1 //===- PDLToPDLInterp.cpp - Lower a PDL module to the interpreter ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/PDLToPDLInterp/PDLToPDLInterp.h" 10 #include "../PassDetail.h" 11 #include "PredicateTree.h" 12 #include "mlir/Dialect/PDL/IR/PDL.h" 13 #include "mlir/Dialect/PDL/IR/PDLTypes.h" 14 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h" 15 #include "mlir/Pass/Pass.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/TypeSwitch.h" 22 23 using namespace mlir; 24 using namespace mlir::pdl_to_pdl_interp; 25 26 //===----------------------------------------------------------------------===// 27 // PatternLowering 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 /// This class generators operations within the PDL Interpreter dialect from a 32 /// given module containing PDL pattern operations. 33 struct PatternLowering { 34 public: 35 PatternLowering(FuncOp matcherFunc, ModuleOp rewriterModule); 36 37 /// Generate code for matching and rewriting based on the pattern operations 38 /// within the module. 39 void lower(ModuleOp module); 40 41 private: 42 using ValueMap = llvm::ScopedHashTable<Position *, Value>; 43 using ValueMapScope = llvm::ScopedHashTableScope<Position *, Value>; 44 45 /// Generate interpreter operations for the tree rooted at the given matcher 46 /// node, in the specified region. 47 Block *generateMatcher(MatcherNode &node, Region ®ion); 48 49 /// Get or create an access to the provided positional value in the current 50 /// block. This operation may mutate the provided block pointer if nested 51 /// regions (i.e., pdl_interp.iterate) are required. 52 Value getValueAt(Block *¤tBlock, Position *pos); 53 54 /// Create the interpreter predicate operations. This operation may mutate the 55 /// provided current block pointer if nested regions (iterates) are required. 56 void generate(BoolNode *boolNode, Block *¤tBlock, Value val); 57 58 /// Create the interpreter switch / predicate operations, with several case 59 /// destinations. This operation never mutates the provided current block 60 /// pointer, because the switch operation does not need Values beyond `val`. 61 void generate(SwitchNode *switchNode, Block *currentBlock, Value val); 62 63 /// Create the interpreter operations to record a successful pattern match 64 /// using the contained root operation. This operation may mutate the current 65 /// block pointer if nested regions (i.e., pdl_interp.iterate) are required. 66 void generate(SuccessNode *successNode, Block *¤tBlock); 67 68 /// Generate a rewriter function for the given pattern operation, and returns 69 /// a reference to that function. 70 SymbolRefAttr generateRewriter(pdl::PatternOp pattern, 71 SmallVectorImpl<Position *> &usedMatchValues); 72 73 /// Generate the rewriter code for the given operation. 74 void generateRewriter(pdl::ApplyNativeRewriteOp rewriteOp, 75 DenseMap<Value, Value> &rewriteValues, 76 function_ref<Value(Value)> mapRewriteValue); 77 void generateRewriter(pdl::AttributeOp attrOp, 78 DenseMap<Value, Value> &rewriteValues, 79 function_ref<Value(Value)> mapRewriteValue); 80 void generateRewriter(pdl::EraseOp eraseOp, 81 DenseMap<Value, Value> &rewriteValues, 82 function_ref<Value(Value)> mapRewriteValue); 83 void generateRewriter(pdl::OperationOp operationOp, 84 DenseMap<Value, Value> &rewriteValues, 85 function_ref<Value(Value)> mapRewriteValue); 86 void generateRewriter(pdl::ReplaceOp replaceOp, 87 DenseMap<Value, Value> &rewriteValues, 88 function_ref<Value(Value)> mapRewriteValue); 89 void generateRewriter(pdl::ResultOp resultOp, 90 DenseMap<Value, Value> &rewriteValues, 91 function_ref<Value(Value)> mapRewriteValue); 92 void generateRewriter(pdl::ResultsOp resultOp, 93 DenseMap<Value, Value> &rewriteValues, 94 function_ref<Value(Value)> mapRewriteValue); 95 void generateRewriter(pdl::TypeOp typeOp, 96 DenseMap<Value, Value> &rewriteValues, 97 function_ref<Value(Value)> mapRewriteValue); 98 void generateRewriter(pdl::TypesOp typeOp, 99 DenseMap<Value, Value> &rewriteValues, 100 function_ref<Value(Value)> mapRewriteValue); 101 102 /// Generate the values used for resolving the result types of an operation 103 /// created within a dag rewriter region. 104 void generateOperationResultTypeRewriter( 105 pdl::OperationOp op, SmallVectorImpl<Value> &types, 106 DenseMap<Value, Value> &rewriteValues, 107 function_ref<Value(Value)> mapRewriteValue); 108 109 /// A builder to use when generating interpreter operations. 110 OpBuilder builder; 111 112 /// The matcher function used for all match related logic within PDL patterns. 113 FuncOp matcherFunc; 114 115 /// The rewriter module containing the all rewrite related logic within PDL 116 /// patterns. 117 ModuleOp rewriterModule; 118 119 /// The symbol table of the rewriter module used for insertion. 120 SymbolTable rewriterSymbolTable; 121 122 /// A scoped map connecting a position with the corresponding interpreter 123 /// value. 124 ValueMap values; 125 126 /// A stack of blocks used as the failure destination for matcher nodes that 127 /// don't have an explicit failure path. 128 SmallVector<Block *, 8> failureBlockStack; 129 130 /// A mapping between values defined in a pattern match, and the corresponding 131 /// positional value. 132 DenseMap<Value, Position *> valueToPosition; 133 134 /// The set of operation values whose whose location will be used for newly 135 /// generated operations. 136 SetVector<Value> locOps; 137 }; 138 } // namespace 139 140 PatternLowering::PatternLowering(FuncOp matcherFunc, ModuleOp rewriterModule) 141 : builder(matcherFunc.getContext()), matcherFunc(matcherFunc), 142 rewriterModule(rewriterModule), rewriterSymbolTable(rewriterModule) {} 143 144 void PatternLowering::lower(ModuleOp module) { 145 PredicateUniquer predicateUniquer; 146 PredicateBuilder predicateBuilder(predicateUniquer, module.getContext()); 147 148 // Define top-level scope for the arguments to the matcher function. 149 ValueMapScope topLevelValueScope(values); 150 151 // Insert the root operation, i.e. argument to the matcher, at the root 152 // position. 153 Block *matcherEntryBlock = matcherFunc.addEntryBlock(); 154 values.insert(predicateBuilder.getRoot(), matcherEntryBlock->getArgument(0)); 155 156 // Generate a root matcher node from the provided PDL module. 157 std::unique_ptr<MatcherNode> root = MatcherNode::generateMatcherTree( 158 module, predicateBuilder, valueToPosition); 159 Block *firstMatcherBlock = generateMatcher(*root, matcherFunc.getBody()); 160 assert(failureBlockStack.empty() && "failed to empty the stack"); 161 162 // After generation, merged the first matched block into the entry. 163 matcherEntryBlock->getOperations().splice(matcherEntryBlock->end(), 164 firstMatcherBlock->getOperations()); 165 firstMatcherBlock->erase(); 166 } 167 168 Block *PatternLowering::generateMatcher(MatcherNode &node, Region ®ion) { 169 // Push a new scope for the values used by this matcher. 170 Block *block = ®ion.emplaceBlock(); 171 ValueMapScope scope(values); 172 173 // If this is the return node, simply insert the corresponding interpreter 174 // finalize. 175 if (isa<ExitNode>(node)) { 176 builder.setInsertionPointToEnd(block); 177 builder.create<pdl_interp::FinalizeOp>(matcherFunc.getLoc()); 178 return block; 179 } 180 181 // Get the next block in the match sequence. 182 // This is intentionally executed first, before we get the value for the 183 // position associated with the node, so that we preserve an "there exist" 184 // semantics: if getting a value requires an upward traversal (going from a 185 // value to its consumers), we want to perform the check on all the consumers 186 // before we pass control to the failure node. 187 std::unique_ptr<MatcherNode> &failureNode = node.getFailureNode(); 188 Block *failureBlock; 189 if (failureNode) { 190 failureBlock = generateMatcher(*failureNode, region); 191 failureBlockStack.push_back(failureBlock); 192 } else { 193 assert(!failureBlockStack.empty() && "expected valid failure block"); 194 failureBlock = failureBlockStack.back(); 195 } 196 197 // If this node contains a position, get the corresponding value for this 198 // block. 199 Block *currentBlock = block; 200 Position *position = node.getPosition(); 201 Value val = position ? getValueAt(currentBlock, position) : Value(); 202 203 // If this value corresponds to an operation, record that we are going to use 204 // its location as part of a fused location. 205 bool isOperationValue = val && val.getType().isa<pdl::OperationType>(); 206 if (isOperationValue) 207 locOps.insert(val); 208 209 // Dispatch to the correct method based on derived node type. 210 TypeSwitch<MatcherNode *>(&node) 211 .Case<BoolNode, SwitchNode>([&](auto *derivedNode) { 212 this->generate(derivedNode, currentBlock, val); 213 }) 214 .Case([&](SuccessNode *successNode) { 215 generate(successNode, currentBlock); 216 }); 217 218 // Pop all the failure blocks that were inserted due to nesting of 219 // pdl_interp.iterate. 220 while (failureBlockStack.back() != failureBlock) { 221 failureBlockStack.pop_back(); 222 assert(!failureBlockStack.empty() && "unable to locate failure block"); 223 } 224 225 // Pop the new failure block. 226 if (failureNode) 227 failureBlockStack.pop_back(); 228 229 if (isOperationValue) 230 locOps.remove(val); 231 232 return block; 233 } 234 235 Value PatternLowering::getValueAt(Block *¤tBlock, Position *pos) { 236 if (Value val = values.lookup(pos)) 237 return val; 238 239 // Get the value for the parent position. 240 Value parentVal; 241 if (Position *parent = pos->getParent()) 242 parentVal = getValueAt(currentBlock, parent); 243 244 // TODO: Use a location from the position. 245 Location loc = parentVal ? parentVal.getLoc() : builder.getUnknownLoc(); 246 builder.setInsertionPointToEnd(currentBlock); 247 Value value; 248 switch (pos->getKind()) { 249 case Predicates::OperationPos: { 250 auto *operationPos = cast<OperationPosition>(pos); 251 if (operationPos->isOperandDefiningOp()) 252 // Standard (downward) traversal which directly follows the defining op. 253 value = builder.create<pdl_interp::GetDefiningOpOp>( 254 loc, builder.getType<pdl::OperationType>(), parentVal); 255 else 256 // A passthrough operation position. 257 value = parentVal; 258 break; 259 } 260 case Predicates::UsersPos: { 261 auto *usersPos = cast<UsersPosition>(pos); 262 263 // The first operation retrieves the representative value of a range. 264 // This applies only when the parent is a range of values and we were 265 // requested to use a representative value (e.g., upward traversal). 266 if (parentVal.getType().isa<pdl::RangeType>() && 267 usersPos->useRepresentative()) 268 value = builder.create<pdl_interp::ExtractOp>(loc, parentVal, 0); 269 else 270 value = parentVal; 271 272 // The second operation retrieves the users. 273 value = builder.create<pdl_interp::GetUsersOp>(loc, value); 274 break; 275 } 276 case Predicates::ForEachPos: { 277 assert(!failureBlockStack.empty() && "expected valid failure block"); 278 auto foreach = builder.create<pdl_interp::ForEachOp>( 279 loc, parentVal, failureBlockStack.back(), /*initLoop=*/true); 280 value = foreach.getLoopVariable(); 281 282 // Create the continuation block. 283 Block *continueBlock = builder.createBlock(&foreach.region()); 284 builder.create<pdl_interp::ContinueOp>(loc); 285 failureBlockStack.push_back(continueBlock); 286 287 currentBlock = &foreach.region().front(); 288 break; 289 } 290 case Predicates::OperandPos: { 291 auto *operandPos = cast<OperandPosition>(pos); 292 value = builder.create<pdl_interp::GetOperandOp>( 293 loc, builder.getType<pdl::ValueType>(), parentVal, 294 operandPos->getOperandNumber()); 295 break; 296 } 297 case Predicates::OperandGroupPos: { 298 auto *operandPos = cast<OperandGroupPosition>(pos); 299 Type valueTy = builder.getType<pdl::ValueType>(); 300 value = builder.create<pdl_interp::GetOperandsOp>( 301 loc, operandPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy, 302 parentVal, operandPos->getOperandGroupNumber()); 303 break; 304 } 305 case Predicates::AttributePos: { 306 auto *attrPos = cast<AttributePosition>(pos); 307 value = builder.create<pdl_interp::GetAttributeOp>( 308 loc, builder.getType<pdl::AttributeType>(), parentVal, 309 attrPos->getName().strref()); 310 break; 311 } 312 case Predicates::TypePos: { 313 if (parentVal.getType().isa<pdl::AttributeType>()) 314 value = builder.create<pdl_interp::GetAttributeTypeOp>(loc, parentVal); 315 else 316 value = builder.create<pdl_interp::GetValueTypeOp>(loc, parentVal); 317 break; 318 } 319 case Predicates::ResultPos: { 320 auto *resPos = cast<ResultPosition>(pos); 321 value = builder.create<pdl_interp::GetResultOp>( 322 loc, builder.getType<pdl::ValueType>(), parentVal, 323 resPos->getResultNumber()); 324 break; 325 } 326 case Predicates::ResultGroupPos: { 327 auto *resPos = cast<ResultGroupPosition>(pos); 328 Type valueTy = builder.getType<pdl::ValueType>(); 329 value = builder.create<pdl_interp::GetResultsOp>( 330 loc, resPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy, 331 parentVal, resPos->getResultGroupNumber()); 332 break; 333 } 334 case Predicates::AttributeLiteralPos: { 335 auto *attrPos = cast<AttributeLiteralPosition>(pos); 336 value = 337 builder.create<pdl_interp::CreateAttributeOp>(loc, attrPos->getValue()); 338 break; 339 } 340 case Predicates::TypeLiteralPos: { 341 auto *typePos = cast<TypeLiteralPosition>(pos); 342 Attribute rawTypeAttr = typePos->getValue(); 343 if (TypeAttr typeAttr = rawTypeAttr.dyn_cast<TypeAttr>()) 344 value = builder.create<pdl_interp::CreateTypeOp>(loc, typeAttr); 345 else 346 value = builder.create<pdl_interp::CreateTypesOp>( 347 loc, rawTypeAttr.cast<ArrayAttr>()); 348 break; 349 } 350 default: 351 llvm_unreachable("Generating unknown Position getter"); 352 break; 353 } 354 355 values.insert(pos, value); 356 return value; 357 } 358 359 void PatternLowering::generate(BoolNode *boolNode, Block *¤tBlock, 360 Value val) { 361 Location loc = val.getLoc(); 362 Qualifier *question = boolNode->getQuestion(); 363 Qualifier *answer = boolNode->getAnswer(); 364 Region *region = currentBlock->getParent(); 365 366 // Execute the getValue queries first, so that we create success 367 // matcher in the correct (possibly nested) region. 368 SmallVector<Value> args; 369 if (auto *equalToQuestion = dyn_cast<EqualToQuestion>(question)) { 370 args = {getValueAt(currentBlock, equalToQuestion->getValue())}; 371 } else if (auto *cstQuestion = dyn_cast<ConstraintQuestion>(question)) { 372 for (Position *position : cstQuestion->getArgs()) 373 args.push_back(getValueAt(currentBlock, position)); 374 } 375 376 // Generate the matcher in the current (potentially nested) region 377 // and get the failure successor. 378 Block *success = generateMatcher(*boolNode->getSuccessNode(), *region); 379 Block *failure = failureBlockStack.back(); 380 381 // Finally, create the predicate. 382 builder.setInsertionPointToEnd(currentBlock); 383 Predicates::Kind kind = question->getKind(); 384 switch (kind) { 385 case Predicates::IsNotNullQuestion: 386 builder.create<pdl_interp::IsNotNullOp>(loc, val, success, failure); 387 break; 388 case Predicates::OperationNameQuestion: { 389 auto *opNameAnswer = cast<OperationNameAnswer>(answer); 390 builder.create<pdl_interp::CheckOperationNameOp>( 391 loc, val, opNameAnswer->getValue().getStringRef(), success, failure); 392 break; 393 } 394 case Predicates::TypeQuestion: { 395 auto *ans = cast<TypeAnswer>(answer); 396 if (val.getType().isa<pdl::RangeType>()) 397 builder.create<pdl_interp::CheckTypesOp>( 398 loc, val, ans->getValue().cast<ArrayAttr>(), success, failure); 399 else 400 builder.create<pdl_interp::CheckTypeOp>( 401 loc, val, ans->getValue().cast<TypeAttr>(), success, failure); 402 break; 403 } 404 case Predicates::AttributeQuestion: { 405 auto *ans = cast<AttributeAnswer>(answer); 406 builder.create<pdl_interp::CheckAttributeOp>(loc, val, ans->getValue(), 407 success, failure); 408 break; 409 } 410 case Predicates::OperandCountAtLeastQuestion: 411 case Predicates::OperandCountQuestion: 412 builder.create<pdl_interp::CheckOperandCountOp>( 413 loc, val, cast<UnsignedAnswer>(answer)->getValue(), 414 /*compareAtLeast=*/kind == Predicates::OperandCountAtLeastQuestion, 415 success, failure); 416 break; 417 case Predicates::ResultCountAtLeastQuestion: 418 case Predicates::ResultCountQuestion: 419 builder.create<pdl_interp::CheckResultCountOp>( 420 loc, val, cast<UnsignedAnswer>(answer)->getValue(), 421 /*compareAtLeast=*/kind == Predicates::ResultCountAtLeastQuestion, 422 success, failure); 423 break; 424 case Predicates::EqualToQuestion: { 425 bool trueAnswer = isa<TrueAnswer>(answer); 426 builder.create<pdl_interp::AreEqualOp>(loc, val, args.front(), 427 trueAnswer ? success : failure, 428 trueAnswer ? failure : success); 429 break; 430 } 431 case Predicates::ConstraintQuestion: { 432 auto *cstQuestion = cast<ConstraintQuestion>(question); 433 builder.create<pdl_interp::ApplyConstraintOp>( 434 loc, cstQuestion->getName(), args, cstQuestion->getParams(), success, 435 failure); 436 break; 437 } 438 default: 439 llvm_unreachable("Generating unknown Predicate operation"); 440 } 441 } 442 443 template <typename OpT, typename PredT, typename ValT = typename PredT::KeyTy> 444 static void createSwitchOp(Value val, Block *defaultDest, OpBuilder &builder, 445 llvm::MapVector<Qualifier *, Block *> &dests) { 446 std::vector<ValT> values; 447 std::vector<Block *> blocks; 448 values.reserve(dests.size()); 449 blocks.reserve(dests.size()); 450 for (const auto &it : dests) { 451 blocks.push_back(it.second); 452 values.push_back(cast<PredT>(it.first)->getValue()); 453 } 454 builder.create<OpT>(val.getLoc(), val, values, defaultDest, blocks); 455 } 456 457 void PatternLowering::generate(SwitchNode *switchNode, Block *currentBlock, 458 Value val) { 459 Qualifier *question = switchNode->getQuestion(); 460 Region *region = currentBlock->getParent(); 461 Block *defaultDest = failureBlockStack.back(); 462 463 // If the switch question is not an exact answer, i.e. for the `at_least` 464 // cases, we generate a special block sequence. 465 Predicates::Kind kind = question->getKind(); 466 if (kind == Predicates::OperandCountAtLeastQuestion || 467 kind == Predicates::ResultCountAtLeastQuestion) { 468 // Order the children such that the cases are in reverse numerical order. 469 SmallVector<unsigned> sortedChildren = llvm::to_vector<16>( 470 llvm::seq<unsigned>(0, switchNode->getChildren().size())); 471 llvm::sort(sortedChildren, [&](unsigned lhs, unsigned rhs) { 472 return cast<UnsignedAnswer>(switchNode->getChild(lhs).first)->getValue() > 473 cast<UnsignedAnswer>(switchNode->getChild(rhs).first)->getValue(); 474 }); 475 476 // Build the destination for each child using the next highest child as a 477 // a failure destination. This essentially creates the following control 478 // flow: 479 // 480 // if (operand_count < 1) 481 // goto failure 482 // if (child1.match()) 483 // ... 484 // 485 // if (operand_count < 2) 486 // goto failure 487 // if (child2.match()) 488 // ... 489 // 490 // failure: 491 // ... 492 // 493 failureBlockStack.push_back(defaultDest); 494 Location loc = val.getLoc(); 495 for (unsigned idx : sortedChildren) { 496 auto &child = switchNode->getChild(idx); 497 Block *childBlock = generateMatcher(*child.second, *region); 498 Block *predicateBlock = builder.createBlock(childBlock); 499 builder.setInsertionPointToEnd(predicateBlock); 500 unsigned ans = cast<UnsignedAnswer>(child.first)->getValue(); 501 switch (kind) { 502 case Predicates::OperandCountAtLeastQuestion: 503 builder.create<pdl_interp::CheckOperandCountOp>( 504 loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest); 505 break; 506 case Predicates::ResultCountAtLeastQuestion: 507 builder.create<pdl_interp::CheckResultCountOp>( 508 loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest); 509 break; 510 default: 511 llvm_unreachable("Generating invalid AtLeast operation"); 512 } 513 failureBlockStack.back() = predicateBlock; 514 } 515 Block *firstPredicateBlock = failureBlockStack.pop_back_val(); 516 currentBlock->getOperations().splice(currentBlock->end(), 517 firstPredicateBlock->getOperations()); 518 firstPredicateBlock->erase(); 519 return; 520 } 521 522 // Otherwise, generate each of the children and generate an interpreter 523 // switch. 524 llvm::MapVector<Qualifier *, Block *> children; 525 for (auto &it : switchNode->getChildren()) 526 children.insert({it.first, generateMatcher(*it.second, *region)}); 527 builder.setInsertionPointToEnd(currentBlock); 528 529 switch (question->getKind()) { 530 case Predicates::OperandCountQuestion: 531 return createSwitchOp<pdl_interp::SwitchOperandCountOp, UnsignedAnswer, 532 int32_t>(val, defaultDest, builder, children); 533 case Predicates::ResultCountQuestion: 534 return createSwitchOp<pdl_interp::SwitchResultCountOp, UnsignedAnswer, 535 int32_t>(val, defaultDest, builder, children); 536 case Predicates::OperationNameQuestion: 537 return createSwitchOp<pdl_interp::SwitchOperationNameOp, 538 OperationNameAnswer>(val, defaultDest, builder, 539 children); 540 case Predicates::TypeQuestion: 541 if (val.getType().isa<pdl::RangeType>()) { 542 return createSwitchOp<pdl_interp::SwitchTypesOp, TypeAnswer>( 543 val, defaultDest, builder, children); 544 } 545 return createSwitchOp<pdl_interp::SwitchTypeOp, TypeAnswer>( 546 val, defaultDest, builder, children); 547 case Predicates::AttributeQuestion: 548 return createSwitchOp<pdl_interp::SwitchAttributeOp, AttributeAnswer>( 549 val, defaultDest, builder, children); 550 default: 551 llvm_unreachable("Generating unknown switch predicate."); 552 } 553 } 554 555 void PatternLowering::generate(SuccessNode *successNode, Block *¤tBlock) { 556 pdl::PatternOp pattern = successNode->getPattern(); 557 Value root = successNode->getRoot(); 558 559 // Generate a rewriter for the pattern this success node represents, and track 560 // any values used from the match region. 561 SmallVector<Position *, 8> usedMatchValues; 562 SymbolRefAttr rewriterFuncRef = generateRewriter(pattern, usedMatchValues); 563 564 // Process any values used in the rewrite that are defined in the match. 565 std::vector<Value> mappedMatchValues; 566 mappedMatchValues.reserve(usedMatchValues.size()); 567 for (Position *position : usedMatchValues) 568 mappedMatchValues.push_back(getValueAt(currentBlock, position)); 569 570 // Collect the set of operations generated by the rewriter. 571 SmallVector<StringRef, 4> generatedOps; 572 for (auto op : pattern.getRewriter().body().getOps<pdl::OperationOp>()) 573 generatedOps.push_back(*op.name()); 574 ArrayAttr generatedOpsAttr; 575 if (!generatedOps.empty()) 576 generatedOpsAttr = builder.getStrArrayAttr(generatedOps); 577 578 // Grab the root kind if present. 579 StringAttr rootKindAttr; 580 if (pdl::OperationOp rootOp = root.getDefiningOp<pdl::OperationOp>()) 581 if (Optional<StringRef> rootKind = rootOp.name()) 582 rootKindAttr = builder.getStringAttr(*rootKind); 583 584 builder.setInsertionPointToEnd(currentBlock); 585 builder.create<pdl_interp::RecordMatchOp>( 586 pattern.getLoc(), mappedMatchValues, locOps.getArrayRef(), 587 rewriterFuncRef, rootKindAttr, generatedOpsAttr, pattern.benefitAttr(), 588 failureBlockStack.back()); 589 } 590 591 SymbolRefAttr PatternLowering::generateRewriter( 592 pdl::PatternOp pattern, SmallVectorImpl<Position *> &usedMatchValues) { 593 FuncOp rewriterFunc = 594 FuncOp::create(pattern.getLoc(), "pdl_generated_rewriter", 595 builder.getFunctionType(llvm::None, llvm::None)); 596 rewriterSymbolTable.insert(rewriterFunc); 597 598 // Generate the rewriter function body. 599 builder.setInsertionPointToEnd(rewriterFunc.addEntryBlock()); 600 601 // Map an input operand of the pattern to a generated interpreter value. 602 DenseMap<Value, Value> rewriteValues; 603 auto mapRewriteValue = [&](Value oldValue) { 604 Value &newValue = rewriteValues[oldValue]; 605 if (newValue) 606 return newValue; 607 608 // Prefer materializing constants directly when possible. 609 Operation *oldOp = oldValue.getDefiningOp(); 610 if (pdl::AttributeOp attrOp = dyn_cast<pdl::AttributeOp>(oldOp)) { 611 if (Attribute value = attrOp.valueAttr()) { 612 return newValue = builder.create<pdl_interp::CreateAttributeOp>( 613 attrOp.getLoc(), value); 614 } 615 } else if (pdl::TypeOp typeOp = dyn_cast<pdl::TypeOp>(oldOp)) { 616 if (TypeAttr type = typeOp.typeAttr()) { 617 return newValue = builder.create<pdl_interp::CreateTypeOp>( 618 typeOp.getLoc(), type); 619 } 620 } else if (pdl::TypesOp typeOp = dyn_cast<pdl::TypesOp>(oldOp)) { 621 if (ArrayAttr type = typeOp.typesAttr()) { 622 return newValue = builder.create<pdl_interp::CreateTypesOp>( 623 typeOp.getLoc(), typeOp.getType(), type); 624 } 625 } 626 627 // Otherwise, add this as an input to the rewriter. 628 Position *inputPos = valueToPosition.lookup(oldValue); 629 assert(inputPos && "expected value to be a pattern input"); 630 usedMatchValues.push_back(inputPos); 631 return newValue = rewriterFunc.front().addArgument(oldValue.getType()); 632 }; 633 634 // If this is a custom rewriter, simply dispatch to the registered rewrite 635 // method. 636 pdl::RewriteOp rewriter = pattern.getRewriter(); 637 if (StringAttr rewriteName = rewriter.nameAttr()) { 638 SmallVector<Value> args; 639 if (rewriter.root()) 640 args.push_back(mapRewriteValue(rewriter.root())); 641 auto mappedArgs = llvm::map_range(rewriter.externalArgs(), mapRewriteValue); 642 args.append(mappedArgs.begin(), mappedArgs.end()); 643 builder.create<pdl_interp::ApplyRewriteOp>( 644 rewriter.getLoc(), /*resultTypes=*/TypeRange(), rewriteName, args, 645 rewriter.externalConstParamsAttr()); 646 } else { 647 // Otherwise this is a dag rewriter defined using PDL operations. 648 for (Operation &rewriteOp : *rewriter.getBody()) { 649 llvm::TypeSwitch<Operation *>(&rewriteOp) 650 .Case<pdl::ApplyNativeRewriteOp, pdl::AttributeOp, pdl::EraseOp, 651 pdl::OperationOp, pdl::ReplaceOp, pdl::ResultOp, pdl::ResultsOp, 652 pdl::TypeOp, pdl::TypesOp>([&](auto op) { 653 this->generateRewriter(op, rewriteValues, mapRewriteValue); 654 }); 655 } 656 } 657 658 // Update the signature of the rewrite function. 659 rewriterFunc.setType(builder.getFunctionType( 660 llvm::to_vector<8>(rewriterFunc.front().getArgumentTypes()), 661 /*results=*/llvm::None)); 662 663 builder.create<pdl_interp::FinalizeOp>(rewriter.getLoc()); 664 return SymbolRefAttr::get( 665 builder.getContext(), 666 pdl_interp::PDLInterpDialect::getRewriterModuleName(), 667 SymbolRefAttr::get(rewriterFunc)); 668 } 669 670 void PatternLowering::generateRewriter( 671 pdl::ApplyNativeRewriteOp rewriteOp, DenseMap<Value, Value> &rewriteValues, 672 function_ref<Value(Value)> mapRewriteValue) { 673 SmallVector<Value, 2> arguments; 674 for (Value argument : rewriteOp.args()) 675 arguments.push_back(mapRewriteValue(argument)); 676 auto interpOp = builder.create<pdl_interp::ApplyRewriteOp>( 677 rewriteOp.getLoc(), rewriteOp.getResultTypes(), rewriteOp.nameAttr(), 678 arguments, rewriteOp.constParamsAttr()); 679 for (auto it : llvm::zip(rewriteOp.results(), interpOp.results())) 680 rewriteValues[std::get<0>(it)] = std::get<1>(it); 681 } 682 683 void PatternLowering::generateRewriter( 684 pdl::AttributeOp attrOp, DenseMap<Value, Value> &rewriteValues, 685 function_ref<Value(Value)> mapRewriteValue) { 686 Value newAttr = builder.create<pdl_interp::CreateAttributeOp>( 687 attrOp.getLoc(), attrOp.valueAttr()); 688 rewriteValues[attrOp] = newAttr; 689 } 690 691 void PatternLowering::generateRewriter( 692 pdl::EraseOp eraseOp, DenseMap<Value, Value> &rewriteValues, 693 function_ref<Value(Value)> mapRewriteValue) { 694 builder.create<pdl_interp::EraseOp>(eraseOp.getLoc(), 695 mapRewriteValue(eraseOp.operation())); 696 } 697 698 void PatternLowering::generateRewriter( 699 pdl::OperationOp operationOp, DenseMap<Value, Value> &rewriteValues, 700 function_ref<Value(Value)> mapRewriteValue) { 701 SmallVector<Value, 4> operands; 702 for (Value operand : operationOp.operands()) 703 operands.push_back(mapRewriteValue(operand)); 704 705 SmallVector<Value, 4> attributes; 706 for (Value attr : operationOp.attributes()) 707 attributes.push_back(mapRewriteValue(attr)); 708 709 SmallVector<Value, 2> types; 710 generateOperationResultTypeRewriter(operationOp, types, rewriteValues, 711 mapRewriteValue); 712 713 // Create the new operation. 714 Location loc = operationOp.getLoc(); 715 Value createdOp = builder.create<pdl_interp::CreateOperationOp>( 716 loc, *operationOp.name(), types, operands, attributes, 717 operationOp.attributeNames()); 718 rewriteValues[operationOp.op()] = createdOp; 719 720 // Generate accesses for any results that have their types constrained. 721 // Handle the case where there is a single range representing all of the 722 // result types. 723 OperandRange resultTys = operationOp.types(); 724 if (resultTys.size() == 1 && resultTys[0].getType().isa<pdl::RangeType>()) { 725 Value &type = rewriteValues[resultTys[0]]; 726 if (!type) { 727 auto results = builder.create<pdl_interp::GetResultsOp>(loc, createdOp); 728 type = builder.create<pdl_interp::GetValueTypeOp>(loc, results); 729 } 730 return; 731 } 732 733 // Otherwise, populate the individual results. 734 bool seenVariableLength = false; 735 Type valueTy = builder.getType<pdl::ValueType>(); 736 Type valueRangeTy = pdl::RangeType::get(valueTy); 737 for (const auto &it : llvm::enumerate(resultTys)) { 738 Value &type = rewriteValues[it.value()]; 739 if (type) 740 continue; 741 bool isVariadic = it.value().getType().isa<pdl::RangeType>(); 742 seenVariableLength |= isVariadic; 743 744 // After a variable length result has been seen, we need to use result 745 // groups because the exact index of the result is not statically known. 746 Value resultVal; 747 if (seenVariableLength) 748 resultVal = builder.create<pdl_interp::GetResultsOp>( 749 loc, isVariadic ? valueRangeTy : valueTy, createdOp, it.index()); 750 else 751 resultVal = builder.create<pdl_interp::GetResultOp>( 752 loc, valueTy, createdOp, it.index()); 753 type = builder.create<pdl_interp::GetValueTypeOp>(loc, resultVal); 754 } 755 } 756 757 void PatternLowering::generateRewriter( 758 pdl::ReplaceOp replaceOp, DenseMap<Value, Value> &rewriteValues, 759 function_ref<Value(Value)> mapRewriteValue) { 760 SmallVector<Value, 4> replOperands; 761 762 // If the replacement was another operation, get its results. `pdl` allows 763 // for using an operation for simplicitly, but the interpreter isn't as 764 // user facing. 765 if (Value replOp = replaceOp.replOperation()) { 766 // Don't use replace if we know the replaced operation has no results. 767 auto opOp = replaceOp.operation().getDefiningOp<pdl::OperationOp>(); 768 if (!opOp || !opOp.types().empty()) { 769 replOperands.push_back(builder.create<pdl_interp::GetResultsOp>( 770 replOp.getLoc(), mapRewriteValue(replOp))); 771 } 772 } else { 773 for (Value operand : replaceOp.replValues()) 774 replOperands.push_back(mapRewriteValue(operand)); 775 } 776 777 // If there are no replacement values, just create an erase instead. 778 if (replOperands.empty()) { 779 builder.create<pdl_interp::EraseOp>(replaceOp.getLoc(), 780 mapRewriteValue(replaceOp.operation())); 781 return; 782 } 783 784 builder.create<pdl_interp::ReplaceOp>( 785 replaceOp.getLoc(), mapRewriteValue(replaceOp.operation()), replOperands); 786 } 787 788 void PatternLowering::generateRewriter( 789 pdl::ResultOp resultOp, DenseMap<Value, Value> &rewriteValues, 790 function_ref<Value(Value)> mapRewriteValue) { 791 rewriteValues[resultOp] = builder.create<pdl_interp::GetResultOp>( 792 resultOp.getLoc(), builder.getType<pdl::ValueType>(), 793 mapRewriteValue(resultOp.parent()), resultOp.index()); 794 } 795 796 void PatternLowering::generateRewriter( 797 pdl::ResultsOp resultOp, DenseMap<Value, Value> &rewriteValues, 798 function_ref<Value(Value)> mapRewriteValue) { 799 rewriteValues[resultOp] = builder.create<pdl_interp::GetResultsOp>( 800 resultOp.getLoc(), resultOp.getType(), mapRewriteValue(resultOp.parent()), 801 resultOp.index()); 802 } 803 804 void PatternLowering::generateRewriter( 805 pdl::TypeOp typeOp, DenseMap<Value, Value> &rewriteValues, 806 function_ref<Value(Value)> mapRewriteValue) { 807 // If the type isn't constant, the users (e.g. OperationOp) will resolve this 808 // type. 809 if (TypeAttr typeAttr = typeOp.typeAttr()) { 810 rewriteValues[typeOp] = 811 builder.create<pdl_interp::CreateTypeOp>(typeOp.getLoc(), typeAttr); 812 } 813 } 814 815 void PatternLowering::generateRewriter( 816 pdl::TypesOp typeOp, DenseMap<Value, Value> &rewriteValues, 817 function_ref<Value(Value)> mapRewriteValue) { 818 // If the type isn't constant, the users (e.g. OperationOp) will resolve this 819 // type. 820 if (ArrayAttr typeAttr = typeOp.typesAttr()) { 821 rewriteValues[typeOp] = builder.create<pdl_interp::CreateTypesOp>( 822 typeOp.getLoc(), typeOp.getType(), typeAttr); 823 } 824 } 825 826 void PatternLowering::generateOperationResultTypeRewriter( 827 pdl::OperationOp op, SmallVectorImpl<Value> &types, 828 DenseMap<Value, Value> &rewriteValues, 829 function_ref<Value(Value)> mapRewriteValue) { 830 // Look for an operation that was replaced by `op`. The result types will be 831 // inferred from the results that were replaced. 832 Block *rewriterBlock = op->getBlock(); 833 for (OpOperand &use : op.op().getUses()) { 834 // Check that the use corresponds to a ReplaceOp and that it is the 835 // replacement value, not the operation being replaced. 836 pdl::ReplaceOp replOpUser = dyn_cast<pdl::ReplaceOp>(use.getOwner()); 837 if (!replOpUser || use.getOperandNumber() == 0) 838 continue; 839 // Make sure the replaced operation was defined before this one. 840 Value replOpVal = replOpUser.operation(); 841 Operation *replacedOp = replOpVal.getDefiningOp(); 842 if (replacedOp->getBlock() == rewriterBlock && 843 !replacedOp->isBeforeInBlock(op)) 844 continue; 845 846 Value replacedOpResults = builder.create<pdl_interp::GetResultsOp>( 847 replacedOp->getLoc(), mapRewriteValue(replOpVal)); 848 types.push_back(builder.create<pdl_interp::GetValueTypeOp>( 849 replacedOp->getLoc(), replacedOpResults)); 850 return; 851 } 852 853 // Check if the operation has type inference support. 854 if (op.hasTypeInference()) { 855 types.push_back(builder.create<pdl_interp::InferredTypesOp>(op.getLoc())); 856 return; 857 } 858 859 // Otherwise, handle inference for each of the result types individually. 860 OperandRange resultTypeValues = op.types(); 861 types.reserve(resultTypeValues.size()); 862 for (const auto &it : llvm::enumerate(resultTypeValues)) { 863 Value resultType = it.value(); 864 865 // Check for an already translated value. 866 if (Value existingRewriteValue = rewriteValues.lookup(resultType)) { 867 types.push_back(existingRewriteValue); 868 continue; 869 } 870 871 // Check for an input from the matcher. 872 if (resultType.getDefiningOp()->getBlock() != rewriterBlock) { 873 types.push_back(mapRewriteValue(resultType)); 874 continue; 875 } 876 877 // The verifier asserts that the result types of each pdl.operation can be 878 // inferred. If we reach here, there is a bug either in the logic above or 879 // in the verifier for pdl.operation. 880 op->emitOpError() << "unable to infer result type for operation"; 881 llvm_unreachable("unable to infer result type for operation"); 882 } 883 } 884 885 //===----------------------------------------------------------------------===// 886 // Conversion Pass 887 //===----------------------------------------------------------------------===// 888 889 namespace { 890 struct PDLToPDLInterpPass 891 : public ConvertPDLToPDLInterpBase<PDLToPDLInterpPass> { 892 void runOnOperation() final; 893 }; 894 } // namespace 895 896 /// Convert the given module containing PDL pattern operations into a PDL 897 /// Interpreter operations. 898 void PDLToPDLInterpPass::runOnOperation() { 899 ModuleOp module = getOperation(); 900 901 // Create the main matcher function This function contains all of the match 902 // related functionality from patterns in the module. 903 OpBuilder builder = OpBuilder::atBlockBegin(module.getBody()); 904 FuncOp matcherFunc = builder.create<FuncOp>( 905 module.getLoc(), pdl_interp::PDLInterpDialect::getMatcherFunctionName(), 906 builder.getFunctionType(builder.getType<pdl::OperationType>(), 907 /*results=*/llvm::None), 908 /*attrs=*/llvm::None); 909 910 // Create a nested module to hold the functions invoked for rewriting the IR 911 // after a successful match. 912 ModuleOp rewriterModule = builder.create<ModuleOp>( 913 module.getLoc(), pdl_interp::PDLInterpDialect::getRewriterModuleName()); 914 915 // Generate the code for the patterns within the module. 916 PatternLowering generator(matcherFunc, rewriterModule); 917 generator.lower(module); 918 919 // After generation, delete all of the pattern operations. 920 for (pdl::PatternOp pattern : 921 llvm::make_early_inc_range(module.getOps<pdl::PatternOp>())) 922 pattern.erase(); 923 } 924 925 std::unique_ptr<OperationPass<ModuleOp>> mlir::createPDLToPDLInterpPass() { 926 return std::make_unique<PDLToPDLInterpPass>(); 927 } 928