1 //=== - llvm/unittest/Support/Alignment.cpp - Alignment utility tests -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/Alignment.h" 10 #include "gtest/gtest.h" 11 12 #include <vector> 13 14 #ifdef _MSC_VER 15 // Disable warnings about potential divide by 0. 16 #pragma warning(push) 17 #pragma warning(disable : 4723) 18 #endif 19 20 using namespace llvm; 21 22 namespace { 23 24 TEST(AlignmentTest, AlignOfConstant) { 25 EXPECT_EQ(Align::Of<uint8_t>(), Align(alignof(uint8_t))); 26 EXPECT_EQ(Align::Of<uint16_t>(), Align(alignof(uint16_t))); 27 EXPECT_EQ(Align::Of<uint32_t>(), Align(alignof(uint32_t))); 28 EXPECT_EQ(Align::Of<uint64_t>(), Align(alignof(uint64_t))); 29 } 30 31 TEST(AlignmentTest, AlignConstant) { 32 EXPECT_EQ(Align::Constant<1>(), Align(1)); 33 EXPECT_EQ(Align::Constant<2>(), Align(2)); 34 EXPECT_EQ(Align::Constant<4>(), Align(4)); 35 EXPECT_EQ(Align::Constant<8>(), Align(8)); 36 EXPECT_EQ(Align::Constant<16>(), Align(16)); 37 EXPECT_EQ(Align::Constant<32>(), Align(32)); 38 EXPECT_EQ(Align::Constant<64>(), Align(64)); 39 } 40 41 TEST(AlignmentTest, AlignConstexprConstant) { 42 constexpr Align kConstantAlign = Align::Of<uint64_t>(); 43 EXPECT_EQ(Align(alignof(uint64_t)), kConstantAlign); 44 } 45 46 std::vector<uint64_t> getValidAlignments() { 47 std::vector<uint64_t> Out; 48 for (size_t Shift = 0; Shift < 64; ++Shift) 49 Out.push_back(1ULL << Shift); 50 return Out; 51 } 52 53 TEST(AlignmentTest, AlignDefaultCTor) { EXPECT_EQ(Align().value(), 1ULL); } 54 55 TEST(AlignmentTest, MaybeAlignDefaultCTor) { 56 EXPECT_FALSE(MaybeAlign().hasValue()); 57 } 58 59 TEST(AlignmentTest, ValidCTors) { 60 for (uint64_t Value : getValidAlignments()) { 61 EXPECT_EQ(Align(Value).value(), Value); 62 EXPECT_EQ((*MaybeAlign(Value)).value(), Value); 63 } 64 } 65 66 TEST(AlignmentTest, CheckMaybeAlignHasValue) { 67 EXPECT_TRUE(MaybeAlign(1)); 68 EXPECT_TRUE(MaybeAlign(1).hasValue()); 69 EXPECT_FALSE(MaybeAlign(0)); 70 EXPECT_FALSE(MaybeAlign(0).hasValue()); 71 EXPECT_FALSE(MaybeAlign()); 72 EXPECT_FALSE(MaybeAlign().hasValue()); 73 } 74 75 TEST(AlignmentTest, Division) { 76 for (uint64_t Value : getValidAlignments()) { 77 if (Value > 1) { 78 EXPECT_EQ(Align(Value).previous(), Value / 2); 79 } 80 } 81 } 82 83 TEST(AlignmentTest, AlignTo) { 84 struct { 85 uint64_t alignment; 86 uint64_t offset; 87 uint64_t rounded; 88 const void *forgedAddr() const { 89 // A value of any integral or enumeration type can be converted to a 90 // pointer type. 91 return reinterpret_cast<const void *>(offset); 92 } 93 } kTests[] = { 94 // Align 95 {1, 0, 0}, {1, 1, 1}, {1, 5, 5}, {2, 0, 0}, {2, 1, 2}, {2, 2, 2}, 96 {2, 7, 8}, {2, 16, 16}, {4, 0, 0}, {4, 1, 4}, {4, 4, 4}, {4, 6, 8}, 97 }; 98 for (const auto &T : kTests) { 99 Align A = Align(T.alignment); 100 EXPECT_EQ(alignTo(T.offset, A), T.rounded); 101 EXPECT_EQ(alignAddr(T.forgedAddr(), A), T.rounded); 102 } 103 } 104 105 TEST(AlignmentTest, AlignToWithSkew) { 106 EXPECT_EQ(alignTo(5, Align(8), 0), alignTo(5, Align(8))); 107 EXPECT_EQ(alignTo(5, Align(8), 7), 7U); 108 EXPECT_EQ(alignTo(17, Align(8), 1), 17U); 109 EXPECT_EQ(alignTo(~0LL, Align(8), 3), 3U); 110 } 111 112 TEST(AlignmentTest, Log2) { 113 for (uint64_t Value : getValidAlignments()) { 114 EXPECT_EQ(Log2(Align(Value)), Log2_64(Value)); 115 } 116 } 117 118 TEST(AlignmentTest, MinAlign) { 119 struct { 120 uint64_t A; 121 uint64_t B; 122 uint64_t MinAlign; 123 } kTests[] = { 124 {1, 2, 1}, 125 {8, 4, 4}, 126 }; 127 for (const auto &T : kTests) { 128 EXPECT_EQ(MinAlign(T.A, T.B), T.MinAlign); 129 EXPECT_EQ(commonAlignment(Align(T.A), Align(T.B)), T.MinAlign); 130 } 131 } 132 133 TEST(AlignmentTest, Encode_Decode) { 134 for (uint64_t Value : getValidAlignments()) { 135 { 136 Align Actual(Value); 137 Align Expected = decodeMaybeAlign(encode(Actual)).getValue(); 138 EXPECT_EQ(Expected, Actual); 139 } 140 { 141 MaybeAlign Actual(Value); 142 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 143 EXPECT_EQ(Expected, Actual); 144 } 145 } 146 MaybeAlign Actual(0); 147 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 148 EXPECT_EQ(Expected, Actual); 149 } 150 151 TEST(AlignmentTest, isAligned_isAddrAligned) { 152 struct { 153 uint64_t alignment; 154 uint64_t offset; 155 bool isAligned; 156 const void *forgedAddr() const { 157 // A value of any integral or enumeration type can be converted to a 158 // pointer type. 159 return reinterpret_cast<const void *>(offset); 160 } 161 } kTests[] = { 162 {1, 0, true}, {1, 1, true}, {1, 5, true}, {2, 0, true}, 163 {2, 1, false}, {2, 2, true}, {2, 7, false}, {2, 16, true}, 164 {4, 0, true}, {4, 1, false}, {4, 4, true}, {4, 6, false}, 165 }; 166 for (const auto &T : kTests) { 167 MaybeAlign A(T.alignment); 168 // Test Align 169 if (A) { 170 EXPECT_EQ(isAligned(A.getValue(), T.offset), T.isAligned); 171 EXPECT_EQ(isAddrAligned(A.getValue(), T.forgedAddr()), T.isAligned); 172 } 173 } 174 } 175 176 TEST(AlignmentTest, offsetToAlignment) { 177 struct { 178 uint64_t alignment; 179 uint64_t offset; 180 uint64_t alignedOffset; 181 const void *forgedAddr() const { 182 // A value of any integral or enumeration type can be converted to a 183 // pointer type. 184 return reinterpret_cast<const void *>(offset); 185 } 186 } kTests[] = { 187 {1, 0, 0}, {1, 1, 0}, {1, 5, 0}, {2, 0, 0}, {2, 1, 1}, {2, 2, 0}, 188 {2, 7, 1}, {2, 16, 0}, {4, 0, 0}, {4, 1, 3}, {4, 4, 0}, {4, 6, 2}, 189 }; 190 for (const auto &T : kTests) { 191 const Align A(T.alignment); 192 EXPECT_EQ(offsetToAlignment(T.offset, A), T.alignedOffset); 193 EXPECT_EQ(offsetToAlignedAddr(T.forgedAddr(), A), T.alignedOffset); 194 } 195 } 196 197 TEST(AlignmentTest, AlignComparisons) { 198 std::vector<uint64_t> ValidAlignments = getValidAlignments(); 199 std::sort(ValidAlignments.begin(), ValidAlignments.end()); 200 for (size_t I = 1; I < ValidAlignments.size(); ++I) { 201 assert(I >= 1); 202 const Align A(ValidAlignments[I - 1]); 203 const Align B(ValidAlignments[I]); 204 EXPECT_EQ(A, A); 205 EXPECT_NE(A, B); 206 EXPECT_LT(A, B); 207 EXPECT_GT(B, A); 208 EXPECT_LE(A, B); 209 EXPECT_GE(B, A); 210 EXPECT_LE(A, A); 211 EXPECT_GE(A, A); 212 213 EXPECT_EQ(A, A.value()); 214 EXPECT_NE(A, B.value()); 215 EXPECT_LT(A, B.value()); 216 EXPECT_GT(B, A.value()); 217 EXPECT_LE(A, B.value()); 218 EXPECT_GE(B, A.value()); 219 EXPECT_LE(A, A.value()); 220 EXPECT_GE(A, A.value()); 221 222 EXPECT_EQ(std::max(A, B), B); 223 EXPECT_EQ(std::min(A, B), A); 224 225 const MaybeAlign MA(ValidAlignments[I - 1]); 226 const MaybeAlign MB(ValidAlignments[I]); 227 EXPECT_EQ(MA, MA); 228 EXPECT_NE(MA, MB); 229 230 EXPECT_EQ(std::max(A, B), B); 231 EXPECT_EQ(std::min(A, B), A); 232 } 233 } 234 235 TEST(AlignmentTest, AssumeAligned) { 236 EXPECT_EQ(assumeAligned(0), Align(1)); 237 EXPECT_EQ(assumeAligned(0), Align()); 238 EXPECT_EQ(assumeAligned(1), Align(1)); 239 EXPECT_EQ(assumeAligned(1), Align()); 240 } 241 242 // Death tests reply on assert which is disabled in release mode. 243 #ifndef NDEBUG 244 245 // We use a subset of valid alignments for DEATH_TESTs as they are particularly 246 // slow. 247 std::vector<uint64_t> getValidAlignmentsForDeathTest() { 248 return {1, 1ULL << 31, 1ULL << 63}; 249 } 250 251 std::vector<uint64_t> getNonPowerOfTwo() { return {3, 10, 15}; } 252 253 TEST(AlignmentDeathTest, CantConvertUnsetMaybe) { 254 EXPECT_DEATH((MaybeAlign(0).getValue()), ".*"); 255 } 256 257 TEST(AlignmentDeathTest, InvalidCTors) { 258 EXPECT_DEATH((Align(0)), "Value must not be 0"); 259 for (uint64_t Value : getNonPowerOfTwo()) { 260 EXPECT_DEATH((Align(Value)), "Alignment is not a power of 2"); 261 EXPECT_DEATH((MaybeAlign(Value)), 262 "Alignment is neither 0 nor a power of 2"); 263 } 264 } 265 266 TEST(AlignmentDeathTest, ComparisonsWithZero) { 267 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 268 EXPECT_DEATH((void)(Align(Value) == 0), ".* should be defined"); 269 EXPECT_DEATH((void)(Align(Value) != 0), ".* should be defined"); 270 EXPECT_DEATH((void)(Align(Value) >= 0), ".* should be defined"); 271 EXPECT_DEATH((void)(Align(Value) <= 0), ".* should be defined"); 272 EXPECT_DEATH((void)(Align(Value) > 0), ".* should be defined"); 273 EXPECT_DEATH((void)(Align(Value) < 0), ".* should be defined"); 274 } 275 } 276 277 TEST(AlignmentDeathTest, AlignAddr) { 278 const void *const unaligned_high_ptr = 279 reinterpret_cast<const void *>(std::numeric_limits<uintptr_t>::max() - 1); 280 EXPECT_DEATH(alignAddr(unaligned_high_ptr, Align(16)), "Overflow"); 281 } 282 283 #endif // NDEBUG 284 285 } // end anonymous namespace 286 287 #ifdef _MSC_VER 288 #pragma warning(pop) 289 #endif 290