1 //===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/IR/IRBuilder.h" 11 #include "llvm/IR/BasicBlock.h" 12 #include "llvm/IR/DIBuilder.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Function.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/IR/MDBuilder.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/NoFolder.h" 20 #include "llvm/IR/Verifier.h" 21 #include "gtest/gtest.h" 22 23 using namespace llvm; 24 25 namespace { 26 27 class IRBuilderTest : public testing::Test { 28 protected: 29 void SetUp() override { 30 M.reset(new Module("MyModule", Ctx)); 31 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), 32 /*isVarArg=*/false); 33 F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); 34 BB = BasicBlock::Create(Ctx, "", F); 35 GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true, 36 GlobalValue::ExternalLinkage, nullptr); 37 } 38 39 void TearDown() override { 40 BB = nullptr; 41 M.reset(); 42 } 43 44 LLVMContext Ctx; 45 std::unique_ptr<Module> M; 46 Function *F; 47 BasicBlock *BB; 48 GlobalVariable *GV; 49 }; 50 51 TEST_F(IRBuilderTest, Intrinsics) { 52 IRBuilder<> Builder(BB); 53 Value *V; 54 CallInst *Call; 55 IntrinsicInst *II; 56 57 V = Builder.CreateLoad(GV); 58 59 Call = Builder.CreateMinNum(V, V); 60 II = cast<IntrinsicInst>(Call); 61 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minnum); 62 63 Call = Builder.CreateMaxNum(V, V); 64 II = cast<IntrinsicInst>(Call); 65 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maxnum); 66 67 Call = Builder.CreateIntrinsic(Intrinsic::readcyclecounter); 68 II = cast<IntrinsicInst>(Call); 69 EXPECT_EQ(II->getIntrinsicID(), Intrinsic::readcyclecounter); 70 } 71 72 TEST_F(IRBuilderTest, Lifetime) { 73 IRBuilder<> Builder(BB); 74 AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty()); 75 AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty()); 76 AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(), 77 Builder.getInt32(123)); 78 79 CallInst *Start1 = Builder.CreateLifetimeStart(Var1); 80 CallInst *Start2 = Builder.CreateLifetimeStart(Var2); 81 CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100)); 82 83 EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1)); 84 EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1)); 85 EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100)); 86 87 EXPECT_EQ(Start1->getArgOperand(1), Var1); 88 EXPECT_NE(Start2->getArgOperand(1), Var2); 89 EXPECT_EQ(Start3->getArgOperand(1), Var3); 90 91 Value *End1 = Builder.CreateLifetimeEnd(Var1); 92 Builder.CreateLifetimeEnd(Var2); 93 Builder.CreateLifetimeEnd(Var3); 94 95 IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1); 96 IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1); 97 ASSERT_TRUE(II_Start1 != nullptr); 98 EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start); 99 ASSERT_TRUE(II_End1 != nullptr); 100 EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end); 101 } 102 103 TEST_F(IRBuilderTest, CreateCondBr) { 104 IRBuilder<> Builder(BB); 105 BasicBlock *TBB = BasicBlock::Create(Ctx, "", F); 106 BasicBlock *FBB = BasicBlock::Create(Ctx, "", F); 107 108 BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB); 109 TerminatorInst *TI = BB->getTerminator(); 110 EXPECT_EQ(BI, TI); 111 EXPECT_EQ(2u, TI->getNumSuccessors()); 112 EXPECT_EQ(TBB, TI->getSuccessor(0)); 113 EXPECT_EQ(FBB, TI->getSuccessor(1)); 114 115 BI->eraseFromParent(); 116 MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13); 117 BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights); 118 TI = BB->getTerminator(); 119 EXPECT_EQ(BI, TI); 120 EXPECT_EQ(2u, TI->getNumSuccessors()); 121 EXPECT_EQ(TBB, TI->getSuccessor(0)); 122 EXPECT_EQ(FBB, TI->getSuccessor(1)); 123 EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof)); 124 } 125 126 TEST_F(IRBuilderTest, LandingPadName) { 127 IRBuilder<> Builder(BB); 128 LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), 0, "LP"); 129 EXPECT_EQ(LP->getName(), "LP"); 130 } 131 132 TEST_F(IRBuilderTest, DataLayout) { 133 std::unique_ptr<Module> M(new Module("test", Ctx)); 134 M->setDataLayout("e-n32"); 135 EXPECT_TRUE(M->getDataLayout().isLegalInteger(32)); 136 M->setDataLayout("e"); 137 EXPECT_FALSE(M->getDataLayout().isLegalInteger(32)); 138 } 139 140 TEST_F(IRBuilderTest, GetIntTy) { 141 IRBuilder<> Builder(BB); 142 IntegerType *Ty1 = Builder.getInt1Ty(); 143 EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1)); 144 145 DataLayout* DL = new DataLayout(M.get()); 146 IntegerType *IntPtrTy = Builder.getIntPtrTy(*DL); 147 unsigned IntPtrBitSize = DL->getPointerSizeInBits(0); 148 EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize)); 149 delete DL; 150 } 151 152 TEST_F(IRBuilderTest, FastMathFlags) { 153 IRBuilder<> Builder(BB); 154 Value *F, *FC; 155 Instruction *FDiv, *FAdd, *FCmp, *FCall; 156 157 F = Builder.CreateLoad(GV); 158 F = Builder.CreateFAdd(F, F); 159 160 EXPECT_FALSE(Builder.getFastMathFlags().any()); 161 ASSERT_TRUE(isa<Instruction>(F)); 162 FAdd = cast<Instruction>(F); 163 EXPECT_FALSE(FAdd->hasNoNaNs()); 164 165 FastMathFlags FMF; 166 Builder.setFastMathFlags(FMF); 167 168 // By default, no flags are set. 169 F = Builder.CreateFAdd(F, F); 170 EXPECT_FALSE(Builder.getFastMathFlags().any()); 171 ASSERT_TRUE(isa<Instruction>(F)); 172 FAdd = cast<Instruction>(F); 173 EXPECT_FALSE(FAdd->hasNoNaNs()); 174 EXPECT_FALSE(FAdd->hasNoInfs()); 175 EXPECT_FALSE(FAdd->hasNoSignedZeros()); 176 EXPECT_FALSE(FAdd->hasAllowReciprocal()); 177 EXPECT_FALSE(FAdd->hasAllowContract()); 178 EXPECT_FALSE(FAdd->hasAllowReassoc()); 179 EXPECT_FALSE(FAdd->hasApproxFunc()); 180 181 // Set all flags in the instruction. 182 FAdd->setFast(true); 183 EXPECT_TRUE(FAdd->hasNoNaNs()); 184 EXPECT_TRUE(FAdd->hasNoInfs()); 185 EXPECT_TRUE(FAdd->hasNoSignedZeros()); 186 EXPECT_TRUE(FAdd->hasAllowReciprocal()); 187 EXPECT_TRUE(FAdd->hasAllowContract()); 188 EXPECT_TRUE(FAdd->hasAllowReassoc()); 189 EXPECT_TRUE(FAdd->hasApproxFunc()); 190 191 // All flags are set in the builder. 192 FMF.setFast(); 193 Builder.setFastMathFlags(FMF); 194 195 F = Builder.CreateFAdd(F, F); 196 EXPECT_TRUE(Builder.getFastMathFlags().any()); 197 EXPECT_TRUE(Builder.getFastMathFlags().all()); 198 ASSERT_TRUE(isa<Instruction>(F)); 199 FAdd = cast<Instruction>(F); 200 EXPECT_TRUE(FAdd->hasNoNaNs()); 201 EXPECT_TRUE(FAdd->isFast()); 202 203 // Now, try it with CreateBinOp 204 F = Builder.CreateBinOp(Instruction::FAdd, F, F); 205 EXPECT_TRUE(Builder.getFastMathFlags().any()); 206 ASSERT_TRUE(isa<Instruction>(F)); 207 FAdd = cast<Instruction>(F); 208 EXPECT_TRUE(FAdd->hasNoNaNs()); 209 EXPECT_TRUE(FAdd->isFast()); 210 211 F = Builder.CreateFDiv(F, F); 212 EXPECT_TRUE(Builder.getFastMathFlags().all()); 213 ASSERT_TRUE(isa<Instruction>(F)); 214 FDiv = cast<Instruction>(F); 215 EXPECT_TRUE(FDiv->hasAllowReciprocal()); 216 217 // Clear all FMF in the builder. 218 Builder.clearFastMathFlags(); 219 220 F = Builder.CreateFDiv(F, F); 221 ASSERT_TRUE(isa<Instruction>(F)); 222 FDiv = cast<Instruction>(F); 223 EXPECT_FALSE(FDiv->hasAllowReciprocal()); 224 225 // Try individual flags. 226 FMF.clear(); 227 FMF.setAllowReciprocal(); 228 Builder.setFastMathFlags(FMF); 229 230 F = Builder.CreateFDiv(F, F); 231 EXPECT_TRUE(Builder.getFastMathFlags().any()); 232 EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal); 233 ASSERT_TRUE(isa<Instruction>(F)); 234 FDiv = cast<Instruction>(F); 235 EXPECT_TRUE(FDiv->hasAllowReciprocal()); 236 237 Builder.clearFastMathFlags(); 238 239 FC = Builder.CreateFCmpOEQ(F, F); 240 ASSERT_TRUE(isa<Instruction>(FC)); 241 FCmp = cast<Instruction>(FC); 242 EXPECT_FALSE(FCmp->hasAllowReciprocal()); 243 244 FMF.clear(); 245 FMF.setAllowReciprocal(); 246 Builder.setFastMathFlags(FMF); 247 248 FC = Builder.CreateFCmpOEQ(F, F); 249 EXPECT_TRUE(Builder.getFastMathFlags().any()); 250 EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal); 251 ASSERT_TRUE(isa<Instruction>(FC)); 252 FCmp = cast<Instruction>(FC); 253 EXPECT_TRUE(FCmp->hasAllowReciprocal()); 254 255 Builder.clearFastMathFlags(); 256 257 // Test FP-contract 258 FC = Builder.CreateFAdd(F, F); 259 ASSERT_TRUE(isa<Instruction>(FC)); 260 FAdd = cast<Instruction>(FC); 261 EXPECT_FALSE(FAdd->hasAllowContract()); 262 263 FMF.clear(); 264 FMF.setAllowContract(true); 265 Builder.setFastMathFlags(FMF); 266 267 FC = Builder.CreateFAdd(F, F); 268 EXPECT_TRUE(Builder.getFastMathFlags().any()); 269 EXPECT_TRUE(Builder.getFastMathFlags().AllowContract); 270 ASSERT_TRUE(isa<Instruction>(FC)); 271 FAdd = cast<Instruction>(FC); 272 EXPECT_TRUE(FAdd->hasAllowContract()); 273 274 FMF.setApproxFunc(); 275 Builder.clearFastMathFlags(); 276 Builder.setFastMathFlags(FMF); 277 // Now 'aml' and 'contract' are set. 278 F = Builder.CreateFMul(F, F); 279 FAdd = cast<Instruction>(F); 280 EXPECT_TRUE(FAdd->hasApproxFunc()); 281 EXPECT_TRUE(FAdd->hasAllowContract()); 282 EXPECT_FALSE(FAdd->hasAllowReassoc()); 283 284 FMF.setAllowReassoc(); 285 Builder.clearFastMathFlags(); 286 Builder.setFastMathFlags(FMF); 287 // Now 'aml' and 'contract' and 'reassoc' are set. 288 F = Builder.CreateFMul(F, F); 289 FAdd = cast<Instruction>(F); 290 EXPECT_TRUE(FAdd->hasApproxFunc()); 291 EXPECT_TRUE(FAdd->hasAllowContract()); 292 EXPECT_TRUE(FAdd->hasAllowReassoc()); 293 294 // Test a call with FMF. 295 auto CalleeTy = FunctionType::get(Type::getFloatTy(Ctx), 296 /*isVarArg=*/false); 297 auto Callee = 298 Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); 299 300 FCall = Builder.CreateCall(Callee, None); 301 EXPECT_FALSE(FCall->hasNoNaNs()); 302 303 Value *V = 304 Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); 305 FCall = Builder.CreateCall(V, None); 306 EXPECT_FALSE(FCall->hasNoNaNs()); 307 308 FMF.clear(); 309 FMF.setNoNaNs(); 310 Builder.setFastMathFlags(FMF); 311 312 FCall = Builder.CreateCall(Callee, None); 313 EXPECT_TRUE(Builder.getFastMathFlags().any()); 314 EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs); 315 EXPECT_TRUE(FCall->hasNoNaNs()); 316 317 FCall = Builder.CreateCall(V, None); 318 EXPECT_TRUE(Builder.getFastMathFlags().any()); 319 EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs); 320 EXPECT_TRUE(FCall->hasNoNaNs()); 321 322 Builder.clearFastMathFlags(); 323 324 // To test a copy, make sure that a '0' and a '1' change state. 325 F = Builder.CreateFDiv(F, F); 326 ASSERT_TRUE(isa<Instruction>(F)); 327 FDiv = cast<Instruction>(F); 328 EXPECT_FALSE(FDiv->getFastMathFlags().any()); 329 FDiv->setHasAllowReciprocal(true); 330 FAdd->setHasAllowReciprocal(false); 331 FAdd->setHasNoNaNs(true); 332 FDiv->copyFastMathFlags(FAdd); 333 EXPECT_TRUE(FDiv->hasNoNaNs()); 334 EXPECT_FALSE(FDiv->hasAllowReciprocal()); 335 336 } 337 338 TEST_F(IRBuilderTest, WrapFlags) { 339 IRBuilder<NoFolder> Builder(BB); 340 341 // Test instructions. 342 GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true, 343 GlobalValue::ExternalLinkage, nullptr); 344 Value *V = Builder.CreateLoad(G); 345 EXPECT_TRUE( 346 cast<BinaryOperator>(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap()); 347 EXPECT_TRUE( 348 cast<BinaryOperator>(Builder.CreateNSWMul(V, V))->hasNoSignedWrap()); 349 EXPECT_TRUE( 350 cast<BinaryOperator>(Builder.CreateNSWSub(V, V))->hasNoSignedWrap()); 351 EXPECT_TRUE(cast<BinaryOperator>( 352 Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true)) 353 ->hasNoSignedWrap()); 354 355 EXPECT_TRUE( 356 cast<BinaryOperator>(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap()); 357 EXPECT_TRUE( 358 cast<BinaryOperator>(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap()); 359 EXPECT_TRUE( 360 cast<BinaryOperator>(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap()); 361 EXPECT_TRUE(cast<BinaryOperator>( 362 Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false)) 363 ->hasNoUnsignedWrap()); 364 365 // Test operators created with constants. 366 Constant *C = Builder.getInt32(42); 367 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWAdd(C, C)) 368 ->hasNoSignedWrap()); 369 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWSub(C, C)) 370 ->hasNoSignedWrap()); 371 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWMul(C, C)) 372 ->hasNoSignedWrap()); 373 EXPECT_TRUE(cast<OverflowingBinaryOperator>( 374 Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true)) 375 ->hasNoSignedWrap()); 376 377 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWAdd(C, C)) 378 ->hasNoUnsignedWrap()); 379 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWSub(C, C)) 380 ->hasNoUnsignedWrap()); 381 EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWMul(C, C)) 382 ->hasNoUnsignedWrap()); 383 EXPECT_TRUE(cast<OverflowingBinaryOperator>( 384 Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false)) 385 ->hasNoUnsignedWrap()); 386 } 387 388 TEST_F(IRBuilderTest, RAIIHelpersTest) { 389 IRBuilder<> Builder(BB); 390 EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal()); 391 MDBuilder MDB(M->getContext()); 392 393 MDNode *FPMathA = MDB.createFPMath(0.01f); 394 MDNode *FPMathB = MDB.createFPMath(0.1f); 395 396 Builder.setDefaultFPMathTag(FPMathA); 397 398 { 399 IRBuilder<>::FastMathFlagGuard Guard(Builder); 400 FastMathFlags FMF; 401 FMF.setAllowReciprocal(); 402 Builder.setFastMathFlags(FMF); 403 Builder.setDefaultFPMathTag(FPMathB); 404 EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal()); 405 EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag()); 406 } 407 408 EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal()); 409 EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag()); 410 411 Value *F = Builder.CreateLoad(GV); 412 413 { 414 IRBuilder<>::InsertPointGuard Guard(Builder); 415 Builder.SetInsertPoint(cast<Instruction>(F)); 416 EXPECT_EQ(F, &*Builder.GetInsertPoint()); 417 } 418 419 EXPECT_EQ(BB->end(), Builder.GetInsertPoint()); 420 EXPECT_EQ(BB, Builder.GetInsertBlock()); 421 } 422 423 TEST_F(IRBuilderTest, createFunction) { 424 IRBuilder<> Builder(BB); 425 DIBuilder DIB(*M); 426 auto File = DIB.createFile("error.swift", "/"); 427 auto CU = 428 DIB.createCompileUnit(dwarf::DW_LANG_Swift, File, "swiftc", true, "", 0); 429 auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 430 auto NoErr = DIB.createFunction(CU, "noerr", "", File, 1, Type, false, true, 1, 431 DINode::FlagZero, true); 432 EXPECT_TRUE(!NoErr->getThrownTypes()); 433 auto Int = DIB.createBasicType("Int", 64, dwarf::DW_ATE_signed); 434 auto Error = DIB.getOrCreateArray({Int}); 435 auto Err = 436 DIB.createFunction(CU, "err", "", File, 1, Type, false, true, 1, 437 DINode::FlagZero, true, nullptr, nullptr, Error.get()); 438 EXPECT_TRUE(Err->getThrownTypes().get() == Error.get()); 439 DIB.finalize(); 440 } 441 442 TEST_F(IRBuilderTest, DIBuilder) { 443 IRBuilder<> Builder(BB); 444 DIBuilder DIB(*M); 445 auto File = DIB.createFile("F.CBL", "/"); 446 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74, 447 DIB.createFile("F.CBL", "/"), "llvm-cobol74", 448 true, "", 0); 449 auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 450 auto SP = DIB.createFunction(CU, "foo", "", File, 1, Type, false, true, 1, 451 DINode::FlagZero, true); 452 F->setSubprogram(SP); 453 AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty()); 454 auto BarSP = DIB.createFunction(CU, "bar", "", File, 1, Type, false, true, 1, 455 DINode::FlagZero, true); 456 auto BadScope = DIB.createLexicalBlockFile(BarSP, File, 0); 457 I->setDebugLoc(DebugLoc::get(2, 0, BadScope)); 458 DIB.finalize(); 459 EXPECT_TRUE(verifyModule(*M)); 460 } 461 462 TEST_F(IRBuilderTest, InsertExtractElement) { 463 IRBuilder<> Builder(BB); 464 465 auto VecTy = VectorType::get(Builder.getInt64Ty(), 4); 466 auto Elt1 = Builder.getInt64(-1); 467 auto Elt2 = Builder.getInt64(-2); 468 Value *Vec = UndefValue::get(VecTy); 469 Vec = Builder.CreateInsertElement(Vec, Elt1, Builder.getInt8(1)); 470 Vec = Builder.CreateInsertElement(Vec, Elt2, 2); 471 auto X1 = Builder.CreateExtractElement(Vec, 1); 472 auto X2 = Builder.CreateExtractElement(Vec, Builder.getInt32(2)); 473 EXPECT_EQ(Elt1, X1); 474 EXPECT_EQ(Elt2, X2); 475 } 476 477 TEST_F(IRBuilderTest, CreateGlobalStringPtr) { 478 IRBuilder<> Builder(BB); 479 480 auto String1a = Builder.CreateGlobalStringPtr("TestString", "String1a"); 481 auto String1b = Builder.CreateGlobalStringPtr("TestString", "String1b", 0); 482 auto String2 = Builder.CreateGlobalStringPtr("TestString", "String2", 1); 483 auto String3 = Builder.CreateGlobalString("TestString", "String3", 2); 484 485 EXPECT_TRUE(String1a->getType()->getPointerAddressSpace() == 0); 486 EXPECT_TRUE(String1b->getType()->getPointerAddressSpace() == 0); 487 EXPECT_TRUE(String2->getType()->getPointerAddressSpace() == 1); 488 EXPECT_TRUE(String3->getType()->getPointerAddressSpace() == 2); 489 } 490 491 TEST_F(IRBuilderTest, DebugLoc) { 492 auto CalleeTy = FunctionType::get(Type::getVoidTy(Ctx), 493 /*isVarArg=*/false); 494 auto Callee = 495 Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); 496 497 DIBuilder DIB(*M); 498 auto File = DIB.createFile("tmp.cpp", "/"); 499 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C_plus_plus_11, 500 DIB.createFile("tmp.cpp", "/"), "", true, "", 501 0); 502 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 503 auto SP = 504 DIB.createFunction(CU, "foo", "foo", File, 1, SPType, false, true, 1); 505 DebugLoc DL1 = DILocation::get(Ctx, 2, 0, SP); 506 DebugLoc DL2 = DILocation::get(Ctx, 3, 0, SP); 507 508 auto BB2 = BasicBlock::Create(Ctx, "bb2", F); 509 auto Br = BranchInst::Create(BB2, BB); 510 Br->setDebugLoc(DL1); 511 512 IRBuilder<> Builder(Ctx); 513 Builder.SetInsertPoint(Br); 514 EXPECT_EQ(DL1, Builder.getCurrentDebugLocation()); 515 auto Call1 = Builder.CreateCall(Callee, None); 516 EXPECT_EQ(DL1, Call1->getDebugLoc()); 517 518 Call1->setDebugLoc(DL2); 519 Builder.SetInsertPoint(Call1->getParent(), Call1->getIterator()); 520 EXPECT_EQ(DL2, Builder.getCurrentDebugLocation()); 521 auto Call2 = Builder.CreateCall(Callee, None); 522 EXPECT_EQ(DL2, Call2->getDebugLoc()); 523 524 DIB.finalize(); 525 } 526 527 TEST_F(IRBuilderTest, DIImportedEntity) { 528 IRBuilder<> Builder(BB); 529 DIBuilder DIB(*M); 530 auto F = DIB.createFile("F.CBL", "/"); 531 auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74, 532 F, "llvm-cobol74", 533 true, "", 0); 534 DIB.createImportedDeclaration(CU, nullptr, F, 1); 535 DIB.createImportedDeclaration(CU, nullptr, F, 1); 536 DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2); 537 DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2); 538 DIB.finalize(); 539 EXPECT_TRUE(verifyModule(*M)); 540 EXPECT_TRUE(CU->getImportedEntities().size() == 2); 541 } 542 543 // 0: #define M0 V0 <-- command line definition 544 // 0: main.c <-- main file 545 // 3: #define M1 V1 <-- M1 definition in main.c 546 // 5: #include "file.h" <-- inclusion of file.h from main.c 547 // 1: #define M2 <-- M2 definition in file.h with no value 548 // 7: #undef M1 V1 <-- M1 un-definition in main.c 549 TEST_F(IRBuilderTest, DIBuilderMacro) { 550 IRBuilder<> Builder(BB); 551 DIBuilder DIB(*M); 552 auto File1 = DIB.createFile("main.c", "/"); 553 auto File2 = DIB.createFile("file.h", "/"); 554 auto CU = DIB.createCompileUnit( 555 dwarf::DW_LANG_C, DIB.createFile("main.c", "/"), "llvm-c", true, "", 0); 556 auto MDef0 = 557 DIB.createMacro(nullptr, 0, dwarf::DW_MACINFO_define, "M0", "V0"); 558 auto TMF1 = DIB.createTempMacroFile(nullptr, 0, File1); 559 auto MDef1 = DIB.createMacro(TMF1, 3, dwarf::DW_MACINFO_define, "M1", "V1"); 560 auto TMF2 = DIB.createTempMacroFile(TMF1, 5, File2); 561 auto MDef2 = DIB.createMacro(TMF2, 1, dwarf::DW_MACINFO_define, "M2"); 562 auto MUndef1 = DIB.createMacro(TMF1, 7, dwarf::DW_MACINFO_undef, "M1"); 563 564 EXPECT_EQ(dwarf::DW_MACINFO_define, MDef1->getMacinfoType()); 565 EXPECT_EQ(3u, MDef1->getLine()); 566 EXPECT_EQ("M1", MDef1->getName()); 567 EXPECT_EQ("V1", MDef1->getValue()); 568 569 EXPECT_EQ(dwarf::DW_MACINFO_undef, MUndef1->getMacinfoType()); 570 EXPECT_EQ(7u, MUndef1->getLine()); 571 EXPECT_EQ("M1", MUndef1->getName()); 572 EXPECT_EQ("", MUndef1->getValue()); 573 574 EXPECT_EQ(dwarf::DW_MACINFO_start_file, TMF2->getMacinfoType()); 575 EXPECT_EQ(5u, TMF2->getLine()); 576 EXPECT_EQ(File2, TMF2->getFile()); 577 578 DIB.finalize(); 579 580 SmallVector<Metadata *, 4> Elements; 581 Elements.push_back(MDef2); 582 auto MF2 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 5, File2, 583 DIB.getOrCreateMacroArray(Elements)); 584 585 Elements.clear(); 586 Elements.push_back(MDef1); 587 Elements.push_back(MF2); 588 Elements.push_back(MUndef1); 589 auto MF1 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 0, File1, 590 DIB.getOrCreateMacroArray(Elements)); 591 592 Elements.clear(); 593 Elements.push_back(MDef0); 594 Elements.push_back(MF1); 595 auto MN0 = MDTuple::get(Ctx, Elements); 596 EXPECT_EQ(MN0, CU->getRawMacros()); 597 598 Elements.clear(); 599 Elements.push_back(MDef1); 600 Elements.push_back(MF2); 601 Elements.push_back(MUndef1); 602 auto MN1 = MDTuple::get(Ctx, Elements); 603 EXPECT_EQ(MN1, MF1->getRawElements()); 604 605 Elements.clear(); 606 Elements.push_back(MDef2); 607 auto MN2 = MDTuple::get(Ctx, Elements); 608 EXPECT_EQ(MN2, MF2->getRawElements()); 609 EXPECT_TRUE(verifyModule(*M)); 610 } 611 } 612