1 //===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/IR/IRBuilder.h" 10 #include "llvm/IR/BasicBlock.h" 11 #include "llvm/IR/DIBuilder.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Function.h" 14 #include "llvm/IR/IntrinsicInst.h" 15 #include "llvm/IR/IntrinsicsAArch64.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/IR/MDBuilder.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/NoFolder.h" 20 #include "llvm/IR/Verifier.h" 21 #include "gmock/gmock.h" 22 #include "gtest/gtest.h" 23 24 using namespace llvm; 25 using ::testing::UnorderedElementsAre; 26 27 namespace { 28 29 class IRBuilderTest : public testing::Test { 30 protected: 31 void SetUp() override { 32 M.reset(new Module("MyModule", Ctx)); 33 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), 34 /*isVarArg=*/false); 35 F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); 36 BB = BasicBlock::Create(Ctx, "", F); 37 GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true, 38 GlobalValue::ExternalLinkage, nullptr); 39 } 40 41 void TearDown() override { 42 BB = nullptr; 43 M.reset(); 44 } 45 46 LLVMContext Ctx; 47 std::unique_ptr<Module> M; 48 Function *F; 49 BasicBlock *BB; 50 GlobalVariable *GV; 51 }; 52 53 TEST_F(IRBuilderTest, Intrinsics) { 54 IRBuilder<> Builder(BB); 55 Value *V; 56 Instruction *I; 57 CallInst *Call; 58 IntrinsicInst *II; 59 60 V = Builder.CreateLoad(GV->getValueType(), GV); 61 I = cast<Instruction>(Builder.CreateFAdd(V, V)); 62 I->setHasNoInfs(true); 63 I->setHasNoNaNs(false); 64 65 Call = Builder.CreateMinNum(V, V); 66 II = cast<IntrinsicInst>(Call); 67 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minnum); 68 69 Call = Builder.CreateMaxNum(V, V); 70 II = cast<IntrinsicInst>(Call); 71 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maxnum); 72 73 Call = Builder.CreateMinimum(V, V); 74 II = cast<IntrinsicInst>(Call); 75 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minimum); 76 77 Call = Builder.CreateMaximum(V, V); 78 II = cast<IntrinsicInst>(Call); 79 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maximum); 80 81 Call = Builder.CreateIntrinsic(Intrinsic::readcyclecounter, {}, {}); 82 II = cast<IntrinsicInst>(Call); 83 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::readcyclecounter); 84 85 Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V); 86 II = cast<IntrinsicInst>(Call); 87 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs); 88 EXPECT_FALSE(II->hasNoInfs()); 89 EXPECT_FALSE(II->hasNoNaNs()); 90 91 Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V, I); 92 II = cast<IntrinsicInst>(Call); 93 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs); 94 EXPECT_TRUE(II->hasNoInfs()); 95 EXPECT_FALSE(II->hasNoNaNs()); 96 97 Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V); 98 II = cast<IntrinsicInst>(Call); 99 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow); 100 EXPECT_FALSE(II->hasNoInfs()); 101 EXPECT_FALSE(II->hasNoNaNs()); 102 103 Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V, I); 104 II = cast<IntrinsicInst>(Call); 105 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow); 106 EXPECT_TRUE(II->hasNoInfs()); 107 EXPECT_FALSE(II->hasNoNaNs()); 108 109 Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}); 110 II = cast<IntrinsicInst>(Call); 111 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma); 112 EXPECT_FALSE(II->hasNoInfs()); 113 EXPECT_FALSE(II->hasNoNaNs()); 114 115 Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I); 116 II = cast<IntrinsicInst>(Call); 117 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma); 118 EXPECT_TRUE(II->hasNoInfs()); 119 EXPECT_FALSE(II->hasNoNaNs()); 120 121 Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I); 122 II = cast<IntrinsicInst>(Call); 123 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma); 124 EXPECT_TRUE(II->hasNoInfs()); 125 EXPECT_FALSE(II->hasNoNaNs()); 126 127 Call = Builder.CreateUnaryIntrinsic(Intrinsic::roundeven, V); 128 II = cast<IntrinsicInst>(Call); 129 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::roundeven); 130 EXPECT_FALSE(II->hasNoInfs()); 131 EXPECT_FALSE(II->hasNoNaNs()); 132 133 Call = Builder.CreateIntrinsic( 134 Intrinsic::set_rounding, {}, 135 {Builder.getInt32(static_cast<uint32_t>(RoundingMode::TowardZero))}); 136 II = cast<IntrinsicInst>(Call); 137 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::set_rounding); 138 } 139 140 TEST_F(IRBuilderTest, IntrinsicMangling) { 141 IRBuilder<> Builder(BB); 142 Type *VoidTy = Builder.getVoidTy(); 143 Type *Int64Ty = Builder.getInt64Ty(); 144 Value *Int64Val = Builder.getInt64(0); 145 Value *DoubleVal = PoisonValue::get(Builder.getDoubleTy()); 146 CallInst *Call; 147 148 // Mangled return type, no arguments. 149 Call = Builder.CreateIntrinsic(Int64Ty, Intrinsic::coro_size, {}); 150 EXPECT_EQ(Call->getCalledFunction()->getName(), "llvm.coro.size.i64"); 151 152 // Void return type, mangled argument type. 153 Call = 154 Builder.CreateIntrinsic(VoidTy, Intrinsic::set_loop_iterations, Int64Val); 155 EXPECT_EQ(Call->getCalledFunction()->getName(), 156 "llvm.set.loop.iterations.i64"); 157 158 // Mangled return type and argument type. 159 Call = Builder.CreateIntrinsic(Int64Ty, Intrinsic::lround, DoubleVal); 160 EXPECT_EQ(Call->getCalledFunction()->getName(), "llvm.lround.i64.f64"); 161 } 162 163 TEST_F(IRBuilderTest, IntrinsicsWithScalableVectors) { 164 IRBuilder<> Builder(BB); 165 CallInst *Call; 166 FunctionType *FTy; 167 168 // Test scalable flag isn't dropped for intrinsic that is explicitly defined 169 // with scalable vectors, e.g. LLVMType<nxv4i32>. 170 Type *SrcVecTy = VectorType::get(Builder.getHalfTy(), 8, true); 171 Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true); 172 Type *PredTy = VectorType::get(Builder.getInt1Ty(), 4, true); 173 174 SmallVector<Value*, 3> ArgTys; 175 ArgTys.push_back(UndefValue::get(DstVecTy)); 176 ArgTys.push_back(UndefValue::get(PredTy)); 177 ArgTys.push_back(UndefValue::get(SrcVecTy)); 178 179 Call = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fcvtzs_i32f16, {}, 180 ArgTys, nullptr, "aarch64.sve.fcvtzs.i32f16"); 181 FTy = Call->getFunctionType(); 182 EXPECT_EQ(FTy->getReturnType(), DstVecTy); 183 for (unsigned i = 0; i != ArgTys.size(); ++i) 184 EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType()); 185 186 // Test scalable flag isn't dropped for intrinsic defined with 187 // LLVMScalarOrSameVectorWidth. 188 189 Type *VecTy = VectorType::get(Builder.getInt32Ty(), 4, true); 190 Type *PtrToVecTy = VecTy->getPointerTo(); 191 PredTy = VectorType::get(Builder.getInt1Ty(), 4, true); 192 193 ArgTys.clear(); 194 ArgTys.push_back(UndefValue::get(PtrToVecTy)); 195 ArgTys.push_back(UndefValue::get(Builder.getInt32Ty())); 196 ArgTys.push_back(UndefValue::get(PredTy)); 197 ArgTys.push_back(UndefValue::get(VecTy)); 198 199 Call = Builder.CreateIntrinsic(Intrinsic::masked_load, 200 {VecTy, PtrToVecTy}, ArgTys, 201 nullptr, "masked.load"); 202 FTy = Call->getFunctionType(); 203 EXPECT_EQ(FTy->getReturnType(), VecTy); 204 for (unsigned i = 0; i != ArgTys.size(); ++i) 205 EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType()); 206 } 207 208 TEST_F(IRBuilderTest, CreateVScale) { 209 IRBuilder<> Builder(BB); 210 211 Constant *Zero = Builder.getInt32(0); 212 Value *VScale = Builder.CreateVScale(Zero); 213 EXPECT_TRUE(isa<ConstantInt>(VScale) && cast<ConstantInt>(VScale)->isZero()); 214 } 215 216 TEST_F(IRBuilderTest, CreateStepVector) { 217 IRBuilder<> Builder(BB); 218 219 // Fixed width vectors 220 Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, false); 221 Value *StepVec = Builder.CreateStepVector(DstVecTy); 222 EXPECT_TRUE(isa<Constant>(StepVec)); 223 EXPECT_EQ(StepVec->getType(), DstVecTy); 224 225 const auto *VectorValue = cast<Constant>(StepVec); 226 for (unsigned i = 0; i < 4; i++) { 227 EXPECT_TRUE(isa<ConstantInt>(VectorValue->getAggregateElement(i))); 228 ConstantInt *El = cast<ConstantInt>(VectorValue->getAggregateElement(i)); 229 EXPECT_EQ(El->getValue(), i); 230 } 231 232 // Scalable vectors 233 DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true); 234 StepVec = Builder.CreateStepVector(DstVecTy); 235 EXPECT_TRUE(isa<CallInst>(StepVec)); 236 CallInst *Call = cast<CallInst>(StepVec); 237 FunctionType *FTy = Call->getFunctionType(); 238 EXPECT_EQ(FTy->getReturnType(), DstVecTy); 239 EXPECT_EQ(Call->getIntrinsicID(), Intrinsic::experimental_stepvector); 240 } 241 242 TEST_F(IRBuilderTest, CreateStepVectorI3) { 243 IRBuilder<> Builder(BB); 244 245 // Scalable vectors 246 Type *DstVecTy = VectorType::get(IntegerType::get(Ctx, 3), 2, true); 247 Type *VecI8Ty = VectorType::get(Builder.getInt8Ty(), 2, true); 248 Value *StepVec = Builder.CreateStepVector(DstVecTy); 249 EXPECT_TRUE(isa<TruncInst>(StepVec)); 250 TruncInst *Trunc = cast<TruncInst>(StepVec); 251 EXPECT_EQ(Trunc->getDestTy(), DstVecTy); 252 EXPECT_EQ(Trunc->getSrcTy(), VecI8Ty); 253 EXPECT_TRUE(isa<CallInst>(Trunc->getOperand(0))); 254 255 CallInst *Call = cast<CallInst>(Trunc->getOperand(0)); 256 FunctionType *FTy = Call->getFunctionType(); 257 EXPECT_EQ(FTy->getReturnType(), VecI8Ty); 258 EXPECT_EQ(Call->getIntrinsicID(), Intrinsic::experimental_stepvector); 259 } 260 261 TEST_F(IRBuilderTest, ConstrainedFP) { 262 IRBuilder<> Builder(BB); 263 Value *V; 264 Value *VDouble; 265 Value *VInt; 266 CallInst *Call; 267 IntrinsicInst *II; 268 GlobalVariable *GVDouble = new GlobalVariable(*M, Type::getDoubleTy(Ctx), 269 true, GlobalValue::ExternalLinkage, nullptr); 270 271 V = Builder.CreateLoad(GV->getValueType(), GV); 272 VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble); 273 274 // See if we get constrained intrinsics instead of non-constrained 275 // instructions. 276 Builder.setIsFPConstrained(true); 277 auto Parent = BB->getParent(); 278 Parent->addFnAttr(Attribute::StrictFP); 279 280 V = Builder.CreateFAdd(V, V); 281 ASSERT_TRUE(isa<IntrinsicInst>(V)); 282 II = cast<IntrinsicInst>(V); 283 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fadd); 284 285 V = Builder.CreateFSub(V, V); 286 ASSERT_TRUE(isa<IntrinsicInst>(V)); 287 II = cast<IntrinsicInst>(V); 288 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fsub); 289 290 V = Builder.CreateFMul(V, V); 291 ASSERT_TRUE(isa<IntrinsicInst>(V)); 292 II = cast<IntrinsicInst>(V); 293 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fmul); 294 295 V = Builder.CreateFDiv(V, V); 296 ASSERT_TRUE(isa<IntrinsicInst>(V)); 297 II = cast<IntrinsicInst>(V); 298 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fdiv); 299 300 V = Builder.CreateFRem(V, V); 301 ASSERT_TRUE(isa<IntrinsicInst>(V)); 302 II = cast<IntrinsicInst>(V); 303 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_frem); 304 305 VInt = Builder.CreateFPToUI(VDouble, Builder.getInt32Ty()); 306 ASSERT_TRUE(isa<IntrinsicInst>(VInt)); 307 II = cast<IntrinsicInst>(VInt); 308 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptoui); 309 310 VInt = Builder.CreateFPToSI(VDouble, Builder.getInt32Ty()); 311 ASSERT_TRUE(isa<IntrinsicInst>(VInt)); 312 II = cast<IntrinsicInst>(VInt); 313 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptosi); 314 315 VDouble = Builder.CreateUIToFP(VInt, Builder.getDoubleTy()); 316 ASSERT_TRUE(isa<IntrinsicInst>(VDouble)); 317 II = cast<IntrinsicInst>(VDouble); 318 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_uitofp); 319 320 VDouble = Builder.CreateSIToFP(VInt, Builder.getDoubleTy()); 321 ASSERT_TRUE(isa<IntrinsicInst>(VDouble)); 322 II = cast<IntrinsicInst>(VDouble); 323 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_sitofp); 324 325 V = Builder.CreateFPTrunc(VDouble, Type::getFloatTy(Ctx)); 326 ASSERT_TRUE(isa<IntrinsicInst>(V)); 327 II = cast<IntrinsicInst>(V); 328 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptrunc); 329 330 VDouble = Builder.CreateFPExt(V, Type::getDoubleTy(Ctx)); 331 ASSERT_TRUE(isa<IntrinsicInst>(VDouble)); 332 II = cast<IntrinsicInst>(VDouble); 333 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fpext); 334 335 // Verify attributes on the call are created automatically. 336 AttributeSet CallAttrs = II->getAttributes().getFnAttrs(); 337 EXPECT_EQ(CallAttrs.hasAttribute(Attribute::StrictFP), true); 338 339 // Verify attributes on the containing function are created when requested. 340 Builder.setConstrainedFPFunctionAttr(); 341 AttributeList Attrs = BB->getParent()->getAttributes(); 342 AttributeSet FnAttrs = Attrs.getFnAttrs(); 343 EXPECT_EQ(FnAttrs.hasAttribute(Attribute::StrictFP), true); 344 345 // Verify the codepaths for setting and overriding the default metadata. 346 V = Builder.CreateFAdd(V, V); 347 ASSERT_TRUE(isa<ConstrainedFPIntrinsic>(V)); 348 auto *CII = cast<ConstrainedFPIntrinsic>(V); 349 EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior()); 350 EXPECT_EQ(RoundingMode::Dynamic, CII->getRoundingMode()); 351 352 Builder.setDefaultConstrainedExcept(fp::ebIgnore); 353 Builder.setDefaultConstrainedRounding(RoundingMode::TowardPositive); 354 V = Builder.CreateFAdd(V, V); 355 CII = cast<ConstrainedFPIntrinsic>(V); 356 EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior()); 357 EXPECT_EQ(CII->getRoundingMode(), RoundingMode::TowardPositive); 358 359 Builder.setDefaultConstrainedExcept(fp::ebIgnore); 360 Builder.setDefaultConstrainedRounding(RoundingMode::NearestTiesToEven); 361 V = Builder.CreateFAdd(V, V); 362 CII = cast<ConstrainedFPIntrinsic>(V); 363 EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior()); 364 EXPECT_EQ(RoundingMode::NearestTiesToEven, CII->getRoundingMode()); 365 366 Builder.setDefaultConstrainedExcept(fp::ebMayTrap); 367 Builder.setDefaultConstrainedRounding(RoundingMode::TowardNegative); 368 V = Builder.CreateFAdd(V, V); 369 CII = cast<ConstrainedFPIntrinsic>(V); 370 EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior()); 371 EXPECT_EQ(RoundingMode::TowardNegative, CII->getRoundingMode()); 372 373 Builder.setDefaultConstrainedExcept(fp::ebStrict); 374 Builder.setDefaultConstrainedRounding(RoundingMode::TowardZero); 375 V = Builder.CreateFAdd(V, V); 376 CII = cast<ConstrainedFPIntrinsic>(V); 377 EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior()); 378 EXPECT_EQ(RoundingMode::TowardZero, CII->getRoundingMode()); 379 380 Builder.setDefaultConstrainedExcept(fp::ebIgnore); 381 Builder.setDefaultConstrainedRounding(RoundingMode::Dynamic); 382 V = Builder.CreateFAdd(V, V); 383 CII = cast<ConstrainedFPIntrinsic>(V); 384 EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior()); 385 EXPECT_EQ(RoundingMode::Dynamic, CII->getRoundingMode()); 386 387 // Now override the defaults. 388 Call = Builder.CreateConstrainedFPBinOp( 389 Intrinsic::experimental_constrained_fadd, V, V, nullptr, "", nullptr, 390 RoundingMode::TowardNegative, fp::ebMayTrap); 391 CII = cast<ConstrainedFPIntrinsic>(Call); 392 EXPECT_EQ(CII->getIntrinsicID(), Intrinsic::experimental_constrained_fadd); 393 EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior()); 394 EXPECT_EQ(RoundingMode::TowardNegative, CII->getRoundingMode()); 395 396 Builder.CreateRetVoid(); 397 EXPECT_FALSE(verifyModule(*M)); 398 } 399 400 TEST_F(IRBuilderTest, ConstrainedFPIntrinsics) { 401 IRBuilder<> Builder(BB); 402 Value *V; 403 Value *VDouble; 404 ConstrainedFPIntrinsic *CII; 405 GlobalVariable *GVDouble = new GlobalVariable( 406 *M, Type::getDoubleTy(Ctx), true, GlobalValue::ExternalLinkage, nullptr); 407 VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble); 408 409 Builder.setDefaultConstrainedExcept(fp::ebStrict); 410 Builder.setDefaultConstrainedRounding(RoundingMode::TowardZero); 411 Function *Fn = Intrinsic::getDeclaration(M.get(), 412 Intrinsic::experimental_constrained_roundeven, { Type::getDoubleTy(Ctx) }); 413 V = Builder.CreateConstrainedFPCall(Fn, { VDouble }); 414 CII = cast<ConstrainedFPIntrinsic>(V); 415 EXPECT_EQ(Intrinsic::experimental_constrained_roundeven, CII->getIntrinsicID()); 416 EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior()); 417 } 418 419 TEST_F(IRBuilderTest, ConstrainedFPFunctionCall) { 420 IRBuilder<> Builder(BB); 421 422 // Create an empty constrained FP function. 423 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), 424 /*isVarArg=*/false); 425 Function *Callee = 426 Function::Create(FTy, Function::ExternalLinkage, "", M.get()); 427 BasicBlock *CalleeBB = BasicBlock::Create(Ctx, "", Callee); 428 IRBuilder<> CalleeBuilder(CalleeBB); 429 CalleeBuilder.setIsFPConstrained(true); 430 CalleeBuilder.setConstrainedFPFunctionAttr(); 431 CalleeBuilder.CreateRetVoid(); 432 433 // Now call the empty constrained FP function. 434 Builder.setIsFPConstrained(true); 435 Builder.setConstrainedFPFunctionAttr(); 436 CallInst *FCall = Builder.CreateCall(Callee, None); 437 438 // Check the attributes to verify the strictfp attribute is on the call. 439 EXPECT_TRUE( 440 FCall->getAttributes().getFnAttrs().hasAttribute(Attribute::StrictFP)); 441 442 Builder.CreateRetVoid(); 443 EXPECT_FALSE(verifyModule(*M)); 444 } 445 446 TEST_F(IRBuilderTest, Lifetime) { 447 IRBuilder<> Builder(BB); 448 AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty()); 449 AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty()); 450 AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(), 451 Builder.getInt32(123)); 452 453 CallInst *Start1 = Builder.CreateLifetimeStart(Var1); 454 CallInst *Start2 = Builder.CreateLifetimeStart(Var2); 455 CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100)); 456 457 EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1)); 458 EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1)); 459 EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100)); 460 461 EXPECT_EQ(Start1->getArgOperand(1), Var1); 462 EXPECT_EQ(Start2->getArgOperand(1)->stripPointerCasts(), Var2); 463 EXPECT_EQ(Start3->getArgOperand(1), Var3); 464 465 Value *End1 = Builder.CreateLifetimeEnd(Var1); 466 Builder.CreateLifetimeEnd(Var2); 467 Builder.CreateLifetimeEnd(Var3); 468 469 IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1); 470 IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1); 471 ASSERT_TRUE(II_Start1 != nullptr); 472 EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start); 473 ASSERT_TRUE(II_End1 != nullptr); 474 EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end); 475 } 476 477 TEST_F(IRBuilderTest, CreateCondBr) { 478 IRBuilder<> Builder(BB); 479 BasicBlock *TBB = BasicBlock::Create(Ctx, "", F); 480 BasicBlock *FBB = BasicBlock::Create(Ctx, "", F); 481 482 BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB); 483 Instruction *TI = BB->getTerminator(); 484 EXPECT_EQ(BI, TI); 485 EXPECT_EQ(2u, TI->getNumSuccessors()); 486 EXPECT_EQ(TBB, TI->getSuccessor(0)); 487 EXPECT_EQ(FBB, TI->getSuccessor(1)); 488 489 BI->eraseFromParent(); 490 MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13); 491 BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights); 492 TI = BB->getTerminator(); 493 EXPECT_EQ(BI, TI); 494 EXPECT_EQ(2u, TI->getNumSuccessors()); 495 EXPECT_EQ(TBB, TI->getSuccessor(0)); 496 EXPECT_EQ(FBB, TI->getSuccessor(1)); 497 EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof)); 498 } 499 500 TEST_F(IRBuilderTest, LandingPadName) { 501 IRBuilder<> Builder(BB); 502 LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), 0, "LP"); 503 EXPECT_EQ(LP->getName(), "LP"); 504 } 505 506 TEST_F(IRBuilderTest, DataLayout) { 507 std::unique_ptr<Module> M(new Module("test", Ctx)); 508 M->setDataLayout("e-n32"); 509 EXPECT_TRUE(M->getDataLayout().isLegalInteger(32)); 510 M->setDataLayout("e"); 511 EXPECT_FALSE(M->getDataLayout().isLegalInteger(32)); 512 } 513 514 TEST_F(IRBuilderTest, GetIntTy) { 515 IRBuilder<> Builder(BB); 516 IntegerType *Ty1 = Builder.getInt1Ty(); 517 EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1)); 518 519 DataLayout* DL = new DataLayout(M.get()); 520 IntegerType *IntPtrTy = Builder.getIntPtrTy(*DL); 521 unsigned IntPtrBitSize = DL->getPointerSizeInBits(0); 522 EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize)); 523 delete DL; 524 } 525 526 TEST_F(IRBuilderTest, UnaryOperators) { 527 IRBuilder<NoFolder> Builder(BB); 528 Value *V = Builder.CreateLoad(GV->getValueType(), GV); 529 530 // Test CreateUnOp(X) 531 Value *U = Builder.CreateUnOp(Instruction::FNeg, V); 532 ASSERT_TRUE(isa<Instruction>(U)); 533 ASSERT_TRUE(isa<FPMathOperator>(U)); 534 ASSERT_TRUE(isa<UnaryOperator>(U)); 535 ASSERT_FALSE(isa<BinaryOperator>(U)); 536 537 // Test CreateFNegFMF(X) 538 Instruction *I = cast<Instruction>(U); 539 I->setHasNoSignedZeros(true); 540 I->setHasNoNaNs(true); 541 Value *VFMF = Builder.CreateFNegFMF(V, I); 542 Instruction *IFMF = cast<Instruction>(VFMF); 543 EXPECT_TRUE(IFMF->hasNoSignedZeros()); 544 EXPECT_TRUE(IFMF->hasNoNaNs()); 545 EXPECT_FALSE(IFMF->hasAllowReassoc()); 546 } 547 548 TEST_F(IRBuilderTest, FastMathFlags) { 549 IRBuilder<> Builder(BB); 550 Value *F, *FC; 551 Instruction *FDiv, *FAdd, *FCmp, *FCall; 552 553 F = Builder.CreateLoad(GV->getValueType(), GV); 554 F = Builder.CreateFAdd(F, F); 555 556 EXPECT_FALSE(Builder.getFastMathFlags().any()); 557 ASSERT_TRUE(isa<Instruction>(F)); 558 FAdd = cast<Instruction>(F); 559 EXPECT_FALSE(FAdd->hasNoNaNs()); 560 561 FastMathFlags FMF; 562 Builder.setFastMathFlags(FMF); 563 564 // By default, no flags are set. 565 F = Builder.CreateFAdd(F, F); 566 EXPECT_FALSE(Builder.getFastMathFlags().any()); 567 ASSERT_TRUE(isa<Instruction>(F)); 568 FAdd = cast<Instruction>(F); 569 EXPECT_FALSE(FAdd->hasNoNaNs()); 570 EXPECT_FALSE(FAdd->hasNoInfs()); 571 EXPECT_FALSE(FAdd->hasNoSignedZeros()); 572 EXPECT_FALSE(FAdd->hasAllowReciprocal()); 573 EXPECT_FALSE(FAdd->hasAllowContract()); 574 EXPECT_FALSE(FAdd->hasAllowReassoc()); 575 EXPECT_FALSE(FAdd->hasApproxFunc()); 576 577 // Set all flags in the instruction. 578 FAdd->setFast(true); 579 EXPECT_TRUE(FAdd->hasNoNaNs()); 580 EXPECT_TRUE(FAdd->hasNoInfs()); 581 EXPECT_TRUE(FAdd->hasNoSignedZeros()); 582 EXPECT_TRUE(FAdd->hasAllowReciprocal()); 583 EXPECT_TRUE(FAdd->hasAllowContract()); 584 EXPECT_TRUE(FAdd->hasAllowReassoc()); 585 EXPECT_TRUE(FAdd->hasApproxFunc()); 586 587 // All flags are set in the builder. 588 FMF.setFast(); 589 Builder.setFastMathFlags(FMF); 590 591 F = Builder.CreateFAdd(F, F); 592 EXPECT_TRUE(Builder.getFastMathFlags().any()); 593 EXPECT_TRUE(Builder.getFastMathFlags().all()); 594 ASSERT_TRUE(isa<Instruction>(F)); 595 FAdd = cast<Instruction>(F); 596 EXPECT_TRUE(FAdd->hasNoNaNs()); 597 EXPECT_TRUE(FAdd->isFast()); 598 599 // Now, try it with CreateBinOp 600 F = Builder.CreateBinOp(Instruction::FAdd, F, F); 601 EXPECT_TRUE(Builder.getFastMathFlags().any()); 602 ASSERT_TRUE(isa<Instruction>(F)); 603 FAdd = cast<Instruction>(F); 604 EXPECT_TRUE(FAdd->hasNoNaNs()); 605 EXPECT_TRUE(FAdd->isFast()); 606 607 F = Builder.CreateFDiv(F, F); 608 EXPECT_TRUE(Builder.getFastMathFlags().all()); 609 ASSERT_TRUE(isa<Instruction>(F)); 610 FDiv = cast<Instruction>(F); 611 EXPECT_TRUE(FDiv->hasAllowReciprocal()); 612 613 // Clear all FMF in the builder. 614 Builder.clearFastMathFlags(); 615 616 F = Builder.CreateFDiv(F, F); 617 ASSERT_TRUE(isa<Instruction>(F)); 618 FDiv = cast<Instruction>(F); 619 EXPECT_FALSE(FDiv->hasAllowReciprocal()); 620 621 // Try individual flags. 622 FMF.clear(); 623 FMF.setAllowReciprocal(); 624 Builder.setFastMathFlags(FMF); 625 626 F = Builder.CreateFDiv(F, F); 627 EXPECT_TRUE(Builder.getFastMathFlags().any()); 628 EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal); 629 ASSERT_TRUE(isa<Instruction>(F)); 630 FDiv = cast<Instruction>(F); 631 EXPECT_TRUE(FDiv->hasAllowReciprocal()); 632 633 Builder.clearFastMathFlags(); 634 635 FC = Builder.CreateFCmpOEQ(F, F); 636 ASSERT_TRUE(isa<Instruction>(FC)); 637 FCmp = cast<Instruction>(FC); 638 EXPECT_FALSE(FCmp->hasAllowReciprocal()); 639 640 FMF.clear(); 641 FMF.setAllowReciprocal(); 642 Builder.setFastMathFlags(FMF); 643 644 FC = Builder.CreateFCmpOEQ(F, F); 645 EXPECT_TRUE(Builder.getFastMathFlags().any()); 646 EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal); 647 ASSERT_TRUE(isa<Instruction>(FC)); 648 FCmp = cast<Instruction>(FC); 649 EXPECT_TRUE(FCmp->hasAllowReciprocal()); 650 651 Builder.clearFastMathFlags(); 652 653 // Test FP-contract 654 FC = Builder.CreateFAdd(F, F); 655 ASSERT_TRUE(isa<Instruction>(FC)); 656 FAdd = cast<Instruction>(FC); 657 EXPECT_FALSE(FAdd->hasAllowContract()); 658 659 FMF.clear(); 660 FMF.setAllowContract(true); 661 Builder.setFastMathFlags(FMF); 662 663 FC = Builder.CreateFAdd(F, F); 664 EXPECT_TRUE(Builder.getFastMathFlags().any()); 665 EXPECT_TRUE(Builder.getFastMathFlags().AllowContract); 666 ASSERT_TRUE(isa<Instruction>(FC)); 667 FAdd = cast<Instruction>(FC); 668 EXPECT_TRUE(FAdd->hasAllowContract()); 669 670 FMF.setApproxFunc(); 671 Builder.clearFastMathFlags(); 672 Builder.setFastMathFlags(FMF); 673 // Now 'aml' and 'contract' are set. 674 F = Builder.CreateFMul(F, F); 675 FAdd = cast<Instruction>(F); 676 EXPECT_TRUE(FAdd->hasApproxFunc()); 677 EXPECT_TRUE(FAdd->hasAllowContract()); 678 EXPECT_FALSE(FAdd->hasAllowReassoc()); 679 680 FMF.setAllowReassoc(); 681 Builder.clearFastMathFlags(); 682 Builder.setFastMathFlags(FMF); 683 // Now 'aml' and 'contract' and 'reassoc' are set. 684 F = Builder.CreateFMul(F, F); 685 FAdd = cast<Instruction>(F); 686 EXPECT_TRUE(FAdd->hasApproxFunc()); 687 EXPECT_TRUE(FAdd->hasAllowContract()); 688 EXPECT_TRUE(FAdd->hasAllowReassoc()); 689 690 // Test a call with FMF. 691 auto CalleeTy = FunctionType::get(Type::getFloatTy(Ctx), 692 /*isVarArg=*/false); 693 auto Callee = 694 Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); 695 696 FCall = Builder.CreateCall(Callee, None); 697 EXPECT_FALSE(FCall->hasNoNaNs()); 698 699 Function *V = 700 Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); 701 FCall = Builder.CreateCall(V, None); 702 EXPECT_FALSE(FCall->hasNoNaNs()); 703 704 FMF.clear(); 705 FMF.setNoNaNs(); 706 Builder.setFastMathFlags(FMF); 707 708 FCall = Builder.CreateCall(Callee, None); 709 EXPECT_TRUE(Builder.getFastMathFlags().any()); 710 EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs); 711 EXPECT_TRUE(FCall->hasNoNaNs()); 712 713 FCall = Builder.CreateCall(V, None); 714 EXPECT_TRUE(Builder.getFastMathFlags().any()); 715 EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs); 716 EXPECT_TRUE(FCall->hasNoNaNs()); 717 718 Builder.clearFastMathFlags(); 719 720 // To test a copy, make sure that a '0' and a '1' change state. 721 F = Builder.CreateFDiv(F, F); 722 ASSERT_TRUE(isa<Instruction>(F)); 723 FDiv = cast<Instruction>(F); 724 EXPECT_FALSE(FDiv->getFastMathFlags().any()); 725 FDiv->setHasAllowReciprocal(true); 726 FAdd->setHasAllowReciprocal(false); 727 FAdd->setHasNoNaNs(true); 728 FDiv->copyFastMathFlags(FAdd); 729 EXPECT_TRUE(FDiv->hasNoNaNs()); 730 EXPECT_FALSE(FDiv->hasAllowReciprocal()); 731 732 } 733 734 TEST_F(IRBuilderTest, WrapFlags) { 735 IRBuilder<NoFolder> Builder(BB); 736 737 // Test instructions. 738 GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true, 739 GlobalValue::ExternalLinkage, nullptr); 740 Value *V = Builder.CreateLoad(G->getValueType(), G); 741 EXPECT_TRUE( 742 cast<BinaryOperator>(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap()); 743 EXPECT_TRUE( 744 cast<BinaryOperator>(Builder.CreateNSWMul(V, V))->hasNoSignedWrap()); 745 EXPECT_TRUE( 746 cast<BinaryOperator>(Builder.CreateNSWSub(V, V))->hasNoSignedWrap()); 747 EXPECT_TRUE(cast<BinaryOperator>( 748 Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true)) 749 ->hasNoSignedWrap()); 750 751 EXPECT_TRUE( 752 cast<BinaryOperator>(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap()); 753 EXPECT_TRUE( 754 cast<BinaryOperator>(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap()); 755 EXPECT_TRUE( 756 cast<BinaryOperator>(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap()); 757 EXPECT_TRUE(cast<BinaryOperator>( 758 Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false)) 759 ->hasNoUnsignedWrap()); 760 761 // Test operators created with constants. 762 Constant *C = Builder.getInt32(42); 763 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWAdd(C, C)) 764 ->hasNoSignedWrap()); 765 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWSub(C, C)) 766 ->hasNoSignedWrap()); 767 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWMul(C, C)) 768 ->hasNoSignedWrap()); 769 EXPECT_TRUE(cast<OverflowingBinaryOperator>( 770 Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true)) 771 ->hasNoSignedWrap()); 772 773 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWAdd(C, C)) 774 ->hasNoUnsignedWrap()); 775 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWSub(C, C)) 776 ->hasNoUnsignedWrap()); 777 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWMul(C, C)) 778 ->hasNoUnsignedWrap()); 779 EXPECT_TRUE(cast<OverflowingBinaryOperator>( 780 Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false)) 781 ->hasNoUnsignedWrap()); 782 } 783 784 TEST_F(IRBuilderTest, RAIIHelpersTest) { 785 IRBuilder<> Builder(BB); 786 EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal()); 787 MDBuilder MDB(M->getContext()); 788 789 MDNode *FPMathA = MDB.createFPMath(0.01f); 790 MDNode *FPMathB = MDB.createFPMath(0.1f); 791 792 Builder.setDefaultFPMathTag(FPMathA); 793 794 { 795 IRBuilder<>::FastMathFlagGuard Guard(Builder); 796 FastMathFlags FMF; 797 FMF.setAllowReciprocal(); 798 Builder.setFastMathFlags(FMF); 799 Builder.setDefaultFPMathTag(FPMathB); 800 EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal()); 801 EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag()); 802 } 803 804 EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal()); 805 EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag()); 806 807 Value *F = Builder.CreateLoad(GV->getValueType(), GV); 808 809 { 810 IRBuilder<>::InsertPointGuard Guard(Builder); 811 Builder.SetInsertPoint(cast<Instruction>(F)); 812 EXPECT_EQ(F, &*Builder.GetInsertPoint()); 813 } 814 815 EXPECT_EQ(BB->end(), Builder.GetInsertPoint()); 816 EXPECT_EQ(BB, Builder.GetInsertBlock()); 817 } 818 819 TEST_F(IRBuilderTest, createFunction) { 820 IRBuilder<> Builder(BB); 821 DIBuilder DIB(*M); 822 auto File = DIB.createFile("error.swift", "/"); 823 auto CU = 824 DIB.createCompileUnit(dwarf::DW_LANG_Swift, File, "swiftc", true, "", 0); 825 auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 826 auto NoErr = DIB.createFunction( 827 CU, "noerr", "", File, 1, Type, 1, DINode::FlagZero, 828 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 829 EXPECT_TRUE(!NoErr->getThrownTypes()); 830 auto Int = DIB.createBasicType("Int", 64, dwarf::DW_ATE_signed); 831 auto Error = DIB.getOrCreateArray({Int}); 832 auto Err = DIB.createFunction( 833 CU, "err", "", File, 1, Type, 1, DINode::FlagZero, 834 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized, nullptr, 835 nullptr, Error.get()); 836 EXPECT_TRUE(Err->getThrownTypes().get() == Error.get()); 837 DIB.finalize(); 838 } 839 840 TEST_F(IRBuilderTest, DIBuilder) { 841 IRBuilder<> Builder(BB); 842 DIBuilder DIB(*M); 843 auto File = DIB.createFile("F.CBL", "/"); 844 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74, 845 DIB.createFile("F.CBL", "/"), "llvm-cobol74", 846 true, "", 0); 847 auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 848 auto SP = DIB.createFunction( 849 CU, "foo", "", File, 1, Type, 1, DINode::FlagZero, 850 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 851 F->setSubprogram(SP); 852 AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty()); 853 auto BarSP = DIB.createFunction( 854 CU, "bar", "", File, 1, Type, 1, DINode::FlagZero, 855 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 856 auto BadScope = DIB.createLexicalBlockFile(BarSP, File, 0); 857 I->setDebugLoc(DILocation::get(Ctx, 2, 0, BadScope)); 858 DIB.finalize(); 859 EXPECT_TRUE(verifyModule(*M)); 860 } 861 862 TEST_F(IRBuilderTest, createArtificialSubprogram) { 863 IRBuilder<> Builder(BB); 864 DIBuilder DIB(*M); 865 auto File = DIB.createFile("main.c", "/"); 866 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "clang", 867 /*isOptimized=*/true, /*Flags=*/"", 868 /*Runtime Version=*/0); 869 auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 870 auto SP = DIB.createFunction( 871 CU, "foo", /*LinkageName=*/"", File, 872 /*LineNo=*/1, Type, /*ScopeLine=*/2, DINode::FlagZero, 873 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 874 EXPECT_TRUE(SP->isDistinct()); 875 876 F->setSubprogram(SP); 877 AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty()); 878 ReturnInst *R = Builder.CreateRetVoid(); 879 I->setDebugLoc(DILocation::get(Ctx, 3, 2, SP)); 880 R->setDebugLoc(DILocation::get(Ctx, 4, 2, SP)); 881 DIB.finalize(); 882 EXPECT_FALSE(verifyModule(*M)); 883 884 Function *G = Function::Create(F->getFunctionType(), 885 Function::ExternalLinkage, "", M.get()); 886 BasicBlock *GBB = BasicBlock::Create(Ctx, "", G); 887 Builder.SetInsertPoint(GBB); 888 I->removeFromParent(); 889 Builder.Insert(I); 890 Builder.CreateRetVoid(); 891 EXPECT_FALSE(verifyModule(*M)); 892 893 DISubprogram *GSP = DIBuilder::createArtificialSubprogram(F->getSubprogram()); 894 EXPECT_EQ(SP->getFile(), GSP->getFile()); 895 EXPECT_EQ(SP->getType(), GSP->getType()); 896 EXPECT_EQ(SP->getLine(), GSP->getLine()); 897 EXPECT_EQ(SP->getScopeLine(), GSP->getScopeLine()); 898 EXPECT_TRUE(GSP->isDistinct()); 899 900 G->setSubprogram(GSP); 901 EXPECT_TRUE(verifyModule(*M)); 902 903 auto *InlinedAtNode = 904 DILocation::getDistinct(Ctx, GSP->getScopeLine(), 0, GSP); 905 DebugLoc DL = I->getDebugLoc(); 906 DenseMap<const MDNode *, MDNode *> IANodes; 907 auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, Ctx, IANodes); 908 auto NewDL = 909 DILocation::get(Ctx, DL.getLine(), DL.getCol(), DL.getScope(), IA); 910 I->setDebugLoc(NewDL); 911 EXPECT_FALSE(verifyModule(*M)); 912 913 EXPECT_EQ("foo", SP->getName()); 914 EXPECT_EQ("foo", GSP->getName()); 915 EXPECT_FALSE(SP->isArtificial()); 916 EXPECT_TRUE(GSP->isArtificial()); 917 } 918 919 // Check that we can add debug info to an existing DICompileUnit. 920 TEST_F(IRBuilderTest, appendDebugInfo) { 921 IRBuilder<> Builder(BB); 922 Builder.CreateRetVoid(); 923 EXPECT_FALSE(verifyModule(*M)); 924 925 auto GetNames = [](DICompileUnit *CU) { 926 SmallVector<StringRef> Names; 927 for (auto *ET : CU->getEnumTypes()) 928 Names.push_back(ET->getName()); 929 for (auto *RT : CU->getRetainedTypes()) 930 Names.push_back(RT->getName()); 931 for (auto *GV : CU->getGlobalVariables()) 932 Names.push_back(GV->getVariable()->getName()); 933 for (auto *IE : CU->getImportedEntities()) 934 Names.push_back(IE->getName()); 935 for (auto *Node : CU->getMacros()) 936 if (auto *MN = dyn_cast_or_null<DIMacro>(Node)) 937 Names.push_back(MN->getName()); 938 return Names; 939 }; 940 941 DICompileUnit *CU; 942 { 943 DIBuilder DIB(*M); 944 auto *File = DIB.createFile("main.c", "/"); 945 CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "clang", 946 /*isOptimized=*/true, /*Flags=*/"", 947 /*Runtime Version=*/0); 948 auto *ByteTy = DIB.createBasicType("byte0", 8, dwarf::DW_ATE_signed); 949 DIB.createEnumerationType(CU, "ET0", File, /*LineNo=*/0, /*SizeInBits=*/8, 950 /*AlignInBits=*/8, /*Elements=*/{}, ByteTy); 951 DIB.retainType(ByteTy); 952 DIB.createGlobalVariableExpression(CU, "GV0", /*LinkageName=*/"", File, 953 /*LineNo=*/1, ByteTy, 954 /*IsLocalToUnit=*/true); 955 DIB.createImportedDeclaration(CU, nullptr, File, /*LineNo=*/2, "IM0"); 956 DIB.createMacro(nullptr, /*LineNo=*/0, dwarf::DW_MACINFO_define, "M0"); 957 DIB.finalize(); 958 } 959 EXPECT_FALSE(verifyModule(*M)); 960 EXPECT_THAT(GetNames(CU), 961 UnorderedElementsAre("ET0", "byte0", "GV0", "IM0", "M0")); 962 963 { 964 DIBuilder DIB(*M, true, CU); 965 auto *File = CU->getFile(); 966 auto *ByteTy = DIB.createBasicType("byte1", 8, dwarf::DW_ATE_signed); 967 DIB.createEnumerationType(CU, "ET1", File, /*LineNo=*/0, 968 /*SizeInBits=*/8, /*AlignInBits=*/8, 969 /*Elements=*/{}, ByteTy); 970 DIB.retainType(ByteTy); 971 DIB.createGlobalVariableExpression(CU, "GV1", /*LinkageName=*/"", File, 972 /*LineNo=*/1, ByteTy, 973 /*IsLocalToUnit=*/true); 974 DIB.createImportedDeclaration(CU, nullptr, File, /*LineNo=*/2, "IM1"); 975 DIB.createMacro(nullptr, /*LineNo=*/0, dwarf::DW_MACINFO_define, "M1"); 976 DIB.finalize(); 977 } 978 EXPECT_FALSE(verifyModule(*M)); 979 EXPECT_THAT(GetNames(CU), 980 UnorderedElementsAre("ET0", "byte0", "GV0", "IM0", "M0", "ET1", 981 "byte1", "GV1", "IM1", "M1")); 982 } 983 984 TEST_F(IRBuilderTest, InsertExtractElement) { 985 IRBuilder<> Builder(BB); 986 987 auto VecTy = FixedVectorType::get(Builder.getInt64Ty(), 4); 988 auto Elt1 = Builder.getInt64(-1); 989 auto Elt2 = Builder.getInt64(-2); 990 Value *Vec = Builder.CreateInsertElement(VecTy, Elt1, Builder.getInt8(1)); 991 Vec = Builder.CreateInsertElement(Vec, Elt2, 2); 992 auto X1 = Builder.CreateExtractElement(Vec, 1); 993 auto X2 = Builder.CreateExtractElement(Vec, Builder.getInt32(2)); 994 EXPECT_EQ(Elt1, X1); 995 EXPECT_EQ(Elt2, X2); 996 } 997 998 TEST_F(IRBuilderTest, CreateGlobalStringPtr) { 999 IRBuilder<> Builder(BB); 1000 1001 auto String1a = Builder.CreateGlobalStringPtr("TestString", "String1a"); 1002 auto String1b = Builder.CreateGlobalStringPtr("TestString", "String1b", 0); 1003 auto String2 = Builder.CreateGlobalStringPtr("TestString", "String2", 1); 1004 auto String3 = Builder.CreateGlobalString("TestString", "String3", 2); 1005 1006 EXPECT_TRUE(String1a->getType()->getPointerAddressSpace() == 0); 1007 EXPECT_TRUE(String1b->getType()->getPointerAddressSpace() == 0); 1008 EXPECT_TRUE(String2->getType()->getPointerAddressSpace() == 1); 1009 EXPECT_TRUE(String3->getType()->getPointerAddressSpace() == 2); 1010 } 1011 1012 TEST_F(IRBuilderTest, CreateThreadLocalAddress) { 1013 IRBuilder<> Builder(BB); 1014 1015 GlobalVariable *G = new GlobalVariable(*M, Builder.getInt64Ty(), /*isConstant*/true, 1016 GlobalValue::ExternalLinkage, nullptr, "", nullptr, 1017 GlobalValue::GeneralDynamicTLSModel); 1018 1019 Constant *CEBC = ConstantExpr::getBitCast(G, Builder.getInt8PtrTy()); 1020 // Tests that IRBuilder::CreateThreadLocalAddress wouldn't crash if its operand 1021 // is BitCast ConstExpr. The case should be eliminated after we eliminate the 1022 // abuse of constexpr. 1023 CallInst *CI = Builder.CreateThreadLocalAddress(CEBC); 1024 EXPECT_NE(CI, nullptr); 1025 } 1026 1027 TEST_F(IRBuilderTest, DebugLoc) { 1028 auto CalleeTy = FunctionType::get(Type::getVoidTy(Ctx), 1029 /*isVarArg=*/false); 1030 auto Callee = 1031 Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); 1032 1033 DIBuilder DIB(*M); 1034 auto File = DIB.createFile("tmp.cpp", "/"); 1035 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C_plus_plus_11, 1036 DIB.createFile("tmp.cpp", "/"), "", true, "", 1037 0); 1038 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1039 auto SP = 1040 DIB.createFunction(CU, "foo", "foo", File, 1, SPType, 1, DINode::FlagZero, 1041 DISubprogram::SPFlagDefinition); 1042 DebugLoc DL1 = DILocation::get(Ctx, 2, 0, SP); 1043 DebugLoc DL2 = DILocation::get(Ctx, 3, 0, SP); 1044 1045 auto BB2 = BasicBlock::Create(Ctx, "bb2", F); 1046 auto Br = BranchInst::Create(BB2, BB); 1047 Br->setDebugLoc(DL1); 1048 1049 IRBuilder<> Builder(Ctx); 1050 Builder.SetInsertPoint(Br); 1051 EXPECT_EQ(DL1, Builder.getCurrentDebugLocation()); 1052 auto Call1 = Builder.CreateCall(Callee, None); 1053 EXPECT_EQ(DL1, Call1->getDebugLoc()); 1054 1055 Call1->setDebugLoc(DL2); 1056 Builder.SetInsertPoint(Call1->getParent(), Call1->getIterator()); 1057 EXPECT_EQ(DL2, Builder.getCurrentDebugLocation()); 1058 auto Call2 = Builder.CreateCall(Callee, None); 1059 EXPECT_EQ(DL2, Call2->getDebugLoc()); 1060 1061 DIB.finalize(); 1062 } 1063 1064 TEST_F(IRBuilderTest, DIImportedEntity) { 1065 IRBuilder<> Builder(BB); 1066 DIBuilder DIB(*M); 1067 auto F = DIB.createFile("F.CBL", "/"); 1068 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74, 1069 F, "llvm-cobol74", 1070 true, "", 0); 1071 MDTuple *Elements = MDTuple::getDistinct(Ctx, None); 1072 1073 DIB.createImportedDeclaration(CU, nullptr, F, 1); 1074 DIB.createImportedDeclaration(CU, nullptr, F, 1); 1075 DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2); 1076 DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2); 1077 DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2, Elements); 1078 DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2, Elements); 1079 DIB.finalize(); 1080 EXPECT_TRUE(verifyModule(*M)); 1081 EXPECT_TRUE(CU->getImportedEntities().size() == 3); 1082 } 1083 1084 // 0: #define M0 V0 <-- command line definition 1085 // 0: main.c <-- main file 1086 // 3: #define M1 V1 <-- M1 definition in main.c 1087 // 5: #include "file.h" <-- inclusion of file.h from main.c 1088 // 1: #define M2 <-- M2 definition in file.h with no value 1089 // 7: #undef M1 V1 <-- M1 un-definition in main.c 1090 TEST_F(IRBuilderTest, DIBuilderMacro) { 1091 IRBuilder<> Builder(BB); 1092 DIBuilder DIB(*M); 1093 auto File1 = DIB.createFile("main.c", "/"); 1094 auto File2 = DIB.createFile("file.h", "/"); 1095 auto CU = DIB.createCompileUnit( 1096 dwarf::DW_LANG_C, DIB.createFile("main.c", "/"), "llvm-c", true, "", 0); 1097 auto MDef0 = 1098 DIB.createMacro(nullptr, 0, dwarf::DW_MACINFO_define, "M0", "V0"); 1099 auto TMF1 = DIB.createTempMacroFile(nullptr, 0, File1); 1100 auto MDef1 = DIB.createMacro(TMF1, 3, dwarf::DW_MACINFO_define, "M1", "V1"); 1101 auto TMF2 = DIB.createTempMacroFile(TMF1, 5, File2); 1102 auto MDef2 = DIB.createMacro(TMF2, 1, dwarf::DW_MACINFO_define, "M2"); 1103 auto MUndef1 = DIB.createMacro(TMF1, 7, dwarf::DW_MACINFO_undef, "M1"); 1104 1105 EXPECT_EQ(dwarf::DW_MACINFO_define, MDef1->getMacinfoType()); 1106 EXPECT_EQ(3u, MDef1->getLine()); 1107 EXPECT_EQ("M1", MDef1->getName()); 1108 EXPECT_EQ("V1", MDef1->getValue()); 1109 1110 EXPECT_EQ(dwarf::DW_MACINFO_undef, MUndef1->getMacinfoType()); 1111 EXPECT_EQ(7u, MUndef1->getLine()); 1112 EXPECT_EQ("M1", MUndef1->getName()); 1113 EXPECT_EQ("", MUndef1->getValue()); 1114 1115 EXPECT_EQ(dwarf::DW_MACINFO_start_file, TMF2->getMacinfoType()); 1116 EXPECT_EQ(5u, TMF2->getLine()); 1117 EXPECT_EQ(File2, TMF2->getFile()); 1118 1119 DIB.finalize(); 1120 1121 SmallVector<Metadata *, 4> Elements; 1122 Elements.push_back(MDef2); 1123 auto MF2 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 5, File2, 1124 DIB.getOrCreateMacroArray(Elements)); 1125 1126 Elements.clear(); 1127 Elements.push_back(MDef1); 1128 Elements.push_back(MF2); 1129 Elements.push_back(MUndef1); 1130 auto MF1 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 0, File1, 1131 DIB.getOrCreateMacroArray(Elements)); 1132 1133 Elements.clear(); 1134 Elements.push_back(MDef0); 1135 Elements.push_back(MF1); 1136 auto MN0 = MDTuple::get(Ctx, Elements); 1137 EXPECT_EQ(MN0, CU->getRawMacros()); 1138 1139 Elements.clear(); 1140 Elements.push_back(MDef1); 1141 Elements.push_back(MF2); 1142 Elements.push_back(MUndef1); 1143 auto MN1 = MDTuple::get(Ctx, Elements); 1144 EXPECT_EQ(MN1, MF1->getRawElements()); 1145 1146 Elements.clear(); 1147 Elements.push_back(MDef2); 1148 auto MN2 = MDTuple::get(Ctx, Elements); 1149 EXPECT_EQ(MN2, MF2->getRawElements()); 1150 EXPECT_TRUE(verifyModule(*M)); 1151 } 1152 1153 TEST_F(IRBuilderTest, NoFolderNames) { 1154 IRBuilder<NoFolder> Builder(BB); 1155 auto *Add = 1156 Builder.CreateAdd(Builder.getInt32(1), Builder.getInt32(2), "add"); 1157 EXPECT_EQ(Add->getName(), "add"); 1158 } 1159 } 1160