1df3765bfSSheng //===---------------- DecoderEmitter.cpp - Decoder Generator --------------===// 2df3765bfSSheng // 3df3765bfSSheng // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4df3765bfSSheng // See https://llvm.org/LICENSE.txt for license information. 5df3765bfSSheng // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6df3765bfSSheng // 7df3765bfSSheng //===----------------------------------------------------------------------===// 8df3765bfSSheng // 9df3765bfSSheng // It contains the tablegen backend that emits the decoder functions for 10df3765bfSSheng // targets with fixed/variable length instruction set. 11df3765bfSSheng // 12df3765bfSSheng //===----------------------------------------------------------------------===// 13df3765bfSSheng 14fa3d789dSPierre van Houtryve #include "Common/CodeGenHwModes.h" 15fa3d789dSPierre van Houtryve #include "Common/CodeGenInstruction.h" 16fa3d789dSPierre van Houtryve #include "Common/CodeGenTarget.h" 17fa3d789dSPierre van Houtryve #include "Common/InfoByHwMode.h" 18fa3d789dSPierre van Houtryve #include "Common/VarLenCodeEmitterGen.h" 19f35064dbSNAKAMURA Takumi #include "TableGenBackends.h" 20df3765bfSSheng #include "llvm/ADT/APInt.h" 21df3765bfSSheng #include "llvm/ADT/ArrayRef.h" 22df3765bfSSheng #include "llvm/ADT/CachedHashString.h" 23df3765bfSSheng #include "llvm/ADT/STLExtras.h" 24df3765bfSSheng #include "llvm/ADT/SetVector.h" 25f75c6ed9SJason Eckhardt #include "llvm/ADT/SmallBitVector.h" 26df3765bfSSheng #include "llvm/ADT/SmallString.h" 27df3765bfSSheng #include "llvm/ADT/Statistic.h" 28df3765bfSSheng #include "llvm/ADT/StringExtras.h" 29df3765bfSSheng #include "llvm/ADT/StringRef.h" 30c644488aSSheng #include "llvm/MC/MCDecoderOps.h" 31df3765bfSSheng #include "llvm/Support/Casting.h" 3205af9c83SJason Eckhardt #include "llvm/Support/CommandLine.h" 33df3765bfSSheng #include "llvm/Support/Debug.h" 34df3765bfSSheng #include "llvm/Support/ErrorHandling.h" 35df3765bfSSheng #include "llvm/Support/FormattedStream.h" 36df3765bfSSheng #include "llvm/Support/LEB128.h" 37df3765bfSSheng #include "llvm/Support/raw_ostream.h" 38df3765bfSSheng #include "llvm/TableGen/Error.h" 39df3765bfSSheng #include "llvm/TableGen/Record.h" 40df3765bfSSheng #include <algorithm> 41df3765bfSSheng #include <cassert> 42df3765bfSSheng #include <cstddef> 43df3765bfSSheng #include <cstdint> 44df3765bfSSheng #include <map> 45df3765bfSSheng #include <memory> 46df3765bfSSheng #include <set> 47df3765bfSSheng #include <string> 48df3765bfSSheng #include <utility> 49df3765bfSSheng #include <vector> 50df3765bfSSheng 51df3765bfSSheng using namespace llvm; 52df3765bfSSheng 53df3765bfSSheng #define DEBUG_TYPE "decoder-emitter" 54df3765bfSSheng 5505af9c83SJason Eckhardt extern cl::OptionCategory DisassemblerEmitterCat; 5605af9c83SJason Eckhardt 57da1d3d8fSsuperZWT123 enum SuppressLevel { 58da1d3d8fSsuperZWT123 SUPPRESSION_DISABLE, 59da1d3d8fSsuperZWT123 SUPPRESSION_LEVEL1, 60da1d3d8fSsuperZWT123 SUPPRESSION_LEVEL2 61da1d3d8fSsuperZWT123 }; 62da1d3d8fSsuperZWT123 63da1d3d8fSsuperZWT123 cl::opt<SuppressLevel> DecoderEmitterSuppressDuplicates( 6405af9c83SJason Eckhardt "suppress-per-hwmode-duplicates", 6505af9c83SJason Eckhardt cl::desc("Suppress duplication of instrs into per-HwMode decoder tables"), 66da1d3d8fSsuperZWT123 cl::values( 67da1d3d8fSsuperZWT123 clEnumValN( 68da1d3d8fSsuperZWT123 SUPPRESSION_DISABLE, "O0", 69da1d3d8fSsuperZWT123 "Do not prevent DecoderTable duplications caused by HwModes"), 70da1d3d8fSsuperZWT123 clEnumValN( 71da1d3d8fSsuperZWT123 SUPPRESSION_LEVEL1, "O1", 72da1d3d8fSsuperZWT123 "Remove duplicate DecoderTable entries generated due to HwModes"), 73da1d3d8fSsuperZWT123 clEnumValN( 74da1d3d8fSsuperZWT123 SUPPRESSION_LEVEL2, "O2", 75da1d3d8fSsuperZWT123 "Extract HwModes-specific instructions into new DecoderTables, " 76da1d3d8fSsuperZWT123 "significantly reducing Table Duplications")), 77da1d3d8fSsuperZWT123 cl::init(SUPPRESSION_DISABLE), cl::cat(DisassemblerEmitterCat)); 7805af9c83SJason Eckhardt 79df3765bfSSheng namespace { 80df3765bfSSheng 81df3765bfSSheng STATISTIC(NumEncodings, "Number of encodings considered"); 82b9079baaSPierre van Houtryve STATISTIC(NumEncodingsLackingDisasm, 83b9079baaSPierre van Houtryve "Number of encodings without disassembler info"); 84df3765bfSSheng STATISTIC(NumInstructions, "Number of instructions considered"); 85df3765bfSSheng STATISTIC(NumEncodingsSupported, "Number of encodings supported"); 86df3765bfSSheng STATISTIC(NumEncodingsOmitted, "Number of encodings omitted"); 87df3765bfSSheng 88df3765bfSSheng struct EncodingField { 89df3765bfSSheng unsigned Base, Width, Offset; 90df3765bfSSheng EncodingField(unsigned B, unsigned W, unsigned O) 91df3765bfSSheng : Base(B), Width(W), Offset(O) {} 92df3765bfSSheng }; 93df3765bfSSheng 94df3765bfSSheng struct OperandInfo { 95df3765bfSSheng std::vector<EncodingField> Fields; 96df3765bfSSheng std::string Decoder; 97df3765bfSSheng bool HasCompleteDecoder; 98df3765bfSSheng uint64_t InitValue; 99df3765bfSSheng 100df3765bfSSheng OperandInfo(std::string D, bool HCD) 101df3765bfSSheng : Decoder(std::move(D)), HasCompleteDecoder(HCD), InitValue(0) {} 102df3765bfSSheng 103df3765bfSSheng void addField(unsigned Base, unsigned Width, unsigned Offset) { 104df3765bfSSheng Fields.push_back(EncodingField(Base, Width, Offset)); 105df3765bfSSheng } 106df3765bfSSheng 107df3765bfSSheng unsigned numFields() const { return Fields.size(); } 108df3765bfSSheng 109df3765bfSSheng typedef std::vector<EncodingField>::const_iterator const_iterator; 110df3765bfSSheng 111df3765bfSSheng const_iterator begin() const { return Fields.begin(); } 112df3765bfSSheng const_iterator end() const { return Fields.end(); } 113df3765bfSSheng }; 114df3765bfSSheng 115df3765bfSSheng typedef std::vector<uint8_t> DecoderTable; 116df3765bfSSheng typedef uint32_t DecoderFixup; 117df3765bfSSheng typedef std::vector<DecoderFixup> FixupList; 118df3765bfSSheng typedef std::vector<FixupList> FixupScopeList; 119df3765bfSSheng typedef SmallSetVector<CachedHashString, 16> PredicateSet; 120df3765bfSSheng typedef SmallSetVector<CachedHashString, 16> DecoderSet; 121df3765bfSSheng struct DecoderTableInfo { 122df3765bfSSheng DecoderTable Table; 123df3765bfSSheng FixupScopeList FixupStack; 124df3765bfSSheng PredicateSet Predicates; 125df3765bfSSheng DecoderSet Decoders; 126df3765bfSSheng }; 127df3765bfSSheng 128df3765bfSSheng struct EncodingAndInst { 129df3765bfSSheng const Record *EncodingDef; 130df3765bfSSheng const CodeGenInstruction *Inst; 131df3765bfSSheng StringRef HwModeName; 132df3765bfSSheng 133df3765bfSSheng EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst, 134df3765bfSSheng StringRef HwModeName = "") 135df3765bfSSheng : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {} 136df3765bfSSheng }; 137df3765bfSSheng 138df3765bfSSheng struct EncodingIDAndOpcode { 139df3765bfSSheng unsigned EncodingID; 140df3765bfSSheng unsigned Opcode; 141df3765bfSSheng 142df3765bfSSheng EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {} 143df3765bfSSheng EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode) 144df3765bfSSheng : EncodingID(EncodingID), Opcode(Opcode) {} 145df3765bfSSheng }; 146df3765bfSSheng 1472ed0aacfSJason Eckhardt using EncodingIDsVec = std::vector<EncodingIDAndOpcode>; 148da1d3d8fSsuperZWT123 using NamespacesHwModesMap = std::map<std::string, std::set<StringRef>>; 1492ed0aacfSJason Eckhardt 150df3765bfSSheng raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) { 151df3765bfSSheng if (Value.EncodingDef != Value.Inst->TheDef) 152df3765bfSSheng OS << Value.EncodingDef->getName() << ":"; 153df3765bfSSheng OS << Value.Inst->TheDef->getName(); 154df3765bfSSheng return OS; 155df3765bfSSheng } 156df3765bfSSheng 157df3765bfSSheng class DecoderEmitter { 1582bb3621fSRahul Joshi const RecordKeeper &RK; 159df3765bfSSheng std::vector<EncodingAndInst> NumberedEncodings; 160df3765bfSSheng 161df3765bfSSheng public: 162b594b930SRahul Joshi DecoderEmitter(const RecordKeeper &R, StringRef PredicateNamespace) 1632bb3621fSRahul Joshi : RK(R), Target(R), PredicateNamespace(PredicateNamespace) {} 164df3765bfSSheng 165df3765bfSSheng // Emit the decoder state machine table. 166708567abSRahul Joshi void emitTable(formatted_raw_ostream &OS, DecoderTable &Table, indent Indent, 167708567abSRahul Joshi unsigned BitWidth, StringRef Namespace, 1682ed0aacfSJason Eckhardt const EncodingIDsVec &EncodingIDs) const; 169df3765bfSSheng void emitInstrLenTable(formatted_raw_ostream &OS, 170df3765bfSSheng std::vector<unsigned> &InstrLen) const; 171df3765bfSSheng void emitPredicateFunction(formatted_raw_ostream &OS, 172708567abSRahul Joshi PredicateSet &Predicates, indent Indent) const; 173b9079baaSPierre van Houtryve void emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders, 174708567abSRahul Joshi indent Indent) const; 175df3765bfSSheng 176df3765bfSSheng // run - Output the code emitter 177df3765bfSSheng void run(raw_ostream &o); 178df3765bfSSheng 179df3765bfSSheng private: 180df3765bfSSheng CodeGenTarget Target; 181df3765bfSSheng 182df3765bfSSheng public: 183b594b930SRahul Joshi StringRef PredicateNamespace; 184df3765bfSSheng }; 185df3765bfSSheng 186df3765bfSSheng } // end anonymous namespace 187df3765bfSSheng 188df3765bfSSheng // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system 189df3765bfSSheng // for a bit value. 190df3765bfSSheng // 191df3765bfSSheng // BIT_UNFILTERED is used as the init value for a filter position. It is used 192df3765bfSSheng // only for filter processings. 193df3765bfSSheng typedef enum { 194df3765bfSSheng BIT_TRUE, // '1' 195df3765bfSSheng BIT_FALSE, // '0' 196df3765bfSSheng BIT_UNSET, // '?' 197df3765bfSSheng BIT_UNFILTERED // unfiltered 198df3765bfSSheng } bit_value_t; 199df3765bfSSheng 200df3765bfSSheng static bool ValueSet(bit_value_t V) { 201df3765bfSSheng return (V == BIT_TRUE || V == BIT_FALSE); 202df3765bfSSheng } 203df3765bfSSheng 204b9079baaSPierre van Houtryve static bool ValueNotSet(bit_value_t V) { return (V == BIT_UNSET); } 205df3765bfSSheng 206df3765bfSSheng static int Value(bit_value_t V) { 207df3765bfSSheng return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); 208df3765bfSSheng } 209df3765bfSSheng 210df3765bfSSheng static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) { 21162e2c7fbSRahul Joshi if (const BitInit *bit = dyn_cast<BitInit>(bits.getBit(index))) 212df3765bfSSheng return bit->getValue() ? BIT_TRUE : BIT_FALSE; 213df3765bfSSheng 214df3765bfSSheng // The bit is uninitialized. 215df3765bfSSheng return BIT_UNSET; 216df3765bfSSheng } 217df3765bfSSheng 218df3765bfSSheng // Prints the bit value for each position. 2193e24dd42SRahul Joshi static void dumpBits(raw_ostream &OS, const BitsInit &bits) { 220df3765bfSSheng for (unsigned index = bits.getNumBits(); index > 0; --index) { 221df3765bfSSheng switch (bitFromBits(bits, index - 1)) { 222df3765bfSSheng case BIT_TRUE: 2233e24dd42SRahul Joshi OS << "1"; 224df3765bfSSheng break; 225df3765bfSSheng case BIT_FALSE: 2263e24dd42SRahul Joshi OS << "0"; 227df3765bfSSheng break; 228df3765bfSSheng case BIT_UNSET: 2293e24dd42SRahul Joshi OS << "_"; 230df3765bfSSheng break; 231df3765bfSSheng default: 232df3765bfSSheng llvm_unreachable("unexpected return value from bitFromBits"); 233df3765bfSSheng } 234df3765bfSSheng } 235df3765bfSSheng } 236df3765bfSSheng 23762e2c7fbSRahul Joshi static const BitsInit &getBitsField(const Record &def, StringRef str) { 238df3765bfSSheng const RecordVal *RV = def.getValue(str); 23962e2c7fbSRahul Joshi if (const BitsInit *Bits = dyn_cast<BitsInit>(RV->getValue())) 240df3765bfSSheng return *Bits; 241df3765bfSSheng 242df3765bfSSheng // variable length instruction 243df3765bfSSheng VarLenInst VLI = VarLenInst(cast<DagInit>(RV->getValue()), RV); 24462e2c7fbSRahul Joshi SmallVector<const Init *, 16> Bits; 245df3765bfSSheng 246e9492ccaSJason Eckhardt for (const auto &SI : VLI) { 247df3765bfSSheng if (const BitsInit *BI = dyn_cast<BitsInit>(SI.Value)) { 248df3765bfSSheng for (unsigned Idx = 0U; Idx < BI->getNumBits(); ++Idx) { 249df3765bfSSheng Bits.push_back(BI->getBit(Idx)); 250df3765bfSSheng } 251df3765bfSSheng } else if (const BitInit *BI = dyn_cast<BitInit>(SI.Value)) { 252df3765bfSSheng Bits.push_back(const_cast<BitInit *>(BI)); 253df3765bfSSheng } else { 254df3765bfSSheng for (unsigned Idx = 0U; Idx < SI.BitWidth; ++Idx) 2552ac3cd20SRiver Riddle Bits.push_back(UnsetInit::get(def.getRecords())); 256df3765bfSSheng } 257df3765bfSSheng } 258df3765bfSSheng 2592ac3cd20SRiver Riddle return *BitsInit::get(def.getRecords(), Bits); 260df3765bfSSheng } 261df3765bfSSheng 262df3765bfSSheng // Representation of the instruction to work on. 263df3765bfSSheng typedef std::vector<bit_value_t> insn_t; 264df3765bfSSheng 265df3765bfSSheng namespace { 266df3765bfSSheng 267df3765bfSSheng static const uint64_t NO_FIXED_SEGMENTS_SENTINEL = -1ULL; 268df3765bfSSheng 269df3765bfSSheng class FilterChooser; 270df3765bfSSheng 271df3765bfSSheng /// Filter - Filter works with FilterChooser to produce the decoding tree for 272df3765bfSSheng /// the ISA. 273df3765bfSSheng /// 274df3765bfSSheng /// It is useful to think of a Filter as governing the switch stmts of the 275df3765bfSSheng /// decoding tree in a certain level. Each case stmt delegates to an inferior 276df3765bfSSheng /// FilterChooser to decide what further decoding logic to employ, or in another 277df3765bfSSheng /// words, what other remaining bits to look at. The FilterChooser eventually 278df3765bfSSheng /// chooses a best Filter to do its job. 279df3765bfSSheng /// 280df3765bfSSheng /// This recursive scheme ends when the number of Opcodes assigned to the 281df3765bfSSheng /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when 282df3765bfSSheng /// the Filter/FilterChooser combo does not know how to distinguish among the 283df3765bfSSheng /// Opcodes assigned. 284df3765bfSSheng /// 285df3765bfSSheng /// An example of a conflict is 286df3765bfSSheng /// 287df3765bfSSheng /// Conflict: 288df3765bfSSheng /// 111101000.00........00010000.... 289df3765bfSSheng /// 111101000.00........0001........ 290df3765bfSSheng /// 1111010...00........0001........ 291df3765bfSSheng /// 1111010...00.................... 292df3765bfSSheng /// 1111010......................... 293df3765bfSSheng /// 1111............................ 294df3765bfSSheng /// ................................ 295df3765bfSSheng /// VST4q8a 111101000_00________00010000____ 296df3765bfSSheng /// VST4q8b 111101000_00________00010000____ 297df3765bfSSheng /// 298df3765bfSSheng /// The Debug output shows the path that the decoding tree follows to reach the 299df3765bfSSheng /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced 300df3765bfSSheng /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. 301df3765bfSSheng /// 302df3765bfSSheng /// The encoding info in the .td files does not specify this meta information, 303df3765bfSSheng /// which could have been used by the decoder to resolve the conflict. The 304df3765bfSSheng /// decoder could try to decode the even/odd register numbering and assign to 305df3765bfSSheng /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" 306df3765bfSSheng /// version and return the Opcode since the two have the same Asm format string. 307df3765bfSSheng class Filter { 308df3765bfSSheng protected: 309b9079baaSPierre van Houtryve const FilterChooser 310b9079baaSPierre van Houtryve *Owner; // points to the FilterChooser who owns this filter 311df3765bfSSheng unsigned StartBit; // the starting bit position 312df3765bfSSheng unsigned NumBits; // number of bits to filter 313df3765bfSSheng bool Mixed; // a mixed region contains both set and unset bits 314df3765bfSSheng 315df3765bfSSheng // Map of well-known segment value to the set of uid's with that value. 316b9079baaSPierre van Houtryve std::map<uint64_t, std::vector<EncodingIDAndOpcode>> FilteredInstructions; 317df3765bfSSheng 318df3765bfSSheng // Set of uid's with non-constant segment values. 319df3765bfSSheng std::vector<EncodingIDAndOpcode> VariableInstructions; 320df3765bfSSheng 321df3765bfSSheng // Map of well-known segment value to its delegate. 322df3765bfSSheng std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap; 323df3765bfSSheng 324df3765bfSSheng // Number of instructions which fall under FilteredInstructions category. 325df3765bfSSheng unsigned NumFiltered; 326df3765bfSSheng 327df3765bfSSheng // Keeps track of the last opcode in the filtered bucket. 328df3765bfSSheng EncodingIDAndOpcode LastOpcFiltered; 329df3765bfSSheng 330df3765bfSSheng public: 331df3765bfSSheng Filter(Filter &&f); 332df3765bfSSheng Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); 333df3765bfSSheng 334df3765bfSSheng ~Filter() = default; 335df3765bfSSheng 336df3765bfSSheng unsigned getNumFiltered() const { return NumFiltered; } 337df3765bfSSheng 338df3765bfSSheng EncodingIDAndOpcode getSingletonOpc() const { 339df3765bfSSheng assert(NumFiltered == 1); 340df3765bfSSheng return LastOpcFiltered; 341df3765bfSSheng } 342df3765bfSSheng 343df3765bfSSheng // Return the filter chooser for the group of instructions without constant 344df3765bfSSheng // segment values. 345df3765bfSSheng const FilterChooser &getVariableFC() const { 346df3765bfSSheng assert(NumFiltered == 1); 347df3765bfSSheng assert(FilterChooserMap.size() == 1); 348df3765bfSSheng return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second); 349df3765bfSSheng } 350df3765bfSSheng 351df3765bfSSheng // Divides the decoding task into sub tasks and delegates them to the 352df3765bfSSheng // inferior FilterChooser's. 353df3765bfSSheng // 354df3765bfSSheng // A special case arises when there's only one entry in the filtered 355df3765bfSSheng // instructions. In order to unambiguously decode the singleton, we need to 356df3765bfSSheng // match the remaining undecoded encoding bits against the singleton. 357df3765bfSSheng void recurse(); 358df3765bfSSheng 359df3765bfSSheng // Emit table entries to decode instructions given a segment or segments of 360df3765bfSSheng // bits. 361df3765bfSSheng void emitTableEntry(DecoderTableInfo &TableInfo) const; 362df3765bfSSheng 363df3765bfSSheng // Returns the number of fanout produced by the filter. More fanout implies 364df3765bfSSheng // the filter distinguishes more categories of instructions. 365df3765bfSSheng unsigned usefulness() const; 366df3765bfSSheng }; // end class Filter 367df3765bfSSheng 368df3765bfSSheng } // end anonymous namespace 369df3765bfSSheng 370df3765bfSSheng // These are states of our finite state machines used in FilterChooser's 371df3765bfSSheng // filterProcessor() which produces the filter candidates to use. 372df3765bfSSheng typedef enum { 373df3765bfSSheng ATTR_NONE, 374df3765bfSSheng ATTR_FILTERED, 375df3765bfSSheng ATTR_ALL_SET, 376df3765bfSSheng ATTR_ALL_UNSET, 377df3765bfSSheng ATTR_MIXED 378df3765bfSSheng } bitAttr_t; 379df3765bfSSheng 380df3765bfSSheng /// FilterChooser - FilterChooser chooses the best filter among a set of Filters 381df3765bfSSheng /// in order to perform the decoding of instructions at the current level. 382df3765bfSSheng /// 383df3765bfSSheng /// Decoding proceeds from the top down. Based on the well-known encoding bits 384df3765bfSSheng /// of instructions available, FilterChooser builds up the possible Filters that 385df3765bfSSheng /// can further the task of decoding by distinguishing among the remaining 386df3765bfSSheng /// candidate instructions. 387df3765bfSSheng /// 388df3765bfSSheng /// Once a filter has been chosen, it is called upon to divide the decoding task 389df3765bfSSheng /// into sub-tasks and delegates them to its inferior FilterChoosers for further 390df3765bfSSheng /// processings. 391df3765bfSSheng /// 392df3765bfSSheng /// It is useful to think of a Filter as governing the switch stmts of the 393df3765bfSSheng /// decoding tree. And each case is delegated to an inferior FilterChooser to 394df3765bfSSheng /// decide what further remaining bits to look at. 395df3765bfSSheng namespace { 396df3765bfSSheng 397df3765bfSSheng class FilterChooser { 398df3765bfSSheng protected: 399df3765bfSSheng friend class Filter; 400df3765bfSSheng 401df3765bfSSheng // Vector of codegen instructions to choose our filter. 402df3765bfSSheng ArrayRef<EncodingAndInst> AllInstructions; 403df3765bfSSheng 404df3765bfSSheng // Vector of uid's for this filter chooser to work on. 405df3765bfSSheng // The first member of the pair is the opcode id being decoded, the second is 406df3765bfSSheng // the opcode id that should be emitted. 407df3765bfSSheng const std::vector<EncodingIDAndOpcode> &Opcodes; 408df3765bfSSheng 409df3765bfSSheng // Lookup table for the operand decoding of instructions. 410df3765bfSSheng const std::map<unsigned, std::vector<OperandInfo>> &Operands; 411df3765bfSSheng 412df3765bfSSheng // Vector of candidate filters. 413df3765bfSSheng std::vector<Filter> Filters; 414df3765bfSSheng 415df3765bfSSheng // Array of bit values passed down from our parent. 416df3765bfSSheng // Set to all BIT_UNFILTERED's for Parent == NULL. 417df3765bfSSheng std::vector<bit_value_t> FilterBitValues; 418df3765bfSSheng 419df3765bfSSheng // Links to the FilterChooser above us in the decoding tree. 420df3765bfSSheng const FilterChooser *Parent; 421df3765bfSSheng 422df3765bfSSheng // Index of the best filter from Filters. 423df3765bfSSheng int BestIndex; 424df3765bfSSheng 425df3765bfSSheng // Width of instructions 426df3765bfSSheng unsigned BitWidth; 427df3765bfSSheng 428df3765bfSSheng // Parent emitter 429df3765bfSSheng const DecoderEmitter *Emitter; 430df3765bfSSheng 431df3765bfSSheng public: 432df3765bfSSheng FilterChooser(ArrayRef<EncodingAndInst> Insts, 433df3765bfSSheng const std::vector<EncodingIDAndOpcode> &IDs, 434df3765bfSSheng const std::map<unsigned, std::vector<OperandInfo>> &Ops, 435df3765bfSSheng unsigned BW, const DecoderEmitter *E) 436df3765bfSSheng : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), 437df3765bfSSheng FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1), 438df3765bfSSheng BitWidth(BW), Emitter(E) { 439df3765bfSSheng doFilter(); 440df3765bfSSheng } 441df3765bfSSheng 442df3765bfSSheng FilterChooser(ArrayRef<EncodingAndInst> Insts, 443df3765bfSSheng const std::vector<EncodingIDAndOpcode> &IDs, 444df3765bfSSheng const std::map<unsigned, std::vector<OperandInfo>> &Ops, 445df3765bfSSheng const std::vector<bit_value_t> &ParentFilterBitValues, 446df3765bfSSheng const FilterChooser &parent) 447df3765bfSSheng : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), 448df3765bfSSheng FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), 449df3765bfSSheng BitWidth(parent.BitWidth), Emitter(parent.Emitter) { 450df3765bfSSheng doFilter(); 451df3765bfSSheng } 452df3765bfSSheng 453df3765bfSSheng FilterChooser(const FilterChooser &) = delete; 454df3765bfSSheng void operator=(const FilterChooser &) = delete; 455df3765bfSSheng 456df3765bfSSheng unsigned getBitWidth() const { return BitWidth; } 457df3765bfSSheng 458df3765bfSSheng protected: 459df3765bfSSheng // Populates the insn given the uid. 460df3765bfSSheng void insnWithID(insn_t &Insn, unsigned Opcode) const { 461e9492ccaSJason Eckhardt const Record *EncodingDef = AllInstructions[Opcode].EncodingDef; 46262e2c7fbSRahul Joshi const BitsInit &Bits = getBitsField(*EncodingDef, "Inst"); 463e9492ccaSJason Eckhardt Insn.resize(std::max(BitWidth, Bits.getNumBits()), BIT_UNSET); 464df3765bfSSheng // We may have a SoftFail bitmask, which specifies a mask where an encoding 465df3765bfSSheng // may differ from the value in "Inst" and yet still be valid, but the 466df3765bfSSheng // disassembler should return SoftFail instead of Success. 467df3765bfSSheng // 468df3765bfSSheng // This is used for marking UNPREDICTABLE instructions in the ARM world. 469e9492ccaSJason Eckhardt const RecordVal *RV = EncodingDef->getValue("SoftFail"); 470df3765bfSSheng const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr; 471df3765bfSSheng for (unsigned i = 0; i < Bits.getNumBits(); ++i) { 472df3765bfSSheng if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE) 473df3765bfSSheng Insn[i] = BIT_UNSET; 474df3765bfSSheng else 475df3765bfSSheng Insn[i] = bitFromBits(Bits, i); 476df3765bfSSheng } 477df3765bfSSheng } 478df3765bfSSheng 479df3765bfSSheng // Emit the name of the encoding/instruction pair. 480df3765bfSSheng void emitNameWithID(raw_ostream &OS, unsigned Opcode) const { 481df3765bfSSheng const Record *EncodingDef = AllInstructions[Opcode].EncodingDef; 482df3765bfSSheng const Record *InstDef = AllInstructions[Opcode].Inst->TheDef; 483df3765bfSSheng if (EncodingDef != InstDef) 484df3765bfSSheng OS << EncodingDef->getName() << ":"; 485df3765bfSSheng OS << InstDef->getName(); 486df3765bfSSheng } 487df3765bfSSheng 488df3765bfSSheng // Populates the field of the insn given the start position and the number of 489df3765bfSSheng // consecutive bits to scan for. 490df3765bfSSheng // 491e9492ccaSJason Eckhardt // Returns a pair of values (indicator, field), where the indicator is false 492e9492ccaSJason Eckhardt // if there exists any uninitialized bit value in the range and true if all 493e9492ccaSJason Eckhardt // bits are well-known. The second value is the potentially populated field. 494e9492ccaSJason Eckhardt std::pair<bool, uint64_t> fieldFromInsn(const insn_t &Insn, unsigned StartBit, 495df3765bfSSheng unsigned NumBits) const; 496df3765bfSSheng 497df3765bfSSheng /// dumpFilterArray - dumpFilterArray prints out debugging info for the given 498df3765bfSSheng /// filter array as a series of chars. 4993e24dd42SRahul Joshi void dumpFilterArray(raw_ostream &OS, 500df3765bfSSheng const std::vector<bit_value_t> &filter) const; 501df3765bfSSheng 502df3765bfSSheng /// dumpStack - dumpStack traverses the filter chooser chain and calls 503df3765bfSSheng /// dumpFilterArray on each filter chooser up to the top level one. 5043e24dd42SRahul Joshi void dumpStack(raw_ostream &OS, const char *prefix) const; 505df3765bfSSheng 506df3765bfSSheng Filter &bestFilter() { 507df3765bfSSheng assert(BestIndex != -1 && "BestIndex not set"); 508df3765bfSSheng return Filters[BestIndex]; 509df3765bfSSheng } 510df3765bfSSheng 511df3765bfSSheng bool PositionFiltered(unsigned i) const { 512df3765bfSSheng return ValueSet(FilterBitValues[i]); 513df3765bfSSheng } 514df3765bfSSheng 515df3765bfSSheng // Calculates the island(s) needed to decode the instruction. 516df3765bfSSheng // This returns a lit of undecoded bits of an instructions, for example, 517df3765bfSSheng // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be 518df3765bfSSheng // decoded bits in order to verify that the instruction matches the Opcode. 519df3765bfSSheng unsigned getIslands(std::vector<unsigned> &StartBits, 520df3765bfSSheng std::vector<unsigned> &EndBits, 521df3765bfSSheng std::vector<uint64_t> &FieldVals, 522df3765bfSSheng const insn_t &Insn) const; 523df3765bfSSheng 524df3765bfSSheng // Emits code to check the Predicates member of an instruction are true. 525df3765bfSSheng // Returns true if predicate matches were emitted, false otherwise. 5263e24dd42SRahul Joshi bool emitPredicateMatch(raw_ostream &OS, unsigned Opc) const; 52745f3a5aaSFangrui Song bool emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp, 52845f3a5aaSFangrui Song raw_ostream &OS) const; 529df3765bfSSheng 530df3765bfSSheng bool doesOpcodeNeedPredicate(unsigned Opc) const; 531df3765bfSSheng unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; 532b9079baaSPierre van Houtryve void emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; 533df3765bfSSheng 534b9079baaSPierre van Houtryve void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; 535df3765bfSSheng 536df3765bfSSheng // Emits table entries to decode the singleton. 537df3765bfSSheng void emitSingletonTableEntry(DecoderTableInfo &TableInfo, 538df3765bfSSheng EncodingIDAndOpcode Opc) const; 539df3765bfSSheng 540df3765bfSSheng // Emits code to decode the singleton, and then to decode the rest. 541df3765bfSSheng void emitSingletonTableEntry(DecoderTableInfo &TableInfo, 542df3765bfSSheng const Filter &Best) const; 543df3765bfSSheng 544708567abSRahul Joshi void emitBinaryParser(raw_ostream &OS, indent Indent, 545df3765bfSSheng const OperandInfo &OpInfo, 546df3765bfSSheng bool &OpHasCompleteDecoder) const; 547df3765bfSSheng 548708567abSRahul Joshi void emitDecoder(raw_ostream &OS, indent Indent, unsigned Opc, 549df3765bfSSheng bool &HasCompleteDecoder) const; 550df3765bfSSheng unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc, 551df3765bfSSheng bool &HasCompleteDecoder) const; 552df3765bfSSheng 553df3765bfSSheng // Assign a single filter and run with it. 554df3765bfSSheng void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed); 555df3765bfSSheng 556df3765bfSSheng // reportRegion is a helper function for filterProcessor to mark a region as 557df3765bfSSheng // eligible for use as a filter region. 558df3765bfSSheng void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, 559df3765bfSSheng bool AllowMixed); 560df3765bfSSheng 561df3765bfSSheng // FilterProcessor scans the well-known encoding bits of the instructions and 562df3765bfSSheng // builds up a list of candidate filters. It chooses the best filter and 563df3765bfSSheng // recursively descends down the decoding tree. 564df3765bfSSheng bool filterProcessor(bool AllowMixed, bool Greedy = true); 565df3765bfSSheng 566df3765bfSSheng // Decides on the best configuration of filter(s) to use in order to decode 567df3765bfSSheng // the instructions. A conflict of instructions may occur, in which case we 568df3765bfSSheng // dump the conflict set to the standard error. 569df3765bfSSheng void doFilter(); 570df3765bfSSheng 571df3765bfSSheng public: 572df3765bfSSheng // emitTableEntries - Emit state machine entries to decode our share of 573df3765bfSSheng // instructions. 574df3765bfSSheng void emitTableEntries(DecoderTableInfo &TableInfo) const; 575df3765bfSSheng }; 576df3765bfSSheng 577df3765bfSSheng } // end anonymous namespace 578df3765bfSSheng 579df3765bfSSheng /////////////////////////// 580df3765bfSSheng // // 581df3765bfSSheng // Filter Implementation // 582df3765bfSSheng // // 583df3765bfSSheng /////////////////////////// 584df3765bfSSheng 585df3765bfSSheng Filter::Filter(Filter &&f) 586df3765bfSSheng : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), 587df3765bfSSheng FilteredInstructions(std::move(f.FilteredInstructions)), 588df3765bfSSheng VariableInstructions(std::move(f.VariableInstructions)), 589b9079baaSPierre van Houtryve FilterChooserMap(std::move(f.FilterChooserMap)), 590b9079baaSPierre van Houtryve NumFiltered(f.NumFiltered), LastOpcFiltered(f.LastOpcFiltered) {} 591df3765bfSSheng 592df3765bfSSheng Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, 593df3765bfSSheng bool mixed) 594df3765bfSSheng : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { 595df3765bfSSheng assert(StartBit + NumBits - 1 < Owner->BitWidth); 596df3765bfSSheng 597df3765bfSSheng NumFiltered = 0; 598df3765bfSSheng LastOpcFiltered = {0, 0}; 599df3765bfSSheng 600e9492ccaSJason Eckhardt for (const auto &OpcPair : Owner->Opcodes) { 601df3765bfSSheng insn_t Insn; 602df3765bfSSheng 603df3765bfSSheng // Populates the insn given the uid. 604e9492ccaSJason Eckhardt Owner->insnWithID(Insn, OpcPair.EncodingID); 605df3765bfSSheng 606df3765bfSSheng // Scans the segment for possibly well-specified encoding bits. 607e9492ccaSJason Eckhardt auto [Ok, Field] = Owner->fieldFromInsn(Insn, StartBit, NumBits); 608df3765bfSSheng 609e9492ccaSJason Eckhardt if (Ok) { 610df3765bfSSheng // The encoding bits are well-known. Lets add the uid of the 611df3765bfSSheng // instruction into the bucket keyed off the constant field value. 612e9492ccaSJason Eckhardt LastOpcFiltered = OpcPair; 613df3765bfSSheng FilteredInstructions[Field].push_back(LastOpcFiltered); 614df3765bfSSheng ++NumFiltered; 615df3765bfSSheng } else { 616df3765bfSSheng // Some of the encoding bit(s) are unspecified. This contributes to 617df3765bfSSheng // one additional member of "Variable" instructions. 618e9492ccaSJason Eckhardt VariableInstructions.push_back(OpcPair); 619df3765bfSSheng } 620df3765bfSSheng } 621df3765bfSSheng 622b9079baaSPierre van Houtryve assert((FilteredInstructions.size() + VariableInstructions.size() > 0) && 623b9079baaSPierre van Houtryve "Filter returns no instruction categories"); 624df3765bfSSheng } 625df3765bfSSheng 626df3765bfSSheng // Divides the decoding task into sub tasks and delegates them to the 627df3765bfSSheng // inferior FilterChooser's. 628df3765bfSSheng // 629df3765bfSSheng // A special case arises when there's only one entry in the filtered 630df3765bfSSheng // instructions. In order to unambiguously decode the singleton, we need to 631df3765bfSSheng // match the remaining undecoded encoding bits against the singleton. 632df3765bfSSheng void Filter::recurse() { 633df3765bfSSheng // Starts by inheriting our parent filter chooser's filter bit values. 634df3765bfSSheng std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues); 635df3765bfSSheng 636df3765bfSSheng if (!VariableInstructions.empty()) { 637df3765bfSSheng // Conservatively marks each segment position as BIT_UNSET. 638df3765bfSSheng for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) 639df3765bfSSheng BitValueArray[StartBit + bitIndex] = BIT_UNSET; 640df3765bfSSheng 641df3765bfSSheng // Delegates to an inferior filter chooser for further processing on this 642df3765bfSSheng // group of instructions whose segment values are variable. 643*4e8c9d28SJay Foad FilterChooserMap.try_emplace( 644b9079baaSPierre van Houtryve NO_FIXED_SEGMENTS_SENTINEL, 645df3765bfSSheng std::make_unique<FilterChooser>(Owner->AllInstructions, 646b9079baaSPierre van Houtryve VariableInstructions, Owner->Operands, 647*4e8c9d28SJay Foad BitValueArray, *Owner)); 648df3765bfSSheng } 649df3765bfSSheng 650df3765bfSSheng // No need to recurse for a singleton filtered instruction. 651df3765bfSSheng // See also Filter::emit*(). 652df3765bfSSheng if (getNumFiltered() == 1) { 653df3765bfSSheng assert(FilterChooserMap.size() == 1); 654df3765bfSSheng return; 655df3765bfSSheng } 656df3765bfSSheng 657df3765bfSSheng // Otherwise, create sub choosers. 658df3765bfSSheng for (const auto &Inst : FilteredInstructions) { 659df3765bfSSheng 660df3765bfSSheng // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. 661df3765bfSSheng for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) { 662df3765bfSSheng if (Inst.first & (1ULL << bitIndex)) 663df3765bfSSheng BitValueArray[StartBit + bitIndex] = BIT_TRUE; 664df3765bfSSheng else 665df3765bfSSheng BitValueArray[StartBit + bitIndex] = BIT_FALSE; 666df3765bfSSheng } 667df3765bfSSheng 668df3765bfSSheng // Delegates to an inferior filter chooser for further processing on this 669df3765bfSSheng // category of instructions. 670*4e8c9d28SJay Foad FilterChooserMap.try_emplace(Inst.first, 671*4e8c9d28SJay Foad std::make_unique<FilterChooser>( 672f723260aSJay Foad Owner->AllInstructions, Inst.second, 673*4e8c9d28SJay Foad Owner->Operands, BitValueArray, *Owner)); 674df3765bfSSheng } 675df3765bfSSheng } 676df3765bfSSheng 677df3765bfSSheng static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups, 678df3765bfSSheng uint32_t DestIdx) { 679df3765bfSSheng // Any NumToSkip fixups in the current scope can resolve to the 680df3765bfSSheng // current location. 681b9079baaSPierre van Houtryve for (FixupList::const_reverse_iterator I = Fixups.rbegin(), E = Fixups.rend(); 682df3765bfSSheng I != E; ++I) { 683df3765bfSSheng // Calculate the distance from the byte following the fixup entry byte 684df3765bfSSheng // to the destination. The Target is calculated from after the 16-bit 685df3765bfSSheng // NumToSkip entry itself, so subtract two from the displacement here 686df3765bfSSheng // to account for that. 687df3765bfSSheng uint32_t FixupIdx = *I; 688df3765bfSSheng uint32_t Delta = DestIdx - FixupIdx - 3; 689df3765bfSSheng // Our NumToSkip entries are 24-bits. Make sure our table isn't too 690df3765bfSSheng // big. 691df3765bfSSheng assert(Delta < (1u << 24)); 692df3765bfSSheng Table[FixupIdx] = (uint8_t)Delta; 693df3765bfSSheng Table[FixupIdx + 1] = (uint8_t)(Delta >> 8); 694df3765bfSSheng Table[FixupIdx + 2] = (uint8_t)(Delta >> 16); 695df3765bfSSheng } 696df3765bfSSheng } 697df3765bfSSheng 698df3765bfSSheng // Emit table entries to decode instructions given a segment or segments 699df3765bfSSheng // of bits. 700df3765bfSSheng void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { 701d93f850cSJason Eckhardt assert((NumBits < (1u << 8)) && "NumBits overflowed uint8 table entry!"); 702df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_ExtractField); 703d93f850cSJason Eckhardt 704d93f850cSJason Eckhardt SmallString<16> SBytes; 705d93f850cSJason Eckhardt raw_svector_ostream S(SBytes); 706d93f850cSJason Eckhardt encodeULEB128(StartBit, S); 707d93f850cSJason Eckhardt TableInfo.Table.insert(TableInfo.Table.end(), SBytes.begin(), SBytes.end()); 708df3765bfSSheng TableInfo.Table.push_back(NumBits); 709df3765bfSSheng 710df3765bfSSheng // A new filter entry begins a new scope for fixup resolution. 711df3765bfSSheng TableInfo.FixupStack.emplace_back(); 712df3765bfSSheng 713df3765bfSSheng DecoderTable &Table = TableInfo.Table; 714df3765bfSSheng 715df3765bfSSheng size_t PrevFilter = 0; 716df3765bfSSheng bool HasFallthrough = false; 717e9492ccaSJason Eckhardt for (const auto &Filter : FilterChooserMap) { 718df3765bfSSheng // Field value -1 implies a non-empty set of variable instructions. 719df3765bfSSheng // See also recurse(). 720df3765bfSSheng if (Filter.first == NO_FIXED_SEGMENTS_SENTINEL) { 721df3765bfSSheng HasFallthrough = true; 722df3765bfSSheng 723df3765bfSSheng // Each scope should always have at least one filter value to check 724df3765bfSSheng // for. 725df3765bfSSheng assert(PrevFilter != 0 && "empty filter set!"); 726df3765bfSSheng FixupList &CurScope = TableInfo.FixupStack.back(); 727df3765bfSSheng // Resolve any NumToSkip fixups in the current scope. 728df3765bfSSheng resolveTableFixups(Table, CurScope, Table.size()); 729df3765bfSSheng CurScope.clear(); 730df3765bfSSheng PrevFilter = 0; // Don't re-process the filter's fallthrough. 731df3765bfSSheng } else { 732df3765bfSSheng Table.push_back(MCD::OPC_FilterValue); 733df3765bfSSheng // Encode and emit the value to filter against. 734df3765bfSSheng uint8_t Buffer[16]; 735df3765bfSSheng unsigned Len = encodeULEB128(Filter.first, Buffer); 736df3765bfSSheng Table.insert(Table.end(), Buffer, Buffer + Len); 737df3765bfSSheng // Reserve space for the NumToSkip entry. We'll backpatch the value 738df3765bfSSheng // later. 739df3765bfSSheng PrevFilter = Table.size(); 740df3765bfSSheng Table.push_back(0); 741df3765bfSSheng Table.push_back(0); 742df3765bfSSheng Table.push_back(0); 743df3765bfSSheng } 744df3765bfSSheng 745df3765bfSSheng // We arrive at a category of instructions with the same segment value. 746df3765bfSSheng // Now delegate to the sub filter chooser for further decodings. 747df3765bfSSheng // The case may fallthrough, which happens if the remaining well-known 748df3765bfSSheng // encoding bits do not match exactly. 749df3765bfSSheng Filter.second->emitTableEntries(TableInfo); 750df3765bfSSheng 751df3765bfSSheng // Now that we've emitted the body of the handler, update the NumToSkip 752df3765bfSSheng // of the filter itself to be able to skip forward when false. Subtract 753df3765bfSSheng // two as to account for the width of the NumToSkip field itself. 754df3765bfSSheng if (PrevFilter) { 755df3765bfSSheng uint32_t NumToSkip = Table.size() - PrevFilter - 3; 756b9079baaSPierre van Houtryve assert(NumToSkip < (1u << 24) && 757b9079baaSPierre van Houtryve "disassembler decoding table too large!"); 758df3765bfSSheng Table[PrevFilter] = (uint8_t)NumToSkip; 759df3765bfSSheng Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8); 760df3765bfSSheng Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16); 761df3765bfSSheng } 762df3765bfSSheng } 763df3765bfSSheng 764df3765bfSSheng // Any remaining unresolved fixups bubble up to the parent fixup scope. 765df3765bfSSheng assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!"); 766df3765bfSSheng FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1; 767df3765bfSSheng FixupScopeList::iterator Dest = Source - 1; 768df3765bfSSheng llvm::append_range(*Dest, *Source); 769df3765bfSSheng TableInfo.FixupStack.pop_back(); 770df3765bfSSheng 771df3765bfSSheng // If there is no fallthrough, then the final filter should get fixed 772df3765bfSSheng // up according to the enclosing scope rather than the current position. 773df3765bfSSheng if (!HasFallthrough) 774df3765bfSSheng TableInfo.FixupStack.back().push_back(PrevFilter); 775df3765bfSSheng } 776df3765bfSSheng 777df3765bfSSheng // Returns the number of fanout produced by the filter. More fanout implies 778df3765bfSSheng // the filter distinguishes more categories of instructions. 779df3765bfSSheng unsigned Filter::usefulness() const { 780df3765bfSSheng if (!VariableInstructions.empty()) 781df3765bfSSheng return FilteredInstructions.size(); 782df3765bfSSheng else 783df3765bfSSheng return FilteredInstructions.size() + 1; 784df3765bfSSheng } 785df3765bfSSheng 786df3765bfSSheng ////////////////////////////////// 787df3765bfSSheng // // 788df3765bfSSheng // Filterchooser Implementation // 789df3765bfSSheng // // 790df3765bfSSheng ////////////////////////////////// 791df3765bfSSheng 792df3765bfSSheng // Emit the decoder state machine table. 793df3765bfSSheng void DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table, 794708567abSRahul Joshi indent Indent, unsigned BitWidth, 7952ed0aacfSJason Eckhardt StringRef Namespace, 7962ed0aacfSJason Eckhardt const EncodingIDsVec &EncodingIDs) const { 7972ed0aacfSJason Eckhardt // We'll need to be able to map from a decoded opcode into the corresponding 7982ed0aacfSJason Eckhardt // EncodingID for this specific combination of BitWidth and Namespace. This 7992ed0aacfSJason Eckhardt // is used below to index into NumberedEncodings. 8002ed0aacfSJason Eckhardt DenseMap<unsigned, unsigned> OpcodeToEncodingID; 8012ed0aacfSJason Eckhardt OpcodeToEncodingID.reserve(EncodingIDs.size()); 802e9492ccaSJason Eckhardt for (const auto &EI : EncodingIDs) 8032ed0aacfSJason Eckhardt OpcodeToEncodingID[EI.Opcode] = EI.EncodingID; 8042ed0aacfSJason Eckhardt 805708567abSRahul Joshi OS << Indent << "static const uint8_t DecoderTable" << Namespace << BitWidth 806708567abSRahul Joshi << "[] = {\n"; 807df3765bfSSheng 8083e24dd42SRahul Joshi Indent += 2; 809df3765bfSSheng 8101442b0e6SJason Eckhardt // Emit ULEB128 encoded value to OS, returning the number of bytes emitted. 8111442b0e6SJason Eckhardt auto emitULEB128 = [](DecoderTable::const_iterator I, 8121442b0e6SJason Eckhardt formatted_raw_ostream &OS) { 8131442b0e6SJason Eckhardt unsigned Len = 0; 8141442b0e6SJason Eckhardt while (*I >= 128) { 8151442b0e6SJason Eckhardt OS << (unsigned)*I++ << ", "; 8161442b0e6SJason Eckhardt Len++; 8171442b0e6SJason Eckhardt } 8181442b0e6SJason Eckhardt OS << (unsigned)*I++ << ", "; 8191442b0e6SJason Eckhardt return Len + 1; 8201442b0e6SJason Eckhardt }; 8211442b0e6SJason Eckhardt 8221442b0e6SJason Eckhardt // Emit 24-bit numtoskip value to OS, returning the NumToSkip value. 8231442b0e6SJason Eckhardt auto emitNumToSkip = [](DecoderTable::const_iterator I, 8241442b0e6SJason Eckhardt formatted_raw_ostream &OS) { 8251442b0e6SJason Eckhardt uint8_t Byte = *I++; 8261442b0e6SJason Eckhardt uint32_t NumToSkip = Byte; 8271442b0e6SJason Eckhardt OS << (unsigned)Byte << ", "; 8281442b0e6SJason Eckhardt Byte = *I++; 8291442b0e6SJason Eckhardt OS << (unsigned)Byte << ", "; 8301442b0e6SJason Eckhardt NumToSkip |= Byte << 8; 8311442b0e6SJason Eckhardt Byte = *I++; 8321442b0e6SJason Eckhardt OS << utostr(Byte) << ", "; 8331442b0e6SJason Eckhardt NumToSkip |= Byte << 16; 8341442b0e6SJason Eckhardt return NumToSkip; 8351442b0e6SJason Eckhardt }; 8361442b0e6SJason Eckhardt 837df3765bfSSheng // FIXME: We may be able to use the NumToSkip values to recover 838df3765bfSSheng // appropriate indentation levels. 839df3765bfSSheng DecoderTable::const_iterator I = Table.begin(); 840df3765bfSSheng DecoderTable::const_iterator E = Table.end(); 841df3765bfSSheng while (I != E) { 842df3765bfSSheng assert(I < E && "incomplete decode table entry!"); 843df3765bfSSheng 844df3765bfSSheng uint64_t Pos = I - Table.begin(); 845df3765bfSSheng OS << "/* " << Pos << " */"; 846df3765bfSSheng OS.PadToColumn(12); 847df3765bfSSheng 848df3765bfSSheng switch (*I) { 849df3765bfSSheng default: 850df3765bfSSheng PrintFatalError("invalid decode table opcode"); 851df3765bfSSheng case MCD::OPC_ExtractField: { 852df3765bfSSheng ++I; 853708567abSRahul Joshi OS << Indent << "MCD::OPC_ExtractField, "; 854d93f850cSJason Eckhardt 855d93f850cSJason Eckhardt // ULEB128 encoded start value. 8561442b0e6SJason Eckhardt const char *ErrMsg = nullptr; 8571442b0e6SJason Eckhardt unsigned Start = decodeULEB128(Table.data() + Pos + 1, nullptr, 8581442b0e6SJason Eckhardt Table.data() + Table.size(), &ErrMsg); 8591442b0e6SJason Eckhardt assert(ErrMsg == nullptr && "ULEB128 value too large!"); 8601442b0e6SJason Eckhardt I += emitULEB128(I, OS); 861d93f850cSJason Eckhardt 862df3765bfSSheng unsigned Len = *I++; 863d93f850cSJason Eckhardt OS << Len << ", // Inst{"; 864df3765bfSSheng if (Len > 1) 865df3765bfSSheng OS << (Start + Len - 1) << "-"; 866df3765bfSSheng OS << Start << "} ...\n"; 867df3765bfSSheng break; 868df3765bfSSheng } 869df3765bfSSheng case MCD::OPC_FilterValue: { 870df3765bfSSheng ++I; 871708567abSRahul Joshi OS << Indent << "MCD::OPC_FilterValue, "; 872df3765bfSSheng // The filter value is ULEB128 encoded. 8731442b0e6SJason Eckhardt I += emitULEB128(I, OS); 874df3765bfSSheng 875df3765bfSSheng // 24-bit numtoskip value. 8761442b0e6SJason Eckhardt uint32_t NumToSkip = emitNumToSkip(I, OS); 8771442b0e6SJason Eckhardt I += 3; 878df3765bfSSheng OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 879df3765bfSSheng break; 880df3765bfSSheng } 881df3765bfSSheng case MCD::OPC_CheckField: { 882df3765bfSSheng ++I; 883708567abSRahul Joshi OS << Indent << "MCD::OPC_CheckField, "; 884d93f850cSJason Eckhardt // ULEB128 encoded start value. 8851442b0e6SJason Eckhardt I += emitULEB128(I, OS); 886d93f850cSJason Eckhardt // 8-bit length. 887df3765bfSSheng unsigned Len = *I++; 888d93f850cSJason Eckhardt OS << Len << ", "; 889df3765bfSSheng // ULEB128 encoded field value. 8901442b0e6SJason Eckhardt I += emitULEB128(I, OS); 8911442b0e6SJason Eckhardt 892df3765bfSSheng // 24-bit numtoskip value. 8931442b0e6SJason Eckhardt uint32_t NumToSkip = emitNumToSkip(I, OS); 8941442b0e6SJason Eckhardt I += 3; 895df3765bfSSheng OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 896df3765bfSSheng break; 897df3765bfSSheng } 898df3765bfSSheng case MCD::OPC_CheckPredicate: { 899df3765bfSSheng ++I; 900708567abSRahul Joshi OS << Indent << "MCD::OPC_CheckPredicate, "; 9011442b0e6SJason Eckhardt I += emitULEB128(I, OS); 902df3765bfSSheng 903df3765bfSSheng // 24-bit numtoskip value. 9041442b0e6SJason Eckhardt uint32_t NumToSkip = emitNumToSkip(I, OS); 9051442b0e6SJason Eckhardt I += 3; 906df3765bfSSheng OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 907df3765bfSSheng break; 908df3765bfSSheng } 909df3765bfSSheng case MCD::OPC_Decode: 910df3765bfSSheng case MCD::OPC_TryDecode: { 911df3765bfSSheng bool IsTry = *I == MCD::OPC_TryDecode; 912df3765bfSSheng ++I; 913df3765bfSSheng // Decode the Opcode value. 9141442b0e6SJason Eckhardt const char *ErrMsg = nullptr; 9151442b0e6SJason Eckhardt unsigned Opc = decodeULEB128(Table.data() + Pos + 1, nullptr, 9161442b0e6SJason Eckhardt Table.data() + Table.size(), &ErrMsg); 9171442b0e6SJason Eckhardt assert(ErrMsg == nullptr && "ULEB128 value too large!"); 9181442b0e6SJason Eckhardt 919708567abSRahul Joshi OS << Indent << "MCD::OPC_" << (IsTry ? "Try" : "") << "Decode, "; 9201442b0e6SJason Eckhardt I += emitULEB128(I, OS); 921df3765bfSSheng 922df3765bfSSheng // Decoder index. 9231442b0e6SJason Eckhardt I += emitULEB128(I, OS); 924df3765bfSSheng 9252ed0aacfSJason Eckhardt auto EncI = OpcodeToEncodingID.find(Opc); 9262ed0aacfSJason Eckhardt assert(EncI != OpcodeToEncodingID.end() && "no encoding entry"); 9272ed0aacfSJason Eckhardt auto EncodingID = EncI->second; 9282ed0aacfSJason Eckhardt 929df3765bfSSheng if (!IsTry) { 9302ed0aacfSJason Eckhardt OS << "// Opcode: " << NumberedEncodings[EncodingID] << "\n"; 931df3765bfSSheng break; 932df3765bfSSheng } 933df3765bfSSheng 934df3765bfSSheng // Fallthrough for OPC_TryDecode. 935df3765bfSSheng 936df3765bfSSheng // 24-bit numtoskip value. 9371442b0e6SJason Eckhardt uint32_t NumToSkip = emitNumToSkip(I, OS); 9381442b0e6SJason Eckhardt I += 3; 939df3765bfSSheng 9402ed0aacfSJason Eckhardt OS << "// Opcode: " << NumberedEncodings[EncodingID] 941df3765bfSSheng << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 942df3765bfSSheng break; 943df3765bfSSheng } 944df3765bfSSheng case MCD::OPC_SoftFail: { 945df3765bfSSheng ++I; 946708567abSRahul Joshi OS << Indent << "MCD::OPC_SoftFail"; 947df3765bfSSheng // Positive mask 948df3765bfSSheng uint64_t Value = 0; 949df3765bfSSheng unsigned Shift = 0; 950df3765bfSSheng do { 951df3765bfSSheng OS << ", " << (unsigned)*I; 952390f2870Smahesh-attarde Value += ((uint64_t)(*I & 0x7f)) << Shift; 953df3765bfSSheng Shift += 7; 954df3765bfSSheng } while (*I++ >= 128); 955df3765bfSSheng if (Value > 127) { 956df3765bfSSheng OS << " /* 0x"; 957df3765bfSSheng OS.write_hex(Value); 958df3765bfSSheng OS << " */"; 959df3765bfSSheng } 960df3765bfSSheng // Negative mask 961df3765bfSSheng Value = 0; 962df3765bfSSheng Shift = 0; 963df3765bfSSheng do { 964df3765bfSSheng OS << ", " << (unsigned)*I; 965390f2870Smahesh-attarde Value += ((uint64_t)(*I & 0x7f)) << Shift; 966df3765bfSSheng Shift += 7; 967df3765bfSSheng } while (*I++ >= 128); 968df3765bfSSheng if (Value > 127) { 969df3765bfSSheng OS << " /* 0x"; 970df3765bfSSheng OS.write_hex(Value); 971df3765bfSSheng OS << " */"; 972df3765bfSSheng } 973df3765bfSSheng OS << ",\n"; 974df3765bfSSheng break; 975df3765bfSSheng } 976df3765bfSSheng case MCD::OPC_Fail: { 977df3765bfSSheng ++I; 978708567abSRahul Joshi OS << Indent << "MCD::OPC_Fail,\n"; 979df3765bfSSheng break; 980df3765bfSSheng } 981df3765bfSSheng } 982df3765bfSSheng } 983708567abSRahul Joshi OS << Indent << "0\n"; 984df3765bfSSheng 9853e24dd42SRahul Joshi Indent -= 2; 986df3765bfSSheng 987708567abSRahul Joshi OS << Indent << "};\n\n"; 988df3765bfSSheng } 989df3765bfSSheng 990df3765bfSSheng void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS, 991df3765bfSSheng std::vector<unsigned> &InstrLen) const { 992df3765bfSSheng OS << "static const uint8_t InstrLenTable[] = {\n"; 993df3765bfSSheng for (unsigned &Len : InstrLen) { 994df3765bfSSheng OS << Len << ",\n"; 995df3765bfSSheng } 996df3765bfSSheng OS << "};\n\n"; 997df3765bfSSheng } 998df3765bfSSheng 999df3765bfSSheng void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS, 1000df3765bfSSheng PredicateSet &Predicates, 1001708567abSRahul Joshi indent Indent) const { 1002df3765bfSSheng // The predicate function is just a big switch statement based on the 1003df3765bfSSheng // input predicate index. 1004708567abSRahul Joshi OS << Indent << "static bool checkDecoderPredicate(unsigned Idx, " 1005df3765bfSSheng << "const FeatureBitset &Bits) {\n"; 10063e24dd42SRahul Joshi Indent += 2; 1007df3765bfSSheng if (!Predicates.empty()) { 1008708567abSRahul Joshi OS << Indent << "switch (Idx) {\n"; 1009708567abSRahul Joshi OS << Indent << "default: llvm_unreachable(\"Invalid index!\");\n"; 1010df3765bfSSheng unsigned Index = 0; 1011df3765bfSSheng for (const auto &Predicate : Predicates) { 1012708567abSRahul Joshi OS << Indent << "case " << Index++ << ":\n"; 1013708567abSRahul Joshi OS << Indent + 2 << "return (" << Predicate << ");\n"; 1014df3765bfSSheng } 1015708567abSRahul Joshi OS << Indent << "}\n"; 1016df3765bfSSheng } else { 1017df3765bfSSheng // No case statement to emit 1018708567abSRahul Joshi OS << Indent << "llvm_unreachable(\"Invalid index!\");\n"; 1019df3765bfSSheng } 10203e24dd42SRahul Joshi Indent -= 2; 1021708567abSRahul Joshi OS << Indent << "}\n\n"; 1022df3765bfSSheng } 1023df3765bfSSheng 1024df3765bfSSheng void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS, 1025df3765bfSSheng DecoderSet &Decoders, 1026708567abSRahul Joshi indent Indent) const { 1027df3765bfSSheng // The decoder function is just a big switch statement based on the 1028df3765bfSSheng // input decoder index. 1029708567abSRahul Joshi OS << Indent << "template <typename InsnType>\n"; 1030708567abSRahul Joshi OS << Indent << "static DecodeStatus decodeToMCInst(DecodeStatus S," 1031df3765bfSSheng << " unsigned Idx, InsnType insn, MCInst &MI,\n"; 1032708567abSRahul Joshi OS << Indent << " uint64_t " 1033df3765bfSSheng << "Address, const MCDisassembler *Decoder, bool &DecodeComplete) {\n"; 10343e24dd42SRahul Joshi Indent += 2; 1035708567abSRahul Joshi OS << Indent << "DecodeComplete = true;\n"; 1036df3765bfSSheng // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits 1037df3765bfSSheng // It would be better for emitBinaryParser to use a 64-bit tmp whenever 1038df3765bfSSheng // possible but fall back to an InsnType-sized tmp for truly large fields. 1039708567abSRahul Joshi OS << Indent 1040708567abSRahul Joshi << "using TmpType = " 1041df3765bfSSheng "std::conditional_t<std::is_integral<InsnType>::" 1042df3765bfSSheng "value, InsnType, uint64_t>;\n"; 1043708567abSRahul Joshi OS << Indent << "TmpType tmp;\n"; 1044708567abSRahul Joshi OS << Indent << "switch (Idx) {\n"; 1045708567abSRahul Joshi OS << Indent << "default: llvm_unreachable(\"Invalid index!\");\n"; 1046df3765bfSSheng unsigned Index = 0; 1047df3765bfSSheng for (const auto &Decoder : Decoders) { 1048708567abSRahul Joshi OS << Indent << "case " << Index++ << ":\n"; 1049df3765bfSSheng OS << Decoder; 1050708567abSRahul Joshi OS << Indent + 2 << "return S;\n"; 1051df3765bfSSheng } 1052708567abSRahul Joshi OS << Indent << "}\n"; 10533e24dd42SRahul Joshi Indent -= 2; 1054708567abSRahul Joshi OS << Indent << "}\n"; 1055df3765bfSSheng } 1056df3765bfSSheng 1057df3765bfSSheng // Populates the field of the insn given the start position and the number of 1058df3765bfSSheng // consecutive bits to scan for. 1059df3765bfSSheng // 1060e9492ccaSJason Eckhardt // Returns a pair of values (indicator, field), where the indicator is false 1061e9492ccaSJason Eckhardt // if there exists any uninitialized bit value in the range and true if all 1062e9492ccaSJason Eckhardt // bits are well-known. The second value is the potentially populated field. 1063e9492ccaSJason Eckhardt std::pair<bool, uint64_t> FilterChooser::fieldFromInsn(const insn_t &Insn, 1064e9492ccaSJason Eckhardt unsigned StartBit, 1065e9492ccaSJason Eckhardt unsigned NumBits) const { 1066e9492ccaSJason Eckhardt uint64_t Field = 0; 1067df3765bfSSheng 1068df3765bfSSheng for (unsigned i = 0; i < NumBits; ++i) { 1069df3765bfSSheng if (Insn[StartBit + i] == BIT_UNSET) 1070e9492ccaSJason Eckhardt return {false, Field}; 1071df3765bfSSheng 1072df3765bfSSheng if (Insn[StartBit + i] == BIT_TRUE) 1073df3765bfSSheng Field = Field | (1ULL << i); 1074df3765bfSSheng } 1075df3765bfSSheng 1076e9492ccaSJason Eckhardt return {true, Field}; 1077df3765bfSSheng } 1078df3765bfSSheng 1079df3765bfSSheng /// dumpFilterArray - dumpFilterArray prints out debugging info for the given 1080df3765bfSSheng /// filter array as a series of chars. 1081b9079baaSPierre van Houtryve void FilterChooser::dumpFilterArray( 10823e24dd42SRahul Joshi raw_ostream &OS, const std::vector<bit_value_t> &filter) const { 1083df3765bfSSheng for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) { 1084df3765bfSSheng switch (filter[bitIndex - 1]) { 1085df3765bfSSheng case BIT_UNFILTERED: 10863e24dd42SRahul Joshi OS << "."; 1087df3765bfSSheng break; 1088df3765bfSSheng case BIT_UNSET: 10893e24dd42SRahul Joshi OS << "_"; 1090df3765bfSSheng break; 1091df3765bfSSheng case BIT_TRUE: 10923e24dd42SRahul Joshi OS << "1"; 1093df3765bfSSheng break; 1094df3765bfSSheng case BIT_FALSE: 10953e24dd42SRahul Joshi OS << "0"; 1096df3765bfSSheng break; 1097df3765bfSSheng } 1098df3765bfSSheng } 1099df3765bfSSheng } 1100df3765bfSSheng 1101df3765bfSSheng /// dumpStack - dumpStack traverses the filter chooser chain and calls 1102df3765bfSSheng /// dumpFilterArray on each filter chooser up to the top level one. 11033e24dd42SRahul Joshi void FilterChooser::dumpStack(raw_ostream &OS, const char *prefix) const { 1104df3765bfSSheng const FilterChooser *current = this; 1105df3765bfSSheng 1106df3765bfSSheng while (current) { 11073e24dd42SRahul Joshi OS << prefix; 11083e24dd42SRahul Joshi dumpFilterArray(OS, current->FilterBitValues); 11093e24dd42SRahul Joshi OS << '\n'; 1110df3765bfSSheng current = current->Parent; 1111df3765bfSSheng } 1112df3765bfSSheng } 1113df3765bfSSheng 1114df3765bfSSheng // Calculates the island(s) needed to decode the instruction. 1115df3765bfSSheng // This returns a list of undecoded bits of an instructions, for example, 1116df3765bfSSheng // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be 1117df3765bfSSheng // decoded bits in order to verify that the instruction matches the Opcode. 1118df3765bfSSheng unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, 1119df3765bfSSheng std::vector<unsigned> &EndBits, 1120df3765bfSSheng std::vector<uint64_t> &FieldVals, 1121df3765bfSSheng const insn_t &Insn) const { 1122df3765bfSSheng unsigned Num, BitNo; 1123df3765bfSSheng Num = BitNo = 0; 1124df3765bfSSheng 1125df3765bfSSheng uint64_t FieldVal = 0; 1126df3765bfSSheng 1127df3765bfSSheng // 0: Init 1128df3765bfSSheng // 1: Water (the bit value does not affect decoding) 1129df3765bfSSheng // 2: Island (well-known bit value needed for decoding) 1130df3765bfSSheng int State = 0; 1131df3765bfSSheng 1132df3765bfSSheng for (unsigned i = 0; i < BitWidth; ++i) { 1133df3765bfSSheng int64_t Val = Value(Insn[i]); 1134df3765bfSSheng bool Filtered = PositionFiltered(i); 1135df3765bfSSheng switch (State) { 1136b9079baaSPierre van Houtryve default: 1137b9079baaSPierre van Houtryve llvm_unreachable("Unreachable code!"); 1138df3765bfSSheng case 0: 1139df3765bfSSheng case 1: 1140df3765bfSSheng if (Filtered || Val == -1) 1141df3765bfSSheng State = 1; // Still in Water 1142df3765bfSSheng else { 1143df3765bfSSheng State = 2; // Into the Island 1144df3765bfSSheng BitNo = 0; 1145df3765bfSSheng StartBits.push_back(i); 1146df3765bfSSheng FieldVal = Val; 1147df3765bfSSheng } 1148df3765bfSSheng break; 1149df3765bfSSheng case 2: 1150df3765bfSSheng if (Filtered || Val == -1) { 1151df3765bfSSheng State = 1; // Into the Water 1152df3765bfSSheng EndBits.push_back(i - 1); 1153df3765bfSSheng FieldVals.push_back(FieldVal); 1154df3765bfSSheng ++Num; 1155df3765bfSSheng } else { 1156df3765bfSSheng State = 2; // Still in Island 1157df3765bfSSheng ++BitNo; 1158df3765bfSSheng FieldVal = FieldVal | Val << BitNo; 1159df3765bfSSheng } 1160df3765bfSSheng break; 1161df3765bfSSheng } 1162df3765bfSSheng } 1163df3765bfSSheng // If we are still in Island after the loop, do some housekeeping. 1164df3765bfSSheng if (State == 2) { 1165df3765bfSSheng EndBits.push_back(BitWidth - 1); 1166df3765bfSSheng FieldVals.push_back(FieldVal); 1167df3765bfSSheng ++Num; 1168df3765bfSSheng } 1169df3765bfSSheng 1170df3765bfSSheng assert(StartBits.size() == Num && EndBits.size() == Num && 1171df3765bfSSheng FieldVals.size() == Num); 1172df3765bfSSheng return Num; 1173df3765bfSSheng } 1174df3765bfSSheng 1175708567abSRahul Joshi void FilterChooser::emitBinaryParser(raw_ostream &OS, indent Indent, 1176df3765bfSSheng const OperandInfo &OpInfo, 1177df3765bfSSheng bool &OpHasCompleteDecoder) const { 1178df3765bfSSheng const std::string &Decoder = OpInfo.Decoder; 1179df3765bfSSheng 1180df3765bfSSheng bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0; 1181df3765bfSSheng 1182df3765bfSSheng if (UseInsertBits) { 1183708567abSRahul Joshi OS << Indent << "tmp = 0x"; 11843e24dd42SRahul Joshi OS.write_hex(OpInfo.InitValue); 11853e24dd42SRahul Joshi OS << ";\n"; 1186df3765bfSSheng } 1187df3765bfSSheng 1188df3765bfSSheng for (const EncodingField &EF : OpInfo) { 1189708567abSRahul Joshi OS << Indent; 1190df3765bfSSheng if (UseInsertBits) 11913e24dd42SRahul Joshi OS << "insertBits(tmp, "; 1192df3765bfSSheng else 11933e24dd42SRahul Joshi OS << "tmp = "; 11943e24dd42SRahul Joshi OS << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')'; 1195df3765bfSSheng if (UseInsertBits) 11963e24dd42SRahul Joshi OS << ", " << EF.Offset << ", " << EF.Width << ')'; 1197df3765bfSSheng else if (EF.Offset != 0) 11983e24dd42SRahul Joshi OS << " << " << EF.Offset; 11993e24dd42SRahul Joshi OS << ";\n"; 1200df3765bfSSheng } 1201df3765bfSSheng 1202df3765bfSSheng if (Decoder != "") { 1203df3765bfSSheng OpHasCompleteDecoder = OpInfo.HasCompleteDecoder; 1204708567abSRahul Joshi OS << Indent << "if (!Check(S, " << Decoder 12059a26f893SJames Y Knight << "(MI, tmp, Address, Decoder))) { " 1206708567abSRahul Joshi << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ") 1207df3765bfSSheng << "return MCDisassembler::Fail; }\n"; 1208df3765bfSSheng } else { 1209df3765bfSSheng OpHasCompleteDecoder = true; 1210708567abSRahul Joshi OS << Indent << "MI.addOperand(MCOperand::createImm(tmp));\n"; 1211df3765bfSSheng } 1212df3765bfSSheng } 1213df3765bfSSheng 1214708567abSRahul Joshi void FilterChooser::emitDecoder(raw_ostream &OS, indent Indent, unsigned Opc, 12153e24dd42SRahul Joshi bool &HasCompleteDecoder) const { 1216df3765bfSSheng HasCompleteDecoder = true; 1217df3765bfSSheng 1218df3765bfSSheng for (const auto &Op : Operands.find(Opc)->second) { 1219df3765bfSSheng // If a custom instruction decoder was specified, use that. 1220df3765bfSSheng if (Op.numFields() == 0 && !Op.Decoder.empty()) { 1221df3765bfSSheng HasCompleteDecoder = Op.HasCompleteDecoder; 1222708567abSRahul Joshi OS << Indent << "if (!Check(S, " << Op.Decoder 12239a26f893SJames Y Knight << "(MI, insn, Address, Decoder))) { " 1224708567abSRahul Joshi << (HasCompleteDecoder ? "" : "DecodeComplete = false; ") 1225df3765bfSSheng << "return MCDisassembler::Fail; }\n"; 1226df3765bfSSheng break; 1227df3765bfSSheng } 1228df3765bfSSheng 1229df3765bfSSheng bool OpHasCompleteDecoder; 12303e24dd42SRahul Joshi emitBinaryParser(OS, Indent, Op, OpHasCompleteDecoder); 1231df3765bfSSheng if (!OpHasCompleteDecoder) 1232df3765bfSSheng HasCompleteDecoder = false; 1233df3765bfSSheng } 1234df3765bfSSheng } 1235df3765bfSSheng 1236b9079baaSPierre van Houtryve unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders, unsigned Opc, 1237df3765bfSSheng bool &HasCompleteDecoder) const { 1238df3765bfSSheng // Build up the predicate string. 1239df3765bfSSheng SmallString<256> Decoder; 1240df3765bfSSheng // FIXME: emitDecoder() function can take a buffer directly rather than 1241df3765bfSSheng // a stream. 1242df3765bfSSheng raw_svector_ostream S(Decoder); 1243708567abSRahul Joshi emitDecoder(S, indent(4), Opc, HasCompleteDecoder); 1244df3765bfSSheng 1245df3765bfSSheng // Using the full decoder string as the key value here is a bit 1246df3765bfSSheng // heavyweight, but is effective. If the string comparisons become a 1247df3765bfSSheng // performance concern, we can implement a mangling of the predicate 1248df3765bfSSheng // data easily enough with a map back to the actual string. That's 1249df3765bfSSheng // overkill for now, though. 1250df3765bfSSheng 1251df3765bfSSheng // Make sure the predicate is in the table. 1252df3765bfSSheng Decoders.insert(CachedHashString(Decoder)); 1253df3765bfSSheng // Now figure out the index for when we write out the table. 1254df3765bfSSheng DecoderSet::const_iterator P = find(Decoders, Decoder.str()); 1255df3765bfSSheng return (unsigned)(P - Decoders.begin()); 1256df3765bfSSheng } 1257df3765bfSSheng 125845f3a5aaSFangrui Song // If ParenIfBinOp is true, print a surrounding () if Val uses && or ||. 125945f3a5aaSFangrui Song bool FilterChooser::emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp, 126045f3a5aaSFangrui Song raw_ostream &OS) const { 1261e9492ccaSJason Eckhardt if (const auto *D = dyn_cast<DefInit>(&Val)) { 126245f3a5aaSFangrui Song if (!D->getDef()->isSubClassOf("SubtargetFeature")) 126345f3a5aaSFangrui Song return true; 126445f3a5aaSFangrui Song OS << "Bits[" << Emitter->PredicateNamespace << "::" << D->getAsString() 126545f3a5aaSFangrui Song << "]"; 126645f3a5aaSFangrui Song return false; 126745f3a5aaSFangrui Song } 1268e9492ccaSJason Eckhardt if (const auto *D = dyn_cast<DagInit>(&Val)) { 126945f3a5aaSFangrui Song std::string Op = D->getOperator()->getAsString(); 127045f3a5aaSFangrui Song if (Op == "not" && D->getNumArgs() == 1) { 127145f3a5aaSFangrui Song OS << '!'; 127245f3a5aaSFangrui Song return emitPredicateMatchAux(*D->getArg(0), true, OS); 127345f3a5aaSFangrui Song } 127445f3a5aaSFangrui Song if ((Op == "any_of" || Op == "all_of") && D->getNumArgs() > 0) { 127545f3a5aaSFangrui Song bool Paren = D->getNumArgs() > 1 && std::exchange(ParenIfBinOp, true); 127645f3a5aaSFangrui Song if (Paren) 127745f3a5aaSFangrui Song OS << '('; 127845f3a5aaSFangrui Song ListSeparator LS(Op == "any_of" ? " || " : " && "); 127945f3a5aaSFangrui Song for (auto *Arg : D->getArgs()) { 128045f3a5aaSFangrui Song OS << LS; 128145f3a5aaSFangrui Song if (emitPredicateMatchAux(*Arg, ParenIfBinOp, OS)) 128245f3a5aaSFangrui Song return true; 128345f3a5aaSFangrui Song } 128445f3a5aaSFangrui Song if (Paren) 128545f3a5aaSFangrui Song OS << ')'; 128645f3a5aaSFangrui Song return false; 128745f3a5aaSFangrui Song } 128845f3a5aaSFangrui Song } 128945f3a5aaSFangrui Song return true; 129045f3a5aaSFangrui Song } 129145f3a5aaSFangrui Song 12923e24dd42SRahul Joshi bool FilterChooser::emitPredicateMatch(raw_ostream &OS, unsigned Opc) const { 129362e2c7fbSRahul Joshi const ListInit *Predicates = 1294df3765bfSSheng AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates"); 1295df3765bfSSheng bool IsFirstEmission = true; 1296df3765bfSSheng for (unsigned i = 0; i < Predicates->size(); ++i) { 12972bb3621fSRahul Joshi const Record *Pred = Predicates->getElementAsRecord(i); 1298df3765bfSSheng if (!Pred->getValue("AssemblerMatcherPredicate")) 1299df3765bfSSheng continue; 1300df3765bfSSheng 1301df3765bfSSheng if (!isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue())) 1302df3765bfSSheng continue; 1303df3765bfSSheng 1304df3765bfSSheng if (!IsFirstEmission) 13053e24dd42SRahul Joshi OS << " && "; 130645f3a5aaSFangrui Song if (emitPredicateMatchAux(*Pred->getValueAsDag("AssemblerCondDag"), 13073e24dd42SRahul Joshi Predicates->size() > 1, OS)) 1308df3765bfSSheng PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!"); 1309df3765bfSSheng IsFirstEmission = false; 1310df3765bfSSheng } 1311df3765bfSSheng return !Predicates->empty(); 1312df3765bfSSheng } 1313df3765bfSSheng 1314df3765bfSSheng bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const { 13152bb3621fSRahul Joshi const ListInit *Predicates = 1316df3765bfSSheng AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates"); 1317df3765bfSSheng for (unsigned i = 0; i < Predicates->size(); ++i) { 13182bb3621fSRahul Joshi const Record *Pred = Predicates->getElementAsRecord(i); 1319df3765bfSSheng if (!Pred->getValue("AssemblerMatcherPredicate")) 1320df3765bfSSheng continue; 1321df3765bfSSheng 1322df3765bfSSheng if (isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue())) 1323df3765bfSSheng return true; 1324df3765bfSSheng } 1325df3765bfSSheng return false; 1326df3765bfSSheng } 1327df3765bfSSheng 1328df3765bfSSheng unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, 1329df3765bfSSheng StringRef Predicate) const { 1330df3765bfSSheng // Using the full predicate string as the key value here is a bit 1331df3765bfSSheng // heavyweight, but is effective. If the string comparisons become a 1332df3765bfSSheng // performance concern, we can implement a mangling of the predicate 1333df3765bfSSheng // data easily enough with a map back to the actual string. That's 1334df3765bfSSheng // overkill for now, though. 1335df3765bfSSheng 1336df3765bfSSheng // Make sure the predicate is in the table. 1337df3765bfSSheng TableInfo.Predicates.insert(CachedHashString(Predicate)); 1338df3765bfSSheng // Now figure out the index for when we write out the table. 1339df3765bfSSheng PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate); 1340df3765bfSSheng return (unsigned)(P - TableInfo.Predicates.begin()); 1341df3765bfSSheng } 1342df3765bfSSheng 1343df3765bfSSheng void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, 1344df3765bfSSheng unsigned Opc) const { 1345df3765bfSSheng if (!doesOpcodeNeedPredicate(Opc)) 1346df3765bfSSheng return; 1347df3765bfSSheng 1348df3765bfSSheng // Build up the predicate string. 1349df3765bfSSheng SmallString<256> Predicate; 1350df3765bfSSheng // FIXME: emitPredicateMatch() functions can take a buffer directly rather 1351df3765bfSSheng // than a stream. 1352df3765bfSSheng raw_svector_ostream PS(Predicate); 13533e24dd42SRahul Joshi emitPredicateMatch(PS, Opc); 1354df3765bfSSheng 1355df3765bfSSheng // Figure out the index into the predicate table for the predicate just 1356df3765bfSSheng // computed. 1357df3765bfSSheng unsigned PIdx = getPredicateIndex(TableInfo, PS.str()); 1358df3765bfSSheng SmallString<16> PBytes; 1359df3765bfSSheng raw_svector_ostream S(PBytes); 1360df3765bfSSheng encodeULEB128(PIdx, S); 1361df3765bfSSheng 1362df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_CheckPredicate); 1363e9492ccaSJason Eckhardt // Predicate index. 1364e9492ccaSJason Eckhardt for (const auto PB : PBytes) 1365e9492ccaSJason Eckhardt TableInfo.Table.push_back(PB); 1366df3765bfSSheng // Push location for NumToSkip backpatching. 1367df3765bfSSheng TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1368df3765bfSSheng TableInfo.Table.push_back(0); 1369df3765bfSSheng TableInfo.Table.push_back(0); 1370df3765bfSSheng TableInfo.Table.push_back(0); 1371df3765bfSSheng } 1372df3765bfSSheng 1373df3765bfSSheng void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, 1374df3765bfSSheng unsigned Opc) const { 1375e9492ccaSJason Eckhardt const Record *EncodingDef = AllInstructions[Opc].EncodingDef; 1376e9492ccaSJason Eckhardt const RecordVal *RV = EncodingDef->getValue("SoftFail"); 137762e2c7fbSRahul Joshi const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr; 1378df3765bfSSheng 1379b9079baaSPierre van Houtryve if (!SFBits) 1380b9079baaSPierre van Houtryve return; 138162e2c7fbSRahul Joshi const BitsInit *InstBits = EncodingDef->getValueAsBitsInit("Inst"); 1382df3765bfSSheng 1383df3765bfSSheng APInt PositiveMask(BitWidth, 0ULL); 1384df3765bfSSheng APInt NegativeMask(BitWidth, 0ULL); 1385df3765bfSSheng for (unsigned i = 0; i < BitWidth; ++i) { 1386df3765bfSSheng bit_value_t B = bitFromBits(*SFBits, i); 1387df3765bfSSheng bit_value_t IB = bitFromBits(*InstBits, i); 1388df3765bfSSheng 1389b9079baaSPierre van Houtryve if (B != BIT_TRUE) 1390b9079baaSPierre van Houtryve continue; 1391df3765bfSSheng 1392df3765bfSSheng switch (IB) { 1393df3765bfSSheng case BIT_FALSE: 1394df3765bfSSheng // The bit is meant to be false, so emit a check to see if it is true. 1395df3765bfSSheng PositiveMask.setBit(i); 1396df3765bfSSheng break; 1397df3765bfSSheng case BIT_TRUE: 1398df3765bfSSheng // The bit is meant to be true, so emit a check to see if it is false. 1399df3765bfSSheng NegativeMask.setBit(i); 1400df3765bfSSheng break; 1401df3765bfSSheng default: 1402df3765bfSSheng // The bit is not set; this must be an error! 1403df3765bfSSheng errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " 1404df3765bfSSheng << AllInstructions[Opc] << " is set but Inst{" << i 1405df3765bfSSheng << "} is unset!\n" 1406df3765bfSSheng << " - You can only mark a bit as SoftFail if it is fully defined" 1407df3765bfSSheng << " (1/0 - not '?') in Inst\n"; 1408df3765bfSSheng return; 1409df3765bfSSheng } 1410df3765bfSSheng } 1411df3765bfSSheng 1412df3765bfSSheng bool NeedPositiveMask = PositiveMask.getBoolValue(); 1413df3765bfSSheng bool NeedNegativeMask = NegativeMask.getBoolValue(); 1414df3765bfSSheng 1415df3765bfSSheng if (!NeedPositiveMask && !NeedNegativeMask) 1416df3765bfSSheng return; 1417df3765bfSSheng 1418df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_SoftFail); 1419df3765bfSSheng 1420df3765bfSSheng SmallString<16> MaskBytes; 1421df3765bfSSheng raw_svector_ostream S(MaskBytes); 1422df3765bfSSheng if (NeedPositiveMask) { 1423df3765bfSSheng encodeULEB128(PositiveMask.getZExtValue(), S); 1424df3765bfSSheng for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) 1425df3765bfSSheng TableInfo.Table.push_back(MaskBytes[i]); 1426df3765bfSSheng } else 1427df3765bfSSheng TableInfo.Table.push_back(0); 1428df3765bfSSheng if (NeedNegativeMask) { 1429df3765bfSSheng MaskBytes.clear(); 1430df3765bfSSheng encodeULEB128(NegativeMask.getZExtValue(), S); 1431df3765bfSSheng for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) 1432df3765bfSSheng TableInfo.Table.push_back(MaskBytes[i]); 1433df3765bfSSheng } else 1434df3765bfSSheng TableInfo.Table.push_back(0); 1435df3765bfSSheng } 1436df3765bfSSheng 1437df3765bfSSheng // Emits table entries to decode the singleton. 1438df3765bfSSheng void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, 1439df3765bfSSheng EncodingIDAndOpcode Opc) const { 1440df3765bfSSheng std::vector<unsigned> StartBits; 1441df3765bfSSheng std::vector<unsigned> EndBits; 1442df3765bfSSheng std::vector<uint64_t> FieldVals; 1443df3765bfSSheng insn_t Insn; 1444df3765bfSSheng insnWithID(Insn, Opc.EncodingID); 1445df3765bfSSheng 1446df3765bfSSheng // Look for islands of undecoded bits of the singleton. 1447df3765bfSSheng getIslands(StartBits, EndBits, FieldVals, Insn); 1448df3765bfSSheng 1449df3765bfSSheng unsigned Size = StartBits.size(); 1450df3765bfSSheng 1451df3765bfSSheng // Emit the predicate table entry if one is needed. 1452df3765bfSSheng emitPredicateTableEntry(TableInfo, Opc.EncodingID); 1453df3765bfSSheng 1454df3765bfSSheng // Check any additional encoding fields needed. 1455df3765bfSSheng for (unsigned I = Size; I != 0; --I) { 1456df3765bfSSheng unsigned NumBits = EndBits[I - 1] - StartBits[I - 1] + 1; 1457d93f850cSJason Eckhardt assert((NumBits < (1u << 8)) && "NumBits overflowed uint8 table entry!"); 1458df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_CheckField); 1459d93f850cSJason Eckhardt uint8_t Buffer[16], *P; 1460d93f850cSJason Eckhardt encodeULEB128(StartBits[I - 1], Buffer); 1461d93f850cSJason Eckhardt for (P = Buffer; *P >= 128; ++P) 1462d93f850cSJason Eckhardt TableInfo.Table.push_back(*P); 1463d93f850cSJason Eckhardt TableInfo.Table.push_back(*P); 1464df3765bfSSheng TableInfo.Table.push_back(NumBits); 1465df3765bfSSheng encodeULEB128(FieldVals[I - 1], Buffer); 1466d93f850cSJason Eckhardt for (P = Buffer; *P >= 128; ++P) 1467d93f850cSJason Eckhardt TableInfo.Table.push_back(*P); 1468d93f850cSJason Eckhardt TableInfo.Table.push_back(*P); 1469df3765bfSSheng // Push location for NumToSkip backpatching. 1470df3765bfSSheng TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1471df3765bfSSheng // The fixup is always 24-bits, so go ahead and allocate the space 1472df3765bfSSheng // in the table so all our relative position calculations work OK even 1473df3765bfSSheng // before we fully resolve the real value here. 1474df3765bfSSheng TableInfo.Table.push_back(0); 1475df3765bfSSheng TableInfo.Table.push_back(0); 1476df3765bfSSheng TableInfo.Table.push_back(0); 1477df3765bfSSheng } 1478df3765bfSSheng 1479df3765bfSSheng // Check for soft failure of the match. 1480df3765bfSSheng emitSoftFailTableEntry(TableInfo, Opc.EncodingID); 1481df3765bfSSheng 1482df3765bfSSheng bool HasCompleteDecoder; 1483df3765bfSSheng unsigned DIdx = 1484df3765bfSSheng getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder); 1485df3765bfSSheng 1486df3765bfSSheng // Produce OPC_Decode or OPC_TryDecode opcode based on the information 1487df3765bfSSheng // whether the instruction decoder is complete or not. If it is complete 1488df3765bfSSheng // then it handles all possible values of remaining variable/unfiltered bits 1489df3765bfSSheng // and for any value can determine if the bitpattern is a valid instruction 1490df3765bfSSheng // or not. This means OPC_Decode will be the final step in the decoding 1491df3765bfSSheng // process. If it is not complete, then the Fail return code from the 1492df3765bfSSheng // decoder method indicates that additional processing should be done to see 1493df3765bfSSheng // if there is any other instruction that also matches the bitpattern and 1494df3765bfSSheng // can decode it. 1495b9079baaSPierre van Houtryve TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode 1496b9079baaSPierre van Houtryve : MCD::OPC_TryDecode); 1497df3765bfSSheng NumEncodingsSupported++; 1498df3765bfSSheng uint8_t Buffer[16], *p; 1499df3765bfSSheng encodeULEB128(Opc.Opcode, Buffer); 1500df3765bfSSheng for (p = Buffer; *p >= 128; ++p) 1501df3765bfSSheng TableInfo.Table.push_back(*p); 1502df3765bfSSheng TableInfo.Table.push_back(*p); 1503df3765bfSSheng 1504df3765bfSSheng SmallString<16> Bytes; 1505df3765bfSSheng raw_svector_ostream S(Bytes); 1506df3765bfSSheng encodeULEB128(DIdx, S); 1507df3765bfSSheng 1508e9492ccaSJason Eckhardt // Decoder index. 1509e9492ccaSJason Eckhardt for (const auto B : Bytes) 1510e9492ccaSJason Eckhardt TableInfo.Table.push_back(B); 1511df3765bfSSheng 1512df3765bfSSheng if (!HasCompleteDecoder) { 1513df3765bfSSheng // Push location for NumToSkip backpatching. 1514df3765bfSSheng TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1515df3765bfSSheng // Allocate the space for the fixup. 1516df3765bfSSheng TableInfo.Table.push_back(0); 1517df3765bfSSheng TableInfo.Table.push_back(0); 1518df3765bfSSheng TableInfo.Table.push_back(0); 1519df3765bfSSheng } 1520df3765bfSSheng } 1521df3765bfSSheng 1522df3765bfSSheng // Emits table entries to decode the singleton, and then to decode the rest. 1523df3765bfSSheng void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, 1524df3765bfSSheng const Filter &Best) const { 1525df3765bfSSheng EncodingIDAndOpcode Opc = Best.getSingletonOpc(); 1526df3765bfSSheng 1527df3765bfSSheng // complex singletons need predicate checks from the first singleton 1528df3765bfSSheng // to refer forward to the variable filterchooser that follows. 1529df3765bfSSheng TableInfo.FixupStack.emplace_back(); 1530df3765bfSSheng 1531df3765bfSSheng emitSingletonTableEntry(TableInfo, Opc); 1532df3765bfSSheng 1533df3765bfSSheng resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), 1534df3765bfSSheng TableInfo.Table.size()); 1535df3765bfSSheng TableInfo.FixupStack.pop_back(); 1536df3765bfSSheng 1537df3765bfSSheng Best.getVariableFC().emitTableEntries(TableInfo); 1538df3765bfSSheng } 1539df3765bfSSheng 1540df3765bfSSheng // Assign a single filter and run with it. Top level API client can initialize 1541df3765bfSSheng // with a single filter to start the filtering process. 1542df3765bfSSheng void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit, 1543df3765bfSSheng bool mixed) { 1544df3765bfSSheng Filters.clear(); 1545df3765bfSSheng Filters.emplace_back(*this, startBit, numBit, true); 1546df3765bfSSheng BestIndex = 0; // Sole Filter instance to choose from. 1547df3765bfSSheng bestFilter().recurse(); 1548df3765bfSSheng } 1549df3765bfSSheng 1550df3765bfSSheng // reportRegion is a helper function for filterProcessor to mark a region as 1551df3765bfSSheng // eligible for use as a filter region. 1552df3765bfSSheng void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, 1553df3765bfSSheng unsigned BitIndex, bool AllowMixed) { 1554df3765bfSSheng if (RA == ATTR_MIXED && AllowMixed) 1555df3765bfSSheng Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true); 1556df3765bfSSheng else if (RA == ATTR_ALL_SET && !AllowMixed) 1557df3765bfSSheng Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false); 1558df3765bfSSheng } 1559df3765bfSSheng 1560df3765bfSSheng // FilterProcessor scans the well-known encoding bits of the instructions and 1561df3765bfSSheng // builds up a list of candidate filters. It chooses the best filter and 1562df3765bfSSheng // recursively descends down the decoding tree. 1563df3765bfSSheng bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { 1564df3765bfSSheng Filters.clear(); 1565df3765bfSSheng BestIndex = -1; 1566df3765bfSSheng unsigned numInstructions = Opcodes.size(); 1567df3765bfSSheng 1568df3765bfSSheng assert(numInstructions && "Filter created with no instructions"); 1569df3765bfSSheng 1570df3765bfSSheng // No further filtering is necessary. 1571df3765bfSSheng if (numInstructions == 1) 1572df3765bfSSheng return true; 1573df3765bfSSheng 1574df3765bfSSheng // Heuristics. See also doFilter()'s "Heuristics" comment when num of 1575df3765bfSSheng // instructions is 3. 1576df3765bfSSheng if (AllowMixed && !Greedy) { 1577df3765bfSSheng assert(numInstructions == 3); 1578df3765bfSSheng 1579e9492ccaSJason Eckhardt for (const auto &Opcode : Opcodes) { 1580df3765bfSSheng std::vector<unsigned> StartBits; 1581df3765bfSSheng std::vector<unsigned> EndBits; 1582df3765bfSSheng std::vector<uint64_t> FieldVals; 1583df3765bfSSheng insn_t Insn; 1584df3765bfSSheng 1585df3765bfSSheng insnWithID(Insn, Opcode.EncodingID); 1586df3765bfSSheng 1587df3765bfSSheng // Look for islands of undecoded bits of any instruction. 1588df3765bfSSheng if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { 1589df3765bfSSheng // Found an instruction with island(s). Now just assign a filter. 1590df3765bfSSheng runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true); 1591df3765bfSSheng return true; 1592df3765bfSSheng } 1593df3765bfSSheng } 1594df3765bfSSheng } 1595df3765bfSSheng 1596df3765bfSSheng unsigned BitIndex; 1597df3765bfSSheng 1598df3765bfSSheng // We maintain BIT_WIDTH copies of the bitAttrs automaton. 1599df3765bfSSheng // The automaton consumes the corresponding bit from each 1600df3765bfSSheng // instruction. 1601df3765bfSSheng // 1602df3765bfSSheng // Input symbols: 0, 1, and _ (unset). 1603df3765bfSSheng // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. 1604df3765bfSSheng // Initial state: NONE. 1605df3765bfSSheng // 1606df3765bfSSheng // (NONE) ------- [01] -> (ALL_SET) 1607df3765bfSSheng // (NONE) ------- _ ----> (ALL_UNSET) 1608df3765bfSSheng // (ALL_SET) ---- [01] -> (ALL_SET) 1609df3765bfSSheng // (ALL_SET) ---- _ ----> (MIXED) 1610df3765bfSSheng // (ALL_UNSET) -- [01] -> (MIXED) 1611df3765bfSSheng // (ALL_UNSET) -- _ ----> (ALL_UNSET) 1612df3765bfSSheng // (MIXED) ------ . ----> (MIXED) 1613df3765bfSSheng // (FILTERED)---- . ----> (FILTERED) 1614df3765bfSSheng 1615df3765bfSSheng std::vector<bitAttr_t> bitAttrs; 1616df3765bfSSheng 1617df3765bfSSheng // FILTERED bit positions provide no entropy and are not worthy of pursuing. 1618df3765bfSSheng // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. 1619df3765bfSSheng for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) 1620df3765bfSSheng if (FilterBitValues[BitIndex] == BIT_TRUE || 1621df3765bfSSheng FilterBitValues[BitIndex] == BIT_FALSE) 1622df3765bfSSheng bitAttrs.push_back(ATTR_FILTERED); 1623df3765bfSSheng else 1624df3765bfSSheng bitAttrs.push_back(ATTR_NONE); 1625df3765bfSSheng 1626e9492ccaSJason Eckhardt for (const auto &OpcPair : Opcodes) { 1627df3765bfSSheng insn_t insn; 1628df3765bfSSheng 1629e9492ccaSJason Eckhardt insnWithID(insn, OpcPair.EncodingID); 1630df3765bfSSheng 1631df3765bfSSheng for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { 1632df3765bfSSheng switch (bitAttrs[BitIndex]) { 1633df3765bfSSheng case ATTR_NONE: 1634df3765bfSSheng if (insn[BitIndex] == BIT_UNSET) 1635df3765bfSSheng bitAttrs[BitIndex] = ATTR_ALL_UNSET; 1636df3765bfSSheng else 1637df3765bfSSheng bitAttrs[BitIndex] = ATTR_ALL_SET; 1638df3765bfSSheng break; 1639df3765bfSSheng case ATTR_ALL_SET: 1640df3765bfSSheng if (insn[BitIndex] == BIT_UNSET) 1641df3765bfSSheng bitAttrs[BitIndex] = ATTR_MIXED; 1642df3765bfSSheng break; 1643df3765bfSSheng case ATTR_ALL_UNSET: 1644df3765bfSSheng if (insn[BitIndex] != BIT_UNSET) 1645df3765bfSSheng bitAttrs[BitIndex] = ATTR_MIXED; 1646df3765bfSSheng break; 1647df3765bfSSheng case ATTR_MIXED: 1648df3765bfSSheng case ATTR_FILTERED: 1649df3765bfSSheng break; 1650df3765bfSSheng } 1651df3765bfSSheng } 1652df3765bfSSheng } 1653df3765bfSSheng 1654df3765bfSSheng // The regionAttr automaton consumes the bitAttrs automatons' state, 1655df3765bfSSheng // lowest-to-highest. 1656df3765bfSSheng // 1657df3765bfSSheng // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) 1658df3765bfSSheng // States: NONE, ALL_SET, MIXED 1659df3765bfSSheng // Initial state: NONE 1660df3765bfSSheng // 1661df3765bfSSheng // (NONE) ----- F --> (NONE) 1662df3765bfSSheng // (NONE) ----- S --> (ALL_SET) ; and set region start 1663df3765bfSSheng // (NONE) ----- U --> (NONE) 1664df3765bfSSheng // (NONE) ----- M --> (MIXED) ; and set region start 1665df3765bfSSheng // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region 1666df3765bfSSheng // (ALL_SET) -- S --> (ALL_SET) 1667df3765bfSSheng // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region 1668df3765bfSSheng // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region 1669df3765bfSSheng // (MIXED) ---- F --> (NONE) ; and report a MIXED region 1670df3765bfSSheng // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region 1671df3765bfSSheng // (MIXED) ---- U --> (NONE) ; and report a MIXED region 1672df3765bfSSheng // (MIXED) ---- M --> (MIXED) 1673df3765bfSSheng 1674df3765bfSSheng bitAttr_t RA = ATTR_NONE; 1675df3765bfSSheng unsigned StartBit = 0; 1676df3765bfSSheng 1677df3765bfSSheng for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { 1678df3765bfSSheng bitAttr_t bitAttr = bitAttrs[BitIndex]; 1679df3765bfSSheng 1680df3765bfSSheng assert(bitAttr != ATTR_NONE && "Bit without attributes"); 1681df3765bfSSheng 1682df3765bfSSheng switch (RA) { 1683df3765bfSSheng case ATTR_NONE: 1684df3765bfSSheng switch (bitAttr) { 1685df3765bfSSheng case ATTR_FILTERED: 1686df3765bfSSheng break; 1687df3765bfSSheng case ATTR_ALL_SET: 1688df3765bfSSheng StartBit = BitIndex; 1689df3765bfSSheng RA = ATTR_ALL_SET; 1690df3765bfSSheng break; 1691df3765bfSSheng case ATTR_ALL_UNSET: 1692df3765bfSSheng break; 1693df3765bfSSheng case ATTR_MIXED: 1694df3765bfSSheng StartBit = BitIndex; 1695df3765bfSSheng RA = ATTR_MIXED; 1696df3765bfSSheng break; 1697df3765bfSSheng default: 1698df3765bfSSheng llvm_unreachable("Unexpected bitAttr!"); 1699df3765bfSSheng } 1700df3765bfSSheng break; 1701df3765bfSSheng case ATTR_ALL_SET: 1702df3765bfSSheng switch (bitAttr) { 1703df3765bfSSheng case ATTR_FILTERED: 1704df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1705df3765bfSSheng RA = ATTR_NONE; 1706df3765bfSSheng break; 1707df3765bfSSheng case ATTR_ALL_SET: 1708df3765bfSSheng break; 1709df3765bfSSheng case ATTR_ALL_UNSET: 1710df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1711df3765bfSSheng RA = ATTR_NONE; 1712df3765bfSSheng break; 1713df3765bfSSheng case ATTR_MIXED: 1714df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1715df3765bfSSheng StartBit = BitIndex; 1716df3765bfSSheng RA = ATTR_MIXED; 1717df3765bfSSheng break; 1718df3765bfSSheng default: 1719df3765bfSSheng llvm_unreachable("Unexpected bitAttr!"); 1720df3765bfSSheng } 1721df3765bfSSheng break; 1722df3765bfSSheng case ATTR_MIXED: 1723df3765bfSSheng switch (bitAttr) { 1724df3765bfSSheng case ATTR_FILTERED: 1725df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1726df3765bfSSheng StartBit = BitIndex; 1727df3765bfSSheng RA = ATTR_NONE; 1728df3765bfSSheng break; 1729df3765bfSSheng case ATTR_ALL_SET: 1730df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1731df3765bfSSheng StartBit = BitIndex; 1732df3765bfSSheng RA = ATTR_ALL_SET; 1733df3765bfSSheng break; 1734df3765bfSSheng case ATTR_ALL_UNSET: 1735df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1736df3765bfSSheng RA = ATTR_NONE; 1737df3765bfSSheng break; 1738df3765bfSSheng case ATTR_MIXED: 1739df3765bfSSheng break; 1740df3765bfSSheng default: 1741df3765bfSSheng llvm_unreachable("Unexpected bitAttr!"); 1742df3765bfSSheng } 1743df3765bfSSheng break; 1744df3765bfSSheng case ATTR_ALL_UNSET: 1745df3765bfSSheng llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); 1746df3765bfSSheng case ATTR_FILTERED: 1747df3765bfSSheng llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); 1748df3765bfSSheng } 1749df3765bfSSheng } 1750df3765bfSSheng 1751df3765bfSSheng // At the end, if we're still in ALL_SET or MIXED states, report a region 1752df3765bfSSheng switch (RA) { 1753df3765bfSSheng case ATTR_NONE: 1754df3765bfSSheng break; 1755df3765bfSSheng case ATTR_FILTERED: 1756df3765bfSSheng break; 1757df3765bfSSheng case ATTR_ALL_SET: 1758df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1759df3765bfSSheng break; 1760df3765bfSSheng case ATTR_ALL_UNSET: 1761df3765bfSSheng break; 1762df3765bfSSheng case ATTR_MIXED: 1763df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1764df3765bfSSheng break; 1765df3765bfSSheng } 1766df3765bfSSheng 1767df3765bfSSheng // We have finished with the filter processings. Now it's time to choose 1768df3765bfSSheng // the best performing filter. 1769df3765bfSSheng BestIndex = 0; 1770df3765bfSSheng bool AllUseless = true; 1771df3765bfSSheng unsigned BestScore = 0; 1772df3765bfSSheng 1773e9492ccaSJason Eckhardt for (const auto &[Idx, Filter] : enumerate(Filters)) { 1774e9492ccaSJason Eckhardt unsigned Usefulness = Filter.usefulness(); 1775df3765bfSSheng 1776df3765bfSSheng if (Usefulness) 1777df3765bfSSheng AllUseless = false; 1778df3765bfSSheng 1779df3765bfSSheng if (Usefulness > BestScore) { 1780e9492ccaSJason Eckhardt BestIndex = Idx; 1781df3765bfSSheng BestScore = Usefulness; 1782df3765bfSSheng } 1783df3765bfSSheng } 1784df3765bfSSheng 1785df3765bfSSheng if (!AllUseless) 1786df3765bfSSheng bestFilter().recurse(); 1787df3765bfSSheng 1788df3765bfSSheng return !AllUseless; 1789df3765bfSSheng } // end of FilterChooser::filterProcessor(bool) 1790df3765bfSSheng 1791df3765bfSSheng // Decides on the best configuration of filter(s) to use in order to decode 1792df3765bfSSheng // the instructions. A conflict of instructions may occur, in which case we 1793df3765bfSSheng // dump the conflict set to the standard error. 1794df3765bfSSheng void FilterChooser::doFilter() { 1795df3765bfSSheng unsigned Num = Opcodes.size(); 1796df3765bfSSheng assert(Num && "FilterChooser created with no instructions"); 1797df3765bfSSheng 1798df3765bfSSheng // Try regions of consecutive known bit values first. 1799df3765bfSSheng if (filterProcessor(false)) 1800df3765bfSSheng return; 1801df3765bfSSheng 1802df3765bfSSheng // Then regions of mixed bits (both known and unitialized bit values allowed). 1803df3765bfSSheng if (filterProcessor(true)) 1804df3765bfSSheng return; 1805df3765bfSSheng 1806df3765bfSSheng // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where 1807df3765bfSSheng // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a 1808df3765bfSSheng // well-known encoding pattern. In such case, we backtrack and scan for the 1809df3765bfSSheng // the very first consecutive ATTR_ALL_SET region and assign a filter to it. 1810df3765bfSSheng if (Num == 3 && filterProcessor(true, false)) 1811df3765bfSSheng return; 1812df3765bfSSheng 1813df3765bfSSheng // If we come to here, the instruction decoding has failed. 1814df3765bfSSheng // Set the BestIndex to -1 to indicate so. 1815df3765bfSSheng BestIndex = -1; 1816df3765bfSSheng } 1817df3765bfSSheng 1818df3765bfSSheng // emitTableEntries - Emit state machine entries to decode our share of 1819df3765bfSSheng // instructions. 1820df3765bfSSheng void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { 1821df3765bfSSheng if (Opcodes.size() == 1) { 1822df3765bfSSheng // There is only one instruction in the set, which is great! 1823df3765bfSSheng // Call emitSingletonDecoder() to see whether there are any remaining 1824df3765bfSSheng // encodings bits. 1825df3765bfSSheng emitSingletonTableEntry(TableInfo, Opcodes[0]); 1826df3765bfSSheng return; 1827df3765bfSSheng } 1828df3765bfSSheng 1829df3765bfSSheng // Choose the best filter to do the decodings! 1830df3765bfSSheng if (BestIndex != -1) { 1831df3765bfSSheng const Filter &Best = Filters[BestIndex]; 1832df3765bfSSheng if (Best.getNumFiltered() == 1) 1833df3765bfSSheng emitSingletonTableEntry(TableInfo, Best); 1834df3765bfSSheng else 1835df3765bfSSheng Best.emitTableEntry(TableInfo); 1836df3765bfSSheng return; 1837df3765bfSSheng } 1838df3765bfSSheng 1839df3765bfSSheng // We don't know how to decode these instructions! Dump the 1840df3765bfSSheng // conflict set and bail. 1841df3765bfSSheng 1842df3765bfSSheng // Print out useful conflict information for postmortem analysis. 1843df3765bfSSheng errs() << "Decoding Conflict:\n"; 1844df3765bfSSheng 1845df3765bfSSheng dumpStack(errs(), "\t\t"); 1846df3765bfSSheng 1847df3765bfSSheng for (auto Opcode : Opcodes) { 1848df3765bfSSheng errs() << '\t'; 1849df3765bfSSheng emitNameWithID(errs(), Opcode.EncodingID); 1850df3765bfSSheng errs() << " "; 1851df3765bfSSheng dumpBits( 1852df3765bfSSheng errs(), 1853df3765bfSSheng getBitsField(*AllInstructions[Opcode.EncodingID].EncodingDef, "Inst")); 1854df3765bfSSheng errs() << '\n'; 1855df3765bfSSheng } 1856df3765bfSSheng } 1857df3765bfSSheng 1858bdf02249SRahul Joshi static std::string findOperandDecoderMethod(const Record *Record) { 1859df3765bfSSheng std::string Decoder; 1860df3765bfSSheng 1861bdf02249SRahul Joshi const RecordVal *DecoderString = Record->getValue("DecoderMethod"); 18622bb3621fSRahul Joshi const StringInit *String = 1863b9079baaSPierre van Houtryve DecoderString ? dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; 1864df3765bfSSheng if (String) { 1865df3765bfSSheng Decoder = std::string(String->getValue()); 1866df3765bfSSheng if (!Decoder.empty()) 1867df3765bfSSheng return Decoder; 1868df3765bfSSheng } 1869df3765bfSSheng 1870df3765bfSSheng if (Record->isSubClassOf("RegisterOperand")) 1871a46d60adSMax Beck-Jones // Allows use of a DecoderMethod in referenced RegisterClass if set. 1872a46d60adSMax Beck-Jones return findOperandDecoderMethod(Record->getValueAsDef("RegClass")); 1873df3765bfSSheng 1874df3765bfSSheng if (Record->isSubClassOf("RegisterClass")) { 1875df3765bfSSheng Decoder = "Decode" + Record->getName().str() + "RegisterClass"; 1876df3765bfSSheng } else if (Record->isSubClassOf("PointerLikeRegClass")) { 1877df3765bfSSheng Decoder = "DecodePointerLikeRegClass" + 1878df3765bfSSheng utostr(Record->getValueAsInt("RegClassKind")); 1879df3765bfSSheng } 1880df3765bfSSheng 1881df3765bfSSheng return Decoder; 1882df3765bfSSheng } 1883df3765bfSSheng 1884bdf02249SRahul Joshi OperandInfo getOpInfo(const Record *TypeRecord) { 1885df3765bfSSheng std::string Decoder = findOperandDecoderMethod(TypeRecord); 1886df3765bfSSheng 1887bdf02249SRahul Joshi const RecordVal *HasCompleteDecoderVal = 1888bdf02249SRahul Joshi TypeRecord->getValue("hasCompleteDecoder"); 188962e2c7fbSRahul Joshi const BitInit *HasCompleteDecoderBit = 1890df3765bfSSheng HasCompleteDecoderVal 1891df3765bfSSheng ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) 1892df3765bfSSheng : nullptr; 1893df3765bfSSheng bool HasCompleteDecoder = 1894df3765bfSSheng HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true; 1895df3765bfSSheng 189631ce47b5Sabhishek-kaushik22 return OperandInfo(std::move(Decoder), HasCompleteDecoder); 1897df3765bfSSheng } 1898df3765bfSSheng 1899bdf02249SRahul Joshi static void parseVarLenInstOperand(const Record &Def, 1900df3765bfSSheng std::vector<OperandInfo> &Operands, 1901df3765bfSSheng const CodeGenInstruction &CGI) { 1902df3765bfSSheng 1903df3765bfSSheng const RecordVal *RV = Def.getValue("Inst"); 1904df3765bfSSheng VarLenInst VLI(cast<DagInit>(RV->getValue()), RV); 1905df3765bfSSheng SmallVector<int> TiedTo; 1906df3765bfSSheng 1907e9492ccaSJason Eckhardt for (const auto &[Idx, Op] : enumerate(CGI.Operands)) { 1908df3765bfSSheng if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0) 1909df3765bfSSheng for (auto *Arg : Op.MIOperandInfo->getArgs()) 1910df3765bfSSheng Operands.push_back(getOpInfo(cast<DefInit>(Arg)->getDef())); 1911df3765bfSSheng else 1912df3765bfSSheng Operands.push_back(getOpInfo(Op.Rec)); 1913df3765bfSSheng 1914df3765bfSSheng int TiedReg = Op.getTiedRegister(); 1915df3765bfSSheng TiedTo.push_back(-1); 1916df3765bfSSheng if (TiedReg != -1) { 1917df3765bfSSheng TiedTo[Idx] = TiedReg; 1918df3765bfSSheng TiedTo[TiedReg] = Idx; 1919df3765bfSSheng } 1920df3765bfSSheng } 1921df3765bfSSheng 1922df3765bfSSheng unsigned CurrBitPos = 0; 1923e9492ccaSJason Eckhardt for (const auto &EncodingSegment : VLI) { 1924df3765bfSSheng unsigned Offset = 0; 1925df3765bfSSheng StringRef OpName; 1926df3765bfSSheng 1927df3765bfSSheng if (const StringInit *SI = dyn_cast<StringInit>(EncodingSegment.Value)) { 1928df3765bfSSheng OpName = SI->getValue(); 1929df3765bfSSheng } else if (const DagInit *DI = dyn_cast<DagInit>(EncodingSegment.Value)) { 1930df3765bfSSheng OpName = cast<StringInit>(DI->getArg(0))->getValue(); 1931df3765bfSSheng Offset = cast<IntInit>(DI->getArg(2))->getValue(); 1932df3765bfSSheng } 1933df3765bfSSheng 1934df3765bfSSheng if (!OpName.empty()) { 1935df3765bfSSheng auto OpSubOpPair = 1936df3765bfSSheng const_cast<CodeGenInstruction &>(CGI).Operands.ParseOperandName( 1937df3765bfSSheng OpName); 1938df3765bfSSheng unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(OpSubOpPair); 1939df3765bfSSheng Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset); 194036c19eaeSMin-Yih Hsu if (!EncodingSegment.CustomDecoder.empty()) 194136c19eaeSMin-Yih Hsu Operands[OpIdx].Decoder = EncodingSegment.CustomDecoder.str(); 1942df3765bfSSheng 1943df3765bfSSheng int TiedReg = TiedTo[OpSubOpPair.first]; 1944df3765bfSSheng if (TiedReg != -1) { 1945df3765bfSSheng unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber( 1946*4e8c9d28SJay Foad {TiedReg, OpSubOpPair.second}); 1947df3765bfSSheng Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset); 1948df3765bfSSheng } 1949df3765bfSSheng } 1950df3765bfSSheng 1951df3765bfSSheng CurrBitPos += EncodingSegment.BitWidth; 1952df3765bfSSheng } 1953df3765bfSSheng } 1954df3765bfSSheng 1955372240dfSJames Y Knight static void debugDumpRecord(const Record &Rec) { 19560ceffd36SRahul Joshi // Dump the record, so we can see what's going on. 19570ceffd36SRahul Joshi PrintNote([&Rec](raw_ostream &OS) { 19580ceffd36SRahul Joshi OS << "Dumping record for previous error:\n"; 19590ceffd36SRahul Joshi OS << Rec; 19600ceffd36SRahul Joshi }); 1961372240dfSJames Y Knight } 1962372240dfSJames Y Knight 1963372240dfSJames Y Knight /// For an operand field named OpName: populate OpInfo.InitValue with the 1964372240dfSJames Y Knight /// constant-valued bit values, and OpInfo.Fields with the ranges of bits to 1965372240dfSJames Y Knight /// insert from the decoded instruction. 1966d1fbdf5bSJames Y Knight static void addOneOperandFields(const Record &EncodingDef, const BitsInit &Bits, 1967d1fbdf5bSJames Y Knight std::map<std::string, std::string> &TiedNames, 1968d1fbdf5bSJames Y Knight StringRef OpName, OperandInfo &OpInfo) { 1969d1fbdf5bSJames Y Knight // Some bits of the operand may be required to be 1 depending on the 1970d1fbdf5bSJames Y Knight // instruction's encoding. Collect those bits. 1971d1fbdf5bSJames Y Knight if (const RecordVal *EncodedValue = EncodingDef.getValue(OpName)) 1972d1fbdf5bSJames Y Knight if (const BitsInit *OpBits = dyn_cast<BitsInit>(EncodedValue->getValue())) 1973d1fbdf5bSJames Y Knight for (unsigned I = 0; I < OpBits->getNumBits(); ++I) 1974d1fbdf5bSJames Y Knight if (const BitInit *OpBit = dyn_cast<BitInit>(OpBits->getBit(I))) 1975d1fbdf5bSJames Y Knight if (OpBit->getValue()) 1976d1fbdf5bSJames Y Knight OpInfo.InitValue |= 1ULL << I; 1977d1fbdf5bSJames Y Knight 1978ff1ebcc5SFangrui Song for (unsigned I = 0, J = 0; I != Bits.getNumBits(); I = J) { 197962e2c7fbSRahul Joshi const VarInit *Var; 1980d1fbdf5bSJames Y Knight unsigned Offset = 0; 1981ff1ebcc5SFangrui Song for (; J != Bits.getNumBits(); ++J) { 198262e2c7fbSRahul Joshi const VarBitInit *BJ = dyn_cast<VarBitInit>(Bits.getBit(J)); 1983ff1ebcc5SFangrui Song if (BJ) { 1984ff1ebcc5SFangrui Song Var = dyn_cast<VarInit>(BJ->getBitVar()); 1985ff1ebcc5SFangrui Song if (I == J) 1986ff1ebcc5SFangrui Song Offset = BJ->getBitNum(); 1987ff1ebcc5SFangrui Song else if (BJ->getBitNum() != Offset + J - I) 1988ff1ebcc5SFangrui Song break; 1989d1fbdf5bSJames Y Knight } else { 1990ff1ebcc5SFangrui Song Var = dyn_cast<VarInit>(Bits.getBit(J)); 1991d1fbdf5bSJames Y Knight } 1992ff1ebcc5SFangrui Song if (!Var || (Var->getName() != OpName && 1993ff1ebcc5SFangrui Song Var->getName() != TiedNames[std::string(OpName)])) 1994ff1ebcc5SFangrui Song break; 1995d1fbdf5bSJames Y Knight } 1996ff1ebcc5SFangrui Song if (I == J) 1997ff1ebcc5SFangrui Song ++J; 1998ff1ebcc5SFangrui Song else 1999ff1ebcc5SFangrui Song OpInfo.addField(I, J - I, Offset); 2000ff1ebcc5SFangrui Song } 2001d1fbdf5bSJames Y Knight } 2002d1fbdf5bSJames Y Knight 2003df3765bfSSheng static unsigned 20042bb3621fSRahul Joshi populateInstruction(const CodeGenTarget &Target, const Record &EncodingDef, 2005df3765bfSSheng const CodeGenInstruction &CGI, unsigned Opc, 2006df3765bfSSheng std::map<unsigned, std::vector<OperandInfo>> &Operands, 2007df3765bfSSheng bool IsVarLenInst) { 2008df3765bfSSheng const Record &Def = *CGI.TheDef; 2009df3765bfSSheng // If all the bit positions are not specified; do not decode this instruction. 2010df3765bfSSheng // We are bound to fail! For proper disassembly, the well-known encoding bits 2011df3765bfSSheng // of the instruction must be fully specified. 2012df3765bfSSheng 201362e2c7fbSRahul Joshi const BitsInit &Bits = getBitsField(EncodingDef, "Inst"); 2014df3765bfSSheng if (Bits.allInComplete()) 2015df3765bfSSheng return 0; 2016df3765bfSSheng 2017df3765bfSSheng std::vector<OperandInfo> InsnOperands; 2018df3765bfSSheng 2019df3765bfSSheng // If the instruction has specified a custom decoding hook, use that instead 2020df3765bfSSheng // of trying to auto-generate the decoder. 2021df3765bfSSheng StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod"); 2022df3765bfSSheng if (InstDecoder != "") { 2023b9079baaSPierre van Houtryve bool HasCompleteInstDecoder = 2024b9079baaSPierre van Houtryve EncodingDef.getValueAsBit("hasCompleteDecoder"); 2025df3765bfSSheng InsnOperands.push_back( 2026df3765bfSSheng OperandInfo(std::string(InstDecoder), HasCompleteInstDecoder)); 202731ce47b5Sabhishek-kaushik22 Operands[Opc] = std::move(InsnOperands); 2028df3765bfSSheng return Bits.getNumBits(); 2029df3765bfSSheng } 2030df3765bfSSheng 2031df3765bfSSheng // Generate a description of the operand of the instruction that we know 2032df3765bfSSheng // how to decode automatically. 2033df3765bfSSheng // FIXME: We'll need to have a way to manually override this as needed. 2034df3765bfSSheng 2035df3765bfSSheng // Gather the outputs/inputs of the instruction, so we can find their 2036df3765bfSSheng // positions in the encoding. This assumes for now that they appear in the 2037df3765bfSSheng // MCInst in the order that they're listed. 203862e2c7fbSRahul Joshi std::vector<std::pair<const Init *, StringRef>> InOutOperands; 203962e2c7fbSRahul Joshi const DagInit *Out = Def.getValueAsDag("OutOperandList"); 204062e2c7fbSRahul Joshi const DagInit *In = Def.getValueAsDag("InOperandList"); 2041e9492ccaSJason Eckhardt for (const auto &[Idx, Arg] : enumerate(Out->getArgs())) 2042*4e8c9d28SJay Foad InOutOperands.emplace_back(Arg, Out->getArgNameStr(Idx)); 2043e9492ccaSJason Eckhardt for (const auto &[Idx, Arg] : enumerate(In->getArgs())) 2044*4e8c9d28SJay Foad InOutOperands.emplace_back(Arg, In->getArgNameStr(Idx)); 2045df3765bfSSheng 2046df3765bfSSheng // Search for tied operands, so that we can correctly instantiate 2047df3765bfSSheng // operands that are not explicitly represented in the encoding. 2048df3765bfSSheng std::map<std::string, std::string> TiedNames; 2049e9492ccaSJason Eckhardt for (const auto &[I, Op] : enumerate(CGI.Operands)) { 2050e9492ccaSJason Eckhardt for (const auto &[J, CI] : enumerate(Op.Constraints)) { 2051372240dfSJames Y Knight if (CI.isTied()) { 2052df3765bfSSheng std::pair<unsigned, unsigned> SO = 2053e9492ccaSJason Eckhardt CGI.Operands.getSubOperandNumber(CI.getTiedOperand()); 2054372240dfSJames Y Knight std::string TiedName = CGI.Operands[SO.first].SubOpNames[SO.second]; 2055372240dfSJames Y Knight if (TiedName.empty()) 2056372240dfSJames Y Knight TiedName = CGI.Operands[SO.first].Name; 2057e9492ccaSJason Eckhardt std::string MyName = Op.SubOpNames[J]; 2058372240dfSJames Y Knight if (MyName.empty()) 2059372240dfSJames Y Knight MyName = Op.Name; 2060372240dfSJames Y Knight 2061372240dfSJames Y Knight TiedNames[MyName] = TiedName; 206231ce47b5Sabhishek-kaushik22 TiedNames[TiedName] = std::move(MyName); 2063372240dfSJames Y Knight } 2064df3765bfSSheng } 2065df3765bfSSheng } 2066df3765bfSSheng 2067df3765bfSSheng if (IsVarLenInst) { 2068df3765bfSSheng parseVarLenInstOperand(EncodingDef, InsnOperands, CGI); 2069df3765bfSSheng } else { 2070df3765bfSSheng // For each operand, see if we can figure out where it is encoded. 2071df3765bfSSheng for (const auto &Op : InOutOperands) { 207262e2c7fbSRahul Joshi const Init *OpInit = Op.first; 2073d1fbdf5bSJames Y Knight StringRef OpName = Op.second; 2074d1fbdf5bSJames Y Knight 2075b9079baaSPierre van Houtryve // We're ready to find the instruction encoding locations for this 2076b9079baaSPierre van Houtryve // operand. 2077df3765bfSSheng 2078372240dfSJames Y Knight // First, find the operand type ("OpInit"), and sub-op names 2079372240dfSJames Y Knight // ("SubArgDag") if present. 208062e2c7fbSRahul Joshi const DagInit *SubArgDag = dyn_cast<DagInit>(OpInit); 2081372240dfSJames Y Knight if (SubArgDag) 2082372240dfSJames Y Knight OpInit = SubArgDag->getOperator(); 20832bb3621fSRahul Joshi const Record *OpTypeRec = cast<DefInit>(OpInit)->getDef(); 2084372240dfSJames Y Knight // Lookup the sub-operands from the operand type record (note that only 2085372240dfSJames Y Knight // Operand subclasses have MIOperandInfo, see CodeGenInstruction.cpp). 20862bb3621fSRahul Joshi const DagInit *SubOps = OpTypeRec->isSubClassOf("Operand") 2087372240dfSJames Y Knight ? OpTypeRec->getValueAsDag("MIOperandInfo") 2088372240dfSJames Y Knight : nullptr; 2089372240dfSJames Y Knight 2090b9079baaSPierre van Houtryve // Lookup the decoder method and construct a new OperandInfo to hold our 2091b9079baaSPierre van Houtryve // result. 2092372240dfSJames Y Knight OperandInfo OpInfo = getOpInfo(OpTypeRec); 2093372240dfSJames Y Knight 2094372240dfSJames Y Knight // If we have named sub-operands... 2095372240dfSJames Y Knight if (SubArgDag) { 2096372240dfSJames Y Knight // Then there should not be a custom decoder specified on the top-level 2097372240dfSJames Y Knight // type. 2098372240dfSJames Y Knight if (!OpInfo.Decoder.empty()) { 2099372240dfSJames Y Knight PrintError(EncodingDef.getLoc(), 2100372240dfSJames Y Knight "DecoderEmitter: operand \"" + OpName + "\" has type \"" + 2101372240dfSJames Y Knight OpInit->getAsString() + 2102372240dfSJames Y Knight "\" with a custom DecoderMethod, but also named " 2103372240dfSJames Y Knight "sub-operands."); 2104372240dfSJames Y Knight continue; 2105372240dfSJames Y Knight } 2106372240dfSJames Y Knight 2107372240dfSJames Y Knight // Decode each of the sub-ops separately. 2108372240dfSJames Y Knight assert(SubOps && SubArgDag->getNumArgs() == SubOps->getNumArgs()); 2109e9492ccaSJason Eckhardt for (const auto &[I, Arg] : enumerate(SubOps->getArgs())) { 2110e9492ccaSJason Eckhardt StringRef SubOpName = SubArgDag->getArgNameStr(I); 2111e9492ccaSJason Eckhardt OperandInfo SubOpInfo = getOpInfo(cast<DefInit>(Arg)->getDef()); 2112372240dfSJames Y Knight 2113372240dfSJames Y Knight addOneOperandFields(EncodingDef, Bits, TiedNames, SubOpName, 2114372240dfSJames Y Knight SubOpInfo); 211531ce47b5Sabhishek-kaushik22 InsnOperands.push_back(std::move(SubOpInfo)); 2116372240dfSJames Y Knight } 2117372240dfSJames Y Knight continue; 2118372240dfSJames Y Knight } 2119372240dfSJames Y Knight 2120372240dfSJames Y Knight // Otherwise, if we have an operand with sub-operands, but they aren't 2121372240dfSJames Y Knight // named... 2122372240dfSJames Y Knight if (SubOps && OpInfo.Decoder.empty()) { 2123372240dfSJames Y Knight // If it's a single sub-operand, and no custom decoder, use the decoder 2124372240dfSJames Y Knight // from the one sub-operand. 2125372240dfSJames Y Knight if (SubOps->getNumArgs() == 1) 2126372240dfSJames Y Knight OpInfo = getOpInfo(cast<DefInit>(SubOps->getArg(0))->getDef()); 2127372240dfSJames Y Knight 2128372240dfSJames Y Knight // If we have multiple sub-ops, there'd better have a custom 2129372240dfSJames Y Knight // decoder. (Otherwise we don't know how to populate them properly...) 2130372240dfSJames Y Knight if (SubOps->getNumArgs() > 1) { 2131372240dfSJames Y Knight PrintError(EncodingDef.getLoc(), 2132372240dfSJames Y Knight "DecoderEmitter: operand \"" + OpName + 2133372240dfSJames Y Knight "\" uses MIOperandInfo with multiple ops, but doesn't " 2134372240dfSJames Y Knight "have a custom decoder!"); 2135372240dfSJames Y Knight debugDumpRecord(EncodingDef); 2136372240dfSJames Y Knight continue; 2137372240dfSJames Y Knight } 2138372240dfSJames Y Knight } 2139df3765bfSSheng 2140d1fbdf5bSJames Y Knight addOneOperandFields(EncodingDef, Bits, TiedNames, OpName, OpInfo); 2141372240dfSJames Y Knight // FIXME: it should be an error not to find a definition for a given 2142372240dfSJames Y Knight // operand, rather than just failing to add it to the resulting 2143372240dfSJames Y Knight // instruction! (This is a longstanding bug, which will be addressed in an 2144372240dfSJames Y Knight // upcoming change.) 2145df3765bfSSheng if (OpInfo.numFields() > 0) 214631ce47b5Sabhishek-kaushik22 InsnOperands.push_back(std::move(OpInfo)); 2147df3765bfSSheng } 2148df3765bfSSheng } 2149943b212dSabhishek-kaushik22 Operands[Opc] = std::move(InsnOperands); 2150df3765bfSSheng 2151df3765bfSSheng #if 0 2152df3765bfSSheng LLVM_DEBUG({ 2153df3765bfSSheng // Dumps the instruction encoding bits. 2154df3765bfSSheng dumpBits(errs(), Bits); 2155df3765bfSSheng 2156df3765bfSSheng errs() << '\n'; 2157df3765bfSSheng 2158df3765bfSSheng // Dumps the list of operand info. 2159df3765bfSSheng for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { 2160df3765bfSSheng const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; 2161df3765bfSSheng const std::string &OperandName = Info.Name; 2162df3765bfSSheng const Record &OperandDef = *Info.Rec; 2163df3765bfSSheng 2164df3765bfSSheng errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; 2165df3765bfSSheng } 2166df3765bfSSheng }); 2167df3765bfSSheng #endif 2168df3765bfSSheng 2169df3765bfSSheng return Bits.getNumBits(); 2170df3765bfSSheng } 2171df3765bfSSheng 2172df3765bfSSheng // emitFieldFromInstruction - Emit the templated helper function 2173df3765bfSSheng // fieldFromInstruction(). 2174df3765bfSSheng // On Windows we make sure that this function is not inlined when 2175df3765bfSSheng // using the VS compiler. It has a bug which causes the function 2176a2d45017SKazu Hirata // to be optimized out in some circumstances. See llvm.org/pr38292 2177df3765bfSSheng static void emitFieldFromInstruction(formatted_raw_ostream &OS) { 2178e9492ccaSJason Eckhardt OS << R"( 2179e9492ccaSJason Eckhardt // Helper functions for extracting fields from encoded instructions. 2180e9492ccaSJason Eckhardt // InsnType must either be integral or an APInt-like object that must: 2181e9492ccaSJason Eckhardt // * be default-constructible and copy-constructible 2182e9492ccaSJason Eckhardt // * be constructible from an APInt (this can be private) 2183e9492ccaSJason Eckhardt // * Support insertBits(bits, startBit, numBits) 2184e9492ccaSJason Eckhardt // * Support extractBitsAsZExtValue(numBits, startBit) 2185e9492ccaSJason Eckhardt // * Support the ~, &, ==, and != operators with other objects of the same type 2186e9492ccaSJason Eckhardt // * Support the != and bitwise & with uint64_t 2187e9492ccaSJason Eckhardt // * Support put (<<) to raw_ostream& 2188e9492ccaSJason Eckhardt template <typename InsnType> 2189e9492ccaSJason Eckhardt #if defined(_MSC_VER) && !defined(__clang__) 2190e9492ccaSJason Eckhardt __declspec(noinline) 2191e9492ccaSJason Eckhardt #endif 2192e9492ccaSJason Eckhardt static std::enable_if_t<std::is_integral<InsnType>::value, InsnType> 2193e9492ccaSJason Eckhardt fieldFromInstruction(const InsnType &insn, unsigned startBit, 2194e9492ccaSJason Eckhardt unsigned numBits) { 2195e9492ccaSJason Eckhardt assert(startBit + numBits <= 64 && "Cannot support >64-bit extractions!"); 2196e9492ccaSJason Eckhardt assert(startBit + numBits <= (sizeof(InsnType) * 8) && 2197e9492ccaSJason Eckhardt "Instruction field out of bounds!"); 2198e9492ccaSJason Eckhardt InsnType fieldMask; 2199e9492ccaSJason Eckhardt if (numBits == sizeof(InsnType) * 8) 2200e9492ccaSJason Eckhardt fieldMask = (InsnType)(-1LL); 2201e9492ccaSJason Eckhardt else 2202e9492ccaSJason Eckhardt fieldMask = (((InsnType)1 << numBits) - 1) << startBit; 2203e9492ccaSJason Eckhardt return (insn & fieldMask) >> startBit; 2204e9492ccaSJason Eckhardt } 2205e9492ccaSJason Eckhardt 2206e9492ccaSJason Eckhardt template <typename InsnType> 2207e9492ccaSJason Eckhardt static std::enable_if_t<!std::is_integral<InsnType>::value, uint64_t> 2208e9492ccaSJason Eckhardt fieldFromInstruction(const InsnType &insn, unsigned startBit, 2209e9492ccaSJason Eckhardt unsigned numBits) { 2210e9492ccaSJason Eckhardt return insn.extractBitsAsZExtValue(numBits, startBit); 2211e9492ccaSJason Eckhardt } 2212e9492ccaSJason Eckhardt )"; 2213df3765bfSSheng } 2214df3765bfSSheng 2215df3765bfSSheng // emitInsertBits - Emit the templated helper function insertBits(). 2216df3765bfSSheng static void emitInsertBits(formatted_raw_ostream &OS) { 2217e9492ccaSJason Eckhardt OS << R"( 2218e9492ccaSJason Eckhardt // Helper function for inserting bits extracted from an encoded instruction into 2219e9492ccaSJason Eckhardt // a field. 2220e9492ccaSJason Eckhardt template <typename InsnType> 2221e9492ccaSJason Eckhardt static std::enable_if_t<std::is_integral<InsnType>::value> 2222e9492ccaSJason Eckhardt insertBits(InsnType &field, InsnType bits, unsigned startBit, unsigned numBits) { 2223e9492ccaSJason Eckhardt assert(startBit + numBits <= sizeof field * 8); 2224e9492ccaSJason Eckhardt field |= (InsnType)bits << startBit; 2225e9492ccaSJason Eckhardt } 2226e9492ccaSJason Eckhardt 2227e9492ccaSJason Eckhardt template <typename InsnType> 2228e9492ccaSJason Eckhardt static std::enable_if_t<!std::is_integral<InsnType>::value> 2229e9492ccaSJason Eckhardt insertBits(InsnType &field, uint64_t bits, unsigned startBit, unsigned numBits) { 2230e9492ccaSJason Eckhardt field.insertBits(bits, startBit, numBits); 2231e9492ccaSJason Eckhardt } 2232e9492ccaSJason Eckhardt )"; 2233df3765bfSSheng } 2234df3765bfSSheng 2235df3765bfSSheng // emitDecodeInstruction - Emit the templated helper function 2236df3765bfSSheng // decodeInstruction(). 2237df3765bfSSheng static void emitDecodeInstruction(formatted_raw_ostream &OS, 2238df3765bfSSheng bool IsVarLenInst) { 2239e9492ccaSJason Eckhardt OS << R"( 2240e9492ccaSJason Eckhardt template <typename InsnType> 2241e9492ccaSJason Eckhardt static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI, 2242e9492ccaSJason Eckhardt InsnType insn, uint64_t Address, 2243e9492ccaSJason Eckhardt const MCDisassembler *DisAsm, 2244e9492ccaSJason Eckhardt const MCSubtargetInfo &STI)"; 2245df3765bfSSheng if (IsVarLenInst) { 2246df3765bfSSheng OS << ",\n " 2247e9492ccaSJason Eckhardt "llvm::function_ref<void(APInt &, uint64_t)> makeUp"; 2248df3765bfSSheng } 2249e9492ccaSJason Eckhardt OS << R"() { 2250e9492ccaSJason Eckhardt const FeatureBitset &Bits = STI.getFeatureBits(); 2251e9492ccaSJason Eckhardt 2252e9492ccaSJason Eckhardt const uint8_t *Ptr = DecodeTable; 2253e9492ccaSJason Eckhardt uint64_t CurFieldValue = 0; 2254e9492ccaSJason Eckhardt DecodeStatus S = MCDisassembler::Success; 2255e9492ccaSJason Eckhardt while (true) { 2256e9492ccaSJason Eckhardt ptrdiff_t Loc = Ptr - DecodeTable; 2257e9492ccaSJason Eckhardt switch (*Ptr) { 2258e9492ccaSJason Eckhardt default: 2259e9492ccaSJason Eckhardt errs() << Loc << ": Unexpected decode table opcode!\n"; 2260e9492ccaSJason Eckhardt return MCDisassembler::Fail; 2261e9492ccaSJason Eckhardt case MCD::OPC_ExtractField: { 2262e9492ccaSJason Eckhardt // Decode the start value. 226335bb9f15SPiotr Fusik unsigned Start = decodeULEB128AndIncUnsafe(++Ptr); 2264e9492ccaSJason Eckhardt unsigned Len = *Ptr++;)"; 2265df3765bfSSheng if (IsVarLenInst) 2266e9492ccaSJason Eckhardt OS << "\n makeUp(insn, Start + Len);"; 2267e9492ccaSJason Eckhardt OS << R"( 2268e9492ccaSJason Eckhardt CurFieldValue = fieldFromInstruction(insn, Start, Len); 2269e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << Loc << ": OPC_ExtractField(" << Start << ", " 2270e9492ccaSJason Eckhardt << Len << "): " << CurFieldValue << "\n"); 2271e9492ccaSJason Eckhardt break; 2272e9492ccaSJason Eckhardt } 2273e9492ccaSJason Eckhardt case MCD::OPC_FilterValue: { 2274e9492ccaSJason Eckhardt // Decode the field value. 227535bb9f15SPiotr Fusik uint64_t Val = decodeULEB128AndIncUnsafe(++Ptr); 2276e9492ccaSJason Eckhardt // NumToSkip is a plain 24-bit integer. 2277e9492ccaSJason Eckhardt unsigned NumToSkip = *Ptr++; 2278e9492ccaSJason Eckhardt NumToSkip |= (*Ptr++) << 8; 2279e9492ccaSJason Eckhardt NumToSkip |= (*Ptr++) << 16; 2280e9492ccaSJason Eckhardt 2281e9492ccaSJason Eckhardt // Perform the filter operation. 2282e9492ccaSJason Eckhardt if (Val != CurFieldValue) 2283e9492ccaSJason Eckhardt Ptr += NumToSkip; 2284e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << Loc << ": OPC_FilterValue(" << Val << ", " << NumToSkip 2285e9492ccaSJason Eckhardt << "): " << ((Val != CurFieldValue) ? "FAIL:" : "PASS:") 2286e9492ccaSJason Eckhardt << " continuing at " << (Ptr - DecodeTable) << "\n"); 2287e9492ccaSJason Eckhardt 2288e9492ccaSJason Eckhardt break; 2289e9492ccaSJason Eckhardt } 2290e9492ccaSJason Eckhardt case MCD::OPC_CheckField: { 2291e9492ccaSJason Eckhardt // Decode the start value. 2292efad1495SFangrui Song unsigned Start = decodeULEB128AndIncUnsafe(++Ptr); 229335bf8e79SFangrui Song unsigned Len = *Ptr;)"; 2294df3765bfSSheng if (IsVarLenInst) 2295e9492ccaSJason Eckhardt OS << "\n makeUp(insn, Start + Len);"; 2296e9492ccaSJason Eckhardt OS << R"( 2297e9492ccaSJason Eckhardt uint64_t FieldValue = fieldFromInstruction(insn, Start, Len); 2298e9492ccaSJason Eckhardt // Decode the field value. 2299e9492ccaSJason Eckhardt unsigned PtrLen = 0; 2300e9492ccaSJason Eckhardt uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen); 2301e9492ccaSJason Eckhardt Ptr += PtrLen; 2302e9492ccaSJason Eckhardt // NumToSkip is a plain 24-bit integer. 2303e9492ccaSJason Eckhardt unsigned NumToSkip = *Ptr++; 2304e9492ccaSJason Eckhardt NumToSkip |= (*Ptr++) << 8; 2305e9492ccaSJason Eckhardt NumToSkip |= (*Ptr++) << 16; 2306e9492ccaSJason Eckhardt 2307e9492ccaSJason Eckhardt // If the actual and expected values don't match, skip. 2308e9492ccaSJason Eckhardt if (ExpectedValue != FieldValue) 2309e9492ccaSJason Eckhardt Ptr += NumToSkip; 2310e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << Loc << ": OPC_CheckField(" << Start << ", " 2311e9492ccaSJason Eckhardt << Len << ", " << ExpectedValue << ", " << NumToSkip 2312e9492ccaSJason Eckhardt << "): FieldValue = " << FieldValue << ", ExpectedValue = " 2313e9492ccaSJason Eckhardt << ExpectedValue << ": " 2314e9492ccaSJason Eckhardt << ((ExpectedValue == FieldValue) ? "PASS\n" : "FAIL\n")); 2315e9492ccaSJason Eckhardt break; 2316e9492ccaSJason Eckhardt } 2317e9492ccaSJason Eckhardt case MCD::OPC_CheckPredicate: { 2318e9492ccaSJason Eckhardt // Decode the Predicate Index value. 2319efad1495SFangrui Song unsigned PIdx = decodeULEB128AndIncUnsafe(++Ptr); 2320e9492ccaSJason Eckhardt // NumToSkip is a plain 24-bit integer. 2321e9492ccaSJason Eckhardt unsigned NumToSkip = *Ptr++; 2322e9492ccaSJason Eckhardt NumToSkip |= (*Ptr++) << 8; 2323e9492ccaSJason Eckhardt NumToSkip |= (*Ptr++) << 16; 2324e9492ccaSJason Eckhardt // Check the predicate. 2325e9492ccaSJason Eckhardt bool Pred; 2326e9492ccaSJason Eckhardt if (!(Pred = checkDecoderPredicate(PIdx, Bits))) 2327e9492ccaSJason Eckhardt Ptr += NumToSkip; 2328e9492ccaSJason Eckhardt (void)Pred; 2329e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << Loc << ": OPC_CheckPredicate(" << PIdx << "): " 2330e9492ccaSJason Eckhardt << (Pred ? "PASS\n" : "FAIL\n")); 2331e9492ccaSJason Eckhardt 2332e9492ccaSJason Eckhardt break; 2333e9492ccaSJason Eckhardt } 2334e9492ccaSJason Eckhardt case MCD::OPC_Decode: { 2335e9492ccaSJason Eckhardt // Decode the Opcode value. 2336efad1495SFangrui Song unsigned Opc = decodeULEB128AndIncUnsafe(++Ptr); 2337efad1495SFangrui Song unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); 2338e9492ccaSJason Eckhardt 2339e9492ccaSJason Eckhardt MI.clear(); 2340e9492ccaSJason Eckhardt MI.setOpcode(Opc); 2341e9492ccaSJason Eckhardt bool DecodeComplete;)"; 2342df3765bfSSheng if (IsVarLenInst) { 234335bf8e79SFangrui Song OS << "\n unsigned Len = InstrLenTable[Opc];\n" 2344e9492ccaSJason Eckhardt << " makeUp(insn, Len);"; 2345df3765bfSSheng } 2346e9492ccaSJason Eckhardt OS << R"( 2347e9492ccaSJason Eckhardt S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, DecodeComplete); 2348e9492ccaSJason Eckhardt assert(DecodeComplete); 2349e9492ccaSJason Eckhardt 2350e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << Loc << ": OPC_Decode: opcode " << Opc 2351e9492ccaSJason Eckhardt << ", using decoder " << DecodeIdx << ": " 2352e9492ccaSJason Eckhardt << (S != MCDisassembler::Fail ? "PASS" : "FAIL") << "\n"); 2353e9492ccaSJason Eckhardt return S; 2354e9492ccaSJason Eckhardt } 2355e9492ccaSJason Eckhardt case MCD::OPC_TryDecode: { 2356e9492ccaSJason Eckhardt // Decode the Opcode value. 2357efad1495SFangrui Song unsigned Opc = decodeULEB128AndIncUnsafe(++Ptr); 2358efad1495SFangrui Song unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); 2359e9492ccaSJason Eckhardt // NumToSkip is a plain 24-bit integer. 2360e9492ccaSJason Eckhardt unsigned NumToSkip = *Ptr++; 2361e9492ccaSJason Eckhardt NumToSkip |= (*Ptr++) << 8; 2362e9492ccaSJason Eckhardt NumToSkip |= (*Ptr++) << 16; 2363e9492ccaSJason Eckhardt 2364e9492ccaSJason Eckhardt // Perform the decode operation. 2365e9492ccaSJason Eckhardt MCInst TmpMI; 2366e9492ccaSJason Eckhardt TmpMI.setOpcode(Opc); 2367e9492ccaSJason Eckhardt bool DecodeComplete; 2368e9492ccaSJason Eckhardt S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, DecodeComplete); 2369e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << Loc << ": OPC_TryDecode: opcode " << Opc 2370e9492ccaSJason Eckhardt << ", using decoder " << DecodeIdx << ": "); 2371e9492ccaSJason Eckhardt 2372e9492ccaSJason Eckhardt if (DecodeComplete) { 2373e9492ccaSJason Eckhardt // Decoding complete. 2374e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? "PASS" : "FAIL") << "\n"); 2375e9492ccaSJason Eckhardt MI = TmpMI; 2376e9492ccaSJason Eckhardt return S; 2377e9492ccaSJason Eckhardt } else { 2378e9492ccaSJason Eckhardt assert(S == MCDisassembler::Fail); 2379e9492ccaSJason Eckhardt // If the decoding was incomplete, skip. 2380e9492ccaSJason Eckhardt Ptr += NumToSkip; 2381e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << "FAIL: continuing at " << (Ptr - DecodeTable) << "\n"); 2382e9492ccaSJason Eckhardt // Reset decode status. This also drops a SoftFail status that could be 2383e9492ccaSJason Eckhardt // set before the decode attempt. 2384e9492ccaSJason Eckhardt S = MCDisassembler::Success; 2385e9492ccaSJason Eckhardt } 2386e9492ccaSJason Eckhardt break; 2387e9492ccaSJason Eckhardt } 2388e9492ccaSJason Eckhardt case MCD::OPC_SoftFail: { 2389e9492ccaSJason Eckhardt // Decode the mask values. 2390efad1495SFangrui Song uint64_t PositiveMask = decodeULEB128AndIncUnsafe(++Ptr); 2391efad1495SFangrui Song uint64_t NegativeMask = decodeULEB128AndIncUnsafe(Ptr); 2392e9492ccaSJason Eckhardt bool Fail = (insn & PositiveMask) != 0 || (~insn & NegativeMask) != 0; 2393e9492ccaSJason Eckhardt if (Fail) 2394e9492ccaSJason Eckhardt S = MCDisassembler::SoftFail; 2395e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << Loc << ": OPC_SoftFail: " << (Fail ? "FAIL\n" : "PASS\n")); 2396e9492ccaSJason Eckhardt break; 2397e9492ccaSJason Eckhardt } 2398e9492ccaSJason Eckhardt case MCD::OPC_Fail: { 2399e9492ccaSJason Eckhardt LLVM_DEBUG(dbgs() << Loc << ": OPC_Fail\n"); 2400e9492ccaSJason Eckhardt return MCDisassembler::Fail; 2401e9492ccaSJason Eckhardt } 2402e9492ccaSJason Eckhardt } 2403e9492ccaSJason Eckhardt } 2404e9492ccaSJason Eckhardt llvm_unreachable("bogosity detected in disassembler state machine!"); 2405e9492ccaSJason Eckhardt } 2406e9492ccaSJason Eckhardt 2407e9492ccaSJason Eckhardt )"; 2408df3765bfSSheng } 2409df3765bfSSheng 24109a26f893SJames Y Knight // Helper to propagate SoftFail status. Returns false if the status is Fail; 24119a26f893SJames Y Knight // callers are expected to early-exit in that condition. (Note, the '&' operator 24129a26f893SJames Y Knight // is correct to propagate the values of this enum; see comment on 'enum 24139a26f893SJames Y Knight // DecodeStatus'.) 24149a26f893SJames Y Knight static void emitCheck(formatted_raw_ostream &OS) { 2415e9492ccaSJason Eckhardt OS << R"( 2416e9492ccaSJason Eckhardt static bool Check(DecodeStatus &Out, DecodeStatus In) { 2417e9492ccaSJason Eckhardt Out = static_cast<DecodeStatus>(Out & In); 2418e9492ccaSJason Eckhardt return Out != MCDisassembler::Fail; 2419e9492ccaSJason Eckhardt } 2420e9492ccaSJason Eckhardt 2421e9492ccaSJason Eckhardt )"; 24229a26f893SJames Y Knight } 24239a26f893SJames Y Knight 2424f75c6ed9SJason Eckhardt // Collect all HwModes referenced by the target for encoding purposes, 2425f75c6ed9SJason Eckhardt // returning a vector of corresponding names. 2426da1d3d8fSsuperZWT123 static void collectHwModesReferencedForEncodings( 2427da1d3d8fSsuperZWT123 const CodeGenHwModes &HWM, std::vector<StringRef> &Names, 2428da1d3d8fSsuperZWT123 NamespacesHwModesMap &NamespacesWithHwModes) { 2429f75c6ed9SJason Eckhardt SmallBitVector BV(HWM.getNumModeIds()); 2430f75c6ed9SJason Eckhardt for (const auto &MS : HWM.getHwModeSelects()) { 2431f75c6ed9SJason Eckhardt for (const HwModeSelect::PairType &P : MS.second.Items) { 2432da1d3d8fSsuperZWT123 if (P.second->isSubClassOf("InstructionEncoding")) { 2433da1d3d8fSsuperZWT123 std::string DecoderNamespace = 2434da1d3d8fSsuperZWT123 std::string(P.second->getValueAsString("DecoderNamespace")); 2435da1d3d8fSsuperZWT123 if (P.first == DefaultMode) { 2436da1d3d8fSsuperZWT123 NamespacesWithHwModes[DecoderNamespace].insert(""); 2437da1d3d8fSsuperZWT123 } else { 2438da1d3d8fSsuperZWT123 NamespacesWithHwModes[DecoderNamespace].insert( 2439da1d3d8fSsuperZWT123 HWM.getMode(P.first).Name); 2440da1d3d8fSsuperZWT123 } 2441f75c6ed9SJason Eckhardt BV.set(P.first); 2442f75c6ed9SJason Eckhardt } 2443f75c6ed9SJason Eckhardt } 2444da1d3d8fSsuperZWT123 } 2445ad43ea33SJason Eckhardt transform(BV.set_bits(), std::back_inserter(Names), [&HWM](const int &M) { 2446da1d3d8fSsuperZWT123 if (M == DefaultMode) 2447da1d3d8fSsuperZWT123 return StringRef(""); 2448ad43ea33SJason Eckhardt return HWM.getModeName(M, /*IncludeDefault=*/true); 2449ad43ea33SJason Eckhardt }); 2450f75c6ed9SJason Eckhardt } 2451f75c6ed9SJason Eckhardt 2452da1d3d8fSsuperZWT123 static void 2453da1d3d8fSsuperZWT123 handleHwModesUnrelatedEncodings(const CodeGenInstruction *Instr, 2454da1d3d8fSsuperZWT123 const std::vector<StringRef> &HwModeNames, 2455da1d3d8fSsuperZWT123 NamespacesHwModesMap &NamespacesWithHwModes, 2456da1d3d8fSsuperZWT123 std::vector<EncodingAndInst> &GlobalEncodings) { 2457da1d3d8fSsuperZWT123 const Record *InstDef = Instr->TheDef; 2458da1d3d8fSsuperZWT123 2459da1d3d8fSsuperZWT123 switch (DecoderEmitterSuppressDuplicates) { 2460da1d3d8fSsuperZWT123 case SUPPRESSION_DISABLE: { 2461da1d3d8fSsuperZWT123 for (StringRef HwModeName : HwModeNames) 2462da1d3d8fSsuperZWT123 GlobalEncodings.emplace_back(InstDef, Instr, HwModeName); 2463da1d3d8fSsuperZWT123 break; 2464da1d3d8fSsuperZWT123 } 2465da1d3d8fSsuperZWT123 case SUPPRESSION_LEVEL1: { 2466da1d3d8fSsuperZWT123 std::string DecoderNamespace = 2467da1d3d8fSsuperZWT123 std::string(InstDef->getValueAsString("DecoderNamespace")); 2468da1d3d8fSsuperZWT123 auto It = NamespacesWithHwModes.find(DecoderNamespace); 2469da1d3d8fSsuperZWT123 if (It != NamespacesWithHwModes.end()) { 2470da1d3d8fSsuperZWT123 for (StringRef HwModeName : It->second) 2471da1d3d8fSsuperZWT123 GlobalEncodings.emplace_back(InstDef, Instr, HwModeName); 2472da1d3d8fSsuperZWT123 } else { 2473da1d3d8fSsuperZWT123 // Only emit the encoding once, as it's DecoderNamespace doesn't 2474da1d3d8fSsuperZWT123 // contain any HwModes. 2475da1d3d8fSsuperZWT123 GlobalEncodings.emplace_back(InstDef, Instr, ""); 2476da1d3d8fSsuperZWT123 } 2477da1d3d8fSsuperZWT123 break; 2478da1d3d8fSsuperZWT123 } 2479da1d3d8fSsuperZWT123 case SUPPRESSION_LEVEL2: 2480da1d3d8fSsuperZWT123 GlobalEncodings.emplace_back(InstDef, Instr, ""); 2481da1d3d8fSsuperZWT123 break; 2482da1d3d8fSsuperZWT123 } 2483da1d3d8fSsuperZWT123 } 2484da1d3d8fSsuperZWT123 2485df3765bfSSheng // Emits disassembler code for instruction decoding. 2486df3765bfSSheng void DecoderEmitter::run(raw_ostream &o) { 2487df3765bfSSheng formatted_raw_ostream OS(o); 2488e9492ccaSJason Eckhardt OS << R"( 2489e9492ccaSJason Eckhardt #include "llvm/MC/MCInst.h" 2490e9492ccaSJason Eckhardt #include "llvm/MC/MCSubtargetInfo.h" 2491e9492ccaSJason Eckhardt #include "llvm/Support/DataTypes.h" 2492e9492ccaSJason Eckhardt #include "llvm/Support/Debug.h" 2493e9492ccaSJason Eckhardt #include "llvm/Support/LEB128.h" 2494e9492ccaSJason Eckhardt #include "llvm/Support/raw_ostream.h" 2495e9492ccaSJason Eckhardt #include "llvm/TargetParser/SubtargetFeature.h" 2496e9492ccaSJason Eckhardt #include <assert.h> 2497e9492ccaSJason Eckhardt 2498e9492ccaSJason Eckhardt namespace llvm { 2499e9492ccaSJason Eckhardt )"; 2500df3765bfSSheng 2501df3765bfSSheng emitFieldFromInstruction(OS); 2502df3765bfSSheng emitInsertBits(OS); 25039a26f893SJames Y Knight emitCheck(OS); 2504df3765bfSSheng 2505df3765bfSSheng Target.reverseBitsForLittleEndianEncoding(); 2506df3765bfSSheng 2507df3765bfSSheng // Parameterize the decoders based on namespace and instruction width. 2508f75c6ed9SJason Eckhardt 2509f75c6ed9SJason Eckhardt // First, collect all encoding-related HwModes referenced by the target. 2510da1d3d8fSsuperZWT123 // And establish a mapping table between DecoderNamespace and HwMode. 2511f75c6ed9SJason Eckhardt // If HwModeNames is empty, add the empty string so we always have one HwMode. 2512f75c6ed9SJason Eckhardt const CodeGenHwModes &HWM = Target.getHwModes(); 2513f75c6ed9SJason Eckhardt std::vector<StringRef> HwModeNames; 2514da1d3d8fSsuperZWT123 NamespacesHwModesMap NamespacesWithHwModes; 2515da1d3d8fSsuperZWT123 collectHwModesReferencedForEncodings(HWM, HwModeNames, NamespacesWithHwModes); 2516f75c6ed9SJason Eckhardt if (HwModeNames.empty()) 2517f75c6ed9SJason Eckhardt HwModeNames.push_back(""); 2518f75c6ed9SJason Eckhardt 2519df3765bfSSheng const auto &NumberedInstructions = Target.getInstructionsByEnumValue(); 2520df3765bfSSheng NumberedEncodings.reserve(NumberedInstructions.size()); 2521df3765bfSSheng for (const auto &NumberedInstruction : NumberedInstructions) { 25226f7e940cSJason Eckhardt const Record *InstDef = NumberedInstruction->TheDef; 25236f7e940cSJason Eckhardt if (const RecordVal *RV = InstDef->getValue("EncodingInfos")) { 252462e2c7fbSRahul Joshi if (const DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) { 2525df3765bfSSheng EncodingInfoByHwMode EBM(DI->getDef(), HWM); 2526da1d3d8fSsuperZWT123 for (auto &[ModeId, Encoding] : EBM) { 2527da1d3d8fSsuperZWT123 // DecoderTables with DefaultMode should not have any suffix. 2528da1d3d8fSsuperZWT123 if (ModeId == DefaultMode) { 2529da1d3d8fSsuperZWT123 NumberedEncodings.emplace_back(Encoding, NumberedInstruction, ""); 2530da1d3d8fSsuperZWT123 } else { 2531da1d3d8fSsuperZWT123 NumberedEncodings.emplace_back(Encoding, NumberedInstruction, 2532da1d3d8fSsuperZWT123 HWM.getMode(ModeId).Name); 2533da1d3d8fSsuperZWT123 } 2534da1d3d8fSsuperZWT123 } 2535df3765bfSSheng continue; 2536df3765bfSSheng } 2537df3765bfSSheng } 2538da1d3d8fSsuperZWT123 // This instruction is encoded the same on all HwModes. 2539da1d3d8fSsuperZWT123 // According to user needs, provide varying degrees of suppression. 2540da1d3d8fSsuperZWT123 handleHwModesUnrelatedEncodings(NumberedInstruction, HwModeNames, 2541da1d3d8fSsuperZWT123 NamespacesWithHwModes, NumberedEncodings); 254205af9c83SJason Eckhardt } 25432bb3621fSRahul Joshi for (const Record *NumberedAlias : 2544b9079baaSPierre van Houtryve RK.getAllDerivedDefinitions("AdditionalEncoding")) 2545df3765bfSSheng NumberedEncodings.emplace_back( 2546df3765bfSSheng NumberedAlias, 2547df3765bfSSheng &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf"))); 2548df3765bfSSheng 2549df3765bfSSheng std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>> 2550df3765bfSSheng OpcMap; 2551df3765bfSSheng std::map<unsigned, std::vector<OperandInfo>> Operands; 2552df3765bfSSheng std::vector<unsigned> InstrLen; 25536f7e940cSJason Eckhardt bool IsVarLenInst = Target.hasVariableLengthEncodings(); 2554df3765bfSSheng unsigned MaxInstLen = 0; 2555df3765bfSSheng 2556e9492ccaSJason Eckhardt for (const auto &[NEI, NumberedEncoding] : enumerate(NumberedEncodings)) { 2557e9492ccaSJason Eckhardt const Record *EncodingDef = NumberedEncoding.EncodingDef; 2558e9492ccaSJason Eckhardt const CodeGenInstruction *Inst = NumberedEncoding.Inst; 2559df3765bfSSheng const Record *Def = Inst->TheDef; 2560df3765bfSSheng unsigned Size = EncodingDef->getValueAsInt("Size"); 2561df3765bfSSheng if (Def->getValueAsString("Namespace") == "TargetOpcode" || 2562df3765bfSSheng Def->getValueAsBit("isPseudo") || 2563df3765bfSSheng Def->getValueAsBit("isAsmParserOnly") || 2564df3765bfSSheng Def->getValueAsBit("isCodeGenOnly")) { 2565df3765bfSSheng NumEncodingsLackingDisasm++; 2566df3765bfSSheng continue; 2567df3765bfSSheng } 2568df3765bfSSheng 2569e9492ccaSJason Eckhardt if (NEI < NumberedInstructions.size()) 2570df3765bfSSheng NumInstructions++; 2571df3765bfSSheng NumEncodings++; 2572df3765bfSSheng 2573df3765bfSSheng if (!Size && !IsVarLenInst) 2574df3765bfSSheng continue; 2575df3765bfSSheng 2576df3765bfSSheng if (IsVarLenInst) 2577df3765bfSSheng InstrLen.resize(NumberedInstructions.size(), 0); 2578df3765bfSSheng 2579e9492ccaSJason Eckhardt if (unsigned Len = populateInstruction(Target, *EncodingDef, *Inst, NEI, 2580df3765bfSSheng Operands, IsVarLenInst)) { 2581df3765bfSSheng if (IsVarLenInst) { 2582df3765bfSSheng MaxInstLen = std::max(MaxInstLen, Len); 2583e9492ccaSJason Eckhardt InstrLen[NEI] = Len; 2584df3765bfSSheng } 2585df3765bfSSheng std::string DecoderNamespace = 2586df3765bfSSheng std::string(EncodingDef->getValueAsString("DecoderNamespace")); 2587e9492ccaSJason Eckhardt if (!NumberedEncoding.HwModeName.empty()) 2588df3765bfSSheng DecoderNamespace += 2589e9492ccaSJason Eckhardt std::string("_") + NumberedEncoding.HwModeName.str(); 2590*4e8c9d28SJay Foad OpcMap[{DecoderNamespace, Size}].emplace_back( 2591e9492ccaSJason Eckhardt NEI, Target.getInstrIntValue(Def)); 2592df3765bfSSheng } else { 2593df3765bfSSheng NumEncodingsOmitted++; 2594df3765bfSSheng } 2595df3765bfSSheng } 2596df3765bfSSheng 2597df3765bfSSheng DecoderTableInfo TableInfo; 2598df3765bfSSheng for (const auto &Opc : OpcMap) { 2599df3765bfSSheng // Emit the decoder for this namespace+width combination. 2600b9079baaSPierre van Houtryve ArrayRef<EncodingAndInst> NumberedEncodingsRef(NumberedEncodings.data(), 2601b9079baaSPierre van Houtryve NumberedEncodings.size()); 2602df3765bfSSheng FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands, 2603df3765bfSSheng IsVarLenInst ? MaxInstLen : 8 * Opc.first.second, this); 2604df3765bfSSheng 2605df3765bfSSheng // The decode table is cleared for each top level decoder function. The 2606df3765bfSSheng // predicates and decoders themselves, however, are shared across all 2607df3765bfSSheng // decoders to give more opportunities for uniqueing. 2608df3765bfSSheng TableInfo.Table.clear(); 2609df3765bfSSheng TableInfo.FixupStack.clear(); 2610df3765bfSSheng TableInfo.Table.reserve(16384); 2611df3765bfSSheng TableInfo.FixupStack.emplace_back(); 2612df3765bfSSheng FC.emitTableEntries(TableInfo); 2613df3765bfSSheng // Any NumToSkip fixups in the top level scope can resolve to the 2614df3765bfSSheng // OPC_Fail at the end of the table. 2615df3765bfSSheng assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!"); 2616df3765bfSSheng // Resolve any NumToSkip fixups in the current scope. 2617df3765bfSSheng resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), 2618df3765bfSSheng TableInfo.Table.size()); 2619df3765bfSSheng TableInfo.FixupStack.clear(); 2620df3765bfSSheng 2621df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_Fail); 2622df3765bfSSheng 2623df3765bfSSheng // Print the table to the output stream. 2624708567abSRahul Joshi emitTable(OS, TableInfo.Table, indent(0), FC.getBitWidth(), Opc.first.first, 26252ed0aacfSJason Eckhardt Opc.second); 2626df3765bfSSheng } 2627df3765bfSSheng 2628df3765bfSSheng // For variable instruction, we emit a instruction length table 2629df3765bfSSheng // to let the decoder know how long the instructions are. 2630df3765bfSSheng // You can see example usage in M68k's disassembler. 2631df3765bfSSheng if (IsVarLenInst) 2632df3765bfSSheng emitInstrLenTable(OS, InstrLen); 2633df3765bfSSheng // Emit the predicate function. 2634708567abSRahul Joshi emitPredicateFunction(OS, TableInfo.Predicates, indent(0)); 2635df3765bfSSheng 2636df3765bfSSheng // Emit the decoder function. 2637708567abSRahul Joshi emitDecoderFunction(OS, TableInfo.Decoders, indent(0)); 2638df3765bfSSheng 2639df3765bfSSheng // Emit the main entry point for the decoder, decodeInstruction(). 2640df3765bfSSheng emitDecodeInstruction(OS, IsVarLenInst); 2641df3765bfSSheng 2642df3765bfSSheng OS << "\n} // end namespace llvm\n"; 2643df3765bfSSheng } 2644df3765bfSSheng 2645b594b930SRahul Joshi void llvm::EmitDecoder(const RecordKeeper &RK, raw_ostream &OS, 2646b594b930SRahul Joshi StringRef PredicateNamespace) { 26479a26f893SJames Y Knight DecoderEmitter(RK, PredicateNamespace).run(OS); 2648df3765bfSSheng } 2649