xref: /llvm-project/mlir/lib/Bytecode/Reader/BytecodeReader.cpp (revision 79c83e12c8884fa46f2f2594836af93474f6ca5a)
1 //===- BytecodeReader.cpp - MLIR Bytecode Reader --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Bytecode/BytecodeReader.h"
10 #include "mlir/AsmParser/AsmParser.h"
11 #include "mlir/Bytecode/BytecodeImplementation.h"
12 #include "mlir/Bytecode/BytecodeOpInterface.h"
13 #include "mlir/Bytecode/Encoding.h"
14 #include "mlir/IR/BuiltinDialect.h"
15 #include "mlir/IR/BuiltinOps.h"
16 #include "mlir/IR/Diagnostics.h"
17 #include "mlir/IR/OpImplementation.h"
18 #include "mlir/IR/Verifier.h"
19 #include "mlir/IR/Visitors.h"
20 #include "mlir/Support/LLVM.h"
21 #include "mlir/Support/LogicalResult.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/ScopeExit.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/MemoryBufferRef.h"
30 #include "llvm/Support/SaveAndRestore.h"
31 #include "llvm/Support/SourceMgr.h"
32 #include <cstddef>
33 #include <list>
34 #include <memory>
35 #include <numeric>
36 #include <optional>
37 
38 #define DEBUG_TYPE "mlir-bytecode-reader"
39 
40 using namespace mlir;
41 
42 /// Stringify the given section ID.
43 static std::string toString(bytecode::Section::ID sectionID) {
44   switch (sectionID) {
45   case bytecode::Section::kString:
46     return "String (0)";
47   case bytecode::Section::kDialect:
48     return "Dialect (1)";
49   case bytecode::Section::kAttrType:
50     return "AttrType (2)";
51   case bytecode::Section::kAttrTypeOffset:
52     return "AttrTypeOffset (3)";
53   case bytecode::Section::kIR:
54     return "IR (4)";
55   case bytecode::Section::kResource:
56     return "Resource (5)";
57   case bytecode::Section::kResourceOffset:
58     return "ResourceOffset (6)";
59   case bytecode::Section::kDialectVersions:
60     return "DialectVersions (7)";
61   case bytecode::Section::kProperties:
62     return "Properties (8)";
63   default:
64     return ("Unknown (" + Twine(static_cast<unsigned>(sectionID)) + ")").str();
65   }
66 }
67 
68 /// Returns true if the given top-level section ID is optional.
69 static bool isSectionOptional(bytecode::Section::ID sectionID, int version) {
70   switch (sectionID) {
71   case bytecode::Section::kString:
72   case bytecode::Section::kDialect:
73   case bytecode::Section::kAttrType:
74   case bytecode::Section::kAttrTypeOffset:
75   case bytecode::Section::kIR:
76     return false;
77   case bytecode::Section::kResource:
78   case bytecode::Section::kResourceOffset:
79   case bytecode::Section::kDialectVersions:
80     return true;
81   case bytecode::Section::kProperties:
82     return version < bytecode::kNativePropertiesEncoding;
83   default:
84     llvm_unreachable("unknown section ID");
85   }
86 }
87 
88 //===----------------------------------------------------------------------===//
89 // EncodingReader
90 //===----------------------------------------------------------------------===//
91 
92 namespace {
93 class EncodingReader {
94 public:
95   explicit EncodingReader(ArrayRef<uint8_t> contents, Location fileLoc)
96       : dataIt(contents.data()), dataEnd(contents.end()), fileLoc(fileLoc) {}
97   explicit EncodingReader(StringRef contents, Location fileLoc)
98       : EncodingReader({reinterpret_cast<const uint8_t *>(contents.data()),
99                         contents.size()},
100                        fileLoc) {}
101 
102   /// Returns true if the entire section has been read.
103   bool empty() const { return dataIt == dataEnd; }
104 
105   /// Returns the remaining size of the bytecode.
106   size_t size() const { return dataEnd - dataIt; }
107 
108   /// Align the current reader position to the specified alignment.
109   LogicalResult alignTo(unsigned alignment) {
110     if (!llvm::isPowerOf2_32(alignment))
111       return emitError("expected alignment to be a power-of-two");
112 
113     // Shift the reader position to the next alignment boundary.
114     while (uintptr_t(dataIt) & (uintptr_t(alignment) - 1)) {
115       uint8_t padding;
116       if (failed(parseByte(padding)))
117         return failure();
118       if (padding != bytecode::kAlignmentByte) {
119         return emitError("expected alignment byte (0xCB), but got: '0x" +
120                          llvm::utohexstr(padding) + "'");
121       }
122     }
123 
124     // Ensure the data iterator is now aligned. This case is unlikely because we
125     // *just* went through the effort to align the data iterator.
126     if (LLVM_UNLIKELY(!llvm::isAddrAligned(llvm::Align(alignment), dataIt))) {
127       return emitError("expected data iterator aligned to ", alignment,
128                        ", but got pointer: '0x" +
129                            llvm::utohexstr((uintptr_t)dataIt) + "'");
130     }
131 
132     return success();
133   }
134 
135   /// Emit an error using the given arguments.
136   template <typename... Args>
137   InFlightDiagnostic emitError(Args &&...args) const {
138     return ::emitError(fileLoc).append(std::forward<Args>(args)...);
139   }
140   InFlightDiagnostic emitError() const { return ::emitError(fileLoc); }
141 
142   /// Parse a single byte from the stream.
143   template <typename T>
144   LogicalResult parseByte(T &value) {
145     if (empty())
146       return emitError("attempting to parse a byte at the end of the bytecode");
147     value = static_cast<T>(*dataIt++);
148     return success();
149   }
150   /// Parse a range of bytes of 'length' into the given result.
151   LogicalResult parseBytes(size_t length, ArrayRef<uint8_t> &result) {
152     if (length > size()) {
153       return emitError("attempting to parse ", length, " bytes when only ",
154                        size(), " remain");
155     }
156     result = {dataIt, length};
157     dataIt += length;
158     return success();
159   }
160   /// Parse a range of bytes of 'length' into the given result, which can be
161   /// assumed to be large enough to hold `length`.
162   LogicalResult parseBytes(size_t length, uint8_t *result) {
163     if (length > size()) {
164       return emitError("attempting to parse ", length, " bytes when only ",
165                        size(), " remain");
166     }
167     memcpy(result, dataIt, length);
168     dataIt += length;
169     return success();
170   }
171 
172   /// Parse an aligned blob of data, where the alignment was encoded alongside
173   /// the data.
174   LogicalResult parseBlobAndAlignment(ArrayRef<uint8_t> &data,
175                                       uint64_t &alignment) {
176     uint64_t dataSize;
177     if (failed(parseVarInt(alignment)) || failed(parseVarInt(dataSize)) ||
178         failed(alignTo(alignment)))
179       return failure();
180     return parseBytes(dataSize, data);
181   }
182 
183   /// Parse a variable length encoded integer from the byte stream. The first
184   /// encoded byte contains a prefix in the low bits indicating the encoded
185   /// length of the value. This length prefix is a bit sequence of '0's followed
186   /// by a '1'. The number of '0' bits indicate the number of _additional_ bytes
187   /// (not including the prefix byte). All remaining bits in the first byte,
188   /// along with all of the bits in additional bytes, provide the value of the
189   /// integer encoded in little-endian order.
190   LogicalResult parseVarInt(uint64_t &result) {
191     // Parse the first byte of the encoding, which contains the length prefix.
192     if (failed(parseByte(result)))
193       return failure();
194 
195     // Handle the overwhelmingly common case where the value is stored in a
196     // single byte. In this case, the first bit is the `1` marker bit.
197     if (LLVM_LIKELY(result & 1)) {
198       result >>= 1;
199       return success();
200     }
201 
202     // Handle the overwhelming uncommon case where the value required all 8
203     // bytes (i.e. a really really big number). In this case, the marker byte is
204     // all zeros: `00000000`.
205     if (LLVM_UNLIKELY(result == 0)) {
206       llvm::support::ulittle64_t resultLE;
207       if (failed(parseBytes(sizeof(resultLE),
208                             reinterpret_cast<uint8_t *>(&resultLE))))
209         return failure();
210       result = resultLE;
211       return success();
212     }
213     return parseMultiByteVarInt(result);
214   }
215 
216   /// Parse a signed variable length encoded integer from the byte stream. A
217   /// signed varint is encoded as a normal varint with zigzag encoding applied,
218   /// i.e. the low bit of the value is used to indicate the sign.
219   LogicalResult parseSignedVarInt(uint64_t &result) {
220     if (failed(parseVarInt(result)))
221       return failure();
222     // Essentially (but using unsigned): (x >> 1) ^ -(x & 1)
223     result = (result >> 1) ^ (~(result & 1) + 1);
224     return success();
225   }
226 
227   /// Parse a variable length encoded integer whose low bit is used to encode an
228   /// unrelated flag, i.e: `(integerValue << 1) | (flag ? 1 : 0)`.
229   LogicalResult parseVarIntWithFlag(uint64_t &result, bool &flag) {
230     if (failed(parseVarInt(result)))
231       return failure();
232     flag = result & 1;
233     result >>= 1;
234     return success();
235   }
236 
237   /// Skip the first `length` bytes within the reader.
238   LogicalResult skipBytes(size_t length) {
239     if (length > size()) {
240       return emitError("attempting to skip ", length, " bytes when only ",
241                        size(), " remain");
242     }
243     dataIt += length;
244     return success();
245   }
246 
247   /// Parse a null-terminated string into `result` (without including the NUL
248   /// terminator).
249   LogicalResult parseNullTerminatedString(StringRef &result) {
250     const char *startIt = (const char *)dataIt;
251     const char *nulIt = (const char *)memchr(startIt, 0, size());
252     if (!nulIt)
253       return emitError(
254           "malformed null-terminated string, no null character found");
255 
256     result = StringRef(startIt, nulIt - startIt);
257     dataIt = (const uint8_t *)nulIt + 1;
258     return success();
259   }
260 
261   /// Parse a section header, placing the kind of section in `sectionID` and the
262   /// contents of the section in `sectionData`.
263   LogicalResult parseSection(bytecode::Section::ID &sectionID,
264                              ArrayRef<uint8_t> &sectionData) {
265     uint8_t sectionIDAndHasAlignment;
266     uint64_t length;
267     if (failed(parseByte(sectionIDAndHasAlignment)) ||
268         failed(parseVarInt(length)))
269       return failure();
270 
271     // Extract the section ID and whether the section is aligned. The high bit
272     // of the ID is the alignment flag.
273     sectionID = static_cast<bytecode::Section::ID>(sectionIDAndHasAlignment &
274                                                    0b01111111);
275     bool hasAlignment = sectionIDAndHasAlignment & 0b10000000;
276 
277     // Check that the section is actually valid before trying to process its
278     // data.
279     if (sectionID >= bytecode::Section::kNumSections)
280       return emitError("invalid section ID: ", unsigned(sectionID));
281 
282     // Process the section alignment if present.
283     if (hasAlignment) {
284       uint64_t alignment;
285       if (failed(parseVarInt(alignment)) || failed(alignTo(alignment)))
286         return failure();
287     }
288 
289     // Parse the actual section data.
290     return parseBytes(static_cast<size_t>(length), sectionData);
291   }
292 
293   Location getLoc() const { return fileLoc; }
294 
295 private:
296   /// Parse a variable length encoded integer from the byte stream. This method
297   /// is a fallback when the number of bytes used to encode the value is greater
298   /// than 1, but less than the max (9). The provided `result` value can be
299   /// assumed to already contain the first byte of the value.
300   /// NOTE: This method is marked noinline to avoid pessimizing the common case
301   /// of single byte encoding.
302   LLVM_ATTRIBUTE_NOINLINE LogicalResult parseMultiByteVarInt(uint64_t &result) {
303     // Count the number of trailing zeros in the marker byte, this indicates the
304     // number of trailing bytes that are part of the value. We use `uint32_t`
305     // here because we only care about the first byte, and so that be actually
306     // get ctz intrinsic calls when possible (the `uint8_t` overload uses a loop
307     // implementation).
308     uint32_t numBytes = llvm::countr_zero<uint32_t>(result);
309     assert(numBytes > 0 && numBytes <= 7 &&
310            "unexpected number of trailing zeros in varint encoding");
311 
312     // Parse in the remaining bytes of the value.
313     llvm::support::ulittle64_t resultLE(result);
314     if (failed(parseBytes(numBytes, reinterpret_cast<uint8_t *>(&resultLE) + 1)))
315       return failure();
316 
317     // Shift out the low-order bits that were used to mark how the value was
318     // encoded.
319     result = resultLE >> (numBytes + 1);
320     return success();
321   }
322 
323   /// The current data iterator, and an iterator to the end of the buffer.
324   const uint8_t *dataIt, *dataEnd;
325 
326   /// A location for the bytecode used to report errors.
327   Location fileLoc;
328 };
329 } // namespace
330 
331 /// Resolve an index into the given entry list. `entry` may either be a
332 /// reference, in which case it is assigned to the corresponding value in
333 /// `entries`, or a pointer, in which case it is assigned to the address of the
334 /// element in `entries`.
335 template <typename RangeT, typename T>
336 static LogicalResult resolveEntry(EncodingReader &reader, RangeT &entries,
337                                   uint64_t index, T &entry,
338                                   StringRef entryStr) {
339   if (index >= entries.size())
340     return reader.emitError("invalid ", entryStr, " index: ", index);
341 
342   // If the provided entry is a pointer, resolve to the address of the entry.
343   if constexpr (std::is_convertible_v<llvm::detail::ValueOfRange<RangeT>, T>)
344     entry = entries[index];
345   else
346     entry = &entries[index];
347   return success();
348 }
349 
350 /// Parse and resolve an index into the given entry list.
351 template <typename RangeT, typename T>
352 static LogicalResult parseEntry(EncodingReader &reader, RangeT &entries,
353                                 T &entry, StringRef entryStr) {
354   uint64_t entryIdx;
355   if (failed(reader.parseVarInt(entryIdx)))
356     return failure();
357   return resolveEntry(reader, entries, entryIdx, entry, entryStr);
358 }
359 
360 //===----------------------------------------------------------------------===//
361 // StringSectionReader
362 //===----------------------------------------------------------------------===//
363 
364 namespace {
365 /// This class is used to read references to the string section from the
366 /// bytecode.
367 class StringSectionReader {
368 public:
369   /// Initialize the string section reader with the given section data.
370   LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData);
371 
372   /// Parse a shared string from the string section. The shared string is
373   /// encoded using an index to a corresponding string in the string section.
374   LogicalResult parseString(EncodingReader &reader, StringRef &result) {
375     return parseEntry(reader, strings, result, "string");
376   }
377 
378   /// Parse a shared string from the string section. The shared string is
379   /// encoded using an index to a corresponding string in the string section.
380   /// This variant parses a flag compressed with the index.
381   LogicalResult parseStringWithFlag(EncodingReader &reader, StringRef &result,
382                                     bool &flag) {
383     uint64_t entryIdx;
384     if (failed(reader.parseVarIntWithFlag(entryIdx, flag)))
385       return failure();
386     return parseStringAtIndex(reader, entryIdx, result);
387   }
388 
389   /// Parse a shared string from the string section. The shared string is
390   /// encoded using an index to a corresponding string in the string section.
391   LogicalResult parseStringAtIndex(EncodingReader &reader, uint64_t index,
392                                    StringRef &result) {
393     return resolveEntry(reader, strings, index, result, "string");
394   }
395 
396 private:
397   /// The table of strings referenced within the bytecode file.
398   SmallVector<StringRef> strings;
399 };
400 } // namespace
401 
402 LogicalResult StringSectionReader::initialize(Location fileLoc,
403                                               ArrayRef<uint8_t> sectionData) {
404   EncodingReader stringReader(sectionData, fileLoc);
405 
406   // Parse the number of strings in the section.
407   uint64_t numStrings;
408   if (failed(stringReader.parseVarInt(numStrings)))
409     return failure();
410   strings.resize(numStrings);
411 
412   // Parse each of the strings. The sizes of the strings are encoded in reverse
413   // order, so that's the order we populate the table.
414   size_t stringDataEndOffset = sectionData.size();
415   for (StringRef &string : llvm::reverse(strings)) {
416     uint64_t stringSize;
417     if (failed(stringReader.parseVarInt(stringSize)))
418       return failure();
419     if (stringDataEndOffset < stringSize) {
420       return stringReader.emitError(
421           "string size exceeds the available data size");
422     }
423 
424     // Extract the string from the data, dropping the null character.
425     size_t stringOffset = stringDataEndOffset - stringSize;
426     string = StringRef(
427         reinterpret_cast<const char *>(sectionData.data() + stringOffset),
428         stringSize - 1);
429     stringDataEndOffset = stringOffset;
430   }
431 
432   // Check that the only remaining data was for the strings, i.e. the reader
433   // should be at the same offset as the first string.
434   if ((sectionData.size() - stringReader.size()) != stringDataEndOffset) {
435     return stringReader.emitError("unexpected trailing data between the "
436                                   "offsets for strings and their data");
437   }
438   return success();
439 }
440 
441 //===----------------------------------------------------------------------===//
442 // BytecodeDialect
443 //===----------------------------------------------------------------------===//
444 
445 namespace {
446 class DialectReader;
447 
448 /// This struct represents a dialect entry within the bytecode.
449 struct BytecodeDialect {
450   /// Load the dialect into the provided context if it hasn't been loaded yet.
451   /// Returns failure if the dialect couldn't be loaded *and* the provided
452   /// context does not allow unregistered dialects. The provided reader is used
453   /// for error emission if necessary.
454   LogicalResult load(DialectReader &reader, MLIRContext *ctx);
455 
456   /// Return the loaded dialect, or nullptr if the dialect is unknown. This can
457   /// only be called after `load`.
458   Dialect *getLoadedDialect() const {
459     assert(dialect &&
460            "expected `load` to be invoked before `getLoadedDialect`");
461     return *dialect;
462   }
463 
464   /// The loaded dialect entry. This field is std::nullopt if we haven't
465   /// attempted to load, nullptr if we failed to load, otherwise the loaded
466   /// dialect.
467   std::optional<Dialect *> dialect;
468 
469   /// The bytecode interface of the dialect, or nullptr if the dialect does not
470   /// implement the bytecode interface. This field should only be checked if the
471   /// `dialect` field is not std::nullopt.
472   const BytecodeDialectInterface *interface = nullptr;
473 
474   /// The name of the dialect.
475   StringRef name;
476 
477   /// A buffer containing the encoding of the dialect version parsed.
478   ArrayRef<uint8_t> versionBuffer;
479 
480   /// Lazy loaded dialect version from the handle above.
481   std::unique_ptr<DialectVersion> loadedVersion;
482 };
483 
484 /// This struct represents an operation name entry within the bytecode.
485 struct BytecodeOperationName {
486   BytecodeOperationName(BytecodeDialect *dialect, StringRef name,
487                         std::optional<bool> wasRegistered)
488       : dialect(dialect), name(name), wasRegistered(wasRegistered) {}
489 
490   /// The loaded operation name, or std::nullopt if it hasn't been processed
491   /// yet.
492   std::optional<OperationName> opName;
493 
494   /// The dialect that owns this operation name.
495   BytecodeDialect *dialect;
496 
497   /// The name of the operation, without the dialect prefix.
498   StringRef name;
499 
500   /// Whether this operation was registered when the bytecode was produced.
501   /// This flag is populated when bytecode version >=kNativePropertiesEncoding.
502   std::optional<bool> wasRegistered;
503 };
504 } // namespace
505 
506 /// Parse a single dialect group encoded in the byte stream.
507 static LogicalResult parseDialectGrouping(
508     EncodingReader &reader, MutableArrayRef<BytecodeDialect> dialects,
509     function_ref<LogicalResult(BytecodeDialect *)> entryCallback) {
510   // Parse the dialect and the number of entries in the group.
511   BytecodeDialect *dialect;
512   if (failed(parseEntry(reader, dialects, dialect, "dialect")))
513     return failure();
514   uint64_t numEntries;
515   if (failed(reader.parseVarInt(numEntries)))
516     return failure();
517 
518   for (uint64_t i = 0; i < numEntries; ++i)
519     if (failed(entryCallback(dialect)))
520       return failure();
521   return success();
522 }
523 
524 //===----------------------------------------------------------------------===//
525 // ResourceSectionReader
526 //===----------------------------------------------------------------------===//
527 
528 namespace {
529 /// This class is used to read the resource section from the bytecode.
530 class ResourceSectionReader {
531 public:
532   /// Initialize the resource section reader with the given section data.
533   LogicalResult
534   initialize(Location fileLoc, const ParserConfig &config,
535              MutableArrayRef<BytecodeDialect> dialects,
536              StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData,
537              ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader,
538              const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef);
539 
540   /// Parse a dialect resource handle from the resource section.
541   LogicalResult parseResourceHandle(EncodingReader &reader,
542                                     AsmDialectResourceHandle &result) {
543     return parseEntry(reader, dialectResources, result, "resource handle");
544   }
545 
546 private:
547   /// The table of dialect resources within the bytecode file.
548   SmallVector<AsmDialectResourceHandle> dialectResources;
549   llvm::StringMap<std::string> dialectResourceHandleRenamingMap;
550 };
551 
552 class ParsedResourceEntry : public AsmParsedResourceEntry {
553 public:
554   ParsedResourceEntry(StringRef key, AsmResourceEntryKind kind,
555                       EncodingReader &reader, StringSectionReader &stringReader,
556                       const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef)
557       : key(key), kind(kind), reader(reader), stringReader(stringReader),
558         bufferOwnerRef(bufferOwnerRef) {}
559   ~ParsedResourceEntry() override = default;
560 
561   StringRef getKey() const final { return key; }
562 
563   InFlightDiagnostic emitError() const final { return reader.emitError(); }
564 
565   AsmResourceEntryKind getKind() const final { return kind; }
566 
567   FailureOr<bool> parseAsBool() const final {
568     if (kind != AsmResourceEntryKind::Bool)
569       return emitError() << "expected a bool resource entry, but found a "
570                          << toString(kind) << " entry instead";
571 
572     bool value;
573     if (failed(reader.parseByte(value)))
574       return failure();
575     return value;
576   }
577   FailureOr<std::string> parseAsString() const final {
578     if (kind != AsmResourceEntryKind::String)
579       return emitError() << "expected a string resource entry, but found a "
580                          << toString(kind) << " entry instead";
581 
582     StringRef string;
583     if (failed(stringReader.parseString(reader, string)))
584       return failure();
585     return string.str();
586   }
587 
588   FailureOr<AsmResourceBlob>
589   parseAsBlob(BlobAllocatorFn allocator) const final {
590     if (kind != AsmResourceEntryKind::Blob)
591       return emitError() << "expected a blob resource entry, but found a "
592                          << toString(kind) << " entry instead";
593 
594     ArrayRef<uint8_t> data;
595     uint64_t alignment;
596     if (failed(reader.parseBlobAndAlignment(data, alignment)))
597       return failure();
598 
599     // If we have an extendable reference to the buffer owner, we don't need to
600     // allocate a new buffer for the data, and can use the data directly.
601     if (bufferOwnerRef) {
602       ArrayRef<char> charData(reinterpret_cast<const char *>(data.data()),
603                               data.size());
604 
605       // Allocate an unmanager buffer which captures a reference to the owner.
606       // For now we just mark this as immutable, but in the future we should
607       // explore marking this as mutable when desired.
608       return UnmanagedAsmResourceBlob::allocateWithAlign(
609           charData, alignment,
610           [bufferOwnerRef = bufferOwnerRef](void *, size_t, size_t) {});
611     }
612 
613     // Allocate memory for the blob using the provided allocator and copy the
614     // data into it.
615     AsmResourceBlob blob = allocator(data.size(), alignment);
616     assert(llvm::isAddrAligned(llvm::Align(alignment), blob.getData().data()) &&
617            blob.isMutable() &&
618            "blob allocator did not return a properly aligned address");
619     memcpy(blob.getMutableData().data(), data.data(), data.size());
620     return blob;
621   }
622 
623 private:
624   StringRef key;
625   AsmResourceEntryKind kind;
626   EncodingReader &reader;
627   StringSectionReader &stringReader;
628   const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef;
629 };
630 } // namespace
631 
632 template <typename T>
633 static LogicalResult
634 parseResourceGroup(Location fileLoc, bool allowEmpty,
635                    EncodingReader &offsetReader, EncodingReader &resourceReader,
636                    StringSectionReader &stringReader, T *handler,
637                    const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef,
638                    function_ref<StringRef(StringRef)> remapKey = {},
639                    function_ref<LogicalResult(StringRef)> processKeyFn = {}) {
640   uint64_t numResources;
641   if (failed(offsetReader.parseVarInt(numResources)))
642     return failure();
643 
644   for (uint64_t i = 0; i < numResources; ++i) {
645     StringRef key;
646     AsmResourceEntryKind kind;
647     uint64_t resourceOffset;
648     ArrayRef<uint8_t> data;
649     if (failed(stringReader.parseString(offsetReader, key)) ||
650         failed(offsetReader.parseVarInt(resourceOffset)) ||
651         failed(offsetReader.parseByte(kind)) ||
652         failed(resourceReader.parseBytes(resourceOffset, data)))
653       return failure();
654 
655     // Process the resource key.
656     if ((processKeyFn && failed(processKeyFn(key))))
657       return failure();
658 
659     // If the resource data is empty and we allow it, don't error out when
660     // parsing below, just skip it.
661     if (allowEmpty && data.empty())
662       continue;
663 
664     // Ignore the entry if we don't have a valid handler.
665     if (!handler)
666       continue;
667 
668     // Otherwise, parse the resource value.
669     EncodingReader entryReader(data, fileLoc);
670     key = remapKey(key);
671     ParsedResourceEntry entry(key, kind, entryReader, stringReader,
672                               bufferOwnerRef);
673     if (failed(handler->parseResource(entry)))
674       return failure();
675     if (!entryReader.empty()) {
676       return entryReader.emitError(
677           "unexpected trailing bytes in resource entry '", key, "'");
678     }
679   }
680   return success();
681 }
682 
683 LogicalResult ResourceSectionReader::initialize(
684     Location fileLoc, const ParserConfig &config,
685     MutableArrayRef<BytecodeDialect> dialects,
686     StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData,
687     ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader,
688     const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) {
689   EncodingReader resourceReader(sectionData, fileLoc);
690   EncodingReader offsetReader(offsetSectionData, fileLoc);
691 
692   // Read the number of external resource providers.
693   uint64_t numExternalResourceGroups;
694   if (failed(offsetReader.parseVarInt(numExternalResourceGroups)))
695     return failure();
696 
697   // Utility functor that dispatches to `parseResourceGroup`, but implicitly
698   // provides most of the arguments.
699   auto parseGroup = [&](auto *handler, bool allowEmpty = false,
700                         function_ref<LogicalResult(StringRef)> keyFn = {}) {
701     auto resolveKey = [&](StringRef key) -> StringRef {
702       auto it = dialectResourceHandleRenamingMap.find(key);
703       if (it == dialectResourceHandleRenamingMap.end())
704         return "";
705       return it->second;
706     };
707 
708     return parseResourceGroup(fileLoc, allowEmpty, offsetReader, resourceReader,
709                               stringReader, handler, bufferOwnerRef, resolveKey,
710                               keyFn);
711   };
712 
713   // Read the external resources from the bytecode.
714   for (uint64_t i = 0; i < numExternalResourceGroups; ++i) {
715     StringRef key;
716     if (failed(stringReader.parseString(offsetReader, key)))
717       return failure();
718 
719     // Get the handler for these resources.
720     // TODO: Should we require handling external resources in some scenarios?
721     AsmResourceParser *handler = config.getResourceParser(key);
722     if (!handler) {
723       emitWarning(fileLoc) << "ignoring unknown external resources for '" << key
724                            << "'";
725     }
726 
727     if (failed(parseGroup(handler)))
728       return failure();
729   }
730 
731   // Read the dialect resources from the bytecode.
732   MLIRContext *ctx = fileLoc->getContext();
733   while (!offsetReader.empty()) {
734     BytecodeDialect *dialect;
735     if (failed(parseEntry(offsetReader, dialects, dialect, "dialect")) ||
736         failed(dialect->load(dialectReader, ctx)))
737       return failure();
738     Dialect *loadedDialect = dialect->getLoadedDialect();
739     if (!loadedDialect) {
740       return resourceReader.emitError()
741              << "dialect '" << dialect->name << "' is unknown";
742     }
743     const auto *handler = dyn_cast<OpAsmDialectInterface>(loadedDialect);
744     if (!handler) {
745       return resourceReader.emitError()
746              << "unexpected resources for dialect '" << dialect->name << "'";
747     }
748 
749     // Ensure that each resource is declared before being processed.
750     auto processResourceKeyFn = [&](StringRef key) -> LogicalResult {
751       FailureOr<AsmDialectResourceHandle> handle =
752           handler->declareResource(key);
753       if (failed(handle)) {
754         return resourceReader.emitError()
755                << "unknown 'resource' key '" << key << "' for dialect '"
756                << dialect->name << "'";
757       }
758       dialectResourceHandleRenamingMap[key] = handler->getResourceKey(*handle);
759       dialectResources.push_back(*handle);
760       return success();
761     };
762 
763     // Parse the resources for this dialect. We allow empty resources because we
764     // just treat these as declarations.
765     if (failed(parseGroup(handler, /*allowEmpty=*/true, processResourceKeyFn)))
766       return failure();
767   }
768 
769   return success();
770 }
771 
772 //===----------------------------------------------------------------------===//
773 // Attribute/Type Reader
774 //===----------------------------------------------------------------------===//
775 
776 namespace {
777 /// This class provides support for reading attribute and type entries from the
778 /// bytecode. Attribute and Type entries are read lazily on demand, so we use
779 /// this reader to manage when to actually parse them from the bytecode.
780 class AttrTypeReader {
781   /// This class represents a single attribute or type entry.
782   template <typename T>
783   struct Entry {
784     /// The entry, or null if it hasn't been resolved yet.
785     T entry = {};
786     /// The parent dialect of this entry.
787     BytecodeDialect *dialect = nullptr;
788     /// A flag indicating if the entry was encoded using a custom encoding,
789     /// instead of using the textual assembly format.
790     bool hasCustomEncoding = false;
791     /// The raw data of this entry in the bytecode.
792     ArrayRef<uint8_t> data;
793   };
794   using AttrEntry = Entry<Attribute>;
795   using TypeEntry = Entry<Type>;
796 
797 public:
798   AttrTypeReader(StringSectionReader &stringReader,
799                  ResourceSectionReader &resourceReader, Location fileLoc)
800       : stringReader(stringReader), resourceReader(resourceReader),
801         fileLoc(fileLoc) {}
802 
803   /// Initialize the attribute and type information within the reader.
804   LogicalResult initialize(MutableArrayRef<BytecodeDialect> dialects,
805                            ArrayRef<uint8_t> sectionData,
806                            ArrayRef<uint8_t> offsetSectionData);
807 
808   /// Resolve the attribute or type at the given index. Returns nullptr on
809   /// failure.
810   Attribute resolveAttribute(size_t index) {
811     return resolveEntry(attributes, index, "Attribute");
812   }
813   Type resolveType(size_t index) { return resolveEntry(types, index, "Type"); }
814 
815   /// Parse a reference to an attribute or type using the given reader.
816   LogicalResult parseAttribute(EncodingReader &reader, Attribute &result) {
817     uint64_t attrIdx;
818     if (failed(reader.parseVarInt(attrIdx)))
819       return failure();
820     result = resolveAttribute(attrIdx);
821     return success(!!result);
822   }
823   LogicalResult parseOptionalAttribute(EncodingReader &reader,
824                                        Attribute &result) {
825     uint64_t attrIdx;
826     bool flag;
827     if (failed(reader.parseVarIntWithFlag(attrIdx, flag)))
828       return failure();
829     if (!flag)
830       return success();
831     result = resolveAttribute(attrIdx);
832     return success(!!result);
833   }
834 
835   LogicalResult parseType(EncodingReader &reader, Type &result) {
836     uint64_t typeIdx;
837     if (failed(reader.parseVarInt(typeIdx)))
838       return failure();
839     result = resolveType(typeIdx);
840     return success(!!result);
841   }
842 
843   template <typename T>
844   LogicalResult parseAttribute(EncodingReader &reader, T &result) {
845     Attribute baseResult;
846     if (failed(parseAttribute(reader, baseResult)))
847       return failure();
848     if ((result = dyn_cast<T>(baseResult)))
849       return success();
850     return reader.emitError("expected attribute of type: ",
851                             llvm::getTypeName<T>(), ", but got: ", baseResult);
852   }
853 
854 private:
855   /// Resolve the given entry at `index`.
856   template <typename T>
857   T resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index,
858                  StringRef entryType);
859 
860   /// Parse an entry using the given reader that was encoded using the textual
861   /// assembly format.
862   template <typename T>
863   LogicalResult parseAsmEntry(T &result, EncodingReader &reader,
864                               StringRef entryType);
865 
866   /// Parse an entry using the given reader that was encoded using a custom
867   /// bytecode format.
868   template <typename T>
869   LogicalResult parseCustomEntry(Entry<T> &entry, EncodingReader &reader,
870                                  StringRef entryType);
871 
872   /// The string section reader used to resolve string references when parsing
873   /// custom encoded attribute/type entries.
874   StringSectionReader &stringReader;
875 
876   /// The resource section reader used to resolve resource references when
877   /// parsing custom encoded attribute/type entries.
878   ResourceSectionReader &resourceReader;
879 
880   /// The set of attribute and type entries.
881   SmallVector<AttrEntry> attributes;
882   SmallVector<TypeEntry> types;
883 
884   /// A location used for error emission.
885   Location fileLoc;
886 };
887 
888 class DialectReader : public DialectBytecodeReader {
889 public:
890   DialectReader(AttrTypeReader &attrTypeReader,
891                 StringSectionReader &stringReader,
892                 ResourceSectionReader &resourceReader, EncodingReader &reader)
893       : attrTypeReader(attrTypeReader), stringReader(stringReader),
894         resourceReader(resourceReader), reader(reader) {}
895 
896   InFlightDiagnostic emitError(const Twine &msg) override {
897     return reader.emitError(msg);
898   }
899 
900   DialectReader withEncodingReader(EncodingReader &encReader) {
901     return DialectReader(attrTypeReader, stringReader, resourceReader,
902                          encReader);
903   }
904 
905   Location getLoc() const { return reader.getLoc(); }
906 
907   //===--------------------------------------------------------------------===//
908   // IR
909   //===--------------------------------------------------------------------===//
910 
911   LogicalResult readAttribute(Attribute &result) override {
912     return attrTypeReader.parseAttribute(reader, result);
913   }
914   LogicalResult readOptionalAttribute(Attribute &result) override {
915     return attrTypeReader.parseOptionalAttribute(reader, result);
916   }
917   LogicalResult readType(Type &result) override {
918     return attrTypeReader.parseType(reader, result);
919   }
920 
921   FailureOr<AsmDialectResourceHandle> readResourceHandle() override {
922     AsmDialectResourceHandle handle;
923     if (failed(resourceReader.parseResourceHandle(reader, handle)))
924       return failure();
925     return handle;
926   }
927 
928   //===--------------------------------------------------------------------===//
929   // Primitives
930   //===--------------------------------------------------------------------===//
931 
932   LogicalResult readVarInt(uint64_t &result) override {
933     return reader.parseVarInt(result);
934   }
935 
936   LogicalResult readSignedVarInt(int64_t &result) override {
937     uint64_t unsignedResult;
938     if (failed(reader.parseSignedVarInt(unsignedResult)))
939       return failure();
940     result = static_cast<int64_t>(unsignedResult);
941     return success();
942   }
943 
944   FailureOr<APInt> readAPIntWithKnownWidth(unsigned bitWidth) override {
945     // Small values are encoded using a single byte.
946     if (bitWidth <= 8) {
947       uint8_t value;
948       if (failed(reader.parseByte(value)))
949         return failure();
950       return APInt(bitWidth, value);
951     }
952 
953     // Large values up to 64 bits are encoded using a single varint.
954     if (bitWidth <= 64) {
955       uint64_t value;
956       if (failed(reader.parseSignedVarInt(value)))
957         return failure();
958       return APInt(bitWidth, value);
959     }
960 
961     // Otherwise, for really big values we encode the array of active words in
962     // the value.
963     uint64_t numActiveWords;
964     if (failed(reader.parseVarInt(numActiveWords)))
965       return failure();
966     SmallVector<uint64_t, 4> words(numActiveWords);
967     for (uint64_t i = 0; i < numActiveWords; ++i)
968       if (failed(reader.parseSignedVarInt(words[i])))
969         return failure();
970     return APInt(bitWidth, words);
971   }
972 
973   FailureOr<APFloat>
974   readAPFloatWithKnownSemantics(const llvm::fltSemantics &semantics) override {
975     FailureOr<APInt> intVal =
976         readAPIntWithKnownWidth(APFloat::getSizeInBits(semantics));
977     if (failed(intVal))
978       return failure();
979     return APFloat(semantics, *intVal);
980   }
981 
982   LogicalResult readString(StringRef &result) override {
983     return stringReader.parseString(reader, result);
984   }
985 
986   LogicalResult readBlob(ArrayRef<char> &result) override {
987     uint64_t dataSize;
988     ArrayRef<uint8_t> data;
989     if (failed(reader.parseVarInt(dataSize)) ||
990         failed(reader.parseBytes(dataSize, data)))
991       return failure();
992     result = llvm::ArrayRef(reinterpret_cast<const char *>(data.data()),
993                             data.size());
994     return success();
995   }
996 
997   LogicalResult readBool(bool &result) override {
998     return reader.parseByte(result);
999   }
1000 
1001 private:
1002   AttrTypeReader &attrTypeReader;
1003   StringSectionReader &stringReader;
1004   ResourceSectionReader &resourceReader;
1005   EncodingReader &reader;
1006 };
1007 
1008 /// Wraps the properties section and handles reading properties out of it.
1009 class PropertiesSectionReader {
1010 public:
1011   /// Initialize the properties section reader with the given section data.
1012   LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData) {
1013     if (sectionData.empty())
1014       return success();
1015     EncodingReader propReader(sectionData, fileLoc);
1016     uint64_t count;
1017     if (failed(propReader.parseVarInt(count)))
1018       return failure();
1019     // Parse the raw properties buffer.
1020     if (failed(propReader.parseBytes(propReader.size(), propertiesBuffers)))
1021       return failure();
1022 
1023     EncodingReader offsetsReader(propertiesBuffers, fileLoc);
1024     offsetTable.reserve(count);
1025     for (auto idx : llvm::seq<int64_t>(0, count)) {
1026       (void)idx;
1027       offsetTable.push_back(propertiesBuffers.size() - offsetsReader.size());
1028       ArrayRef<uint8_t> rawProperties;
1029       uint64_t dataSize;
1030       if (failed(offsetsReader.parseVarInt(dataSize)) ||
1031           failed(offsetsReader.parseBytes(dataSize, rawProperties)))
1032         return failure();
1033     }
1034     if (!offsetsReader.empty())
1035       return offsetsReader.emitError()
1036              << "Broken properties section: didn't exhaust the offsets table";
1037     return success();
1038   }
1039 
1040   LogicalResult read(Location fileLoc, DialectReader &dialectReader,
1041                      OperationName *opName, OperationState &opState) {
1042     uint64_t propertiesIdx;
1043     if (failed(dialectReader.readVarInt(propertiesIdx)))
1044       return failure();
1045     if (propertiesIdx >= offsetTable.size())
1046       return dialectReader.emitError("Properties idx out-of-bound for ")
1047              << opName->getStringRef();
1048     size_t propertiesOffset = offsetTable[propertiesIdx];
1049     if (propertiesIdx >= propertiesBuffers.size())
1050       return dialectReader.emitError("Properties offset out-of-bound for ")
1051              << opName->getStringRef();
1052 
1053     // Acquire the sub-buffer that represent the requested properties.
1054     ArrayRef<char> rawProperties;
1055     {
1056       // "Seek" to the requested offset by getting a new reader with the right
1057       // sub-buffer.
1058       EncodingReader reader(propertiesBuffers.drop_front(propertiesOffset),
1059                             fileLoc);
1060       // Properties are stored as a sequence of {size + raw_data}.
1061       if (failed(
1062               dialectReader.withEncodingReader(reader).readBlob(rawProperties)))
1063         return failure();
1064     }
1065     // Setup a new reader to read from the `rawProperties` sub-buffer.
1066     EncodingReader reader(
1067         StringRef(rawProperties.begin(), rawProperties.size()), fileLoc);
1068     DialectReader propReader = dialectReader.withEncodingReader(reader);
1069 
1070     auto *iface = opName->getInterface<BytecodeOpInterface>();
1071     if (iface)
1072       return iface->readProperties(propReader, opState);
1073     if (opName->isRegistered())
1074       return propReader.emitError(
1075                  "has properties but missing BytecodeOpInterface for ")
1076              << opName->getStringRef();
1077     // Unregistered op are storing properties as an attribute.
1078     return propReader.readAttribute(opState.propertiesAttr);
1079   }
1080 
1081 private:
1082   /// The properties buffer referenced within the bytecode file.
1083   ArrayRef<uint8_t> propertiesBuffers;
1084 
1085   /// Table of offset in the buffer above.
1086   SmallVector<int64_t> offsetTable;
1087 };
1088 } // namespace
1089 
1090 LogicalResult
1091 AttrTypeReader::initialize(MutableArrayRef<BytecodeDialect> dialects,
1092                            ArrayRef<uint8_t> sectionData,
1093                            ArrayRef<uint8_t> offsetSectionData) {
1094   EncodingReader offsetReader(offsetSectionData, fileLoc);
1095 
1096   // Parse the number of attribute and type entries.
1097   uint64_t numAttributes, numTypes;
1098   if (failed(offsetReader.parseVarInt(numAttributes)) ||
1099       failed(offsetReader.parseVarInt(numTypes)))
1100     return failure();
1101   attributes.resize(numAttributes);
1102   types.resize(numTypes);
1103 
1104   // A functor used to accumulate the offsets for the entries in the given
1105   // range.
1106   uint64_t currentOffset = 0;
1107   auto parseEntries = [&](auto &&range) {
1108     size_t currentIndex = 0, endIndex = range.size();
1109 
1110     // Parse an individual entry.
1111     auto parseEntryFn = [&](BytecodeDialect *dialect) -> LogicalResult {
1112       auto &entry = range[currentIndex++];
1113 
1114       uint64_t entrySize;
1115       if (failed(offsetReader.parseVarIntWithFlag(entrySize,
1116                                                   entry.hasCustomEncoding)))
1117         return failure();
1118 
1119       // Verify that the offset is actually valid.
1120       if (currentOffset + entrySize > sectionData.size()) {
1121         return offsetReader.emitError(
1122             "Attribute or Type entry offset points past the end of section");
1123       }
1124 
1125       entry.data = sectionData.slice(currentOffset, entrySize);
1126       entry.dialect = dialect;
1127       currentOffset += entrySize;
1128       return success();
1129     };
1130     while (currentIndex != endIndex)
1131       if (failed(parseDialectGrouping(offsetReader, dialects, parseEntryFn)))
1132         return failure();
1133     return success();
1134   };
1135 
1136   // Process each of the attributes, and then the types.
1137   if (failed(parseEntries(attributes)) || failed(parseEntries(types)))
1138     return failure();
1139 
1140   // Ensure that we read everything from the section.
1141   if (!offsetReader.empty()) {
1142     return offsetReader.emitError(
1143         "unexpected trailing data in the Attribute/Type offset section");
1144   }
1145   return success();
1146 }
1147 
1148 template <typename T>
1149 T AttrTypeReader::resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index,
1150                                StringRef entryType) {
1151   if (index >= entries.size()) {
1152     emitError(fileLoc) << "invalid " << entryType << " index: " << index;
1153     return {};
1154   }
1155 
1156   // If the entry has already been resolved, there is nothing left to do.
1157   Entry<T> &entry = entries[index];
1158   if (entry.entry)
1159     return entry.entry;
1160 
1161   // Parse the entry.
1162   EncodingReader reader(entry.data, fileLoc);
1163 
1164   // Parse based on how the entry was encoded.
1165   if (entry.hasCustomEncoding) {
1166     if (failed(parseCustomEntry(entry, reader, entryType)))
1167       return T();
1168   } else if (failed(parseAsmEntry(entry.entry, reader, entryType))) {
1169     return T();
1170   }
1171 
1172   if (!reader.empty()) {
1173     reader.emitError("unexpected trailing bytes after " + entryType + " entry");
1174     return T();
1175   }
1176   return entry.entry;
1177 }
1178 
1179 template <typename T>
1180 LogicalResult AttrTypeReader::parseAsmEntry(T &result, EncodingReader &reader,
1181                                             StringRef entryType) {
1182   StringRef asmStr;
1183   if (failed(reader.parseNullTerminatedString(asmStr)))
1184     return failure();
1185 
1186   // Invoke the MLIR assembly parser to parse the entry text.
1187   size_t numRead = 0;
1188   MLIRContext *context = fileLoc->getContext();
1189   if constexpr (std::is_same_v<T, Type>)
1190     result =
1191         ::parseType(asmStr, context, &numRead, /*isKnownNullTerminated=*/true);
1192   else
1193     result = ::parseAttribute(asmStr, context, Type(), &numRead,
1194                               /*isKnownNullTerminated=*/true);
1195   if (!result)
1196     return failure();
1197 
1198   // Ensure there weren't dangling characters after the entry.
1199   if (numRead != asmStr.size()) {
1200     return reader.emitError("trailing characters found after ", entryType,
1201                             " assembly format: ", asmStr.drop_front(numRead));
1202   }
1203   return success();
1204 }
1205 
1206 template <typename T>
1207 LogicalResult AttrTypeReader::parseCustomEntry(Entry<T> &entry,
1208                                                EncodingReader &reader,
1209                                                StringRef entryType) {
1210   DialectReader dialectReader(*this, stringReader, resourceReader, reader);
1211   if (failed(entry.dialect->load(dialectReader, fileLoc.getContext())))
1212     return failure();
1213   // Ensure that the dialect implements the bytecode interface.
1214   if (!entry.dialect->interface) {
1215     return reader.emitError("dialect '", entry.dialect->name,
1216                             "' does not implement the bytecode interface");
1217   }
1218 
1219   // Ask the dialect to parse the entry. If the dialect is versioned, parse
1220   // using the versioned encoding readers.
1221   if (entry.dialect->loadedVersion.get()) {
1222     if constexpr (std::is_same_v<T, Type>)
1223       entry.entry = entry.dialect->interface->readType(
1224           dialectReader, *entry.dialect->loadedVersion);
1225     else
1226       entry.entry = entry.dialect->interface->readAttribute(
1227           dialectReader, *entry.dialect->loadedVersion);
1228 
1229   } else {
1230     if constexpr (std::is_same_v<T, Type>)
1231       entry.entry = entry.dialect->interface->readType(dialectReader);
1232     else
1233       entry.entry = entry.dialect->interface->readAttribute(dialectReader);
1234   }
1235   return success(!!entry.entry);
1236 }
1237 
1238 //===----------------------------------------------------------------------===//
1239 // Bytecode Reader
1240 //===----------------------------------------------------------------------===//
1241 
1242 /// This class is used to read a bytecode buffer and translate it into MLIR.
1243 class mlir::BytecodeReader::Impl {
1244   struct RegionReadState;
1245   using LazyLoadableOpsInfo =
1246       std::list<std::pair<Operation *, RegionReadState>>;
1247   using LazyLoadableOpsMap =
1248       DenseMap<Operation *, LazyLoadableOpsInfo::iterator>;
1249 
1250 public:
1251   Impl(Location fileLoc, const ParserConfig &config, bool lazyLoading,
1252        llvm::MemoryBufferRef buffer,
1253        const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef)
1254       : config(config), fileLoc(fileLoc), lazyLoading(lazyLoading),
1255         attrTypeReader(stringReader, resourceReader, fileLoc),
1256         // Use the builtin unrealized conversion cast operation to represent
1257         // forward references to values that aren't yet defined.
1258         forwardRefOpState(UnknownLoc::get(config.getContext()),
1259                           "builtin.unrealized_conversion_cast", ValueRange(),
1260                           NoneType::get(config.getContext())),
1261         buffer(buffer), bufferOwnerRef(bufferOwnerRef) {}
1262 
1263   /// Read the bytecode defined within `buffer` into the given block.
1264   LogicalResult read(Block *block,
1265                      llvm::function_ref<bool(Operation *)> lazyOps);
1266 
1267   /// Return the number of ops that haven't been materialized yet.
1268   int64_t getNumOpsToMaterialize() const { return lazyLoadableOpsMap.size(); }
1269 
1270   bool isMaterializable(Operation *op) { return lazyLoadableOpsMap.count(op); }
1271 
1272   /// Materialize the provided operation, invoke the lazyOpsCallback on every
1273   /// newly found lazy operation.
1274   LogicalResult
1275   materialize(Operation *op,
1276               llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
1277     this->lazyOpsCallback = lazyOpsCallback;
1278     auto resetlazyOpsCallback =
1279         llvm::make_scope_exit([&] { this->lazyOpsCallback = nullptr; });
1280     auto it = lazyLoadableOpsMap.find(op);
1281     assert(it != lazyLoadableOpsMap.end() &&
1282            "materialize called on non-materializable op");
1283     return materialize(it);
1284   }
1285 
1286   /// Materialize all operations.
1287   LogicalResult materializeAll() {
1288     while (!lazyLoadableOpsMap.empty()) {
1289       if (failed(materialize(lazyLoadableOpsMap.begin())))
1290         return failure();
1291     }
1292     return success();
1293   }
1294 
1295   /// Finalize the lazy-loading by calling back with every op that hasn't been
1296   /// materialized to let the client decide if the op should be deleted or
1297   /// materialized. The op is materialized if the callback returns true, deleted
1298   /// otherwise.
1299   LogicalResult finalize(function_ref<bool(Operation *)> shouldMaterialize) {
1300     while (!lazyLoadableOps.empty()) {
1301       Operation *op = lazyLoadableOps.begin()->first;
1302       if (shouldMaterialize(op)) {
1303         if (failed(materialize(lazyLoadableOpsMap.find(op))))
1304           return failure();
1305         continue;
1306       }
1307       op->dropAllReferences();
1308       op->erase();
1309       lazyLoadableOps.pop_front();
1310       lazyLoadableOpsMap.erase(op);
1311     }
1312     return success();
1313   }
1314 
1315 private:
1316   LogicalResult materialize(LazyLoadableOpsMap::iterator it) {
1317     assert(it != lazyLoadableOpsMap.end() &&
1318            "materialize called on non-materializable op");
1319     valueScopes.emplace_back();
1320     std::vector<RegionReadState> regionStack;
1321     regionStack.push_back(std::move(it->getSecond()->second));
1322     lazyLoadableOps.erase(it->getSecond());
1323     lazyLoadableOpsMap.erase(it);
1324 
1325     while (!regionStack.empty())
1326       if (failed(parseRegions(regionStack, regionStack.back())))
1327         return failure();
1328     return success();
1329   }
1330 
1331   /// Return the context for this config.
1332   MLIRContext *getContext() const { return config.getContext(); }
1333 
1334   /// Parse the bytecode version.
1335   LogicalResult parseVersion(EncodingReader &reader);
1336 
1337   //===--------------------------------------------------------------------===//
1338   // Dialect Section
1339 
1340   LogicalResult parseDialectSection(ArrayRef<uint8_t> sectionData);
1341 
1342   /// Parse an operation name reference using the given reader, and set the
1343   /// `wasRegistered` flag that indicates if the bytecode was produced by a
1344   /// context where opName was registered.
1345   FailureOr<OperationName> parseOpName(EncodingReader &reader,
1346                                        std::optional<bool> &wasRegistered);
1347 
1348   //===--------------------------------------------------------------------===//
1349   // Attribute/Type Section
1350 
1351   /// Parse an attribute or type using the given reader.
1352   template <typename T>
1353   LogicalResult parseAttribute(EncodingReader &reader, T &result) {
1354     return attrTypeReader.parseAttribute(reader, result);
1355   }
1356   LogicalResult parseType(EncodingReader &reader, Type &result) {
1357     return attrTypeReader.parseType(reader, result);
1358   }
1359 
1360   //===--------------------------------------------------------------------===//
1361   // Resource Section
1362 
1363   LogicalResult
1364   parseResourceSection(EncodingReader &reader,
1365                        std::optional<ArrayRef<uint8_t>> resourceData,
1366                        std::optional<ArrayRef<uint8_t>> resourceOffsetData);
1367 
1368   //===--------------------------------------------------------------------===//
1369   // IR Section
1370 
1371   /// This struct represents the current read state of a range of regions. This
1372   /// struct is used to enable iterative parsing of regions.
1373   struct RegionReadState {
1374     RegionReadState(Operation *op, EncodingReader *reader,
1375                     bool isIsolatedFromAbove)
1376         : RegionReadState(op->getRegions(), reader, isIsolatedFromAbove) {}
1377     RegionReadState(MutableArrayRef<Region> regions, EncodingReader *reader,
1378                     bool isIsolatedFromAbove)
1379         : curRegion(regions.begin()), endRegion(regions.end()), reader(reader),
1380           isIsolatedFromAbove(isIsolatedFromAbove) {}
1381 
1382     /// The current regions being read.
1383     MutableArrayRef<Region>::iterator curRegion, endRegion;
1384     /// This is the reader to use for this region, this pointer is pointing to
1385     /// the parent region reader unless the current region is IsolatedFromAbove,
1386     /// in which case the pointer is pointing to the `owningReader` which is a
1387     /// section dedicated to the current region.
1388     EncodingReader *reader;
1389     std::unique_ptr<EncodingReader> owningReader;
1390 
1391     /// The number of values defined immediately within this region.
1392     unsigned numValues = 0;
1393 
1394     /// The current blocks of the region being read.
1395     SmallVector<Block *> curBlocks;
1396     Region::iterator curBlock = {};
1397 
1398     /// The number of operations remaining to be read from the current block
1399     /// being read.
1400     uint64_t numOpsRemaining = 0;
1401 
1402     /// A flag indicating if the regions being read are isolated from above.
1403     bool isIsolatedFromAbove = false;
1404   };
1405 
1406   LogicalResult parseIRSection(ArrayRef<uint8_t> sectionData, Block *block);
1407   LogicalResult parseRegions(std::vector<RegionReadState> &regionStack,
1408                              RegionReadState &readState);
1409   FailureOr<Operation *> parseOpWithoutRegions(EncodingReader &reader,
1410                                                RegionReadState &readState,
1411                                                bool &isIsolatedFromAbove);
1412 
1413   LogicalResult parseRegion(RegionReadState &readState);
1414   LogicalResult parseBlockHeader(EncodingReader &reader,
1415                                  RegionReadState &readState);
1416   LogicalResult parseBlockArguments(EncodingReader &reader, Block *block);
1417 
1418   //===--------------------------------------------------------------------===//
1419   // Value Processing
1420 
1421   /// Parse an operand reference using the given reader. Returns nullptr in the
1422   /// case of failure.
1423   Value parseOperand(EncodingReader &reader);
1424 
1425   /// Sequentially define the given value range.
1426   LogicalResult defineValues(EncodingReader &reader, ValueRange values);
1427 
1428   /// Create a value to use for a forward reference.
1429   Value createForwardRef();
1430 
1431   //===--------------------------------------------------------------------===//
1432   // Use-list order helpers
1433 
1434   /// This struct is a simple storage that contains information required to
1435   /// reorder the use-list of a value with respect to the pre-order traversal
1436   /// ordering.
1437   struct UseListOrderStorage {
1438     UseListOrderStorage(bool isIndexPairEncoding,
1439                         SmallVector<unsigned, 4> &&indices)
1440         : indices(std::move(indices)),
1441           isIndexPairEncoding(isIndexPairEncoding){};
1442     /// The vector containing the information required to reorder the
1443     /// use-list of a value.
1444     SmallVector<unsigned, 4> indices;
1445 
1446     /// Whether indices represent a pair of type `(src, dst)` or it is a direct
1447     /// indexing, such as `dst = order[src]`.
1448     bool isIndexPairEncoding;
1449   };
1450 
1451   /// Parse use-list order from bytecode for a range of values if available. The
1452   /// range is expected to be either a block argument or an op result range. On
1453   /// success, return a map of the position in the range and the use-list order
1454   /// encoding. The function assumes to know the size of the range it is
1455   /// processing.
1456   using UseListMapT = DenseMap<unsigned, UseListOrderStorage>;
1457   FailureOr<UseListMapT> parseUseListOrderForRange(EncodingReader &reader,
1458                                                    uint64_t rangeSize);
1459 
1460   /// Shuffle the use-chain according to the order parsed.
1461   LogicalResult sortUseListOrder(Value value);
1462 
1463   /// Recursively visit all the values defined within topLevelOp and sort the
1464   /// use-list orders according to the indices parsed.
1465   LogicalResult processUseLists(Operation *topLevelOp);
1466 
1467   //===--------------------------------------------------------------------===//
1468   // Fields
1469 
1470   /// This class represents a single value scope, in which a value scope is
1471   /// delimited by isolated from above regions.
1472   struct ValueScope {
1473     /// Push a new region state onto this scope, reserving enough values for
1474     /// those defined within the current region of the provided state.
1475     void push(RegionReadState &readState) {
1476       nextValueIDs.push_back(values.size());
1477       values.resize(values.size() + readState.numValues);
1478     }
1479 
1480     /// Pop the values defined for the current region within the provided region
1481     /// state.
1482     void pop(RegionReadState &readState) {
1483       values.resize(values.size() - readState.numValues);
1484       nextValueIDs.pop_back();
1485     }
1486 
1487     /// The set of values defined in this scope.
1488     std::vector<Value> values;
1489 
1490     /// The ID for the next defined value for each region current being
1491     /// processed in this scope.
1492     SmallVector<unsigned, 4> nextValueIDs;
1493   };
1494 
1495   /// The configuration of the parser.
1496   const ParserConfig &config;
1497 
1498   /// A location to use when emitting errors.
1499   Location fileLoc;
1500 
1501   /// Flag that indicates if lazyloading is enabled.
1502   bool lazyLoading;
1503 
1504   /// Keep track of operations that have been lazy loaded (their regions haven't
1505   /// been materialized), along with the `RegionReadState` that allows to
1506   /// lazy-load the regions nested under the operation.
1507   LazyLoadableOpsInfo lazyLoadableOps;
1508   LazyLoadableOpsMap lazyLoadableOpsMap;
1509   llvm::function_ref<bool(Operation *)> lazyOpsCallback;
1510 
1511   /// The reader used to process attribute and types within the bytecode.
1512   AttrTypeReader attrTypeReader;
1513 
1514   /// The version of the bytecode being read.
1515   uint64_t version = 0;
1516 
1517   /// The producer of the bytecode being read.
1518   StringRef producer;
1519 
1520   /// The table of IR units referenced within the bytecode file.
1521   SmallVector<BytecodeDialect> dialects;
1522   SmallVector<BytecodeOperationName> opNames;
1523 
1524   /// The reader used to process resources within the bytecode.
1525   ResourceSectionReader resourceReader;
1526 
1527   /// Worklist of values with custom use-list orders to process before the end
1528   /// of the parsing.
1529   DenseMap<void *, UseListOrderStorage> valueToUseListMap;
1530 
1531   /// The table of strings referenced within the bytecode file.
1532   StringSectionReader stringReader;
1533 
1534   /// The table of properties referenced by the operation in the bytecode file.
1535   PropertiesSectionReader propertiesReader;
1536 
1537   /// The current set of available IR value scopes.
1538   std::vector<ValueScope> valueScopes;
1539 
1540   /// The global pre-order operation ordering.
1541   DenseMap<Operation *, unsigned> operationIDs;
1542 
1543   /// A block containing the set of operations defined to create forward
1544   /// references.
1545   Block forwardRefOps;
1546 
1547   /// A block containing previously created, and no longer used, forward
1548   /// reference operations.
1549   Block openForwardRefOps;
1550 
1551   /// An operation state used when instantiating forward references.
1552   OperationState forwardRefOpState;
1553 
1554   /// Reference to the input buffer.
1555   llvm::MemoryBufferRef buffer;
1556 
1557   /// The optional owning source manager, which when present may be used to
1558   /// extend the lifetime of the input buffer.
1559   const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef;
1560 };
1561 
1562 LogicalResult BytecodeReader::Impl::read(
1563     Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
1564   EncodingReader reader(buffer.getBuffer(), fileLoc);
1565   this->lazyOpsCallback = lazyOpsCallback;
1566   auto resetlazyOpsCallback =
1567       llvm::make_scope_exit([&] { this->lazyOpsCallback = nullptr; });
1568 
1569   // Skip over the bytecode header, this should have already been checked.
1570   if (failed(reader.skipBytes(StringRef("ML\xefR").size())))
1571     return failure();
1572   // Parse the bytecode version and producer.
1573   if (failed(parseVersion(reader)) ||
1574       failed(reader.parseNullTerminatedString(producer)))
1575     return failure();
1576 
1577   // Add a diagnostic handler that attaches a note that includes the original
1578   // producer of the bytecode.
1579   ScopedDiagnosticHandler diagHandler(getContext(), [&](Diagnostic &diag) {
1580     diag.attachNote() << "in bytecode version " << version
1581                       << " produced by: " << producer;
1582     return failure();
1583   });
1584 
1585   // Parse the raw data for each of the top-level sections of the bytecode.
1586   std::optional<ArrayRef<uint8_t>>
1587       sectionDatas[bytecode::Section::kNumSections];
1588   while (!reader.empty()) {
1589     // Read the next section from the bytecode.
1590     bytecode::Section::ID sectionID;
1591     ArrayRef<uint8_t> sectionData;
1592     if (failed(reader.parseSection(sectionID, sectionData)))
1593       return failure();
1594 
1595     // Check for duplicate sections, we only expect one instance of each.
1596     if (sectionDatas[sectionID]) {
1597       return reader.emitError("duplicate top-level section: ",
1598                               ::toString(sectionID));
1599     }
1600     sectionDatas[sectionID] = sectionData;
1601   }
1602   // Check that all of the required sections were found.
1603   for (int i = 0; i < bytecode::Section::kNumSections; ++i) {
1604     bytecode::Section::ID sectionID = static_cast<bytecode::Section::ID>(i);
1605     if (!sectionDatas[i] && !isSectionOptional(sectionID, version)) {
1606       return reader.emitError("missing data for top-level section: ",
1607                               ::toString(sectionID));
1608     }
1609   }
1610 
1611   // Process the string section first.
1612   if (failed(stringReader.initialize(
1613           fileLoc, *sectionDatas[bytecode::Section::kString])))
1614     return failure();
1615 
1616   // Process the properties section.
1617   if (sectionDatas[bytecode::Section::kProperties] &&
1618       failed(propertiesReader.initialize(
1619           fileLoc, *sectionDatas[bytecode::Section::kProperties])))
1620     return failure();
1621 
1622   // Process the dialect section.
1623   if (failed(parseDialectSection(*sectionDatas[bytecode::Section::kDialect])))
1624     return failure();
1625 
1626   // Process the resource section if present.
1627   if (failed(parseResourceSection(
1628           reader, sectionDatas[bytecode::Section::kResource],
1629           sectionDatas[bytecode::Section::kResourceOffset])))
1630     return failure();
1631 
1632   // Process the attribute and type section.
1633   if (failed(attrTypeReader.initialize(
1634           dialects, *sectionDatas[bytecode::Section::kAttrType],
1635           *sectionDatas[bytecode::Section::kAttrTypeOffset])))
1636     return failure();
1637 
1638   // Finally, process the IR section.
1639   return parseIRSection(*sectionDatas[bytecode::Section::kIR], block);
1640 }
1641 
1642 LogicalResult BytecodeReader::Impl::parseVersion(EncodingReader &reader) {
1643   if (failed(reader.parseVarInt(version)))
1644     return failure();
1645 
1646   // Validate the bytecode version.
1647   uint64_t currentVersion = bytecode::kVersion;
1648   uint64_t minSupportedVersion = bytecode::kMinSupportedVersion;
1649   if (version < minSupportedVersion) {
1650     return reader.emitError("bytecode version ", version,
1651                             " is older than the current version of ",
1652                             currentVersion, ", and upgrade is not supported");
1653   }
1654   if (version > currentVersion) {
1655     return reader.emitError("bytecode version ", version,
1656                             " is newer than the current version ",
1657                             currentVersion);
1658   }
1659   // Override any request to lazy-load if the bytecode version is too old.
1660   if (version < bytecode::kLazyLoading)
1661     lazyLoading = false;
1662   return success();
1663 }
1664 
1665 //===----------------------------------------------------------------------===//
1666 // Dialect Section
1667 
1668 LogicalResult BytecodeDialect::load(DialectReader &reader, MLIRContext *ctx) {
1669   if (dialect)
1670     return success();
1671   Dialect *loadedDialect = ctx->getOrLoadDialect(name);
1672   if (!loadedDialect && !ctx->allowsUnregisteredDialects()) {
1673     return reader.emitError("dialect '")
1674            << name
1675            << "' is unknown. If this is intended, please call "
1676               "allowUnregisteredDialects() on the MLIRContext, or use "
1677               "-allow-unregistered-dialect with the MLIR tool used.";
1678   }
1679   dialect = loadedDialect;
1680 
1681   // If the dialect was actually loaded, check to see if it has a bytecode
1682   // interface.
1683   if (loadedDialect)
1684     interface = dyn_cast<BytecodeDialectInterface>(loadedDialect);
1685   if (!versionBuffer.empty()) {
1686     if (!interface)
1687       return reader.emitError("dialect '")
1688              << name
1689              << "' does not implement the bytecode interface, "
1690                 "but found a version entry";
1691     EncodingReader encReader(versionBuffer, reader.getLoc());
1692     DialectReader versionReader = reader.withEncodingReader(encReader);
1693     loadedVersion = interface->readVersion(versionReader);
1694     if (!loadedVersion)
1695       return failure();
1696   }
1697   return success();
1698 }
1699 
1700 LogicalResult
1701 BytecodeReader::Impl::parseDialectSection(ArrayRef<uint8_t> sectionData) {
1702   EncodingReader sectionReader(sectionData, fileLoc);
1703 
1704   // Parse the number of dialects in the section.
1705   uint64_t numDialects;
1706   if (failed(sectionReader.parseVarInt(numDialects)))
1707     return failure();
1708   dialects.resize(numDialects);
1709 
1710   // Parse each of the dialects.
1711   for (uint64_t i = 0; i < numDialects; ++i) {
1712     /// Before version kDialectVersioning, there wasn't any versioning available
1713     /// for dialects, and the entryIdx represent the string itself.
1714     if (version < bytecode::kDialectVersioning) {
1715       if (failed(stringReader.parseString(sectionReader, dialects[i].name)))
1716         return failure();
1717       continue;
1718     }
1719     // Parse ID representing dialect and version.
1720     uint64_t dialectNameIdx;
1721     bool versionAvailable;
1722     if (failed(sectionReader.parseVarIntWithFlag(dialectNameIdx,
1723                                                  versionAvailable)))
1724       return failure();
1725     if (failed(stringReader.parseStringAtIndex(sectionReader, dialectNameIdx,
1726                                                dialects[i].name)))
1727       return failure();
1728     if (versionAvailable) {
1729       bytecode::Section::ID sectionID;
1730       if (failed(
1731               sectionReader.parseSection(sectionID, dialects[i].versionBuffer)))
1732         return failure();
1733       if (sectionID != bytecode::Section::kDialectVersions) {
1734         emitError(fileLoc, "expected dialect version section");
1735         return failure();
1736       }
1737     }
1738   }
1739 
1740   // Parse the operation names, which are grouped by dialect.
1741   auto parseOpName = [&](BytecodeDialect *dialect) {
1742     StringRef opName;
1743     std::optional<bool> wasRegistered;
1744     // Prior to version kNativePropertiesEncoding, the information about wheter
1745     // an op was registered or not wasn't encoded.
1746     if (version < bytecode::kNativePropertiesEncoding) {
1747       if (failed(stringReader.parseString(sectionReader, opName)))
1748         return failure();
1749     } else {
1750       bool wasRegisteredFlag;
1751       if (failed(stringReader.parseStringWithFlag(sectionReader, opName,
1752                                                   wasRegisteredFlag)))
1753         return failure();
1754       wasRegistered = wasRegisteredFlag;
1755     }
1756     opNames.emplace_back(dialect, opName, wasRegistered);
1757     return success();
1758   };
1759   // Avoid re-allocation in bytecode version >=kElideUnknownBlockArgLocation
1760   // where the number of ops are known.
1761   if (version >= bytecode::kElideUnknownBlockArgLocation) {
1762     uint64_t numOps;
1763     if (failed(sectionReader.parseVarInt(numOps)))
1764       return failure();
1765     opNames.reserve(numOps);
1766   }
1767   while (!sectionReader.empty())
1768     if (failed(parseDialectGrouping(sectionReader, dialects, parseOpName)))
1769       return failure();
1770   return success();
1771 }
1772 
1773 FailureOr<OperationName>
1774 BytecodeReader::Impl::parseOpName(EncodingReader &reader,
1775                                   std::optional<bool> &wasRegistered) {
1776   BytecodeOperationName *opName = nullptr;
1777   if (failed(parseEntry(reader, opNames, opName, "operation name")))
1778     return failure();
1779   wasRegistered = opName->wasRegistered;
1780   // Check to see if this operation name has already been resolved. If we
1781   // haven't, load the dialect and build the operation name.
1782   if (!opName->opName) {
1783     // Load the dialect and its version.
1784     DialectReader dialectReader(attrTypeReader, stringReader, resourceReader,
1785                                 reader);
1786     if (failed(opName->dialect->load(dialectReader, getContext())))
1787       return failure();
1788     // If the opName is empty, this is because we use to accept names such as
1789     // `foo` without any `.` separator. We shouldn't tolerate this in textual
1790     // format anymore but for now we'll be backward compatible. This can only
1791     // happen with unregistered dialects.
1792     if (opName->name.empty()) {
1793       if (opName->dialect->getLoadedDialect())
1794         return emitError(fileLoc) << "has an empty opname for dialect '"
1795                                   << opName->dialect->name << "'\n";
1796 
1797       opName->opName.emplace(opName->dialect->name, getContext());
1798     } else {
1799       opName->opName.emplace((opName->dialect->name + "." + opName->name).str(),
1800                              getContext());
1801     }
1802   }
1803   return *opName->opName;
1804 }
1805 
1806 //===----------------------------------------------------------------------===//
1807 // Resource Section
1808 
1809 LogicalResult BytecodeReader::Impl::parseResourceSection(
1810     EncodingReader &reader, std::optional<ArrayRef<uint8_t>> resourceData,
1811     std::optional<ArrayRef<uint8_t>> resourceOffsetData) {
1812   // Ensure both sections are either present or not.
1813   if (resourceData.has_value() != resourceOffsetData.has_value()) {
1814     if (resourceOffsetData)
1815       return emitError(fileLoc, "unexpected resource offset section when "
1816                                 "resource section is not present");
1817     return emitError(
1818         fileLoc,
1819         "expected resource offset section when resource section is present");
1820   }
1821 
1822   // If the resource sections are absent, there is nothing to do.
1823   if (!resourceData)
1824     return success();
1825 
1826   // Initialize the resource reader with the resource sections.
1827   DialectReader dialectReader(attrTypeReader, stringReader, resourceReader,
1828                               reader);
1829   return resourceReader.initialize(fileLoc, config, dialects, stringReader,
1830                                    *resourceData, *resourceOffsetData,
1831                                    dialectReader, bufferOwnerRef);
1832 }
1833 
1834 //===----------------------------------------------------------------------===//
1835 // UseListOrder Helpers
1836 
1837 FailureOr<BytecodeReader::Impl::UseListMapT>
1838 BytecodeReader::Impl::parseUseListOrderForRange(EncodingReader &reader,
1839                                                 uint64_t numResults) {
1840   BytecodeReader::Impl::UseListMapT map;
1841   uint64_t numValuesToRead = 1;
1842   if (numResults > 1 && failed(reader.parseVarInt(numValuesToRead)))
1843     return failure();
1844 
1845   for (size_t valueIdx = 0; valueIdx < numValuesToRead; valueIdx++) {
1846     uint64_t resultIdx = 0;
1847     if (numResults > 1 && failed(reader.parseVarInt(resultIdx)))
1848       return failure();
1849 
1850     uint64_t numValues;
1851     bool indexPairEncoding;
1852     if (failed(reader.parseVarIntWithFlag(numValues, indexPairEncoding)))
1853       return failure();
1854 
1855     SmallVector<unsigned, 4> useListOrders;
1856     for (size_t idx = 0; idx < numValues; idx++) {
1857       uint64_t index;
1858       if (failed(reader.parseVarInt(index)))
1859         return failure();
1860       useListOrders.push_back(index);
1861     }
1862 
1863     // Store in a map the result index
1864     map.try_emplace(resultIdx, UseListOrderStorage(indexPairEncoding,
1865                                                    std::move(useListOrders)));
1866   }
1867 
1868   return map;
1869 }
1870 
1871 /// Sorts each use according to the order specified in the use-list parsed. If
1872 /// the custom use-list is not found, this means that the order needs to be
1873 /// consistent with the reverse pre-order walk of the IR. If multiple uses lie
1874 /// on the same operation, the order will follow the reverse operand number
1875 /// ordering.
1876 LogicalResult BytecodeReader::Impl::sortUseListOrder(Value value) {
1877   // Early return for trivial use-lists.
1878   if (value.use_empty() || value.hasOneUse())
1879     return success();
1880 
1881   bool hasIncomingOrder =
1882       valueToUseListMap.contains(value.getAsOpaquePointer());
1883 
1884   // Compute the current order of the use-list with respect to the global
1885   // ordering. Detect if the order is already sorted while doing so.
1886   bool alreadySorted = true;
1887   auto &firstUse = *value.use_begin();
1888   uint64_t prevID =
1889       bytecode::getUseID(firstUse, operationIDs.at(firstUse.getOwner()));
1890   llvm::SmallVector<std::pair<unsigned, uint64_t>> currentOrder = {{0, prevID}};
1891   for (auto item : llvm::drop_begin(llvm::enumerate(value.getUses()))) {
1892     uint64_t currentID = bytecode::getUseID(
1893         item.value(), operationIDs.at(item.value().getOwner()));
1894     alreadySorted &= prevID > currentID;
1895     currentOrder.push_back({item.index(), currentID});
1896     prevID = currentID;
1897   }
1898 
1899   // If the order is already sorted, and there wasn't a custom order to apply
1900   // from the bytecode file, we are done.
1901   if (alreadySorted && !hasIncomingOrder)
1902     return success();
1903 
1904   // If not already sorted, sort the indices of the current order by descending
1905   // useIDs.
1906   if (!alreadySorted)
1907     std::sort(
1908         currentOrder.begin(), currentOrder.end(),
1909         [](auto elem1, auto elem2) { return elem1.second > elem2.second; });
1910 
1911   if (!hasIncomingOrder) {
1912     // If the bytecode file did not contain any custom use-list order, it means
1913     // that the order was descending useID. Hence, shuffle by the first index
1914     // of the `currentOrder` pair.
1915     SmallVector<unsigned> shuffle = SmallVector<unsigned>(
1916         llvm::map_range(currentOrder, [&](auto item) { return item.first; }));
1917     value.shuffleUseList(shuffle);
1918     return success();
1919   }
1920 
1921   // Pull the custom order info from the map.
1922   UseListOrderStorage customOrder =
1923       valueToUseListMap.at(value.getAsOpaquePointer());
1924   SmallVector<unsigned, 4> shuffle = std::move(customOrder.indices);
1925   uint64_t numUses =
1926       std::distance(value.getUses().begin(), value.getUses().end());
1927 
1928   // If the encoding was a pair of indices `(src, dst)` for every permutation,
1929   // reconstruct the shuffle vector for every use. Initialize the shuffle vector
1930   // as identity, and then apply the mapping encoded in the indices.
1931   if (customOrder.isIndexPairEncoding) {
1932     // Return failure if the number of indices was not representing pairs.
1933     if (shuffle.size() & 1)
1934       return failure();
1935 
1936     SmallVector<unsigned, 4> newShuffle(numUses);
1937     size_t idx = 0;
1938     std::iota(newShuffle.begin(), newShuffle.end(), idx);
1939     for (idx = 0; idx < shuffle.size(); idx += 2)
1940       newShuffle[shuffle[idx]] = shuffle[idx + 1];
1941 
1942     shuffle = std::move(newShuffle);
1943   }
1944 
1945   // Make sure that the indices represent a valid mapping. That is, the sum of
1946   // all the values needs to be equal to (numUses - 1) * numUses / 2, and no
1947   // duplicates are allowed in the list.
1948   DenseSet<unsigned> set;
1949   uint64_t accumulator = 0;
1950   for (const auto &elem : shuffle) {
1951     if (set.contains(elem))
1952       return failure();
1953     accumulator += elem;
1954     set.insert(elem);
1955   }
1956   if (numUses != shuffle.size() ||
1957       accumulator != (((numUses - 1) * numUses) >> 1))
1958     return failure();
1959 
1960   // Apply the current ordering map onto the shuffle vector to get the final
1961   // use-list sorting indices before shuffling.
1962   shuffle = SmallVector<unsigned, 4>(llvm::map_range(
1963       currentOrder, [&](auto item) { return shuffle[item.first]; }));
1964   value.shuffleUseList(shuffle);
1965   return success();
1966 }
1967 
1968 LogicalResult BytecodeReader::Impl::processUseLists(Operation *topLevelOp) {
1969   // Precompute operation IDs according to the pre-order walk of the IR. We
1970   // can't do this while parsing since parseRegions ordering is not strictly
1971   // equal to the pre-order walk.
1972   unsigned operationID = 0;
1973   topLevelOp->walk<mlir::WalkOrder::PreOrder>(
1974       [&](Operation *op) { operationIDs.try_emplace(op, operationID++); });
1975 
1976   auto blockWalk = topLevelOp->walk([this](Block *block) {
1977     for (auto arg : block->getArguments())
1978       if (failed(sortUseListOrder(arg)))
1979         return WalkResult::interrupt();
1980     return WalkResult::advance();
1981   });
1982 
1983   auto resultWalk = topLevelOp->walk([this](Operation *op) {
1984     for (auto result : op->getResults())
1985       if (failed(sortUseListOrder(result)))
1986         return WalkResult::interrupt();
1987     return WalkResult::advance();
1988   });
1989 
1990   return failure(blockWalk.wasInterrupted() || resultWalk.wasInterrupted());
1991 }
1992 
1993 //===----------------------------------------------------------------------===//
1994 // IR Section
1995 
1996 LogicalResult
1997 BytecodeReader::Impl::parseIRSection(ArrayRef<uint8_t> sectionData,
1998                                      Block *block) {
1999   EncodingReader reader(sectionData, fileLoc);
2000 
2001   // A stack of operation regions currently being read from the bytecode.
2002   std::vector<RegionReadState> regionStack;
2003 
2004   // Parse the top-level block using a temporary module operation.
2005   OwningOpRef<ModuleOp> moduleOp = ModuleOp::create(fileLoc);
2006   regionStack.emplace_back(*moduleOp, &reader, /*isIsolatedFromAbove=*/true);
2007   regionStack.back().curBlocks.push_back(moduleOp->getBody());
2008   regionStack.back().curBlock = regionStack.back().curRegion->begin();
2009   if (failed(parseBlockHeader(reader, regionStack.back())))
2010     return failure();
2011   valueScopes.emplace_back();
2012   valueScopes.back().push(regionStack.back());
2013 
2014   // Iteratively parse regions until everything has been resolved.
2015   while (!regionStack.empty())
2016     if (failed(parseRegions(regionStack, regionStack.back())))
2017       return failure();
2018   if (!forwardRefOps.empty()) {
2019     return reader.emitError(
2020         "not all forward unresolved forward operand references");
2021   }
2022 
2023   // Sort use-lists according to what specified in bytecode.
2024   if (failed(processUseLists(*moduleOp)))
2025     return reader.emitError(
2026         "parsed use-list orders were invalid and could not be applied");
2027 
2028   // Resolve dialect version.
2029   for (const BytecodeDialect &byteCodeDialect : dialects) {
2030     // Parsing is complete, give an opportunity to each dialect to visit the
2031     // IR and perform upgrades.
2032     if (!byteCodeDialect.loadedVersion)
2033       continue;
2034     if (byteCodeDialect.interface &&
2035         failed(byteCodeDialect.interface->upgradeFromVersion(
2036             *moduleOp, *byteCodeDialect.loadedVersion)))
2037       return failure();
2038   }
2039 
2040   // Verify that the parsed operations are valid.
2041   if (config.shouldVerifyAfterParse() && failed(verify(*moduleOp)))
2042     return failure();
2043 
2044   // Splice the parsed operations over to the provided top-level block.
2045   auto &parsedOps = moduleOp->getBody()->getOperations();
2046   auto &destOps = block->getOperations();
2047   destOps.splice(destOps.end(), parsedOps, parsedOps.begin(), parsedOps.end());
2048   return success();
2049 }
2050 
2051 LogicalResult
2052 BytecodeReader::Impl::parseRegions(std::vector<RegionReadState> &regionStack,
2053                                    RegionReadState &readState) {
2054   // Process regions, blocks, and operations until the end or if a nested
2055   // region is encountered. In this case we push a new state in regionStack and
2056   // return, the processing of the current region will resume afterward.
2057   for (; readState.curRegion != readState.endRegion; ++readState.curRegion) {
2058     // If the current block hasn't been setup yet, parse the header for this
2059     // region. The current block is already setup when this function was
2060     // interrupted to recurse down in a nested region and we resume the current
2061     // block after processing the nested region.
2062     if (readState.curBlock == Region::iterator()) {
2063       if (failed(parseRegion(readState)))
2064         return failure();
2065 
2066       // If the region is empty, there is nothing to more to do.
2067       if (readState.curRegion->empty())
2068         continue;
2069     }
2070 
2071     // Parse the blocks within the region.
2072     EncodingReader &reader = *readState.reader;
2073     do {
2074       while (readState.numOpsRemaining--) {
2075         // Read in the next operation. We don't read its regions directly, we
2076         // handle those afterwards as necessary.
2077         bool isIsolatedFromAbove = false;
2078         FailureOr<Operation *> op =
2079             parseOpWithoutRegions(reader, readState, isIsolatedFromAbove);
2080         if (failed(op))
2081           return failure();
2082 
2083         // If the op has regions, add it to the stack for processing and return:
2084         // we stop the processing of the current region and resume it after the
2085         // inner one is completed. Unless LazyLoading is activated in which case
2086         // nested region parsing is delayed.
2087         if ((*op)->getNumRegions()) {
2088           RegionReadState childState(*op, &reader, isIsolatedFromAbove);
2089 
2090           // Isolated regions are encoded as a section in version 2 and above.
2091           if (version >= bytecode::kLazyLoading && isIsolatedFromAbove) {
2092             bytecode::Section::ID sectionID;
2093             ArrayRef<uint8_t> sectionData;
2094             if (failed(reader.parseSection(sectionID, sectionData)))
2095               return failure();
2096             if (sectionID != bytecode::Section::kIR)
2097               return emitError(fileLoc, "expected IR section for region");
2098             childState.owningReader =
2099                 std::make_unique<EncodingReader>(sectionData, fileLoc);
2100             childState.reader = childState.owningReader.get();
2101 
2102             // If the user has a callback set, they have the opportunity to
2103             // control lazyloading as we go.
2104             if (lazyLoading && (!lazyOpsCallback || !lazyOpsCallback(*op))) {
2105               lazyLoadableOps.emplace_back(*op, std::move(childState));
2106               lazyLoadableOpsMap.try_emplace(*op,
2107                                              std::prev(lazyLoadableOps.end()));
2108               continue;
2109             }
2110           }
2111           regionStack.push_back(std::move(childState));
2112 
2113           // If the op is isolated from above, push a new value scope.
2114           if (isIsolatedFromAbove)
2115             valueScopes.emplace_back();
2116           return success();
2117         }
2118       }
2119 
2120       // Move to the next block of the region.
2121       if (++readState.curBlock == readState.curRegion->end())
2122         break;
2123       if (failed(parseBlockHeader(reader, readState)))
2124         return failure();
2125     } while (true);
2126 
2127     // Reset the current block and any values reserved for this region.
2128     readState.curBlock = {};
2129     valueScopes.back().pop(readState);
2130   }
2131 
2132   // When the regions have been fully parsed, pop them off of the read stack. If
2133   // the regions were isolated from above, we also pop the last value scope.
2134   if (readState.isIsolatedFromAbove) {
2135     assert(!valueScopes.empty() && "Expect a valueScope after reading region");
2136     valueScopes.pop_back();
2137   }
2138   assert(!regionStack.empty() && "Expect a regionStack after reading region");
2139   regionStack.pop_back();
2140   return success();
2141 }
2142 
2143 FailureOr<Operation *>
2144 BytecodeReader::Impl::parseOpWithoutRegions(EncodingReader &reader,
2145                                             RegionReadState &readState,
2146                                             bool &isIsolatedFromAbove) {
2147   // Parse the name of the operation.
2148   std::optional<bool> wasRegistered;
2149   FailureOr<OperationName> opName = parseOpName(reader, wasRegistered);
2150   if (failed(opName))
2151     return failure();
2152 
2153   // Parse the operation mask, which indicates which components of the operation
2154   // are present.
2155   uint8_t opMask;
2156   if (failed(reader.parseByte(opMask)))
2157     return failure();
2158 
2159   /// Parse the location.
2160   LocationAttr opLoc;
2161   if (failed(parseAttribute(reader, opLoc)))
2162     return failure();
2163 
2164   // With the location and name resolved, we can start building the operation
2165   // state.
2166   OperationState opState(opLoc, *opName);
2167 
2168   // Parse the attributes of the operation.
2169   if (opMask & bytecode::OpEncodingMask::kHasAttrs) {
2170     DictionaryAttr dictAttr;
2171     if (failed(parseAttribute(reader, dictAttr)))
2172       return failure();
2173     opState.attributes = dictAttr;
2174   }
2175 
2176   if (opMask & bytecode::OpEncodingMask::kHasProperties) {
2177     // kHasProperties wasn't emitted in older bytecode, we should never get
2178     // there without also having the `wasRegistered` flag available.
2179     if (!wasRegistered)
2180       return emitError(fileLoc,
2181                        "Unexpected missing `wasRegistered` opname flag at "
2182                        "bytecode version ")
2183              << version << " with properties.";
2184     // When an operation is emitted without being registered, the properties are
2185     // stored as an attribute. Otherwise the op must implement the bytecode
2186     // interface and control the serialization.
2187     if (wasRegistered) {
2188       DialectReader dialectReader(attrTypeReader, stringReader, resourceReader,
2189                                   reader);
2190       if (failed(
2191               propertiesReader.read(fileLoc, dialectReader, &*opName, opState)))
2192         return failure();
2193     } else {
2194       // If the operation wasn't registered when it was emitted, the properties
2195       // was serialized as an attribute.
2196       if (failed(parseAttribute(reader, opState.propertiesAttr)))
2197         return failure();
2198     }
2199   }
2200 
2201   /// Parse the results of the operation.
2202   if (opMask & bytecode::OpEncodingMask::kHasResults) {
2203     uint64_t numResults;
2204     if (failed(reader.parseVarInt(numResults)))
2205       return failure();
2206     opState.types.resize(numResults);
2207     for (int i = 0, e = numResults; i < e; ++i)
2208       if (failed(parseType(reader, opState.types[i])))
2209         return failure();
2210   }
2211 
2212   /// Parse the operands of the operation.
2213   if (opMask & bytecode::OpEncodingMask::kHasOperands) {
2214     uint64_t numOperands;
2215     if (failed(reader.parseVarInt(numOperands)))
2216       return failure();
2217     opState.operands.resize(numOperands);
2218     for (int i = 0, e = numOperands; i < e; ++i)
2219       if (!(opState.operands[i] = parseOperand(reader)))
2220         return failure();
2221   }
2222 
2223   /// Parse the successors of the operation.
2224   if (opMask & bytecode::OpEncodingMask::kHasSuccessors) {
2225     uint64_t numSuccs;
2226     if (failed(reader.parseVarInt(numSuccs)))
2227       return failure();
2228     opState.successors.resize(numSuccs);
2229     for (int i = 0, e = numSuccs; i < e; ++i) {
2230       if (failed(parseEntry(reader, readState.curBlocks, opState.successors[i],
2231                             "successor")))
2232         return failure();
2233     }
2234   }
2235 
2236   /// Parse the use-list orders for the results of the operation. Use-list
2237   /// orders are available since version 3 of the bytecode.
2238   std::optional<UseListMapT> resultIdxToUseListMap = std::nullopt;
2239   if (version >= bytecode::kUseListOrdering &&
2240       (opMask & bytecode::OpEncodingMask::kHasUseListOrders)) {
2241     size_t numResults = opState.types.size();
2242     auto parseResult = parseUseListOrderForRange(reader, numResults);
2243     if (failed(parseResult))
2244       return failure();
2245     resultIdxToUseListMap = std::move(*parseResult);
2246   }
2247 
2248   /// Parse the regions of the operation.
2249   if (opMask & bytecode::OpEncodingMask::kHasInlineRegions) {
2250     uint64_t numRegions;
2251     if (failed(reader.parseVarIntWithFlag(numRegions, isIsolatedFromAbove)))
2252       return failure();
2253 
2254     opState.regions.reserve(numRegions);
2255     for (int i = 0, e = numRegions; i < e; ++i)
2256       opState.regions.push_back(std::make_unique<Region>());
2257   }
2258 
2259   // Create the operation at the back of the current block.
2260   Operation *op = Operation::create(opState);
2261   readState.curBlock->push_back(op);
2262 
2263   // If the operation had results, update the value references.
2264   if (op->getNumResults() && failed(defineValues(reader, op->getResults())))
2265     return failure();
2266 
2267   /// Store a map for every value that received a custom use-list order from the
2268   /// bytecode file.
2269   if (resultIdxToUseListMap.has_value()) {
2270     for (size_t idx = 0; idx < op->getNumResults(); idx++) {
2271       if (resultIdxToUseListMap->contains(idx)) {
2272         valueToUseListMap.try_emplace(op->getResult(idx).getAsOpaquePointer(),
2273                                       resultIdxToUseListMap->at(idx));
2274       }
2275     }
2276   }
2277   return op;
2278 }
2279 
2280 LogicalResult BytecodeReader::Impl::parseRegion(RegionReadState &readState) {
2281   EncodingReader &reader = *readState.reader;
2282 
2283   // Parse the number of blocks in the region.
2284   uint64_t numBlocks;
2285   if (failed(reader.parseVarInt(numBlocks)))
2286     return failure();
2287 
2288   // If the region is empty, there is nothing else to do.
2289   if (numBlocks == 0)
2290     return success();
2291 
2292   // Parse the number of values defined in this region.
2293   uint64_t numValues;
2294   if (failed(reader.parseVarInt(numValues)))
2295     return failure();
2296   readState.numValues = numValues;
2297 
2298   // Create the blocks within this region. We do this before processing so that
2299   // we can rely on the blocks existing when creating operations.
2300   readState.curBlocks.clear();
2301   readState.curBlocks.reserve(numBlocks);
2302   for (uint64_t i = 0; i < numBlocks; ++i) {
2303     readState.curBlocks.push_back(new Block());
2304     readState.curRegion->push_back(readState.curBlocks.back());
2305   }
2306 
2307   // Prepare the current value scope for this region.
2308   valueScopes.back().push(readState);
2309 
2310   // Parse the entry block of the region.
2311   readState.curBlock = readState.curRegion->begin();
2312   return parseBlockHeader(reader, readState);
2313 }
2314 
2315 LogicalResult
2316 BytecodeReader::Impl::parseBlockHeader(EncodingReader &reader,
2317                                        RegionReadState &readState) {
2318   bool hasArgs;
2319   if (failed(reader.parseVarIntWithFlag(readState.numOpsRemaining, hasArgs)))
2320     return failure();
2321 
2322   // Parse the arguments of the block.
2323   if (hasArgs && failed(parseBlockArguments(reader, &*readState.curBlock)))
2324     return failure();
2325 
2326   // Uselist orders are available since version 3 of the bytecode.
2327   if (version < bytecode::kUseListOrdering)
2328     return success();
2329 
2330   uint8_t hasUseListOrders = 0;
2331   if (hasArgs && failed(reader.parseByte(hasUseListOrders)))
2332     return failure();
2333 
2334   if (!hasUseListOrders)
2335     return success();
2336 
2337   Block &blk = *readState.curBlock;
2338   auto argIdxToUseListMap =
2339       parseUseListOrderForRange(reader, blk.getNumArguments());
2340   if (failed(argIdxToUseListMap) || argIdxToUseListMap->empty())
2341     return failure();
2342 
2343   for (size_t idx = 0; idx < blk.getNumArguments(); idx++)
2344     if (argIdxToUseListMap->contains(idx))
2345       valueToUseListMap.try_emplace(blk.getArgument(idx).getAsOpaquePointer(),
2346                                     argIdxToUseListMap->at(idx));
2347 
2348   // We don't parse the operations of the block here, that's done elsewhere.
2349   return success();
2350 }
2351 
2352 LogicalResult BytecodeReader::Impl::parseBlockArguments(EncodingReader &reader,
2353                                                         Block *block) {
2354   // Parse the value ID for the first argument, and the number of arguments.
2355   uint64_t numArgs;
2356   if (failed(reader.parseVarInt(numArgs)))
2357     return failure();
2358 
2359   SmallVector<Type> argTypes;
2360   SmallVector<Location> argLocs;
2361   argTypes.reserve(numArgs);
2362   argLocs.reserve(numArgs);
2363 
2364   Location unknownLoc = UnknownLoc::get(config.getContext());
2365   while (numArgs--) {
2366     Type argType;
2367     LocationAttr argLoc = unknownLoc;
2368     if (version >= bytecode::kElideUnknownBlockArgLocation) {
2369       // Parse the type with hasLoc flag to determine if it has type.
2370       uint64_t typeIdx;
2371       bool hasLoc;
2372       if (failed(reader.parseVarIntWithFlag(typeIdx, hasLoc)) ||
2373           !(argType = attrTypeReader.resolveType(typeIdx)))
2374         return failure();
2375       if (hasLoc && failed(parseAttribute(reader, argLoc)))
2376         return failure();
2377     } else {
2378       // All args has type and location.
2379       if (failed(parseType(reader, argType)) ||
2380           failed(parseAttribute(reader, argLoc)))
2381         return failure();
2382     }
2383     argTypes.push_back(argType);
2384     argLocs.push_back(argLoc);
2385   }
2386   block->addArguments(argTypes, argLocs);
2387   return defineValues(reader, block->getArguments());
2388 }
2389 
2390 //===----------------------------------------------------------------------===//
2391 // Value Processing
2392 
2393 Value BytecodeReader::Impl::parseOperand(EncodingReader &reader) {
2394   std::vector<Value> &values = valueScopes.back().values;
2395   Value *value = nullptr;
2396   if (failed(parseEntry(reader, values, value, "value")))
2397     return Value();
2398 
2399   // Create a new forward reference if necessary.
2400   if (!*value)
2401     *value = createForwardRef();
2402   return *value;
2403 }
2404 
2405 LogicalResult BytecodeReader::Impl::defineValues(EncodingReader &reader,
2406                                                  ValueRange newValues) {
2407   ValueScope &valueScope = valueScopes.back();
2408   std::vector<Value> &values = valueScope.values;
2409 
2410   unsigned &valueID = valueScope.nextValueIDs.back();
2411   unsigned valueIDEnd = valueID + newValues.size();
2412   if (valueIDEnd > values.size()) {
2413     return reader.emitError(
2414         "value index range was outside of the expected range for "
2415         "the parent region, got [",
2416         valueID, ", ", valueIDEnd, "), but the maximum index was ",
2417         values.size() - 1);
2418   }
2419 
2420   // Assign the values and update any forward references.
2421   for (unsigned i = 0, e = newValues.size(); i != e; ++i, ++valueID) {
2422     Value newValue = newValues[i];
2423 
2424     // Check to see if a definition for this value already exists.
2425     if (Value oldValue = std::exchange(values[valueID], newValue)) {
2426       Operation *forwardRefOp = oldValue.getDefiningOp();
2427 
2428       // Assert that this is a forward reference operation. Given how we compute
2429       // definition ids (incrementally as we parse), it shouldn't be possible
2430       // for the value to be defined any other way.
2431       assert(forwardRefOp && forwardRefOp->getBlock() == &forwardRefOps &&
2432              "value index was already defined?");
2433 
2434       oldValue.replaceAllUsesWith(newValue);
2435       forwardRefOp->moveBefore(&openForwardRefOps, openForwardRefOps.end());
2436     }
2437   }
2438   return success();
2439 }
2440 
2441 Value BytecodeReader::Impl::createForwardRef() {
2442   // Check for an avaliable existing operation to use. Otherwise, create a new
2443   // fake operation to use for the reference.
2444   if (!openForwardRefOps.empty()) {
2445     Operation *op = &openForwardRefOps.back();
2446     op->moveBefore(&forwardRefOps, forwardRefOps.end());
2447   } else {
2448     forwardRefOps.push_back(Operation::create(forwardRefOpState));
2449   }
2450   return forwardRefOps.back().getResult(0);
2451 }
2452 
2453 //===----------------------------------------------------------------------===//
2454 // Entry Points
2455 //===----------------------------------------------------------------------===//
2456 
2457 BytecodeReader::~BytecodeReader() { assert(getNumOpsToMaterialize() == 0); }
2458 
2459 BytecodeReader::BytecodeReader(
2460     llvm::MemoryBufferRef buffer, const ParserConfig &config, bool lazyLoading,
2461     const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) {
2462   Location sourceFileLoc =
2463       FileLineColLoc::get(config.getContext(), buffer.getBufferIdentifier(),
2464                           /*line=*/0, /*column=*/0);
2465   impl = std::make_unique<Impl>(sourceFileLoc, config, lazyLoading, buffer,
2466                                 bufferOwnerRef);
2467 }
2468 
2469 LogicalResult BytecodeReader::readTopLevel(
2470     Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
2471   return impl->read(block, lazyOpsCallback);
2472 }
2473 
2474 int64_t BytecodeReader::getNumOpsToMaterialize() const {
2475   return impl->getNumOpsToMaterialize();
2476 }
2477 
2478 bool BytecodeReader::isMaterializable(Operation *op) {
2479   return impl->isMaterializable(op);
2480 }
2481 
2482 LogicalResult BytecodeReader::materialize(
2483     Operation *op, llvm::function_ref<bool(Operation *)> lazyOpsCallback) {
2484   return impl->materialize(op, lazyOpsCallback);
2485 }
2486 
2487 LogicalResult
2488 BytecodeReader::finalize(function_ref<bool(Operation *)> shouldMaterialize) {
2489   return impl->finalize(shouldMaterialize);
2490 }
2491 
2492 bool mlir::isBytecode(llvm::MemoryBufferRef buffer) {
2493   return buffer.getBuffer().startswith("ML\xefR");
2494 }
2495 
2496 /// Read the bytecode from the provided memory buffer reference.
2497 /// `bufferOwnerRef` if provided is the owning source manager for the buffer,
2498 /// and may be used to extend the lifetime of the buffer.
2499 static LogicalResult
2500 readBytecodeFileImpl(llvm::MemoryBufferRef buffer, Block *block,
2501                      const ParserConfig &config,
2502                      const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) {
2503   Location sourceFileLoc =
2504       FileLineColLoc::get(config.getContext(), buffer.getBufferIdentifier(),
2505                           /*line=*/0, /*column=*/0);
2506   if (!isBytecode(buffer)) {
2507     return emitError(sourceFileLoc,
2508                      "input buffer is not an MLIR bytecode file");
2509   }
2510 
2511   BytecodeReader::Impl reader(sourceFileLoc, config, /*lazyLoading=*/false,
2512                               buffer, bufferOwnerRef);
2513   return reader.read(block, /*lazyOpsCallback=*/nullptr);
2514 }
2515 
2516 LogicalResult mlir::readBytecodeFile(llvm::MemoryBufferRef buffer, Block *block,
2517                                      const ParserConfig &config) {
2518   return readBytecodeFileImpl(buffer, block, config, /*bufferOwnerRef=*/{});
2519 }
2520 LogicalResult
2521 mlir::readBytecodeFile(const std::shared_ptr<llvm::SourceMgr> &sourceMgr,
2522                        Block *block, const ParserConfig &config) {
2523   return readBytecodeFileImpl(
2524       *sourceMgr->getMemoryBuffer(sourceMgr->getMainFileID()), block, config,
2525       sourceMgr);
2526 }
2527