xref: /llvm-project/llvm/unittests/Analysis/MLModelRunnerTest.cpp (revision 5b8dc7c8a55269aa438c6639a7ce22e6b99b1844)
1 //===- MLModelRunnerTest.cpp - test for MLModelRunner ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/MLModelRunner.h"
10 #include "llvm/Analysis/InteractiveModelRunner.h"
11 #include "llvm/Analysis/NoInferenceModelRunner.h"
12 #include "llvm/Analysis/ReleaseModeModelRunner.h"
13 #include "llvm/Support/BinaryByteStream.h"
14 #include "llvm/Support/FileUtilities.h"
15 #include "llvm/Support/JSON.h"
16 #include "llvm/Support/raw_ostream.h"
17 #include "gtest/gtest.h"
18 
19 #include <atomic>
20 #include <thread>
21 
22 using namespace llvm;
23 
24 namespace llvm {
25 // This is a mock of the kind of AOT-generated model evaluator. It has 2 tensors
26 // of shape {1}, and 'evaluation' adds them.
27 // The interface is the one expected by ReleaseModelRunner.
28 class MockAOTModel final {
29   int64_t A = 0;
30   int64_t B = 0;
31   int64_t R = 0;
32 
33 public:
34   MockAOTModel() = default;
35   int LookupArgIndex(const std::string &Name) {
36     if (Name == "prefix_a")
37       return 0;
38     if (Name == "prefix_b")
39       return 1;
40     return -1;
41   }
42   int LookupResultIndex(const std::string &) { return 0; }
43   void Run() { R = A + B; }
44   void *result_data(int RIndex) {
45     if (RIndex == 0)
46       return &R;
47     return nullptr;
48   }
49   void *arg_data(int Index) {
50     switch (Index) {
51     case 0:
52       return &A;
53     case 1:
54       return &B;
55     default:
56       return nullptr;
57     }
58   }
59 };
60 } // namespace llvm
61 
62 TEST(NoInferenceModelRunner, AccessTensors) {
63   const std::vector<TensorSpec> Inputs{
64       TensorSpec::createSpec<int64_t>("F1", {1}),
65       TensorSpec::createSpec<int64_t>("F2", {10}),
66       TensorSpec::createSpec<float>("F2", {5}),
67   };
68   LLVMContext Ctx;
69   NoInferenceModelRunner NIMR(Ctx, Inputs);
70   NIMR.getTensor<int64_t>(0)[0] = 1;
71   std::memcpy(NIMR.getTensor<int64_t>(1),
72               std::vector<int64_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.data(),
73               10 * sizeof(int64_t));
74   std::memcpy(NIMR.getTensor<float>(2),
75               std::vector<float>{0.1f, 0.2f, 0.3f, 0.4f, 0.5f}.data(),
76               5 * sizeof(float));
77   ASSERT_EQ(NIMR.getTensor<int64_t>(0)[0], 1);
78   ASSERT_EQ(NIMR.getTensor<int64_t>(1)[8], 9);
79   ASSERT_EQ(NIMR.getTensor<float>(2)[1], 0.2f);
80 }
81 
82 TEST(ReleaseModeRunner, NormalUse) {
83   LLVMContext Ctx;
84   std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
85                                  TensorSpec::createSpec<int64_t>("b", {1})};
86   auto Evaluator = std::make_unique<ReleaseModeModelRunner<MockAOTModel>>(
87       Ctx, Inputs, "", "prefix_");
88   *Evaluator->getTensor<int64_t>(0) = 1;
89   *Evaluator->getTensor<int64_t>(1) = 2;
90   EXPECT_EQ(Evaluator->evaluate<int64_t>(), 3);
91   EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
92   EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
93 }
94 
95 TEST(ReleaseModeRunner, ExtraFeatures) {
96   LLVMContext Ctx;
97   std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
98                                  TensorSpec::createSpec<int64_t>("b", {1}),
99                                  TensorSpec::createSpec<int64_t>("c", {1})};
100   auto Evaluator = std::make_unique<ReleaseModeModelRunner<MockAOTModel>>(
101       Ctx, Inputs, "", "prefix_");
102   *Evaluator->getTensor<int64_t>(0) = 1;
103   *Evaluator->getTensor<int64_t>(1) = 2;
104   *Evaluator->getTensor<int64_t>(2) = -3;
105   EXPECT_EQ(Evaluator->evaluate<int64_t>(), 3);
106   EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
107   EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
108   EXPECT_EQ(*Evaluator->getTensor<int64_t>(2), -3);
109 }
110 
111 TEST(ReleaseModeRunner, ExtraFeaturesOutOfOrder) {
112   LLVMContext Ctx;
113   std::vector<TensorSpec> Inputs{
114       TensorSpec::createSpec<int64_t>("a", {1}),
115       TensorSpec::createSpec<int64_t>("c", {1}),
116       TensorSpec::createSpec<int64_t>("b", {1}),
117   };
118   auto Evaluator = std::make_unique<ReleaseModeModelRunner<MockAOTModel>>(
119       Ctx, Inputs, "", "prefix_");
120   *Evaluator->getTensor<int64_t>(0) = 1;         // a
121   *Evaluator->getTensor<int64_t>(1) = 2;         // c
122   *Evaluator->getTensor<int64_t>(2) = -3;        // b
123   EXPECT_EQ(Evaluator->evaluate<int64_t>(), -2); // a + b
124   EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
125   EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
126   EXPECT_EQ(*Evaluator->getTensor<int64_t>(2), -3);
127 }
128 
129 TEST(InteractiveModelRunner, Evaluation) {
130   LLVMContext Ctx;
131   // Test the interaction with an external advisor by asking for advice twice.
132   // Use simple values, since we use the Logger underneath, that's tested more
133   // extensively elsewhere.
134   std::vector<TensorSpec> Inputs{
135       TensorSpec::createSpec<int64_t>("a", {1}),
136       TensorSpec::createSpec<int64_t>("b", {1}),
137       TensorSpec::createSpec<int64_t>("c", {1}),
138   };
139   TensorSpec AdviceSpec = TensorSpec::createSpec<float>("advice", {1});
140 
141   // Create the 2 files. Ideally we'd create them as named pipes, but that's not
142   // quite supported by the generic API.
143   std::error_code EC;
144   SmallString<64> FromCompilerName;
145   SmallString<64> ToCompilerName;
146   int FromCompilerFD = 0;
147   int ToCompilerFD = 0;
148   ASSERT_EQ(sys::fs::createTemporaryFile("InteractiveModelRunner_Evaluation",
149                                          "temp", FromCompilerFD,
150                                          FromCompilerName),
151             std::error_code());
152 
153   ASSERT_EQ(sys::fs::createTemporaryFile("InteractiveModelRunner_Evaluation",
154                                          "temp", ToCompilerFD, ToCompilerName),
155             std::error_code());
156 
157   raw_fd_stream FromCompiler(FromCompilerName, EC);
158   EXPECT_FALSE(EC);
159   raw_fd_ostream ToCompiler(ToCompilerName, EC);
160   EXPECT_FALSE(EC);
161   FileRemover Cleanup1(FromCompilerName);
162   FileRemover Cleanup2(ToCompilerName);
163   InteractiveModelRunner Evaluator(Ctx, Inputs, AdviceSpec, FromCompilerName,
164                                    ToCompilerName);
165 
166   Evaluator.switchContext("hi");
167 
168   // Helper to read headers and other json lines.
169   SmallVector<char, 1024> Buffer;
170   auto ReadLn = [&]() {
171     Buffer.clear();
172     while (true) {
173       char Chr = 0;
174       auto Read = FromCompiler.read(&Chr, 1);
175       EXPECT_GE(Read, 0);
176       if (!Read)
177         continue;
178       if (Chr == '\n')
179         return StringRef(Buffer.data(), Buffer.size());
180       Buffer.push_back(Chr);
181     }
182   };
183   // See include/llvm/Analysis/Utils/TrainingLogger.h
184   // First comes the header
185   auto Header = json::parse(ReadLn());
186   EXPECT_FALSE(Header.takeError());
187   EXPECT_NE(Header->getAsObject()->getArray("features"), nullptr);
188   // Then comes the context
189   EXPECT_FALSE(json::parse(ReadLn()).takeError());
190 
191   // Since the evaluator sends the features over and then blocks waiting for
192   // an answer, we must spawn a thread playing the role of the advisor / host:
193   std::atomic<int> SeenObservations = 0;
194   std::thread Advisor([&]() {
195     EXPECT_EQ(SeenObservations, 0);
196     int64_t Features[3] = {0};
197     auto FullyRead = [&]() {
198       size_t InsPt = 0;
199       const size_t ToRead = 3 * Inputs[0].getTotalTensorBufferSize();
200       char *Buff = reinterpret_cast<char *>(Features);
201       while (InsPt < ToRead) {
202         auto Read = FromCompiler.read(Buff + InsPt, ToRead - InsPt);
203         EXPECT_GE(Read, 0);
204         InsPt += Read;
205       }
206     };
207     // Observation
208     EXPECT_FALSE(json::parse(ReadLn()).takeError());
209     // Tensor values
210     FullyRead();
211     // a "\n"
212     char Chr = 0;
213     while (FromCompiler.read(&Chr, 1) == 0) {
214     }
215     EXPECT_EQ(Chr, '\n');
216     EXPECT_EQ(Features[0], 42);
217     EXPECT_EQ(Features[1], 43);
218     EXPECT_EQ(Features[2], 100);
219     ++SeenObservations;
220 
221     // Send the advice
222     float Advice = 42.0012;
223     ToCompiler.write(reinterpret_cast<const char *>(&Advice),
224                      AdviceSpec.getTotalTensorBufferSize());
225     ToCompiler.flush();
226 
227     // Second observation, and same idea as above
228     EXPECT_FALSE(json::parse(ReadLn()).takeError());
229     FullyRead();
230     while (FromCompiler.read(&Chr, 1) == 0) {
231     }
232     EXPECT_EQ(Chr, '\n');
233     EXPECT_EQ(Features[0], 10);
234     EXPECT_EQ(Features[1], -2);
235     EXPECT_EQ(Features[2], 1);
236     ++SeenObservations;
237     Advice = 50.30;
238     ToCompiler.write(reinterpret_cast<const char *>(&Advice),
239                      AdviceSpec.getTotalTensorBufferSize());
240     ToCompiler.flush();
241   });
242 
243   EXPECT_EQ(SeenObservations, 0);
244   *Evaluator.getTensor<int64_t>(0) = 42;
245   *Evaluator.getTensor<int64_t>(1) = 43;
246   *Evaluator.getTensor<int64_t>(2) = 100;
247   float Ret = Evaluator.evaluate<float>();
248   EXPECT_EQ(SeenObservations, 1);
249   EXPECT_FLOAT_EQ(Ret, 42.0012);
250 
251   *Evaluator.getTensor<int64_t>(0) = 10;
252   *Evaluator.getTensor<int64_t>(1) = -2;
253   *Evaluator.getTensor<int64_t>(2) = 1;
254   Ret = Evaluator.evaluate<float>();
255   EXPECT_EQ(SeenObservations, 2);
256   EXPECT_FLOAT_EQ(Ret, 50.30);
257   Advisor.join();
258 }