::OperationNameQuestion: 538 return createSwitchOp<pdl_interp::SwitchOperationNameOp, 539 OperationNameAnswer>(val, defaultDest, builder, 540 children); 541 case Predicates::TypeQuestion: 542 if (val.getType().isa<pdl::RangeType>()) { 543 return createSwitchOp<pdl_interp::SwitchTypesOp, TypeAnswer>( 544 val, defaultDest, builder, children); 545 } 546 return createSwitchOp<pdl_interp::SwitchTypeOp, TypeAnswer>( 547 val, defaultDest, builder, children); 548 case Predicates::AttributeQuestion: 549 return createSwitchOp<pdl_interp::SwitchAttributeOp, AttributeAnswer>( 550 val, defaultDest, builder, children); 551 default: 552 llvm_unreachable("Generating unknown switch predicate."); 553 } 554 } 555 556 void PatternLowering::generate(SuccessNode *successNode, Block *¤tBlock) { 557 pdl::PatternOp pattern = successNode->getPattern(); 558 Value root = successNode->getRoot(); 559 560 // Generate a rewriter for the pattern this success node represents, and track 561 // any values used from the match region. 562 SmallVector<Position *, 8> usedMatchValues; 563 SymbolRefAttr rewriterFuncRef = generateRewriter(pattern, usedMatchValues); 564 565 // Process any values used in the rewrite that are defined in the match. 566 std::vector<Value> mappedMatchValues; 567 mappedMatchValues.reserve(usedMatchValues.size()); 568 for (Position *position : usedMatchValues) 569 mappedMatchValues.push_back(getValueAt(currentBlock, position)); 570 571 // Collect the set of operations generated by the rewriter. 572 SmallVector<StringRef, 4> generatedOps; 573 for (auto op : pattern.getRewriter().body().getOps<pdl::OperationOp>()) 574 generatedOps.push_back(*op.name()); 575 ArrayAttr generatedOpsAttr; 576 if (!generatedOps.empty()) 577 generatedOpsAttr = builder.getStrArrayAttr(generatedOps); 578 579 // Grab the root kind if present. 580 StringAttr rootKindAttr; 581 if (pdl::OperationOp rootOp = root.getDefiningOp<pdl::OperationOp>()) 582 if (Optional<StringRef> rootKind = rootOp.name()) 583 rootKindAttr = builder.getStringAttr(*rootKind); 584 585 builder.setInsertionPointToEnd(currentBlock); 586 builder.create<pdl_interp::RecordMatchOp>( 587 pattern.getLoc(), mappedMatchValues, locOps.getArrayRef(), 588 rewriterFuncRef, rootKindAttr, generatedOpsAttr, pattern.benefitAttr(), 589 failureBlockStack.back()); 590 } 591 592 SymbolRefAttr PatternLowering::generateRewriter( 593 pdl::PatternOp pattern, SmallVectorImpl<Position *> &usedMatchValues) { 594 builder.setInsertionPointToEnd(rewriterModule.getBody()); 595 auto rewriterFunc = builder.create<pdl_interp::FuncOp>( 596 pattern.getLoc(), "pdl_generated_rewriter", 597 builder.getFunctionType(llvm::None, llvm::None)); 598 rewriterSymbolTable.insert(rewriterFunc); 599 600 // Generate the rewriter function body. 601 builder.setInsertionPointToEnd(&rewriterFunc.front()); 602 603 // Map an input operand of the pattern to a generated interpreter value. 604 DenseMap<Value, Value> rewriteValues; 605 auto mapRewriteValue = [&](Value oldValue) { 606 Value &newValue = rewriteValues[oldValue]; 607 if (newValue) 608 return newValue; 609 610 // Prefer materializing constants directly when possible. 611 Operation *oldOp = oldValue.getDefiningOp(); 612 if (pdl::AttributeOp attrOp = dyn_cast<pdl::AttributeOp>(oldOp)) { 613 if (Attribute value = attrOp.valueAttr()) { 614 return newValue = builder.create<pdl_interp::CreateAttributeOp>( 615 attrOp.getLoc(), value); 616 } 617 } else if (pdl::TypeOp typeOp = dyn_cast<pdl::TypeOp>(oldOp)) { 618 if (TypeAttr type = typeOp.typeAttr()) { 619 return newValue = builder.create<pdl_interp::CreateTypeOp>( 620 typeOp.getLoc(), type); 621 } 622 } else if (pdl::TypesOp typeOp = dyn_cast<pdl::TypesOp>(oldOp)) { 623 if (ArrayAttr type = typeOp.typesAttr()) { 624 return newValue = builder.create<pdl_interp::CreateTypesOp>( 625 typeOp.getLoc(), typeOp.getType(), type); 626 } 627 } 628 629 // Otherwise, add this as an input to the rewriter. 630 Position *inputPos = valueToPosition.lookup(oldValue); 631 assert(inputPos && "expected value to be a pattern input"); 632 usedMatchValues.push_back(inputPos); 633 return newValue = rewriterFunc.front().addArgument(oldValue.getType(), 634 oldValue.getLoc()); 635 }; 636 637 // If this is a custom rewriter, simply dispatch to the registered rewrite 638 // method. 639 pdl::RewriteOp rewriter = pattern.getRewriter(); 640 if (StringAttr rewriteName = rewriter.nameAttr()) { 641 SmallVector<Value> args; 642 if (rewriter.root()) 643 args.push_back(mapRewriteValue(rewriter.root())); 644 auto mappedArgs = llvm::map_range(rewriter.externalArgs(), mapRewriteValue); 645 args.append(mappedArgs.begin(), mappedArgs.end()); 646 builder.create<pdl_interp::ApplyRewriteOp>( 647 rewriter.getLoc(), /*resultTypes=*/TypeRange(), rewriteName, args, 648 rewriter.externalConstParamsAttr()); 649 } else { 650 // Otherwise this is a dag rewriter defined using PDL operations. 651 for (Operation &rewriteOp : *rewriter.getBody()) { 652 llvm::TypeSwitch<Operation *>(&rewriteOp) 653 .Case<pdl::ApplyNativeRewriteOp, pdl::AttributeOp, pdl::EraseOp, 654 pdl::OperationOp, pdl::ReplaceOp, pdl::ResultOp, pdl::ResultsOp, 655 pdl::TypeOp, pdl::TypesOp>([&](auto op) { 656 this->generateRewriter(op, rewriteValues, mapRewriteValue); 657 }); 658 } 659 } 660 661 // Update the signature of the rewrite function. 662 rewriterFunc.setType(builder.getFunctionType( 663 llvm::to_vector<8>(rewriterFunc.front().getArgumentTypes()), 664 /*results=*/llvm::None)); 665 666 builder.create<pdl_interp::FinalizeOp>(rewriter.getLoc()); 667 return SymbolRefAttr::get( 668 builder.getContext(), 669 pdl_interp::PDLInterpDialect::getRewriterModuleName(), 670 SymbolRefAttr::get(rewriterFunc)); 671 } 672 673 void PatternLowering::generateRewriter( 674 pdl::ApplyNativeRewriteOp rewriteOp, DenseMap<Value, Value> &rewriteValues, 675 function_ref<Value(Value)> mapRewriteValue) { 676 SmallVector<Value, 2> arguments; 677 for (Value argument : rewriteOp.args()) 678 arguments.push_back(mapRewriteValue(argument)); 679 auto interpOp = builder.create<pdl_interp::ApplyRewriteOp>( 680 rewriteOp.getLoc(), rewriteOp.getResultTypes(), rewriteOp.nameAttr(), 681 arguments, rewriteOp.constParamsAttr()); 682 for (auto it : llvm::zip(rewriteOp.results(), interpOp.results())) 683 rewriteValues[std::get<0>(it)] = std::get<1>(it); 684 } 685 686 void PatternLowering::generateRewriter( 687 pdl::AttributeOp attrOp, DenseMap<Value, Value> &rewriteValues, 688 function_ref<Value(Value)> mapRewriteValue) { 689 Value newAttr = builder.create<pdl_interp::CreateAttributeOp>( 690 attrOp.getLoc(), attrOp.valueAttr()); 691 rewriteValues[attrOp] = newAttr; 692 } 693 694 void PatternLowering::generateRewriter( 695 pdl::EraseOp eraseOp, DenseMap<Value, Value> &rewriteValues, 696 function_ref<Value(Value)> mapRewriteValue) { 697 builder.create<pdl_interp::EraseOp>(eraseOp.getLoc(), 698 mapRewriteValue(eraseOp.operation())); 699 } 700 701 void PatternLowering::generateRewriter( 702 pdl::OperationOp operationOp, DenseMap<Value, Value> &rewriteValues, 703 function_ref<Value(Value)> mapRewriteValue) { 704 SmallVector<Value, 4> operands; 705 for (Value operand : operationOp.operands()) 706 operands.push_back(mapRewriteValue(operand)); 707 708 SmallVector<Value, 4> attributes; 709 for (Value attr : operationOp.attributes()) 710 attributes.push_back(mapRewriteValue(attr)); 711 712 SmallVector<Value, 2> types; 713 generateOperationResultTypeRewriter(operationOp, types, rewriteValues, 714 mapRewriteValue); 715 716 // Create the new operation. 717 Location loc = operationOp.getLoc(); 718 Value createdOp = builder.create<pdl_interp::CreateOperationOp>( 719 loc, *operationOp.name(), types, operands, attributes, 720 operationOp.attributeNames()); 721 rewriteValues[operationOp.op()] = createdOp; 722 723 // Generate accesses for any results that have their types constrained. 724 // Handle the case where there is a single range representing all of the 725 // result types. 726 OperandRange resultTys = operationOp.types(); 727 if (resultTys.size() == 1 && resultTys[0].getType().isa<pdl::RangeType>()) { 728 Value &type = rewriteValues[resultTys[0]]; 729 if (!type) { 730 auto results = builder.create<pdl_interp::GetResultsOp>(loc, createdOp); 731 type = builder.create<pdl_interp::GetValueTypeOp>(loc, results); 732 } 733 return; 734 } 735 736 // Otherwise, populate the individual results. 737 bool seenVariableLength = false; 738 Type valueTy = builder.getType<pdl::ValueType>(); 739 Type valueRangeTy = pdl::RangeType::get(valueTy); 740 for (const auto &it : llvm::enumerate(resultTys)) { 741 Value &type = rewriteValues[it.value()]; 742 if (type) 743 continue; 744 bool isVariadic = it.value().getType().isa<pdl::RangeType>(); 745 seenVariableLength |= isVariadic; 746 747 // After a variable length result has been seen, we need to use result 748 // groups because the exact index of the result is not statically known. 749 Value resultVal; 750 if (seenVariableLength) 751 resultVal = builder.create<pdl_interp::GetResultsOp>( 752 loc, isVariadic ? valueRangeTy : valueTy, createdOp, it.index()); 753 else 754 resultVal = builder.create<pdl_interp::GetResultOp>( 755 loc, valueTy, createdOp, it.index()); 756 type = builder.create<pdl_interp::GetValueTypeOp>(loc, resultVal); 757 } 758 } 759 760 void PatternLowering::generateRewriter( 761 pdl::ReplaceOp replaceOp, DenseMap<Value, Value> &rewriteValues, 762 function_ref<Value(Value)> mapRewriteValue) { 763 SmallVector<Value, 4> replOperands; 764 765 // If the replacement was another operation, get its results. `pdl` allows 766 // for using an operation for simplicitly, but the interpreter isn't as 767 // user facing. 768 if (Value replOp = replaceOp.replOperation()) { 769 // Don't use replace if we know the replaced operation has no results. 770 auto opOp = replaceOp.operation().getDefiningOp<pdl::OperationOp>(); 771 if (!opOp || !opOp.types().empty()) { 772 replOperands.push_back(builder.create<pdl_interp::GetResultsOp>( 773 replOp.getLoc(), mapRewriteValue(replOp))); 774 } 775 } else { 776 for (Value operand : replaceOp.replValues()) 777 replOperands.push_back(mapRewriteValue(operand)); 778 } 779 780 // If there are no replacement values, just create an erase instead. 781 if (replOperands.empty()) { 782 builder.create<pdl_interp::EraseOp>(replaceOp.getLoc(), 783 mapRewriteValue(replaceOp.operation())); 784 return; 785 } 786 787 builder.create<pdl_interp::ReplaceOp>( 788 replaceOp.getLoc(), mapRewriteValue(replaceOp.operation()), replOperands); 789 } 790 791 void PatternLowering::generateRewriter( 792 pdl::ResultOp resultOp, DenseMap<Value, Value> &rewriteValues, 793 function_ref<Value(Value)> mapRewriteValue) { 794 rewriteValues[resultOp] = builder.create<pdl_interp::GetResultOp>( 795 resultOp.getLoc(), builder.getType<pdl::ValueType>(), 796 mapRewriteValue(resultOp.parent()), resultOp.index()); 797 } 798 799 void PatternLowering::generateRewriter( 800 pdl::ResultsOp resultOp, DenseMap<Value, Value> &rewriteValues, 801 function_ref<Value(Value)> mapRewriteValue) { 802 rewriteValues[resultOp] = builder.create<pdl_interp::GetResultsOp>( 803 resultOp.getLoc(), resultOp.getType(), mapRewriteValue(resultOp.parent()), 804 resultOp.index()); 805 } 806 807 void PatternLowering::generateRewriter( 808 pdl::TypeOp typeOp, DenseMap<Value, Value> &rewriteValues, 809 function_ref<Value(Value)> mapRewriteValue) { 810 // If the type isn't constant, the users (e.g. OperationOp) will resolve this 811 // type. 812 if (TypeAttr typeAttr = typeOp.typeAttr()) { 813 rewriteValues[typeOp] = 814 builder.create<pdl_interp::CreateTypeOp>(typeOp.getLoc(), typeAttr); 815 } 816 } 817 818 void PatternLowering::generateRewriter( 819 pdl::TypesOp typeOp, DenseMap<Value, Value> &rewriteValues, 820 function_ref<Value(Value)> mapRewriteValue) { 821 // If the type isn't constant, the users (e.g. OperationOp) will resolve this 822 // type. 823 if (ArrayAttr typeAttr = typeOp.typesAttr()) { 824 rewriteValues[typeOp] = builder.create<pdl_interp::CreateTypesOp>( 825 typeOp.getLoc(), typeOp.getType(), typeAttr); 826 } 827 } 828 829 void PatternLowering::generateOperationResultTypeRewriter( 830 pdl::OperationOp op, SmallVectorImpl<Value> &types, 831 DenseMap<Value, Value> &rewriteValues, 832 function_ref<Value(Value)> mapRewriteValue) { 833 // Look for an operation that was replaced by `op`. The result types will be 834 // inferred from the results that were replaced. 835 Block *rewriterBlock = op->getBlock(); 836 for (OpOperand &use : op.op().getUses()) { 837 // Check that the use corresponds to a ReplaceOp and that it is the 838 // replacement value, not the operation being replaced. 839 pdl::ReplaceOp replOpUser = dyn_cast<pdl::ReplaceOp>(use.getOwner()); 840 if (!replOpUser || use.getOperandNumber() == 0) 841 continue; 842 // Make sure the replaced operation was defined before this one. 843 Value replOpVal = replOpUser.operation(); 844 Operation *replacedOp = replOpVal.getDefiningOp(); 845 if (replacedOp->getBlock() == rewriterBlock && 846 !replacedOp->isBeforeInBlock(op)) 847 continue; 848 849 Value replacedOpResults = builder.create<pdl_interp::GetResultsOp>( 850 replacedOp->getLoc(), mapRewriteValue(replOpVal)); 851 types.push_back(builder.create<pdl_interp::GetValueTypeOp>( 852 replacedOp->getLoc(), replacedOpResults)); 853 return; 854 } 855 856 // Check if the operation has type inference support. 857 if (op.hasTypeInference()) { 858 types.push_back(builder.create<pdl_interp::InferredTypesOp>(op.getLoc())); 859 return; 860 } 861 862 // Otherwise, handle inference for each of the result types individually. 863 OperandRange resultTypeValues = op.types(); 864 types.reserve(resultTypeValues.size()); 865 for (const auto &it : llvm::enumerate(resultTypeValues)) { 866 Value resultType = it.value(); 867 868 // Check for an already translated value. 869 if (Value existingRewriteValue = rewriteValues.lookup(resultType)) { 870 types.push_back(existingRewriteValue); 871 continue; 872 } 873 874 // Check for an input from the matcher. 875 if (resultType.getDefiningOp()->getBlock() != rewriterBlock) { 876 types.push_back(mapRewriteValue(resultType)); 877 continue; 878 } 879 880 // The verifier asserts that the result types of each pdl.operation can be 881 // inferred. If we reach here, there is a bug either in the logic above or 882 // in the verifier for pdl.operation. 883 op->emitOpError() << "unable to infer result type for operation"; 884 llvm_unreachable("unable to infer result type for operation"); 885 } 886 } 887 888 //===----------------------------------------------------------------------===// 889 // Conversion Pass 890 //===----------------------------------------------------------------------===// 891 892 namespace { 893 struct PDLToPDLInterpPass 894 : public ConvertPDLToPDLInterpBase<PDLToPDLInterpPass> { 895 void runOnOperation() final; 896 }; 897 } // namespace 898 899 /// Convert the given module containing PDL pattern operations into a PDL 900 /// Interpreter operations. 901 void PDLToPDLInterpPass::runOnOperation() { 902 ModuleOp module = getOperation(); 903 904 // Create the main matcher function This function contains all of the match 905 // related functionality from patterns in the module. 906 OpBuilder builder = OpBuilder::atBlockBegin(module.getBody()); 907 auto matcherFunc = builder.create<pdl_interp::FuncOp>( 908 module.getLoc(), pdl_interp::PDLInterpDialect::getMatcherFunctionName(), 909 builder.getFunctionType(builder.getType<pdl::OperationType>(), 910 /*results=*/llvm::None), 911 /*attrs=*/llvm::None); 912 913 // Create a nested module to hold the functions invoked for rewriting the IR 914 // after a successful match. 915 ModuleOp rewriterModule = builder.create<ModuleOp>( 916 module.getLoc(), pdl_interp::PDLInterpDialect::getRewriterModuleName()); 917 918 // Generate the code for the patterns within the module. 919 PatternLowering generator(matcherFunc, rewriterModule); 920 generator.lower(module); 921 922 // After generation, delete all of the pattern operations. 923 for (pdl::PatternOp pattern : 924 llvm::make_early_inc_range(module.getOps<pdl::PatternOp>())) 925 pattern.erase(); 926 } 927 928 std::unique_ptr<OperationPass<ModuleOp>> mlir::createPDLToPDLInterpPass() { 929 return std::make_unique<PDLToPDLInterpPass>(); 930 } 931