1 //=== - llvm/unittest/Support/Alignment.cpp - Alignment utility tests -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/Alignment.h" 10 #include "gtest/gtest.h" 11 12 #include <vector> 13 14 #ifdef _MSC_VER 15 // Disable warnings about potential divide by 0. 16 #pragma warning(push) 17 #pragma warning(disable : 4723) 18 #endif 19 20 using namespace llvm; 21 22 namespace { 23 24 TEST(AlignmentTest, AlignOfConstant) { 25 EXPECT_EQ(Align::Of<uint8_t>(), Align(alignof(uint8_t))); 26 EXPECT_EQ(Align::Of<uint16_t>(), Align(alignof(uint16_t))); 27 EXPECT_EQ(Align::Of<uint32_t>(), Align(alignof(uint32_t))); 28 EXPECT_EQ(Align::Of<uint64_t>(), Align(alignof(uint64_t))); 29 } 30 31 TEST(AlignmentTest, AlignConstant) { 32 EXPECT_EQ(Align::Constant<1>(), Align(1)); 33 EXPECT_EQ(Align::Constant<2>(), Align(2)); 34 EXPECT_EQ(Align::Constant<4>(), Align(4)); 35 EXPECT_EQ(Align::Constant<8>(), Align(8)); 36 EXPECT_EQ(Align::Constant<16>(), Align(16)); 37 EXPECT_EQ(Align::Constant<32>(), Align(32)); 38 EXPECT_EQ(Align::Constant<64>(), Align(64)); 39 } 40 41 TEST(AlignmentTest, AlignConstexprConstant) { 42 constexpr Align kConstantAlign = Align::Of<uint64_t>(); 43 EXPECT_EQ(Align(alignof(uint64_t)), kConstantAlign); 44 } 45 46 std::vector<uint64_t> getValidAlignments() { 47 std::vector<uint64_t> Out; 48 for (size_t Shift = 0; Shift < 64; ++Shift) 49 Out.push_back(1ULL << Shift); 50 return Out; 51 } 52 53 TEST(AlignmentTest, AlignDefaultCTor) { 54 EXPECT_EQ(Align().value(), 1ULL); 55 } 56 57 TEST(AlignmentTest, MaybeAlignDefaultCTor) { 58 EXPECT_FALSE(MaybeAlign().hasValue()); 59 } 60 61 TEST(AlignmentTest, ValidCTors) { 62 for (uint64_t Value : getValidAlignments()) { 63 EXPECT_EQ(Align(Value).value(), Value); 64 EXPECT_EQ((*MaybeAlign(Value)).value(), Value); 65 } 66 } 67 68 TEST(AlignmentTest, CheckMaybeAlignHasValue) { 69 EXPECT_TRUE(MaybeAlign(1)); 70 EXPECT_TRUE(MaybeAlign(1).hasValue()); 71 EXPECT_FALSE(MaybeAlign(0)); 72 EXPECT_FALSE(MaybeAlign(0).hasValue()); 73 EXPECT_FALSE(MaybeAlign()); 74 EXPECT_FALSE(MaybeAlign().hasValue()); 75 } 76 77 TEST(AlignmentTest, Division) { 78 for (uint64_t Value : getValidAlignments()) { 79 if (Value > 1) { 80 EXPECT_EQ(Align(Value).previous(), Value / 2); 81 } 82 } 83 } 84 85 TEST(AlignmentTest, AlignTo) { 86 struct { 87 uint64_t alignment; 88 uint64_t offset; 89 uint64_t rounded; 90 const void *forgedAddr() const { 91 // A value of any integral or enumeration type can be converted to a 92 // pointer type. 93 return reinterpret_cast<const void *>(offset); 94 } 95 } kTests[] = { 96 // Align 97 {1, 0, 0}, 98 {1, 1, 1}, 99 {1, 5, 5}, 100 {2, 0, 0}, 101 {2, 1, 2}, 102 {2, 2, 2}, 103 {2, 7, 8}, 104 {2, 16, 16}, 105 {4, 0, 0}, 106 {4, 1, 4}, 107 {4, 4, 4}, 108 {4, 6, 8}, 109 }; 110 for (const auto &T : kTests) { 111 Align A = Align(T.alignment); 112 EXPECT_EQ(alignTo(T.offset, A), T.rounded); 113 EXPECT_EQ(alignAddr(T.forgedAddr(), A), T.rounded); 114 } 115 } 116 117 TEST(AlignmentTest, AlignToWithSkew) { 118 EXPECT_EQ(alignTo(5, Align(8), 0), alignTo(5, Align(8))); 119 EXPECT_EQ(alignTo(5, Align(8), 7), 7U); 120 EXPECT_EQ(alignTo(17, Align(8), 1), 17U); 121 EXPECT_EQ(alignTo(~0LL, Align(8), 3), 3U); 122 } 123 124 TEST(AlignmentTest, Log2) { 125 for (uint64_t Value : getValidAlignments()) { 126 EXPECT_EQ(Log2(Align(Value)), Log2_64(Value)); 127 } 128 } 129 130 TEST(AlignmentTest, MinAlign) { 131 struct { 132 uint64_t A; 133 uint64_t B; 134 uint64_t MinAlign; 135 } kTests[] = { 136 // MaybeAlign 137 {0, 0, 0}, 138 {0, 8, 8}, 139 {2, 0, 2}, 140 // MaybeAlign / Align 141 {1, 2, 1}, 142 {8, 4, 4}, 143 }; 144 for (const auto &T : kTests) { 145 EXPECT_EQ(commonAlignment(MaybeAlign(T.A), MaybeAlign(T.B)), T.MinAlign); 146 EXPECT_EQ(MinAlign(T.A, T.B), T.MinAlign); 147 if (T.A) { 148 EXPECT_EQ(commonAlignment(Align(T.A), MaybeAlign(T.B)), T.MinAlign); 149 } 150 if (T.B) { 151 EXPECT_EQ(commonAlignment(MaybeAlign(T.A), Align(T.B)), T.MinAlign); 152 } 153 if (T.A && T.B) { 154 EXPECT_EQ(commonAlignment(Align(T.A), Align(T.B)), T.MinAlign); 155 } 156 } 157 } 158 159 TEST(AlignmentTest, Encode_Decode) { 160 for (uint64_t Value : getValidAlignments()) { 161 { 162 Align Actual(Value); 163 Align Expected = decodeMaybeAlign(encode(Actual)).getValue(); 164 EXPECT_EQ(Expected, Actual); 165 } 166 { 167 MaybeAlign Actual(Value); 168 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 169 EXPECT_EQ(Expected, Actual); 170 } 171 } 172 MaybeAlign Actual(0); 173 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 174 EXPECT_EQ(Expected, Actual); 175 } 176 177 TEST(AlignmentTest, isAligned_isAddrAligned) { 178 struct { 179 uint64_t alignment; 180 uint64_t offset; 181 bool isAligned; 182 const void *forgedAddr() const { 183 // A value of any integral or enumeration type can be converted to a 184 // pointer type. 185 return reinterpret_cast<const void *>(offset); 186 } 187 } kTests[] = { 188 {1, 0, true}, {1, 1, true}, {1, 5, true}, {2, 0, true}, 189 {2, 1, false}, {2, 2, true}, {2, 7, false}, {2, 16, true}, 190 {4, 0, true}, {4, 1, false}, {4, 4, true}, {4, 6, false}, 191 }; 192 for (const auto &T : kTests) { 193 MaybeAlign A(T.alignment); 194 // Test Align 195 if (A) { 196 EXPECT_EQ(isAligned(A.getValue(), T.offset), T.isAligned); 197 EXPECT_EQ(isAddrAligned(A.getValue(), T.forgedAddr()), T.isAligned); 198 } 199 } 200 } 201 202 TEST(AlignmentTest, offsetToAlignment) { 203 struct { 204 uint64_t alignment; 205 uint64_t offset; 206 uint64_t alignedOffset; 207 const void *forgedAddr() const { 208 // A value of any integral or enumeration type can be converted to a 209 // pointer type. 210 return reinterpret_cast<const void *>(offset); 211 } 212 } kTests[] = { 213 {1, 0, 0}, {1, 1, 0}, {1, 5, 0}, {2, 0, 0}, {2, 1, 1}, {2, 2, 0}, 214 {2, 7, 1}, {2, 16, 0}, {4, 0, 0}, {4, 1, 3}, {4, 4, 0}, {4, 6, 2}, 215 }; 216 for (const auto &T : kTests) { 217 const Align A(T.alignment); 218 EXPECT_EQ(offsetToAlignment(T.offset, A), T.alignedOffset); 219 EXPECT_EQ(offsetToAlignedAddr(T.forgedAddr(), A), T.alignedOffset); 220 } 221 } 222 223 TEST(AlignmentTest, AlignComparisons) { 224 std::vector<uint64_t> ValidAlignments = getValidAlignments(); 225 std::sort(ValidAlignments.begin(), ValidAlignments.end()); 226 for (size_t I = 1; I < ValidAlignments.size(); ++I) { 227 assert(I >= 1); 228 const Align A(ValidAlignments[I - 1]); 229 const Align B(ValidAlignments[I]); 230 EXPECT_EQ(A, A); 231 EXPECT_NE(A, B); 232 EXPECT_LT(A, B); 233 EXPECT_GT(B, A); 234 EXPECT_LE(A, B); 235 EXPECT_GE(B, A); 236 EXPECT_LE(A, A); 237 EXPECT_GE(A, A); 238 239 EXPECT_EQ(A, A.value()); 240 EXPECT_NE(A, B.value()); 241 EXPECT_LT(A, B.value()); 242 EXPECT_GT(B, A.value()); 243 EXPECT_LE(A, B.value()); 244 EXPECT_GE(B, A.value()); 245 EXPECT_LE(A, A.value()); 246 EXPECT_GE(A, A.value()); 247 248 EXPECT_EQ(std::max(A, B), B); 249 EXPECT_EQ(std::min(A, B), A); 250 251 const MaybeAlign MA(ValidAlignments[I - 1]); 252 const MaybeAlign MB(ValidAlignments[I]); 253 EXPECT_EQ(MA, MA); 254 EXPECT_NE(MA, MB); 255 256 EXPECT_EQ(MA, MA ? (*MA).value() : 0); 257 EXPECT_NE(MA, MB ? (*MB).value() : 0); 258 259 EXPECT_EQ(std::max(A, B), B); 260 EXPECT_EQ(std::min(A, B), A); 261 } 262 } 263 264 TEST(AlignmentTest, AssumeAligned) { 265 EXPECT_EQ(assumeAligned(0), Align(1)); 266 EXPECT_EQ(assumeAligned(0), Align()); 267 EXPECT_EQ(assumeAligned(1), Align(1)); 268 EXPECT_EQ(assumeAligned(1), Align()); 269 } 270 271 // Death tests reply on assert which is disabled in release mode. 272 #ifndef NDEBUG 273 274 // We use a subset of valid alignments for DEATH_TESTs as they are particularly 275 // slow. 276 std::vector<uint64_t> getValidAlignmentsForDeathTest() { 277 return {1, 1ULL << 31, 1ULL << 63}; 278 } 279 280 std::vector<uint64_t> getNonPowerOfTwo() { return {3, 10, 15}; } 281 282 TEST(AlignmentDeathTest, CantConvertUnsetMaybe) { 283 EXPECT_DEATH((MaybeAlign(0).getValue()), ".*"); 284 } 285 286 TEST(AlignmentDeathTest, InvalidCTors) { 287 EXPECT_DEATH((Align(0)), "Value must not be 0"); 288 for (uint64_t Value : getNonPowerOfTwo()) { 289 EXPECT_DEATH((Align(Value)), "Alignment is not a power of 2"); 290 EXPECT_DEATH((MaybeAlign(Value)), 291 "Alignment is neither 0 nor a power of 2"); 292 } 293 } 294 295 TEST(AlignmentDeathTest, ComparisonsWithZero) { 296 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 297 EXPECT_DEATH((void)(Align(Value) == 0), ".* should be defined"); 298 EXPECT_DEATH((void)(Align(Value) != 0), ".* should be defined"); 299 EXPECT_DEATH((void)(Align(Value) >= 0), ".* should be defined"); 300 EXPECT_DEATH((void)(Align(Value) <= 0), ".* should be defined"); 301 EXPECT_DEATH((void)(Align(Value) > 0), ".* should be defined"); 302 EXPECT_DEATH((void)(Align(Value) < 0), ".* should be defined"); 303 } 304 } 305 306 TEST(AlignmentDeathTest, CompareMaybeAlignToZero) { 307 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 308 // MaybeAlign is allowed to be == or != 0 309 (void)(MaybeAlign(Value) == 0); 310 (void)(MaybeAlign(Value) != 0); 311 } 312 } 313 314 TEST(AlignmentDeathTest, AlignAddr) { 315 const void *const unaligned_high_ptr = 316 reinterpret_cast<const void *>(std::numeric_limits<uintptr_t>::max() - 1); 317 EXPECT_DEATH(alignAddr(unaligned_high_ptr, Align(16)), "Overflow"); 318 } 319 320 #endif // NDEBUG 321 322 } // end anonymous namespace 323 324 #ifdef _MSC_VER 325 #pragma warning(pop) 326 #endif 327