xref: /llvm-project/llvm/unittests/Support/AlignmentTest.cpp (revision a060a1782e2303d79dd1f3b61336608023a4c6c9)
1 //=== - llvm/unittest/Support/Alignment.cpp - Alignment utility tests -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Support/Alignment.h"
10 #include "gtest/gtest.h"
11 
12 #include <vector>
13 
14 #ifdef _MSC_VER
15 // Disable warnings about potential divide by 0.
16 #pragma warning(push)
17 #pragma warning(disable : 4723)
18 #endif
19 
20 using namespace llvm;
21 
22 namespace {
23 
24 TEST(AlignmentTest, AlignOfConstant) {
25   EXPECT_EQ(Align::Of<uint8_t>(), Align(alignof(uint8_t)));
26   EXPECT_EQ(Align::Of<uint16_t>(), Align(alignof(uint16_t)));
27   EXPECT_EQ(Align::Of<uint32_t>(), Align(alignof(uint32_t)));
28   EXPECT_EQ(Align::Of<uint64_t>(), Align(alignof(uint64_t)));
29 }
30 
31 TEST(AlignmentTest, AlignConstant) {
32   EXPECT_EQ(Align::Constant<1>(), Align(1));
33   EXPECT_EQ(Align::Constant<2>(), Align(2));
34   EXPECT_EQ(Align::Constant<4>(), Align(4));
35   EXPECT_EQ(Align::Constant<8>(), Align(8));
36   EXPECT_EQ(Align::Constant<16>(), Align(16));
37   EXPECT_EQ(Align::Constant<32>(), Align(32));
38   EXPECT_EQ(Align::Constant<64>(), Align(64));
39 }
40 
41 TEST(AlignmentTest, AlignConstexprConstant) {
42   constexpr Align kConstantAlign = Align::Of<uint64_t>();
43   EXPECT_EQ(Align(alignof(uint64_t)), kConstantAlign);
44 }
45 
46 std::vector<uint64_t> getValidAlignments() {
47   std::vector<uint64_t> Out;
48   for (size_t Shift = 0; Shift < 64; ++Shift)
49     Out.push_back(1ULL << Shift);
50   return Out;
51 }
52 
53 TEST(AlignmentTest, AlignDefaultCTor) {
54   EXPECT_EQ(Align().value(), 1ULL);
55 }
56 
57 TEST(AlignmentTest, MaybeAlignDefaultCTor) {
58   EXPECT_FALSE(MaybeAlign().hasValue());
59 }
60 
61 TEST(AlignmentTest, ValidCTors) {
62   for (uint64_t Value : getValidAlignments()) {
63     EXPECT_EQ(Align(Value).value(), Value);
64     EXPECT_EQ((*MaybeAlign(Value)).value(), Value);
65   }
66 }
67 
68 TEST(AlignmentTest, CheckMaybeAlignHasValue) {
69   EXPECT_TRUE(MaybeAlign(1));
70   EXPECT_TRUE(MaybeAlign(1).hasValue());
71   EXPECT_FALSE(MaybeAlign(0));
72   EXPECT_FALSE(MaybeAlign(0).hasValue());
73   EXPECT_FALSE(MaybeAlign());
74   EXPECT_FALSE(MaybeAlign().hasValue());
75 }
76 
77 TEST(AlignmentTest, Division) {
78   for (uint64_t Value : getValidAlignments()) {
79     if (Value > 1) {
80       EXPECT_EQ(Align(Value) / 2, Value / 2);
81       EXPECT_EQ(MaybeAlign(Value) / 2, Value / 2);
82     }
83   }
84   EXPECT_EQ(MaybeAlign(0) / 2, MaybeAlign(0));
85 }
86 
87 TEST(AlignmentTest, AlignTo) {
88   struct {
89     uint64_t alignment;
90     uint64_t offset;
91     uint64_t rounded;
92     const void *forgedAddr() const {
93       //  A value of any integral or enumeration type can be converted to a
94       //  pointer type.
95       return reinterpret_cast<const void *>(offset);
96     }
97   } kTests[] = {
98       // MaybeAlign
99       {0, 0, 0},
100       {0, 1, 1},
101       {0, 5, 5},
102       // MaybeAlign / Align
103       {1, 0, 0},
104       {1, 1, 1},
105       {1, 5, 5},
106       {2, 0, 0},
107       {2, 1, 2},
108       {2, 2, 2},
109       {2, 7, 8},
110       {2, 16, 16},
111       {4, 0, 0},
112       {4, 1, 4},
113       {4, 4, 4},
114       {4, 6, 8},
115   };
116   for (const auto &T : kTests) {
117     MaybeAlign A(T.alignment);
118     // Test MaybeAlign
119     EXPECT_EQ(alignTo(T.offset, A), T.rounded);
120     // Test Align
121     if (A) {
122       EXPECT_EQ(alignTo(T.offset, A.getValue()), T.rounded);
123       EXPECT_EQ(alignAddr(T.forgedAddr(), A.getValue()), T.rounded);
124     }
125   }
126 }
127 
128 TEST(AlignmentTest, AlignToWithSkew) {
129   EXPECT_EQ(alignTo(5, Align(8), 0), alignTo(5, Align(8)));
130   EXPECT_EQ(alignTo(5, Align(8), 7), 7U);
131   EXPECT_EQ(alignTo(17, Align(8), 1), 17U);
132   EXPECT_EQ(alignTo(~0LL, Align(8), 3), 3U);
133 }
134 
135 TEST(AlignmentTest, Log2) {
136   for (uint64_t Value : getValidAlignments()) {
137     EXPECT_EQ(Log2(Align(Value)), Log2_64(Value));
138     EXPECT_EQ(Log2(MaybeAlign(Value)), Log2_64(Value));
139   }
140 }
141 
142 TEST(AlignmentTest, MinAlign) {
143   struct {
144     uint64_t A;
145     uint64_t B;
146     uint64_t MinAlign;
147   } kTests[] = {
148       // MaybeAlign
149       {0, 0, 0},
150       {0, 8, 8},
151       {2, 0, 2},
152       // MaybeAlign / Align
153       {1, 2, 1},
154       {8, 4, 4},
155   };
156   for (const auto &T : kTests) {
157     EXPECT_EQ(commonAlignment(MaybeAlign(T.A), MaybeAlign(T.B)), T.MinAlign);
158     EXPECT_EQ(MinAlign(T.A, T.B), T.MinAlign);
159     if (T.A) {
160       EXPECT_EQ(commonAlignment(Align(T.A), MaybeAlign(T.B)), T.MinAlign);
161     }
162     if (T.B) {
163       EXPECT_EQ(commonAlignment(MaybeAlign(T.A), Align(T.B)), T.MinAlign);
164     }
165     if (T.A && T.B) {
166       EXPECT_EQ(commonAlignment(Align(T.A), Align(T.B)), T.MinAlign);
167     }
168   }
169 }
170 
171 TEST(AlignmentTest, Encode_Decode) {
172   for (uint64_t Value : getValidAlignments()) {
173     {
174       Align Actual(Value);
175       Align Expected = decodeMaybeAlign(encode(Actual)).getValue();
176       EXPECT_EQ(Expected, Actual);
177     }
178     {
179       MaybeAlign Actual(Value);
180       MaybeAlign Expected = decodeMaybeAlign(encode(Actual));
181       EXPECT_EQ(Expected, Actual);
182     }
183   }
184   MaybeAlign Actual(0);
185   MaybeAlign Expected = decodeMaybeAlign(encode(Actual));
186   EXPECT_EQ(Expected, Actual);
187 }
188 
189 TEST(AlignmentTest, isAligned_isAddrAligned) {
190   struct {
191     uint64_t alignment;
192     uint64_t offset;
193     bool isAligned;
194     const void *forgedAddr() const {
195       //  A value of any integral or enumeration type can be converted to a
196       //  pointer type.
197       return reinterpret_cast<const void *>(offset);
198     }
199   } kTests[] = {
200       {1, 0, true},  {1, 1, true},  {1, 5, true},  {2, 0, true},
201       {2, 1, false}, {2, 2, true},  {2, 7, false}, {2, 16, true},
202       {4, 0, true},  {4, 1, false}, {4, 4, true},  {4, 6, false},
203   };
204   for (const auto &T : kTests) {
205     MaybeAlign A(T.alignment);
206     // Test MaybeAlign
207     EXPECT_EQ(isAligned(A, T.offset), T.isAligned);
208     // Test Align
209     if (A) {
210       EXPECT_EQ(isAligned(A.getValue(), T.offset), T.isAligned);
211       EXPECT_EQ(isAddrAligned(A.getValue(), T.forgedAddr()), T.isAligned);
212     }
213   }
214 }
215 
216 TEST(AlignmentTest, offsetToAlignment) {
217   struct {
218     uint64_t alignment;
219     uint64_t offset;
220     uint64_t alignedOffset;
221     const void *forgedAddr() const {
222       //  A value of any integral or enumeration type can be converted to a
223       //  pointer type.
224       return reinterpret_cast<const void *>(offset);
225     }
226   } kTests[] = {
227       {1, 0, 0}, {1, 1, 0},  {1, 5, 0}, {2, 0, 0}, {2, 1, 1}, {2, 2, 0},
228       {2, 7, 1}, {2, 16, 0}, {4, 0, 0}, {4, 1, 3}, {4, 4, 0}, {4, 6, 2},
229   };
230   for (const auto &T : kTests) {
231     const Align A(T.alignment);
232     EXPECT_EQ(offsetToAlignment(T.offset, A), T.alignedOffset);
233     EXPECT_EQ(offsetToAlignedAddr(T.forgedAddr(), A), T.alignedOffset);
234   }
235 }
236 
237 TEST(AlignmentTest, AlignComparisons) {
238   std::vector<uint64_t> ValidAlignments = getValidAlignments();
239   std::sort(ValidAlignments.begin(), ValidAlignments.end());
240   for (size_t I = 1; I < ValidAlignments.size(); ++I) {
241     assert(I >= 1);
242     const Align A(ValidAlignments[I - 1]);
243     const Align B(ValidAlignments[I]);
244     EXPECT_EQ(A, A);
245     EXPECT_NE(A, B);
246     EXPECT_LT(A, B);
247     EXPECT_GT(B, A);
248     EXPECT_LE(A, B);
249     EXPECT_GE(B, A);
250     EXPECT_LE(A, A);
251     EXPECT_GE(A, A);
252 
253     EXPECT_EQ(A, A.value());
254     EXPECT_NE(A, B.value());
255     EXPECT_LT(A, B.value());
256     EXPECT_GT(B, A.value());
257     EXPECT_LE(A, B.value());
258     EXPECT_GE(B, A.value());
259     EXPECT_LE(A, A.value());
260     EXPECT_GE(A, A.value());
261 
262     EXPECT_EQ(std::max(A, B), B);
263     EXPECT_EQ(std::min(A, B), A);
264 
265     const MaybeAlign MA(ValidAlignments[I - 1]);
266     const MaybeAlign MB(ValidAlignments[I]);
267     EXPECT_EQ(MA, MA);
268     EXPECT_NE(MA, MB);
269     EXPECT_LT(MA, MB);
270     EXPECT_GT(MB, MA);
271     EXPECT_LE(MA, MB);
272     EXPECT_GE(MB, MA);
273     EXPECT_LE(MA, MA);
274     EXPECT_GE(MA, MA);
275 
276     EXPECT_EQ(MA, MA ? (*MA).value() : 0);
277     EXPECT_NE(MA, MB ? (*MB).value() : 0);
278     EXPECT_LT(MA, MB ? (*MB).value() : 0);
279     EXPECT_GT(MB, MA ? (*MA).value() : 0);
280     EXPECT_LE(MA, MB ? (*MB).value() : 0);
281     EXPECT_GE(MB, MA ? (*MA).value() : 0);
282     EXPECT_LE(MA, MA ? (*MA).value() : 0);
283     EXPECT_GE(MA, MA ? (*MA).value() : 0);
284 
285     EXPECT_EQ(std::max(A, B), B);
286     EXPECT_EQ(std::min(A, B), A);
287   }
288 }
289 
290 TEST(AlignmentTest, Max) {
291   // We introduce std::max here to test ADL.
292   using std::max;
293 
294   // Uses llvm::max.
295   EXPECT_EQ(max(MaybeAlign(), Align(2)), Align(2));
296   EXPECT_EQ(max(Align(2), MaybeAlign()), Align(2));
297 
298   EXPECT_EQ(max(MaybeAlign(1), Align(2)), Align(2));
299   EXPECT_EQ(max(Align(2), MaybeAlign(1)), Align(2));
300 
301   EXPECT_EQ(max(MaybeAlign(2), Align(2)), Align(2));
302   EXPECT_EQ(max(Align(2), MaybeAlign(2)), Align(2));
303 
304   EXPECT_EQ(max(MaybeAlign(4), Align(2)), Align(4));
305   EXPECT_EQ(max(Align(2), MaybeAlign(4)), Align(4));
306 
307   // Uses std::max.
308   EXPECT_EQ(max(Align(2), Align(4)), Align(4));
309   EXPECT_EQ(max(MaybeAlign(2), MaybeAlign(4)), MaybeAlign(4));
310   EXPECT_EQ(max(MaybeAlign(), MaybeAlign()), MaybeAlign());
311 }
312 
313 TEST(AlignmentTest, AssumeAligned) {
314   EXPECT_EQ(assumeAligned(0), Align(1));
315   EXPECT_EQ(assumeAligned(0), Align());
316   EXPECT_EQ(assumeAligned(1), Align(1));
317   EXPECT_EQ(assumeAligned(1), Align());
318 }
319 
320 // Death tests reply on assert which is disabled in release mode.
321 #ifndef NDEBUG
322 
323 // We use a subset of valid alignments for DEATH_TESTs as they are particularly
324 // slow.
325 std::vector<uint64_t> getValidAlignmentsForDeathTest() {
326   return {1, 1ULL << 31, 1ULL << 63};
327 }
328 
329 std::vector<uint64_t> getNonPowerOfTwo() { return {3, 10, 15}; }
330 
331 TEST(AlignmentDeathTest, Log2) {
332   EXPECT_DEATH(Log2(MaybeAlign(0)), ".* should be defined");
333 }
334 
335 TEST(AlignmentDeathTest, CantConvertUnsetMaybe) {
336   EXPECT_DEATH((MaybeAlign(0).getValue()), ".*");
337 }
338 
339 TEST(AlignmentDeathTest, Division) {
340   EXPECT_DEATH(Align(1) / 2, "Can't halve byte alignment");
341   EXPECT_DEATH(MaybeAlign(1) / 2, "Can't halve byte alignment");
342 
343   EXPECT_DEATH(Align(8) / 0, "Divisor must be positive and a power of 2");
344   EXPECT_DEATH(Align(8) / 3, "Divisor must be positive and a power of 2");
345 }
346 
347 TEST(AlignmentDeathTest, InvalidCTors) {
348   EXPECT_DEATH((Align(0)), "Value must not be 0");
349   for (uint64_t Value : getNonPowerOfTwo()) {
350     EXPECT_DEATH((Align(Value)), "Alignment is not a power of 2");
351     EXPECT_DEATH((MaybeAlign(Value)),
352                  "Alignment is neither 0 nor a power of 2");
353   }
354 }
355 
356 TEST(AlignmentDeathTest, ComparisonsWithZero) {
357   for (uint64_t Value : getValidAlignmentsForDeathTest()) {
358     EXPECT_DEATH((void)(Align(Value) == 0), ".* should be defined");
359     EXPECT_DEATH((void)(Align(Value) != 0), ".* should be defined");
360     EXPECT_DEATH((void)(Align(Value) >= 0), ".* should be defined");
361     EXPECT_DEATH((void)(Align(Value) <= 0), ".* should be defined");
362     EXPECT_DEATH((void)(Align(Value) > 0), ".* should be defined");
363     EXPECT_DEATH((void)(Align(Value) < 0), ".* should be defined");
364   }
365 }
366 
367 TEST(AlignmentDeathTest, CompareMaybeAlignToZero) {
368   for (uint64_t Value : getValidAlignmentsForDeathTest()) {
369     // MaybeAlign is allowed to be == or != 0
370     (void)(MaybeAlign(Value) == 0);
371     (void)(MaybeAlign(Value) != 0);
372     EXPECT_DEATH((void)(MaybeAlign(Value) >= 0), ".* should be defined");
373     EXPECT_DEATH((void)(MaybeAlign(Value) <= 0), ".* should be defined");
374     EXPECT_DEATH((void)(MaybeAlign(Value) > 0), ".* should be defined");
375     EXPECT_DEATH((void)(MaybeAlign(Value) < 0), ".* should be defined");
376   }
377 }
378 
379 TEST(AlignmentDeathTest, CompareAlignToUndefMaybeAlign) {
380   for (uint64_t Value : getValidAlignmentsForDeathTest()) {
381     EXPECT_DEATH((void)(Align(Value) == MaybeAlign(0)), ".* should be defined");
382     EXPECT_DEATH((void)(Align(Value) != MaybeAlign(0)), ".* should be defined");
383     EXPECT_DEATH((void)(Align(Value) >= MaybeAlign(0)), ".* should be defined");
384     EXPECT_DEATH((void)(Align(Value) <= MaybeAlign(0)), ".* should be defined");
385     EXPECT_DEATH((void)(Align(Value) > MaybeAlign(0)), ".* should be defined");
386     EXPECT_DEATH((void)(Align(Value) < MaybeAlign(0)), ".* should be defined");
387   }
388 }
389 
390 TEST(AlignmentDeathTest, AlignAddr) {
391   const void *const unaligned_high_ptr =
392       reinterpret_cast<const void *>(std::numeric_limits<uintptr_t>::max() - 1);
393   EXPECT_DEATH(alignAddr(unaligned_high_ptr, Align(16)), "Overflow");
394 }
395 
396 #endif // NDEBUG
397 
398 } // end anonymous namespace
399 
400 #ifdef _MSC_VER
401 #pragma warning(pop)
402 #endif
403