1 //===-- MyExtension.cpp - Transform dialect tutorial ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines Transform dialect extension operations used in the 10 // Chapter 3 of the Transform dialect tutorial. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MyExtension.h" 15 #include "mlir/Dialect/Func/IR/FuncOps.h" 16 #include "mlir/Dialect/SCF/IR/SCF.h" 17 #include "mlir/Dialect/Transform/IR/TransformDialect.h" 18 #include "mlir/Dialect/Transform/IR/TransformTypes.h" 19 #include "mlir/IR/DialectImplementation.h" 20 #include "mlir/Interfaces/CallInterfaces.h" 21 #include "llvm/ADT/TypeSwitch.h" 22 23 #define GET_TYPEDEF_CLASSES 24 #include "MyExtensionTypes.cpp.inc" 25 26 #define GET_OP_CLASSES 27 #include "MyExtension.cpp.inc" 28 29 //===---------------------------------------------------------------------===// 30 // MyExtension 31 //===---------------------------------------------------------------------===// 32 33 // Define a new transform dialect extension. This uses the CRTP idiom to 34 // identify extensions. 35 class MyExtension 36 : public ::mlir::transform::TransformDialectExtension<MyExtension> { 37 public: 38 // The extension must derive the base constructor. 39 using Base::Base; 40 41 // This function initializes the extension, similarly to `initialize` in 42 // dialect definitions. List individual operations and dependent dialects 43 // here. 44 void init(); 45 }; 46 47 void MyExtension::init() { 48 // Similarly to dialects, an extension can declare a dependent dialect. This 49 // dialect will be loaded along with the extension and, therefore, along with 50 // the Transform dialect. Only declare as dependent the dialects that contain 51 // the attributes or types used by transform operations. Do NOT declare as 52 // dependent the dialects produced during the transformation. 53 // declareDependentDialect<MyDialect>(); 54 55 // When transformations are applied, they may produce new operations from 56 // previously unloaded dialects. Typically, a pass would need to declare 57 // itself dependent on the dialects containing such new operations. To avoid 58 // confusion with the dialects the extension itself depends on, the Transform 59 // dialects differentiates between: 60 // - dependent dialects, which are used by the transform operations, and 61 // - generated dialects, which contain the entities (attributes, operations, 62 // types) that may be produced by applying the transformation even when 63 // not present in the original payload IR. 64 // In the following chapter, we will be add operations that generate function 65 // calls and structured control flow operations, so let's declare the 66 // corresponding dialects as generated. 67 declareGeneratedDialect<::mlir::scf::SCFDialect>(); 68 declareGeneratedDialect<::mlir::func::FuncDialect>(); 69 70 // Register the additional transform dialect types with the dialect. List all 71 // types generated from ODS. 72 registerTypes< 73 #define GET_TYPEDEF_LIST 74 #include "MyExtensionTypes.cpp.inc" 75 >(); 76 77 // ODS generates these helpers for type printing and parsing, but the 78 // Transform dialect provides its own support for types supplied by the 79 // extension. Reference these functions to avoid a compiler warning. 80 (void)&generatedTypeParser; 81 (void)&generatedTypePrinter; 82 83 // Finally, we register the additional transform operations with the dialect. 84 // List all operations generated from ODS. This call will perform additional 85 // checks that the operations implement the transform and memory effect 86 // interfaces required by the dialect interpreter and assert if they do not. 87 registerTransformOps< 88 #define GET_OP_LIST 89 #include "MyExtension.cpp.inc" 90 >(); 91 } 92 93 //===---------------------------------------------------------------------===// 94 // ChangeCallTargetOp 95 //===---------------------------------------------------------------------===// 96 97 static void updateCallee(mlir::func::CallOp call, llvm::StringRef newTarget) { 98 call.setCallee(newTarget); 99 } 100 101 // Implementation of our transform dialect operation. 102 // This operation returns a tri-state result that can be one of: 103 // - success when the transformation succeeded; 104 // - definite failure when the transformation failed in such a way that 105 // following 106 // transformations are impossible or undesirable, typically it could have left 107 // payload IR in an invalid state; it is expected that a diagnostic is emitted 108 // immediately before returning the definite error; 109 // - silenceable failure when the transformation failed but following 110 // transformations 111 // are still applicable, typically this means a precondition for the 112 // transformation is not satisfied and the payload IR has not been modified. 113 // The silenceable failure additionally carries a Diagnostic that can be emitted 114 // to the user. 115 ::mlir::DiagnosedSilenceableFailure 116 mlir::transform::ChangeCallTargetOp::applyToOne( 117 // The rewriter that should be used when modifying IR. 118 ::mlir::transform::TransformRewriter &rewriter, 119 // The single payload operation to which the transformation is applied. 120 ::mlir::func::CallOp call, 121 // The payload IR entities that will be appended to lists associated with 122 // the results of this transform operation. This list contains one entry per 123 // result. 124 ::mlir::transform::ApplyToEachResultList &results, 125 // The transform application state. This object can be used to query the 126 // current associations between transform IR values and payload IR entities. 127 // It can also carry additional user-defined state. 128 ::mlir::transform::TransformState &state) { 129 130 // Dispatch to the actual transformation. 131 updateCallee(call, getNewTarget()); 132 133 // If everything went well, return success. 134 return DiagnosedSilenceableFailure::success(); 135 } 136 137 void mlir::transform::ChangeCallTargetOp::getEffects( 138 ::llvm::SmallVectorImpl<::mlir::MemoryEffects::EffectInstance> &effects) { 139 // Indicate that the `call` handle is only read by this operation because the 140 // associated operation is not erased but rather modified in-place, so the 141 // reference to it remains valid. 142 onlyReadsHandle(getCallMutable(), effects); 143 144 // Indicate that the payload is modified by this operation. 145 modifiesPayload(effects); 146 } 147 148 //===---------------------------------------------------------------------===// 149 // CallToOp 150 //===---------------------------------------------------------------------===// 151 152 static mlir::Operation *replaceCallWithOp(mlir::RewriterBase &rewriter, 153 mlir::CallOpInterface call) { 154 // Construct an operation from an unregistered dialect. This is discouraged 155 // and is only used here for brevity of the overall example. 156 mlir::OperationState state(call.getLoc(), "my.mm4"); 157 state.types.assign(call->result_type_begin(), call->result_type_end()); 158 state.operands.assign(call->operand_begin(), call->operand_end()); 159 160 mlir::Operation *replacement = rewriter.create(state); 161 rewriter.replaceOp(call, replacement->getResults()); 162 return replacement; 163 } 164 165 // See above for the signature description. 166 mlir::DiagnosedSilenceableFailure mlir::transform::CallToOp::applyToOne( 167 mlir::transform::TransformRewriter &rewriter, mlir::CallOpInterface call, 168 mlir::transform::ApplyToEachResultList &results, 169 mlir::transform::TransformState &state) { 170 171 // Dispatch to the actual transformation. 172 Operation *replacement = replaceCallWithOp(rewriter, call); 173 174 // Associate the payload operation produced by the rewrite with the result 175 // handle of this transform operation. 176 results.push_back(replacement); 177 178 // If everything went well, return success. 179 return DiagnosedSilenceableFailure::success(); 180 } 181 182 //===---------------------------------------------------------------------===// 183 // CallOpInterfaceHandleType 184 //===---------------------------------------------------------------------===// 185 186 // The interface declares this method to verify constraints this type has on 187 // payload operations. It returns the now familiar tri-state result. 188 mlir::DiagnosedSilenceableFailure 189 mlir::transform::CallOpInterfaceHandleType::checkPayload( 190 // Location at which diagnostics should be emitted. 191 mlir::Location loc, 192 // List of payload operations that are about to be associated with the 193 // handle that has this type. 194 llvm::ArrayRef<mlir::Operation *> payload) const { 195 196 // All payload operations are expected to implement CallOpInterface, check 197 // this. 198 for (Operation *op : payload) { 199 if (llvm::isa<mlir::CallOpInterface>(op)) 200 continue; 201 202 // By convention, these verifiers always emit a silenceable failure since 203 // they are checking a precondition. 204 DiagnosedSilenceableFailure diag = 205 emitSilenceableError(loc) 206 << "expected the payload operation to implement CallOpInterface"; 207 diag.attachNote(op->getLoc()) << "offending operation"; 208 return diag; 209 } 210 211 // If everything is okay, return success. 212 return DiagnosedSilenceableFailure::success(); 213 } 214 215 //===---------------------------------------------------------------------===// 216 // Extension registration 217 //===---------------------------------------------------------------------===// 218 219 void registerMyExtension(::mlir::DialectRegistry ®istry) { 220 registry.addExtensions<MyExtension>(); 221 } 222