1 //===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ValueTypes.h" 10 #include "llvm/IR/DerivedTypes.h" 11 #include "llvm/IR/LLVMContext.h" 12 #include "llvm/Support/MachineValueType.h" 13 #include "llvm/Support/TypeSize.h" 14 #include "gtest/gtest.h" 15 16 using namespace llvm; 17 18 namespace { 19 20 TEST(ScalableVectorMVTsTest, IntegerMVTs) { 21 for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) { 22 ASSERT_TRUE(VecTy.isValid()); 23 ASSERT_TRUE(VecTy.isInteger()); 24 ASSERT_TRUE(VecTy.isVector()); 25 ASSERT_TRUE(VecTy.isScalableVector()); 26 ASSERT_TRUE(VecTy.getScalarType().isValid()); 27 28 ASSERT_FALSE(VecTy.isFloatingPoint()); 29 } 30 } 31 32 TEST(ScalableVectorMVTsTest, FloatMVTs) { 33 for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) { 34 ASSERT_TRUE(VecTy.isValid()); 35 ASSERT_TRUE(VecTy.isFloatingPoint()); 36 ASSERT_TRUE(VecTy.isVector()); 37 ASSERT_TRUE(VecTy.isScalableVector()); 38 ASSERT_TRUE(VecTy.getScalarType().isValid()); 39 40 ASSERT_FALSE(VecTy.isInteger()); 41 } 42 } 43 44 TEST(ScalableVectorMVTsTest, HelperFuncs) { 45 LLVMContext Ctx; 46 47 // Create with scalable flag 48 EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true); 49 ASSERT_TRUE(Vnx4i32.isScalableVector()); 50 51 // Create with separate llvm::ElementCount 52 auto EltCnt = ElementCount(2, true); 53 EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt); 54 ASSERT_TRUE(Vnx2i32.isScalableVector()); 55 56 // Create with inline llvm::ElementCount 57 EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true}); 58 ASSERT_TRUE(Vnx2i64.isScalableVector()); 59 60 // Check that changing scalar types/element count works 61 EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64); 62 EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32); 63 64 // Check that overloaded '*' and '/' operators work 65 EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64); 66 EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64); 67 68 // Check that float->int conversion works 69 EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true}); 70 EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64); 71 72 // Check fields inside llvm::ElementCount 73 EltCnt = Vnx4i32.getVectorElementCount(); 74 EXPECT_EQ(EltCnt.Min, 4U); 75 ASSERT_TRUE(EltCnt.Scalable); 76 77 // Check that fixed-length vector types aren't scalable. 78 EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8); 79 ASSERT_FALSE(V8i32.isScalableVector()); 80 EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false}); 81 ASSERT_FALSE(V4f64.isScalableVector()); 82 83 // Check that llvm::ElementCount works for fixed-length types. 84 EltCnt = V8i32.getVectorElementCount(); 85 EXPECT_EQ(EltCnt.Min, 8U); 86 ASSERT_FALSE(EltCnt.Scalable); 87 } 88 89 TEST(ScalableVectorMVTsTest, IRToVTTranslation) { 90 LLVMContext Ctx; 91 92 Type *Int64Ty = Type::getInt64Ty(Ctx); 93 VectorType *ScV8Int64Ty = VectorType::get(Int64Ty, {8, true}); 94 95 // Check that we can map a scalable IR type to an MVT 96 MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty); 97 ASSERT_TRUE(Mnxv8i64.isScalableVector()); 98 ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount()); 99 ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()), 100 Mnxv8i64.getScalarType()); 101 102 // Check that we can map a scalable IR type to an EVT 103 EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty); 104 ASSERT_TRUE(Enxv8i64.isScalableVector()); 105 ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount()); 106 ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()), 107 Enxv8i64.getScalarType()); 108 } 109 110 TEST(ScalableVectorMVTsTest, VTToIRTranslation) { 111 LLVMContext Ctx; 112 113 EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, true}); 114 115 Type *Ty = Enxv4f64.getTypeForEVT(Ctx); 116 VectorType *ScV4Float64Ty = cast<VectorType>(Ty); 117 ASSERT_TRUE(isa<ScalableVectorType>(ScV4Float64Ty)); 118 ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount()); 119 ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx), 120 ScV4Float64Ty->getElementType()); 121 } 122 123 TEST(ScalableVectorMVTsTest, SizeQueries) { 124 LLVMContext Ctx; 125 126 EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true); 127 EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true); 128 EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true); 129 EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true); 130 131 EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4); 132 EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2); 133 EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2); 134 EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2); 135 136 // Check equivalence and ordering on scalable types. 137 EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits()); 138 EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits()); 139 EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits()); 140 EXPECT_LT(nxv2i32.getSizeInBits(), nxv2i64.getSizeInBits()); 141 EXPECT_LE(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits()); 142 EXPECT_GT(nxv4i32.getSizeInBits(), nxv2i32.getSizeInBits()); 143 EXPECT_GE(nxv2i64.getSizeInBits(), nxv4i32.getSizeInBits()); 144 145 // Check equivalence and ordering on fixed types. 146 EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits()); 147 EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits()); 148 EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits()); 149 EXPECT_LT(v2i32.getSizeInBits(), v2i64.getSizeInBits()); 150 EXPECT_LE(v4i32.getSizeInBits(), v2i64.getSizeInBits()); 151 EXPECT_GT(v4i32.getSizeInBits(), v2i32.getSizeInBits()); 152 EXPECT_GE(v2i64.getSizeInBits(), v4i32.getSizeInBits()); 153 154 // Check that scalable and non-scalable types with the same minimum size 155 // are not considered equal. 156 ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits()); 157 ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits()); 158 159 // Check that we can obtain a known-exact size from a non-scalable type. 160 EXPECT_EQ(v4i32.getSizeInBits(), 128U); 161 EXPECT_EQ(v2i64.getSizeInBits().getFixedSize(), 128U); 162 163 // Check that we can query the known minimum size for both scalable and 164 // fixed length types. 165 EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinSize(), 64U); 166 EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinSize(), 128U); 167 EXPECT_EQ(v2i32.getSizeInBits().getKnownMinSize(), 168 nxv2i32.getSizeInBits().getKnownMinSize()); 169 170 // Check scalable property. 171 ASSERT_FALSE(v4i32.getSizeInBits().isScalable()); 172 ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable()); 173 174 // Check convenience size scaling methods. 175 EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits()); 176 EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits()); 177 EXPECT_EQ(nxv2f64.getSizeInBits() / 2, nxv2i32.getSizeInBits()); 178 } 179 180 } // end anonymous namespace 181