1 //=== - llvm/unittest/Support/Alignment.cpp - Alignment utility tests -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/Alignment.h" 10 #include "gtest/gtest.h" 11 12 #include <vector> 13 14 #ifdef _MSC_VER 15 // Disable warnings about potential divide by 0. 16 #pragma warning(push) 17 #pragma warning(disable : 4723) 18 #endif 19 20 using namespace llvm; 21 22 namespace { 23 24 TEST(AlignmentTest, AlignOfConstant) { 25 EXPECT_EQ(Align::Of<uint8_t>(), Align(alignof(uint8_t))); 26 EXPECT_EQ(Align::Of<uint16_t>(), Align(alignof(uint16_t))); 27 EXPECT_EQ(Align::Of<uint32_t>(), Align(alignof(uint32_t))); 28 EXPECT_EQ(Align::Of<uint64_t>(), Align(alignof(uint64_t))); 29 } 30 31 TEST(AlignmentTest, AlignConstant) { 32 EXPECT_EQ(Align::Constant<1>(), Align(1)); 33 EXPECT_EQ(Align::Constant<2>(), Align(2)); 34 EXPECT_EQ(Align::Constant<4>(), Align(4)); 35 EXPECT_EQ(Align::Constant<8>(), Align(8)); 36 EXPECT_EQ(Align::Constant<16>(), Align(16)); 37 EXPECT_EQ(Align::Constant<32>(), Align(32)); 38 EXPECT_EQ(Align::Constant<64>(), Align(64)); 39 } 40 41 TEST(AlignmentTest, AlignConstexprConstant) { 42 constexpr Align kConstantAlign = Align::Of<uint64_t>(); 43 EXPECT_EQ(Align(alignof(uint64_t)), kConstantAlign); 44 } 45 46 std::vector<uint64_t> getValidAlignments() { 47 std::vector<uint64_t> Out; 48 for (size_t Shift = 0; Shift < 64; ++Shift) 49 Out.push_back(1ULL << Shift); 50 return Out; 51 } 52 53 TEST(AlignmentTest, AlignDefaultCTor) { 54 EXPECT_EQ(Align().value(), 1ULL); 55 EXPECT_EQ(Align::None().value(), 1ULL); 56 } 57 58 TEST(AlignmentTest, MaybeAlignDefaultCTor) { 59 EXPECT_FALSE(MaybeAlign().hasValue()); 60 } 61 62 TEST(AlignmentTest, ValidCTors) { 63 for (uint64_t Value : getValidAlignments()) { 64 EXPECT_EQ(Align(Value).value(), Value); 65 EXPECT_EQ((*MaybeAlign(Value)).value(), Value); 66 } 67 } 68 69 TEST(AlignmentTest, CheckMaybeAlignHasValue) { 70 EXPECT_TRUE(MaybeAlign(1)); 71 EXPECT_TRUE(MaybeAlign(1).hasValue()); 72 EXPECT_FALSE(MaybeAlign(0)); 73 EXPECT_FALSE(MaybeAlign(0).hasValue()); 74 EXPECT_FALSE(MaybeAlign()); 75 EXPECT_FALSE(MaybeAlign().hasValue()); 76 } 77 78 TEST(AlignmentTest, Division) { 79 for (uint64_t Value : getValidAlignments()) { 80 if (Value > 1) { 81 EXPECT_EQ(Align(Value) / 2, Value / 2); 82 EXPECT_EQ(MaybeAlign(Value) / 2, Value / 2); 83 } 84 } 85 EXPECT_EQ(MaybeAlign(0) / 2, MaybeAlign(0)); 86 } 87 88 TEST(AlignmentTest, AlignTo) { 89 struct { 90 uint64_t alignment; 91 uint64_t offset; 92 uint64_t rounded; 93 const void *forgedAddr() const { 94 // A value of any integral or enumeration type can be converted to a 95 // pointer type. 96 return reinterpret_cast<const void *>(offset); 97 } 98 } kTests[] = { 99 // MaybeAlign 100 {0, 0, 0}, 101 {0, 1, 1}, 102 {0, 5, 5}, 103 // MaybeAlign / Align 104 {1, 0, 0}, 105 {1, 1, 1}, 106 {1, 5, 5}, 107 {2, 0, 0}, 108 {2, 1, 2}, 109 {2, 2, 2}, 110 {2, 7, 8}, 111 {2, 16, 16}, 112 {4, 0, 0}, 113 {4, 1, 4}, 114 {4, 4, 4}, 115 {4, 6, 8}, 116 }; 117 for (const auto &T : kTests) { 118 MaybeAlign A(T.alignment); 119 // Test MaybeAlign 120 EXPECT_EQ(alignTo(T.offset, A), T.rounded); 121 // Test Align 122 if (A) { 123 EXPECT_EQ(alignTo(T.offset, A.getValue()), T.rounded); 124 EXPECT_EQ(alignAddr(T.forgedAddr(), A.getValue()), T.rounded); 125 } 126 } 127 } 128 129 TEST(AlignmentTest, Log2) { 130 for (uint64_t Value : getValidAlignments()) { 131 EXPECT_EQ(Log2(Align(Value)), Log2_64(Value)); 132 EXPECT_EQ(Log2(MaybeAlign(Value)), Log2_64(Value)); 133 } 134 } 135 136 TEST(AlignmentTest, MinAlign) { 137 struct { 138 uint64_t A; 139 uint64_t B; 140 uint64_t MinAlign; 141 } kTests[] = { 142 // MaybeAlign 143 {0, 0, 0}, 144 {0, 8, 8}, 145 {2, 0, 2}, 146 // MaybeAlign / Align 147 {1, 2, 1}, 148 {8, 4, 4}, 149 }; 150 for (const auto &T : kTests) { 151 EXPECT_EQ(commonAlignment(MaybeAlign(T.A), MaybeAlign(T.B)), T.MinAlign); 152 EXPECT_EQ(MinAlign(T.A, T.B), T.MinAlign); 153 if (T.A) { 154 EXPECT_EQ(commonAlignment(Align(T.A), MaybeAlign(T.B)), T.MinAlign); 155 } 156 if (T.B) { 157 EXPECT_EQ(commonAlignment(MaybeAlign(T.A), Align(T.B)), T.MinAlign); 158 } 159 if (T.A && T.B) { 160 EXPECT_EQ(commonAlignment(Align(T.A), Align(T.B)), T.MinAlign); 161 } 162 } 163 } 164 165 TEST(AlignmentTest, Encode_Decode) { 166 for (uint64_t Value : getValidAlignments()) { 167 { 168 Align Actual(Value); 169 Align Expected = decodeMaybeAlign(encode(Actual)).getValue(); 170 EXPECT_EQ(Expected, Actual); 171 } 172 { 173 MaybeAlign Actual(Value); 174 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 175 EXPECT_EQ(Expected, Actual); 176 } 177 } 178 MaybeAlign Actual(0); 179 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 180 EXPECT_EQ(Expected, Actual); 181 } 182 183 TEST(AlignmentTest, isAligned_isAddrAligned) { 184 struct { 185 uint64_t alignment; 186 uint64_t offset; 187 bool isAligned; 188 const void *forgedAddr() const { 189 // A value of any integral or enumeration type can be converted to a 190 // pointer type. 191 return reinterpret_cast<const void *>(offset); 192 } 193 } kTests[] = { 194 {1, 0, true}, {1, 1, true}, {1, 5, true}, {2, 0, true}, 195 {2, 1, false}, {2, 2, true}, {2, 7, false}, {2, 16, true}, 196 {4, 0, true}, {4, 1, false}, {4, 4, true}, {4, 6, false}, 197 }; 198 for (const auto &T : kTests) { 199 MaybeAlign A(T.alignment); 200 // Test MaybeAlign 201 EXPECT_EQ(isAligned(A, T.offset), T.isAligned); 202 // Test Align 203 if (A) { 204 EXPECT_EQ(isAligned(A.getValue(), T.offset), T.isAligned); 205 EXPECT_EQ(isAddrAligned(A.getValue(), T.forgedAddr()), T.isAligned); 206 } 207 } 208 } 209 210 TEST(AlignmentTest, offsetToAlignment) { 211 struct { 212 uint64_t alignment; 213 uint64_t offset; 214 uint64_t alignedOffset; 215 const void *forgedAddr() const { 216 // A value of any integral or enumeration type can be converted to a 217 // pointer type. 218 return reinterpret_cast<const void *>(offset); 219 } 220 } kTests[] = { 221 {1, 0, 0}, {1, 1, 0}, {1, 5, 0}, {2, 0, 0}, {2, 1, 1}, {2, 2, 0}, 222 {2, 7, 1}, {2, 16, 0}, {4, 0, 0}, {4, 1, 3}, {4, 4, 0}, {4, 6, 2}, 223 }; 224 for (const auto &T : kTests) { 225 const Align A(T.alignment); 226 EXPECT_EQ(offsetToAlignment(T.offset, A), T.alignedOffset); 227 EXPECT_EQ(offsetToAlignedAddr(T.forgedAddr(), A), T.alignedOffset); 228 } 229 } 230 231 TEST(AlignmentTest, AlignComparisons) { 232 std::vector<uint64_t> ValidAlignments = getValidAlignments(); 233 std::sort(ValidAlignments.begin(), ValidAlignments.end()); 234 for (size_t I = 1; I < ValidAlignments.size(); ++I) { 235 assert(I >= 1); 236 const Align A(ValidAlignments[I - 1]); 237 const Align B(ValidAlignments[I]); 238 EXPECT_EQ(A, A); 239 EXPECT_NE(A, B); 240 EXPECT_LT(A, B); 241 EXPECT_GT(B, A); 242 EXPECT_LE(A, B); 243 EXPECT_GE(B, A); 244 EXPECT_LE(A, A); 245 EXPECT_GE(A, A); 246 247 EXPECT_EQ(A, A.value()); 248 EXPECT_NE(A, B.value()); 249 EXPECT_LT(A, B.value()); 250 EXPECT_GT(B, A.value()); 251 EXPECT_LE(A, B.value()); 252 EXPECT_GE(B, A.value()); 253 EXPECT_LE(A, A.value()); 254 EXPECT_GE(A, A.value()); 255 256 EXPECT_EQ(std::max(A, B), B); 257 EXPECT_EQ(std::min(A, B), A); 258 259 const MaybeAlign MA(ValidAlignments[I - 1]); 260 const MaybeAlign MB(ValidAlignments[I]); 261 EXPECT_EQ(MA, MA); 262 EXPECT_NE(MA, MB); 263 EXPECT_LT(MA, MB); 264 EXPECT_GT(MB, MA); 265 EXPECT_LE(MA, MB); 266 EXPECT_GE(MB, MA); 267 EXPECT_LE(MA, MA); 268 EXPECT_GE(MA, MA); 269 270 EXPECT_EQ(MA, MA ? (*MA).value() : 0); 271 EXPECT_NE(MA, MB ? (*MB).value() : 0); 272 EXPECT_LT(MA, MB ? (*MB).value() : 0); 273 EXPECT_GT(MB, MA ? (*MA).value() : 0); 274 EXPECT_LE(MA, MB ? (*MB).value() : 0); 275 EXPECT_GE(MB, MA ? (*MA).value() : 0); 276 EXPECT_LE(MA, MA ? (*MA).value() : 0); 277 EXPECT_GE(MA, MA ? (*MA).value() : 0); 278 279 EXPECT_EQ(std::max(A, B), B); 280 EXPECT_EQ(std::min(A, B), A); 281 } 282 } 283 284 TEST(AlignmentTest, Max) { 285 // We introduce std::max here to test ADL. 286 using std::max; 287 288 // Uses llvm::max. 289 EXPECT_EQ(max(MaybeAlign(), Align(2)), Align(2)); 290 EXPECT_EQ(max(Align(2), MaybeAlign()), Align(2)); 291 292 EXPECT_EQ(max(MaybeAlign(1), Align(2)), Align(2)); 293 EXPECT_EQ(max(Align(2), MaybeAlign(1)), Align(2)); 294 295 EXPECT_EQ(max(MaybeAlign(2), Align(2)), Align(2)); 296 EXPECT_EQ(max(Align(2), MaybeAlign(2)), Align(2)); 297 298 EXPECT_EQ(max(MaybeAlign(4), Align(2)), Align(4)); 299 EXPECT_EQ(max(Align(2), MaybeAlign(4)), Align(4)); 300 301 // Uses std::max. 302 EXPECT_EQ(max(Align(2), Align(4)), Align(4)); 303 EXPECT_EQ(max(MaybeAlign(2), MaybeAlign(4)), MaybeAlign(4)); 304 EXPECT_EQ(max(MaybeAlign(), MaybeAlign()), MaybeAlign()); 305 } 306 307 TEST(AlignmentTest, AssumeAligned) { 308 EXPECT_EQ(assumeAligned(0), Align(1)); 309 EXPECT_EQ(assumeAligned(0), Align()); 310 EXPECT_EQ(assumeAligned(1), Align(1)); 311 EXPECT_EQ(assumeAligned(1), Align()); 312 } 313 314 // Death tests reply on assert which is disabled in release mode. 315 #ifndef NDEBUG 316 317 // We use a subset of valid alignments for DEATH_TESTs as they are particularly 318 // slow. 319 std::vector<uint64_t> getValidAlignmentsForDeathTest() { 320 return {1, 1ULL << 31, 1ULL << 63}; 321 } 322 323 std::vector<uint64_t> getNonPowerOfTwo() { return {3, 10, 15}; } 324 325 TEST(AlignmentDeathTest, Log2) { 326 EXPECT_DEATH(Log2(MaybeAlign(0)), ".* should be defined"); 327 } 328 329 TEST(AlignmentDeathTest, CantConvertUnsetMaybe) { 330 EXPECT_DEATH((MaybeAlign(0).getValue()), ".*"); 331 } 332 333 TEST(AlignmentDeathTest, Division) { 334 EXPECT_DEATH(Align(1) / 2, "Can't halve byte alignment"); 335 EXPECT_DEATH(MaybeAlign(1) / 2, "Can't halve byte alignment"); 336 337 EXPECT_DEATH(Align(8) / 0, "Divisor must be positive and a power of 2"); 338 EXPECT_DEATH(Align(8) / 3, "Divisor must be positive and a power of 2"); 339 } 340 341 TEST(AlignmentDeathTest, InvalidCTors) { 342 EXPECT_DEATH((Align(0)), "Value must not be 0"); 343 for (uint64_t Value : getNonPowerOfTwo()) { 344 EXPECT_DEATH((Align(Value)), "Alignment is not a power of 2"); 345 EXPECT_DEATH((MaybeAlign(Value)), 346 "Alignment is neither 0 nor a power of 2"); 347 } 348 } 349 350 TEST(AlignmentDeathTest, ComparisonsWithZero) { 351 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 352 EXPECT_DEATH((void)(Align(Value) == 0), ".* should be defined"); 353 EXPECT_DEATH((void)(Align(Value) != 0), ".* should be defined"); 354 EXPECT_DEATH((void)(Align(Value) >= 0), ".* should be defined"); 355 EXPECT_DEATH((void)(Align(Value) <= 0), ".* should be defined"); 356 EXPECT_DEATH((void)(Align(Value) > 0), ".* should be defined"); 357 EXPECT_DEATH((void)(Align(Value) < 0), ".* should be defined"); 358 } 359 } 360 361 TEST(AlignmentDeathTest, CompareMaybeAlignToZero) { 362 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 363 // MaybeAlign is allowed to be == or != 0 364 (void)(MaybeAlign(Value) == 0); 365 (void)(MaybeAlign(Value) != 0); 366 EXPECT_DEATH((void)(MaybeAlign(Value) >= 0), ".* should be defined"); 367 EXPECT_DEATH((void)(MaybeAlign(Value) <= 0), ".* should be defined"); 368 EXPECT_DEATH((void)(MaybeAlign(Value) > 0), ".* should be defined"); 369 EXPECT_DEATH((void)(MaybeAlign(Value) < 0), ".* should be defined"); 370 } 371 } 372 373 TEST(AlignmentDeathTest, CompareAlignToUndefMaybeAlign) { 374 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 375 EXPECT_DEATH((void)(Align(Value) == MaybeAlign(0)), ".* should be defined"); 376 EXPECT_DEATH((void)(Align(Value) != MaybeAlign(0)), ".* should be defined"); 377 EXPECT_DEATH((void)(Align(Value) >= MaybeAlign(0)), ".* should be defined"); 378 EXPECT_DEATH((void)(Align(Value) <= MaybeAlign(0)), ".* should be defined"); 379 EXPECT_DEATH((void)(Align(Value) > MaybeAlign(0)), ".* should be defined"); 380 EXPECT_DEATH((void)(Align(Value) < MaybeAlign(0)), ".* should be defined"); 381 } 382 } 383 384 TEST(AlignmentDeathTest, AlignAddr) { 385 const void *const unaligned_high_ptr = 386 reinterpret_cast<const void *>(std::numeric_limits<uintptr_t>::max() - 1); 387 EXPECT_DEATH(alignAddr(unaligned_high_ptr, Align(16)), "Overflow"); 388 } 389 390 #endif // NDEBUG 391 392 } // end anonymous namespace 393 394 #ifdef _MSC_VER 395 #pragma warning(pop) 396 #endif 397