1 //===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/IR/IRBuilder.h" 11 #include "llvm/IR/BasicBlock.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/DIBuilder.h" 14 #include "llvm/IR/Function.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/IR/MDBuilder.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/NoFolder.h" 20 #include "llvm/IR/Verifier.h" 21 #include "gtest/gtest.h" 22 23 using namespace llvm; 24 25 namespace { 26 27 class IRBuilderTest : public testing::Test { 28 protected: 29 void SetUp() override { 30 M.reset(new Module("MyModule", Ctx)); 31 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), 32 /*isVarArg=*/false); 33 F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); 34 BB = BasicBlock::Create(Ctx, "", F); 35 GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true, 36 GlobalValue::ExternalLinkage, nullptr); 37 } 38 39 void TearDown() override { 40 BB = nullptr; 41 M.reset(); 42 } 43 44 LLVMContext Ctx; 45 std::unique_ptr<Module> M; 46 Function *F; 47 BasicBlock *BB; 48 GlobalVariable *GV; 49 }; 50 51 TEST_F(IRBuilderTest, Lifetime) { 52 IRBuilder<> Builder(BB); 53 AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty()); 54 AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty()); 55 AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(), 56 Builder.getInt32(123)); 57 58 CallInst *Start1 = Builder.CreateLifetimeStart(Var1); 59 CallInst *Start2 = Builder.CreateLifetimeStart(Var2); 60 CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100)); 61 62 EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1)); 63 EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1)); 64 EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100)); 65 66 EXPECT_EQ(Start1->getArgOperand(1), Var1); 67 EXPECT_NE(Start2->getArgOperand(1), Var2); 68 EXPECT_EQ(Start3->getArgOperand(1), Var3); 69 70 Value *End1 = Builder.CreateLifetimeEnd(Var1); 71 Builder.CreateLifetimeEnd(Var2); 72 Builder.CreateLifetimeEnd(Var3); 73 74 IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1); 75 IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1); 76 ASSERT_TRUE(II_Start1 != nullptr); 77 EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start); 78 ASSERT_TRUE(II_End1 != nullptr); 79 EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end); 80 } 81 82 TEST_F(IRBuilderTest, CreateCondBr) { 83 IRBuilder<> Builder(BB); 84 BasicBlock *TBB = BasicBlock::Create(Ctx, "", F); 85 BasicBlock *FBB = BasicBlock::Create(Ctx, "", F); 86 87 BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB); 88 TerminatorInst *TI = BB->getTerminator(); 89 EXPECT_EQ(BI, TI); 90 EXPECT_EQ(2u, TI->getNumSuccessors()); 91 EXPECT_EQ(TBB, TI->getSuccessor(0)); 92 EXPECT_EQ(FBB, TI->getSuccessor(1)); 93 94 BI->eraseFromParent(); 95 MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13); 96 BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights); 97 TI = BB->getTerminator(); 98 EXPECT_EQ(BI, TI); 99 EXPECT_EQ(2u, TI->getNumSuccessors()); 100 EXPECT_EQ(TBB, TI->getSuccessor(0)); 101 EXPECT_EQ(FBB, TI->getSuccessor(1)); 102 EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof)); 103 } 104 105 TEST_F(IRBuilderTest, LandingPadName) { 106 IRBuilder<> Builder(BB); 107 LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), 0, "LP"); 108 EXPECT_EQ(LP->getName(), "LP"); 109 } 110 111 TEST_F(IRBuilderTest, DataLayout) { 112 std::unique_ptr<Module> M(new Module("test", Ctx)); 113 M->setDataLayout("e-n32"); 114 EXPECT_TRUE(M->getDataLayout().isLegalInteger(32)); 115 M->setDataLayout("e"); 116 EXPECT_FALSE(M->getDataLayout().isLegalInteger(32)); 117 } 118 119 TEST_F(IRBuilderTest, GetIntTy) { 120 IRBuilder<> Builder(BB); 121 IntegerType *Ty1 = Builder.getInt1Ty(); 122 EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1)); 123 124 DataLayout* DL = new DataLayout(M.get()); 125 IntegerType *IntPtrTy = Builder.getIntPtrTy(*DL); 126 unsigned IntPtrBitSize = DL->getPointerSizeInBits(0); 127 EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize)); 128 delete DL; 129 } 130 131 TEST_F(IRBuilderTest, FastMathFlags) { 132 IRBuilder<> Builder(BB); 133 Value *F, *FC; 134 Instruction *FDiv, *FAdd, *FCmp, *FCall; 135 136 F = Builder.CreateLoad(GV); 137 F = Builder.CreateFAdd(F, F); 138 139 EXPECT_FALSE(Builder.getFastMathFlags().any()); 140 ASSERT_TRUE(isa<Instruction>(F)); 141 FAdd = cast<Instruction>(F); 142 EXPECT_FALSE(FAdd->hasNoNaNs()); 143 144 FastMathFlags FMF; 145 Builder.setFastMathFlags(FMF); 146 147 F = Builder.CreateFAdd(F, F); 148 EXPECT_FALSE(Builder.getFastMathFlags().any()); 149 150 FMF.setUnsafeAlgebra(); 151 Builder.setFastMathFlags(FMF); 152 153 F = Builder.CreateFAdd(F, F); 154 EXPECT_TRUE(Builder.getFastMathFlags().any()); 155 ASSERT_TRUE(isa<Instruction>(F)); 156 FAdd = cast<Instruction>(F); 157 EXPECT_TRUE(FAdd->hasNoNaNs()); 158 159 // Now, try it with CreateBinOp 160 F = Builder.CreateBinOp(Instruction::FAdd, F, F); 161 EXPECT_TRUE(Builder.getFastMathFlags().any()); 162 ASSERT_TRUE(isa<Instruction>(F)); 163 FAdd = cast<Instruction>(F); 164 EXPECT_TRUE(FAdd->hasNoNaNs()); 165 166 F = Builder.CreateFDiv(F, F); 167 EXPECT_TRUE(Builder.getFastMathFlags().any()); 168 EXPECT_TRUE(Builder.getFastMathFlags().UnsafeAlgebra); 169 ASSERT_TRUE(isa<Instruction>(F)); 170 FDiv = cast<Instruction>(F); 171 EXPECT_TRUE(FDiv->hasAllowReciprocal()); 172 173 Builder.clearFastMathFlags(); 174 175 F = Builder.CreateFDiv(F, F); 176 ASSERT_TRUE(isa<Instruction>(F)); 177 FDiv = cast<Instruction>(F); 178 EXPECT_FALSE(FDiv->hasAllowReciprocal()); 179 180 FMF.clear(); 181 FMF.setAllowReciprocal(); 182 Builder.setFastMathFlags(FMF); 183 184 F = Builder.CreateFDiv(F, F); 185 EXPECT_TRUE(Builder.getFastMathFlags().any()); 186 EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal); 187 ASSERT_TRUE(isa<Instruction>(F)); 188 FDiv = cast<Instruction>(F); 189 EXPECT_TRUE(FDiv->hasAllowReciprocal()); 190 191 Builder.clearFastMathFlags(); 192 193 FC = Builder.CreateFCmpOEQ(F, F); 194 ASSERT_TRUE(isa<Instruction>(FC)); 195 FCmp = cast<Instruction>(FC); 196 EXPECT_FALSE(FCmp->hasAllowReciprocal()); 197 198 FMF.clear(); 199 FMF.setAllowReciprocal(); 200 Builder.setFastMathFlags(FMF); 201 202 FC = Builder.CreateFCmpOEQ(F, F); 203 EXPECT_TRUE(Builder.getFastMathFlags().any()); 204 EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal); 205 ASSERT_TRUE(isa<Instruction>(FC)); 206 FCmp = cast<Instruction>(FC); 207 EXPECT_TRUE(FCmp->hasAllowReciprocal()); 208 209 Builder.clearFastMathFlags(); 210 211 // Test FP-contract 212 FC = Builder.CreateFAdd(F, F); 213 ASSERT_TRUE(isa<Instruction>(FC)); 214 FAdd = cast<Instruction>(FC); 215 EXPECT_FALSE(FAdd->hasAllowContract()); 216 217 FMF.clear(); 218 FMF.setAllowContract(true); 219 Builder.setFastMathFlags(FMF); 220 221 FC = Builder.CreateFAdd(F, F); 222 EXPECT_TRUE(Builder.getFastMathFlags().any()); 223 EXPECT_TRUE(Builder.getFastMathFlags().AllowContract); 224 ASSERT_TRUE(isa<Instruction>(FC)); 225 FAdd = cast<Instruction>(FC); 226 EXPECT_TRUE(FAdd->hasAllowContract()); 227 228 Builder.clearFastMathFlags(); 229 230 // Test a call with FMF. 231 auto CalleeTy = FunctionType::get(Type::getFloatTy(Ctx), 232 /*isVarArg=*/false); 233 auto Callee = 234 Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); 235 236 FCall = Builder.CreateCall(Callee, None); 237 EXPECT_FALSE(FCall->hasNoNaNs()); 238 239 Value *V = 240 Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); 241 FCall = Builder.CreateCall(V, None); 242 EXPECT_FALSE(FCall->hasNoNaNs()); 243 244 FMF.clear(); 245 FMF.setNoNaNs(); 246 Builder.setFastMathFlags(FMF); 247 248 FCall = Builder.CreateCall(Callee, None); 249 EXPECT_TRUE(Builder.getFastMathFlags().any()); 250 EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs); 251 EXPECT_TRUE(FCall->hasNoNaNs()); 252 253 FCall = Builder.CreateCall(V, None); 254 EXPECT_TRUE(Builder.getFastMathFlags().any()); 255 EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs); 256 EXPECT_TRUE(FCall->hasNoNaNs()); 257 258 Builder.clearFastMathFlags(); 259 260 // To test a copy, make sure that a '0' and a '1' change state. 261 F = Builder.CreateFDiv(F, F); 262 ASSERT_TRUE(isa<Instruction>(F)); 263 FDiv = cast<Instruction>(F); 264 EXPECT_FALSE(FDiv->getFastMathFlags().any()); 265 FDiv->setHasAllowReciprocal(true); 266 FAdd->setHasAllowReciprocal(false); 267 FAdd->setHasNoNaNs(true); 268 FDiv->copyFastMathFlags(FAdd); 269 EXPECT_TRUE(FDiv->hasNoNaNs()); 270 EXPECT_FALSE(FDiv->hasAllowReciprocal()); 271 272 } 273 274 TEST_F(IRBuilderTest, WrapFlags) { 275 IRBuilder<NoFolder> Builder(BB); 276 277 // Test instructions. 278 GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true, 279 GlobalValue::ExternalLinkage, nullptr); 280 Value *V = Builder.CreateLoad(G); 281 EXPECT_TRUE( 282 cast<BinaryOperator>(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap()); 283 EXPECT_TRUE( 284 cast<BinaryOperator>(Builder.CreateNSWMul(V, V))->hasNoSignedWrap()); 285 EXPECT_TRUE( 286 cast<BinaryOperator>(Builder.CreateNSWSub(V, V))->hasNoSignedWrap()); 287 EXPECT_TRUE(cast<BinaryOperator>( 288 Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true)) 289 ->hasNoSignedWrap()); 290 291 EXPECT_TRUE( 292 cast<BinaryOperator>(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap()); 293 EXPECT_TRUE( 294 cast<BinaryOperator>(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap()); 295 EXPECT_TRUE( 296 cast<BinaryOperator>(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap()); 297 EXPECT_TRUE(cast<BinaryOperator>( 298 Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false)) 299 ->hasNoUnsignedWrap()); 300 301 // Test operators created with constants. 302 Constant *C = Builder.getInt32(42); 303 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWAdd(C, C)) 304 ->hasNoSignedWrap()); 305 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWSub(C, C)) 306 ->hasNoSignedWrap()); 307 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWMul(C, C)) 308 ->hasNoSignedWrap()); 309 EXPECT_TRUE(cast<OverflowingBinaryOperator>( 310 Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true)) 311 ->hasNoSignedWrap()); 312 313 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWAdd(C, C)) 314 ->hasNoUnsignedWrap()); 315 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWSub(C, C)) 316 ->hasNoUnsignedWrap()); 317 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWMul(C, C)) 318 ->hasNoUnsignedWrap()); 319 EXPECT_TRUE(cast<OverflowingBinaryOperator>( 320 Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false)) 321 ->hasNoUnsignedWrap()); 322 } 323 324 TEST_F(IRBuilderTest, RAIIHelpersTest) { 325 IRBuilder<> Builder(BB); 326 EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal()); 327 MDBuilder MDB(M->getContext()); 328 329 MDNode *FPMathA = MDB.createFPMath(0.01f); 330 MDNode *FPMathB = MDB.createFPMath(0.1f); 331 332 Builder.setDefaultFPMathTag(FPMathA); 333 334 { 335 IRBuilder<>::FastMathFlagGuard Guard(Builder); 336 FastMathFlags FMF; 337 FMF.setAllowReciprocal(); 338 Builder.setFastMathFlags(FMF); 339 Builder.setDefaultFPMathTag(FPMathB); 340 EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal()); 341 EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag()); 342 } 343 344 EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal()); 345 EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag()); 346 347 Value *F = Builder.CreateLoad(GV); 348 349 { 350 IRBuilder<>::InsertPointGuard Guard(Builder); 351 Builder.SetInsertPoint(cast<Instruction>(F)); 352 EXPECT_EQ(F, &*Builder.GetInsertPoint()); 353 } 354 355 EXPECT_EQ(BB->end(), Builder.GetInsertPoint()); 356 EXPECT_EQ(BB, Builder.GetInsertBlock()); 357 } 358 359 TEST_F(IRBuilderTest, DIBuilder) { 360 IRBuilder<> Builder(BB); 361 DIBuilder DIB(*M); 362 auto File = DIB.createFile("F.CBL", "/"); 363 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74, 364 DIB.createFile("F.CBL", "/"), "llvm-cobol74", 365 true, "", 0); 366 auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 367 auto SP = DIB.createFunction(CU, "foo", "", File, 1, Type, false, true, 1, 368 DINode::FlagZero, true); 369 F->setSubprogram(SP); 370 AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty()); 371 auto BarSP = DIB.createFunction(CU, "bar", "", File, 1, Type, false, true, 1, 372 DINode::FlagZero, true); 373 auto BadScope = DIB.createLexicalBlockFile(BarSP, File, 0); 374 I->setDebugLoc(DebugLoc::get(2, 0, BadScope)); 375 DIB.finalize(); 376 EXPECT_TRUE(verifyModule(*M)); 377 } 378 379 TEST_F(IRBuilderTest, InsertExtractElement) { 380 IRBuilder<> Builder(BB); 381 382 auto VecTy = VectorType::get(Builder.getInt64Ty(), 4); 383 auto Elt1 = Builder.getInt64(-1); 384 auto Elt2 = Builder.getInt64(-2); 385 Value *Vec = UndefValue::get(VecTy); 386 Vec = Builder.CreateInsertElement(Vec, Elt1, Builder.getInt8(1)); 387 Vec = Builder.CreateInsertElement(Vec, Elt2, 2); 388 auto X1 = Builder.CreateExtractElement(Vec, 1); 389 auto X2 = Builder.CreateExtractElement(Vec, Builder.getInt32(2)); 390 EXPECT_EQ(Elt1, X1); 391 EXPECT_EQ(Elt2, X2); 392 } 393 394 TEST_F(IRBuilderTest, CreateGlobalStringPtr) { 395 IRBuilder<> Builder(BB); 396 397 auto String1a = Builder.CreateGlobalStringPtr("TestString", "String1a"); 398 auto String1b = Builder.CreateGlobalStringPtr("TestString", "String1b", 0); 399 auto String2 = Builder.CreateGlobalStringPtr("TestString", "String2", 1); 400 auto String3 = Builder.CreateGlobalString("TestString", "String3", 2); 401 402 EXPECT_TRUE(String1a->getType()->getPointerAddressSpace() == 0); 403 EXPECT_TRUE(String1b->getType()->getPointerAddressSpace() == 0); 404 EXPECT_TRUE(String2->getType()->getPointerAddressSpace() == 1); 405 EXPECT_TRUE(String3->getType()->getPointerAddressSpace() == 2); 406 } 407 408 TEST_F(IRBuilderTest, DebugLoc) { 409 auto CalleeTy = FunctionType::get(Type::getVoidTy(Ctx), 410 /*isVarArg=*/false); 411 auto Callee = 412 Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); 413 414 DIBuilder DIB(*M); 415 auto File = DIB.createFile("tmp.cpp", "/"); 416 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C_plus_plus_11, 417 DIB.createFile("tmp.cpp", "/"), "", true, "", 418 0); 419 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 420 auto SP = 421 DIB.createFunction(CU, "foo", "foo", File, 1, SPType, false, true, 1); 422 DebugLoc DL1 = DILocation::get(Ctx, 2, 0, SP); 423 DebugLoc DL2 = DILocation::get(Ctx, 3, 0, SP); 424 425 auto BB2 = BasicBlock::Create(Ctx, "bb2", F); 426 auto Br = BranchInst::Create(BB2, BB); 427 Br->setDebugLoc(DL1); 428 429 IRBuilder<> Builder(Ctx); 430 Builder.SetInsertPoint(Br); 431 EXPECT_EQ(DL1, Builder.getCurrentDebugLocation()); 432 auto Call1 = Builder.CreateCall(Callee, None); 433 EXPECT_EQ(DL1, Call1->getDebugLoc()); 434 435 Call1->setDebugLoc(DL2); 436 Builder.SetInsertPoint(Call1->getParent(), Call1->getIterator()); 437 EXPECT_EQ(DL2, Builder.getCurrentDebugLocation()); 438 auto Call2 = Builder.CreateCall(Callee, None); 439 EXPECT_EQ(DL2, Call2->getDebugLoc()); 440 441 DIB.finalize(); 442 } 443 444 TEST_F(IRBuilderTest, DIImportedEntity) { 445 IRBuilder<> Builder(BB); 446 DIBuilder DIB(*M); 447 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74, 448 DIB.createFile("F.CBL", "/"), "llvm-cobol74", 449 true, "", 0); 450 DIB.createImportedDeclaration(CU, nullptr, 1); 451 DIB.createImportedDeclaration(CU, nullptr, 1); 452 DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, 2); 453 DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, 2); 454 DIB.finalize(); 455 EXPECT_TRUE(verifyModule(*M)); 456 EXPECT_TRUE(CU->getImportedEntities().size() == 2); 457 } 458 459 // 0: #define M0 V0 <-- command line definition 460 // 0: main.c <-- main file 461 // 3: #define M1 V1 <-- M1 definition in main.c 462 // 5: #include "file.h" <-- inclusion of file.h from main.c 463 // 1: #define M2 <-- M2 definition in file.h with no value 464 // 7: #undef M1 V1 <-- M1 un-definition in main.c 465 TEST_F(IRBuilderTest, DIBuilderMacro) { 466 IRBuilder<> Builder(BB); 467 DIBuilder DIB(*M); 468 auto File1 = DIB.createFile("main.c", "/"); 469 auto File2 = DIB.createFile("file.h", "/"); 470 auto CU = DIB.createCompileUnit( 471 dwarf::DW_LANG_C, DIB.createFile("main.c", "/"), "llvm-c", true, "", 0); 472 auto MDef0 = 473 DIB.createMacro(nullptr, 0, dwarf::DW_MACINFO_define, "M0", "V0"); 474 auto TMF1 = DIB.createTempMacroFile(nullptr, 0, File1); 475 auto MDef1 = DIB.createMacro(TMF1, 3, dwarf::DW_MACINFO_define, "M1", "V1"); 476 auto TMF2 = DIB.createTempMacroFile(TMF1, 5, File2); 477 auto MDef2 = DIB.createMacro(TMF2, 1, dwarf::DW_MACINFO_define, "M2"); 478 auto MUndef1 = DIB.createMacro(TMF1, 7, dwarf::DW_MACINFO_undef, "M1"); 479 480 EXPECT_EQ(dwarf::DW_MACINFO_define, MDef1->getMacinfoType()); 481 EXPECT_EQ(3u, MDef1->getLine()); 482 EXPECT_EQ("M1", MDef1->getName()); 483 EXPECT_EQ("V1", MDef1->getValue()); 484 485 EXPECT_EQ(dwarf::DW_MACINFO_undef, MUndef1->getMacinfoType()); 486 EXPECT_EQ(7u, MUndef1->getLine()); 487 EXPECT_EQ("M1", MUndef1->getName()); 488 EXPECT_EQ("", MUndef1->getValue()); 489 490 EXPECT_EQ(dwarf::DW_MACINFO_start_file, TMF2->getMacinfoType()); 491 EXPECT_EQ(5u, TMF2->getLine()); 492 EXPECT_EQ(File2, TMF2->getFile()); 493 494 DIB.finalize(); 495 496 SmallVector<Metadata *, 4> Elements; 497 Elements.push_back(MDef2); 498 auto MF2 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 5, File2, 499 DIB.getOrCreateMacroArray(Elements)); 500 501 Elements.clear(); 502 Elements.push_back(MDef1); 503 Elements.push_back(MF2); 504 Elements.push_back(MUndef1); 505 auto MF1 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 0, File1, 506 DIB.getOrCreateMacroArray(Elements)); 507 508 Elements.clear(); 509 Elements.push_back(MDef0); 510 Elements.push_back(MF1); 511 auto MN0 = MDTuple::get(Ctx, Elements); 512 EXPECT_EQ(MN0, CU->getRawMacros()); 513 514 Elements.clear(); 515 Elements.push_back(MDef1); 516 Elements.push_back(MF2); 517 Elements.push_back(MUndef1); 518 auto MN1 = MDTuple::get(Ctx, Elements); 519 EXPECT_EQ(MN1, MF1->getRawElements()); 520 521 Elements.clear(); 522 Elements.push_back(MDef2); 523 auto MN2 = MDTuple::get(Ctx, Elements); 524 EXPECT_EQ(MN2, MF2->getRawElements()); 525 EXPECT_TRUE(verifyModule(*M)); 526 } 527 } 528