xref: /llvm-project/llvm/unittests/Analysis/MLModelRunnerTest.cpp (revision 83051c5a5f09fe4de5d5b504e5fb864060e9794b)
1 //===- MLModelRunnerTest.cpp - test for MLModelRunner ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/MLModelRunner.h"
10 #include "llvm/Analysis/InteractiveModelRunner.h"
11 #include "llvm/Analysis/NoInferenceModelRunner.h"
12 #include "llvm/Analysis/ReleaseModeModelRunner.h"
13 #include "llvm/Support/BinaryByteStream.h"
14 #include "llvm/Support/FileSystem.h"
15 #include "llvm/Support/FileUtilities.h"
16 #include "llvm/Support/JSON.h"
17 #include "llvm/Support/Path.h"
18 #include "llvm/Support/raw_ostream.h"
19 #include "llvm/Testing/Support/SupportHelpers.h"
20 #include "gtest/gtest.h"
21 
22 #include <atomic>
23 #include <thread>
24 
25 using namespace llvm;
26 
27 namespace llvm {
28 // This is a mock of the kind of AOT-generated model evaluator. It has 2 tensors
29 // of shape {1}, and 'evaluation' adds them.
30 // The interface is the one expected by ReleaseModelRunner.
31 class MockAOTModel final {
32   int64_t A = 0;
33   int64_t B = 0;
34   int64_t R = 0;
35 
36 public:
37   MockAOTModel() = default;
38   int LookupArgIndex(const std::string &Name) {
39     if (Name == "prefix_a")
40       return 0;
41     if (Name == "prefix_b")
42       return 1;
43     return -1;
44   }
45   int LookupResultIndex(const std::string &) { return 0; }
46   void Run() { R = A + B; }
47   void *result_data(int RIndex) {
48     if (RIndex == 0)
49       return &R;
50     return nullptr;
51   }
52   void *arg_data(int Index) {
53     switch (Index) {
54     case 0:
55       return &A;
56     case 1:
57       return &B;
58     default:
59       return nullptr;
60     }
61   }
62 };
63 } // namespace llvm
64 
65 TEST(NoInferenceModelRunner, AccessTensors) {
66   const std::vector<TensorSpec> Inputs{
67       TensorSpec::createSpec<int64_t>("F1", {1}),
68       TensorSpec::createSpec<int64_t>("F2", {10}),
69       TensorSpec::createSpec<float>("F2", {5}),
70   };
71   LLVMContext Ctx;
72   NoInferenceModelRunner NIMR(Ctx, Inputs);
73   NIMR.getTensor<int64_t>(0)[0] = 1;
74   std::memcpy(NIMR.getTensor<int64_t>(1),
75               std::vector<int64_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.data(),
76               10 * sizeof(int64_t));
77   std::memcpy(NIMR.getTensor<float>(2),
78               std::vector<float>{0.1f, 0.2f, 0.3f, 0.4f, 0.5f}.data(),
79               5 * sizeof(float));
80   ASSERT_EQ(NIMR.getTensor<int64_t>(0)[0], 1);
81   ASSERT_EQ(NIMR.getTensor<int64_t>(1)[8], 9);
82   ASSERT_EQ(NIMR.getTensor<float>(2)[1], 0.2f);
83 }
84 
85 TEST(ReleaseModeRunner, NormalUse) {
86   LLVMContext Ctx;
87   std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
88                                  TensorSpec::createSpec<int64_t>("b", {1})};
89   auto Evaluator = std::make_unique<ReleaseModeModelRunner<MockAOTModel>>(
90       Ctx, Inputs, "", "prefix_");
91   *Evaluator->getTensor<int64_t>(0) = 1;
92   *Evaluator->getTensor<int64_t>(1) = 2;
93   EXPECT_EQ(Evaluator->evaluate<int64_t>(), 3);
94   EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
95   EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
96 }
97 
98 TEST(ReleaseModeRunner, ExtraFeatures) {
99   LLVMContext Ctx;
100   std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
101                                  TensorSpec::createSpec<int64_t>("b", {1}),
102                                  TensorSpec::createSpec<int64_t>("c", {1})};
103   auto Evaluator = std::make_unique<ReleaseModeModelRunner<MockAOTModel>>(
104       Ctx, Inputs, "", "prefix_");
105   *Evaluator->getTensor<int64_t>(0) = 1;
106   *Evaluator->getTensor<int64_t>(1) = 2;
107   *Evaluator->getTensor<int64_t>(2) = -3;
108   EXPECT_EQ(Evaluator->evaluate<int64_t>(), 3);
109   EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
110   EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
111   EXPECT_EQ(*Evaluator->getTensor<int64_t>(2), -3);
112 }
113 
114 TEST(ReleaseModeRunner, ExtraFeaturesOutOfOrder) {
115   LLVMContext Ctx;
116   std::vector<TensorSpec> Inputs{
117       TensorSpec::createSpec<int64_t>("a", {1}),
118       TensorSpec::createSpec<int64_t>("c", {1}),
119       TensorSpec::createSpec<int64_t>("b", {1}),
120   };
121   auto Evaluator = std::make_unique<ReleaseModeModelRunner<MockAOTModel>>(
122       Ctx, Inputs, "", "prefix_");
123   *Evaluator->getTensor<int64_t>(0) = 1;         // a
124   *Evaluator->getTensor<int64_t>(1) = 2;         // c
125   *Evaluator->getTensor<int64_t>(2) = -3;        // b
126   EXPECT_EQ(Evaluator->evaluate<int64_t>(), -2); // a + b
127   EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
128   EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
129   EXPECT_EQ(*Evaluator->getTensor<int64_t>(2), -3);
130 }
131 
132 #if defined(LLVM_ON_UNIX)
133 TEST(InteractiveModelRunner, Evaluation) {
134   LLVMContext Ctx;
135   // Test the interaction with an external advisor by asking for advice twice.
136   // Use simple values, since we use the Logger underneath, that's tested more
137   // extensively elsewhere.
138   std::vector<TensorSpec> Inputs{
139       TensorSpec::createSpec<int64_t>("a", {1}),
140       TensorSpec::createSpec<int64_t>("b", {1}),
141       TensorSpec::createSpec<int64_t>("c", {1}),
142   };
143   TensorSpec AdviceSpec = TensorSpec::createSpec<float>("advice", {1});
144 
145   // Create the 2 files. Ideally we'd create them as named pipes, but that's not
146   // quite supported by the generic API.
147   std::error_code EC;
148   llvm::unittest::TempDir Tmp("tmpdir", /*Unique=*/true);
149   SmallString<128> FromCompilerName(Tmp.path().begin(), Tmp.path().end());
150   SmallString<128> ToCompilerName(Tmp.path().begin(), Tmp.path().end());
151   sys::path::append(FromCompilerName, "InteractiveModelRunner_Evaluation.out");
152   sys::path::append(ToCompilerName, "InteractiveModelRunner_Evaluation.in");
153   EXPECT_EQ(::mkfifo(FromCompilerName.c_str(), 0666), 0);
154   EXPECT_EQ(::mkfifo(ToCompilerName.c_str(), 0666), 0);
155 
156   FileRemover Cleanup1(FromCompilerName);
157   FileRemover Cleanup2(ToCompilerName);
158 
159   // Since the evaluator sends the features over and then blocks waiting for
160   // an answer, we must spawn a thread playing the role of the advisor / host:
161   std::atomic<int> SeenObservations = 0;
162   // Start the host first to make sure the pipes are being prepared. Otherwise
163   // the evaluator will hang.
164   std::thread Advisor([&]() {
165     // Open the writer first. This is because the evaluator will try opening
166     // the "input" pipe first. An alternative that avoids ordering is for the
167     // host to open the pipes RW.
168     raw_fd_ostream ToCompiler(ToCompilerName, EC);
169     EXPECT_FALSE(EC);
170     sys::fs::file_t FromCompiler = {};
171     EXPECT_FALSE(sys::fs::openFileForRead(FromCompilerName, FromCompiler));
172     EXPECT_EQ(SeenObservations, 0);
173     // Helper to read headers and other json lines.
174     SmallVector<char, 1024> Buffer;
175     auto ReadLn = [&]() {
176       Buffer.clear();
177       while (true) {
178         char Chr = 0;
179         auto ReadOrErr = sys::fs::readNativeFile(FromCompiler, {&Chr, 1});
180         EXPECT_FALSE(ReadOrErr.takeError());
181         if (!*ReadOrErr)
182           continue;
183         if (Chr == '\n')
184           return StringRef(Buffer.data(), Buffer.size());
185         Buffer.push_back(Chr);
186       }
187     };
188     // See include/llvm/Analysis/Utils/TrainingLogger.h
189     // First comes the header
190     auto Header = json::parse(ReadLn());
191     EXPECT_FALSE(Header.takeError());
192     EXPECT_NE(Header->getAsObject()->getArray("features"), nullptr);
193     EXPECT_NE(Header->getAsObject()->getObject("advice"), nullptr);
194     // Then comes the context
195     EXPECT_FALSE(json::parse(ReadLn()).takeError());
196 
197     int64_t Features[3] = {0};
198     auto FullyRead = [&]() {
199       size_t InsPt = 0;
200       const size_t ToRead = 3 * Inputs[0].getTotalTensorBufferSize();
201       char *Buff = reinterpret_cast<char *>(Features);
202       while (InsPt < ToRead) {
203         auto ReadOrErr = sys::fs::readNativeFile(
204             FromCompiler, {Buff + InsPt, ToRead - InsPt});
205         EXPECT_FALSE(ReadOrErr.takeError());
206         InsPt += *ReadOrErr;
207       }
208     };
209     // Observation
210     EXPECT_FALSE(json::parse(ReadLn()).takeError());
211     // Tensor values
212     FullyRead();
213     // a "\n"
214     char Chr = 0;
215     auto ReadNL = [&]() {
216       do {
217         auto ReadOrErr = sys::fs::readNativeFile(FromCompiler, {&Chr, 1});
218         EXPECT_FALSE(ReadOrErr.takeError());
219         if (*ReadOrErr == 1)
220           break;
221       } while (true);
222     };
223     ReadNL();
224     EXPECT_EQ(Chr, '\n');
225     EXPECT_EQ(Features[0], 42);
226     EXPECT_EQ(Features[1], 43);
227     EXPECT_EQ(Features[2], 100);
228     ++SeenObservations;
229 
230     // Send the advice
231     float Advice = 42.0012;
232     ToCompiler.write(reinterpret_cast<const char *>(&Advice),
233                      AdviceSpec.getTotalTensorBufferSize());
234     ToCompiler.flush();
235 
236     // Second observation, and same idea as above
237     EXPECT_FALSE(json::parse(ReadLn()).takeError());
238     FullyRead();
239     ReadNL();
240     EXPECT_EQ(Chr, '\n');
241     EXPECT_EQ(Features[0], 10);
242     EXPECT_EQ(Features[1], -2);
243     EXPECT_EQ(Features[2], 1);
244     ++SeenObservations;
245     Advice = 50.30;
246     ToCompiler.write(reinterpret_cast<const char *>(&Advice),
247                      AdviceSpec.getTotalTensorBufferSize());
248     ToCompiler.flush();
249     sys::fs::closeFile(FromCompiler);
250   });
251 
252   InteractiveModelRunner Evaluator(Ctx, Inputs, AdviceSpec, FromCompilerName,
253                                    ToCompilerName);
254 
255   Evaluator.switchContext("hi");
256 
257   EXPECT_EQ(SeenObservations, 0);
258   *Evaluator.getTensor<int64_t>(0) = 42;
259   *Evaluator.getTensor<int64_t>(1) = 43;
260   *Evaluator.getTensor<int64_t>(2) = 100;
261   float Ret = Evaluator.evaluate<float>();
262   EXPECT_EQ(SeenObservations, 1);
263   EXPECT_FLOAT_EQ(Ret, 42.0012);
264 
265   *Evaluator.getTensor<int64_t>(0) = 10;
266   *Evaluator.getTensor<int64_t>(1) = -2;
267   *Evaluator.getTensor<int64_t>(2) = 1;
268   Ret = Evaluator.evaluate<float>();
269   EXPECT_EQ(SeenObservations, 2);
270   EXPECT_FLOAT_EQ(Ret, 50.30);
271   Advisor.join();
272 }
273 #endif
274