1 //===- llvm/unittest/ADT/APInt.cpp - APInt unit tests ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APInt.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/Twine.h" 14 #include "gtest/gtest.h" 15 #include <array> 16 17 using namespace llvm; 18 19 namespace { 20 21 TEST(APIntTest, ValueInit) { 22 APInt Zero = APInt(); 23 EXPECT_TRUE(!Zero); 24 EXPECT_TRUE(!Zero.zext(64)); 25 EXPECT_TRUE(!Zero.sext(64)); 26 } 27 28 // Test that APInt shift left works when bitwidth > 64 and shiftamt == 0 29 TEST(APIntTest, ShiftLeftByZero) { 30 APInt One = APInt::getNullValue(65) + 1; 31 APInt Shl = One.shl(0); 32 EXPECT_TRUE(Shl[0]); 33 EXPECT_FALSE(Shl[1]); 34 } 35 36 TEST(APIntTest, i64_ArithmeticRightShiftNegative) { 37 const APInt neg_one(64, static_cast<uint64_t>(-1), true); 38 EXPECT_EQ(neg_one, neg_one.ashr(7)); 39 } 40 41 TEST(APIntTest, i128_NegativeCount) { 42 APInt Minus3(128, static_cast<uint64_t>(-3), true); 43 EXPECT_EQ(126u, Minus3.countLeadingOnes()); 44 EXPECT_EQ(-3, Minus3.getSExtValue()); 45 46 APInt Minus1(128, static_cast<uint64_t>(-1), true); 47 EXPECT_EQ(0u, Minus1.countLeadingZeros()); 48 EXPECT_EQ(128u, Minus1.countLeadingOnes()); 49 EXPECT_EQ(128u, Minus1.getActiveBits()); 50 EXPECT_EQ(0u, Minus1.countTrailingZeros()); 51 EXPECT_EQ(128u, Minus1.countTrailingOnes()); 52 EXPECT_EQ(128u, Minus1.countPopulation()); 53 EXPECT_EQ(-1, Minus1.getSExtValue()); 54 } 55 56 TEST(APIntTest, i33_Count) { 57 APInt i33minus2(33, static_cast<uint64_t>(-2), true); 58 EXPECT_EQ(0u, i33minus2.countLeadingZeros()); 59 EXPECT_EQ(32u, i33minus2.countLeadingOnes()); 60 EXPECT_EQ(33u, i33minus2.getActiveBits()); 61 EXPECT_EQ(1u, i33minus2.countTrailingZeros()); 62 EXPECT_EQ(32u, i33minus2.countPopulation()); 63 EXPECT_EQ(-2, i33minus2.getSExtValue()); 64 EXPECT_EQ(((uint64_t)-2)&((1ull<<33) -1), i33minus2.getZExtValue()); 65 } 66 67 TEST(APIntTest, i61_Count) { 68 APInt i61(61, 1 << 15); 69 EXPECT_EQ(45u, i61.countLeadingZeros()); 70 EXPECT_EQ(0u, i61.countLeadingOnes()); 71 EXPECT_EQ(16u, i61.getActiveBits()); 72 EXPECT_EQ(15u, i61.countTrailingZeros()); 73 EXPECT_EQ(1u, i61.countPopulation()); 74 EXPECT_EQ(static_cast<int64_t>(1 << 15), i61.getSExtValue()); 75 EXPECT_EQ(static_cast<uint64_t>(1 << 15), i61.getZExtValue()); 76 77 i61.setBits(8, 19); 78 EXPECT_EQ(42u, i61.countLeadingZeros()); 79 EXPECT_EQ(0u, i61.countLeadingOnes()); 80 EXPECT_EQ(19u, i61.getActiveBits()); 81 EXPECT_EQ(8u, i61.countTrailingZeros()); 82 EXPECT_EQ(11u, i61.countPopulation()); 83 EXPECT_EQ(static_cast<int64_t>((1 << 19) - (1 << 8)), i61.getSExtValue()); 84 EXPECT_EQ(static_cast<uint64_t>((1 << 19) - (1 << 8)), i61.getZExtValue()); 85 } 86 87 TEST(APIntTest, i65_Count) { 88 APInt i65(65, 0, true); 89 EXPECT_EQ(65u, i65.countLeadingZeros()); 90 EXPECT_EQ(0u, i65.countLeadingOnes()); 91 EXPECT_EQ(0u, i65.getActiveBits()); 92 EXPECT_EQ(1u, i65.getActiveWords()); 93 EXPECT_EQ(65u, i65.countTrailingZeros()); 94 EXPECT_EQ(0u, i65.countPopulation()); 95 96 APInt i65minus(65, 0, true); 97 i65minus.setBit(64); 98 EXPECT_EQ(0u, i65minus.countLeadingZeros()); 99 EXPECT_EQ(1u, i65minus.countLeadingOnes()); 100 EXPECT_EQ(65u, i65minus.getActiveBits()); 101 EXPECT_EQ(64u, i65minus.countTrailingZeros()); 102 EXPECT_EQ(1u, i65minus.countPopulation()); 103 } 104 105 TEST(APIntTest, i128_PositiveCount) { 106 APInt u128max = APInt::getAllOnesValue(128); 107 EXPECT_EQ(128u, u128max.countLeadingOnes()); 108 EXPECT_EQ(0u, u128max.countLeadingZeros()); 109 EXPECT_EQ(128u, u128max.getActiveBits()); 110 EXPECT_EQ(0u, u128max.countTrailingZeros()); 111 EXPECT_EQ(128u, u128max.countTrailingOnes()); 112 EXPECT_EQ(128u, u128max.countPopulation()); 113 114 APInt u64max(128, static_cast<uint64_t>(-1), false); 115 EXPECT_EQ(64u, u64max.countLeadingZeros()); 116 EXPECT_EQ(0u, u64max.countLeadingOnes()); 117 EXPECT_EQ(64u, u64max.getActiveBits()); 118 EXPECT_EQ(0u, u64max.countTrailingZeros()); 119 EXPECT_EQ(64u, u64max.countTrailingOnes()); 120 EXPECT_EQ(64u, u64max.countPopulation()); 121 EXPECT_EQ((uint64_t)~0ull, u64max.getZExtValue()); 122 123 APInt zero(128, 0, true); 124 EXPECT_EQ(128u, zero.countLeadingZeros()); 125 EXPECT_EQ(0u, zero.countLeadingOnes()); 126 EXPECT_EQ(0u, zero.getActiveBits()); 127 EXPECT_EQ(128u, zero.countTrailingZeros()); 128 EXPECT_EQ(0u, zero.countTrailingOnes()); 129 EXPECT_EQ(0u, zero.countPopulation()); 130 EXPECT_EQ(0u, zero.getSExtValue()); 131 EXPECT_EQ(0u, zero.getZExtValue()); 132 133 APInt one(128, 1, true); 134 EXPECT_EQ(127u, one.countLeadingZeros()); 135 EXPECT_EQ(0u, one.countLeadingOnes()); 136 EXPECT_EQ(1u, one.getActiveBits()); 137 EXPECT_EQ(0u, one.countTrailingZeros()); 138 EXPECT_EQ(1u, one.countTrailingOnes()); 139 EXPECT_EQ(1u, one.countPopulation()); 140 EXPECT_EQ(1, one.getSExtValue()); 141 EXPECT_EQ(1u, one.getZExtValue()); 142 143 APInt s128(128, 2, true); 144 EXPECT_EQ(126u, s128.countLeadingZeros()); 145 EXPECT_EQ(0u, s128.countLeadingOnes()); 146 EXPECT_EQ(2u, s128.getActiveBits()); 147 EXPECT_EQ(1u, s128.countTrailingZeros()); 148 EXPECT_EQ(0u, s128.countTrailingOnes()); 149 EXPECT_EQ(1u, s128.countPopulation()); 150 EXPECT_EQ(2, s128.getSExtValue()); 151 EXPECT_EQ(2u, s128.getZExtValue()); 152 153 // NOP Test 154 s128.setBits(42, 42); 155 EXPECT_EQ(126u, s128.countLeadingZeros()); 156 EXPECT_EQ(0u, s128.countLeadingOnes()); 157 EXPECT_EQ(2u, s128.getActiveBits()); 158 EXPECT_EQ(1u, s128.countTrailingZeros()); 159 EXPECT_EQ(0u, s128.countTrailingOnes()); 160 EXPECT_EQ(1u, s128.countPopulation()); 161 EXPECT_EQ(2, s128.getSExtValue()); 162 EXPECT_EQ(2u, s128.getZExtValue()); 163 164 s128.setBits(3, 32); 165 EXPECT_EQ(96u, s128.countLeadingZeros()); 166 EXPECT_EQ(0u, s128.countLeadingOnes()); 167 EXPECT_EQ(32u, s128.getActiveBits()); 168 EXPECT_EQ(33u, s128.getMinSignedBits()); 169 EXPECT_EQ(1u, s128.countTrailingZeros()); 170 EXPECT_EQ(0u, s128.countTrailingOnes()); 171 EXPECT_EQ(30u, s128.countPopulation()); 172 EXPECT_EQ(static_cast<uint32_t>((~0u << 3) | 2), s128.getZExtValue()); 173 174 s128.setBits(62, 128); 175 EXPECT_EQ(0u, s128.countLeadingZeros()); 176 EXPECT_EQ(66u, s128.countLeadingOnes()); 177 EXPECT_EQ(128u, s128.getActiveBits()); 178 EXPECT_EQ(63u, s128.getMinSignedBits()); 179 EXPECT_EQ(1u, s128.countTrailingZeros()); 180 EXPECT_EQ(0u, s128.countTrailingOnes()); 181 EXPECT_EQ(96u, s128.countPopulation()); 182 EXPECT_EQ(static_cast<int64_t>((3ull << 62) | 183 static_cast<uint32_t>((~0u << 3) | 2)), 184 s128.getSExtValue()); 185 } 186 187 TEST(APIntTest, i256) { 188 APInt s256(256, 15, true); 189 EXPECT_EQ(252u, s256.countLeadingZeros()); 190 EXPECT_EQ(0u, s256.countLeadingOnes()); 191 EXPECT_EQ(4u, s256.getActiveBits()); 192 EXPECT_EQ(0u, s256.countTrailingZeros()); 193 EXPECT_EQ(4u, s256.countTrailingOnes()); 194 EXPECT_EQ(4u, s256.countPopulation()); 195 EXPECT_EQ(15, s256.getSExtValue()); 196 EXPECT_EQ(15u, s256.getZExtValue()); 197 198 s256.setBits(62, 66); 199 EXPECT_EQ(190u, s256.countLeadingZeros()); 200 EXPECT_EQ(0u, s256.countLeadingOnes()); 201 EXPECT_EQ(66u, s256.getActiveBits()); 202 EXPECT_EQ(67u, s256.getMinSignedBits()); 203 EXPECT_EQ(0u, s256.countTrailingZeros()); 204 EXPECT_EQ(4u, s256.countTrailingOnes()); 205 EXPECT_EQ(8u, s256.countPopulation()); 206 207 s256.setBits(60, 256); 208 EXPECT_EQ(0u, s256.countLeadingZeros()); 209 EXPECT_EQ(196u, s256.countLeadingOnes()); 210 EXPECT_EQ(256u, s256.getActiveBits()); 211 EXPECT_EQ(61u, s256.getMinSignedBits()); 212 EXPECT_EQ(0u, s256.countTrailingZeros()); 213 EXPECT_EQ(4u, s256.countTrailingOnes()); 214 EXPECT_EQ(200u, s256.countPopulation()); 215 EXPECT_EQ(static_cast<int64_t>((~0ull << 60) | 15), s256.getSExtValue()); 216 } 217 218 TEST(APIntTest, i1) { 219 const APInt neg_two(1, static_cast<uint64_t>(-2), true); 220 const APInt neg_one(1, static_cast<uint64_t>(-1), true); 221 const APInt zero(1, 0); 222 const APInt one(1, 1); 223 const APInt two(1, 2); 224 225 EXPECT_EQ(0, neg_two.getSExtValue()); 226 EXPECT_EQ(-1, neg_one.getSExtValue()); 227 EXPECT_EQ(1u, neg_one.getZExtValue()); 228 EXPECT_EQ(0u, zero.getZExtValue()); 229 EXPECT_EQ(-1, one.getSExtValue()); 230 EXPECT_EQ(1u, one.getZExtValue()); 231 EXPECT_EQ(0u, two.getZExtValue()); 232 EXPECT_EQ(0, two.getSExtValue()); 233 234 // Basic equalities for 1-bit values. 235 EXPECT_EQ(zero, two); 236 EXPECT_EQ(zero, neg_two); 237 EXPECT_EQ(one, neg_one); 238 EXPECT_EQ(two, neg_two); 239 240 // Min/max signed values. 241 EXPECT_TRUE(zero.isMaxSignedValue()); 242 EXPECT_FALSE(one.isMaxSignedValue()); 243 EXPECT_FALSE(zero.isMinSignedValue()); 244 EXPECT_TRUE(one.isMinSignedValue()); 245 246 // Additions. 247 EXPECT_EQ(two, one + one); 248 EXPECT_EQ(zero, neg_one + one); 249 EXPECT_EQ(neg_two, neg_one + neg_one); 250 251 // Subtractions. 252 EXPECT_EQ(neg_two, neg_one - one); 253 EXPECT_EQ(two, one - neg_one); 254 EXPECT_EQ(zero, one - one); 255 256 // And 257 EXPECT_EQ(zero, zero & zero); 258 EXPECT_EQ(zero, one & zero); 259 EXPECT_EQ(zero, zero & one); 260 EXPECT_EQ(one, one & one); 261 EXPECT_EQ(zero, zero & zero); 262 EXPECT_EQ(zero, neg_one & zero); 263 EXPECT_EQ(zero, zero & neg_one); 264 EXPECT_EQ(neg_one, neg_one & neg_one); 265 266 // Or 267 EXPECT_EQ(zero, zero | zero); 268 EXPECT_EQ(one, one | zero); 269 EXPECT_EQ(one, zero | one); 270 EXPECT_EQ(one, one | one); 271 EXPECT_EQ(zero, zero | zero); 272 EXPECT_EQ(neg_one, neg_one | zero); 273 EXPECT_EQ(neg_one, zero | neg_one); 274 EXPECT_EQ(neg_one, neg_one | neg_one); 275 276 // Xor 277 EXPECT_EQ(zero, zero ^ zero); 278 EXPECT_EQ(one, one ^ zero); 279 EXPECT_EQ(one, zero ^ one); 280 EXPECT_EQ(zero, one ^ one); 281 EXPECT_EQ(zero, zero ^ zero); 282 EXPECT_EQ(neg_one, neg_one ^ zero); 283 EXPECT_EQ(neg_one, zero ^ neg_one); 284 EXPECT_EQ(zero, neg_one ^ neg_one); 285 286 // Shifts. 287 EXPECT_EQ(zero, one << one); 288 EXPECT_EQ(one, one << zero); 289 EXPECT_EQ(zero, one.shl(1)); 290 EXPECT_EQ(one, one.shl(0)); 291 EXPECT_EQ(zero, one.lshr(1)); 292 EXPECT_EQ(one, one.ashr(1)); 293 294 // Rotates. 295 EXPECT_EQ(one, one.rotl(0)); 296 EXPECT_EQ(one, one.rotl(1)); 297 EXPECT_EQ(one, one.rotr(0)); 298 EXPECT_EQ(one, one.rotr(1)); 299 300 // Multiplies. 301 EXPECT_EQ(neg_one, neg_one * one); 302 EXPECT_EQ(neg_one, one * neg_one); 303 EXPECT_EQ(one, neg_one * neg_one); 304 EXPECT_EQ(one, one * one); 305 306 // Divides. 307 EXPECT_EQ(neg_one, one.sdiv(neg_one)); 308 EXPECT_EQ(neg_one, neg_one.sdiv(one)); 309 EXPECT_EQ(one, neg_one.sdiv(neg_one)); 310 EXPECT_EQ(one, one.sdiv(one)); 311 312 EXPECT_EQ(neg_one, one.udiv(neg_one)); 313 EXPECT_EQ(neg_one, neg_one.udiv(one)); 314 EXPECT_EQ(one, neg_one.udiv(neg_one)); 315 EXPECT_EQ(one, one.udiv(one)); 316 317 // Remainders. 318 EXPECT_EQ(zero, neg_one.srem(one)); 319 EXPECT_EQ(zero, neg_one.urem(one)); 320 EXPECT_EQ(zero, one.srem(neg_one)); 321 322 // sdivrem 323 { 324 APInt q(8, 0); 325 APInt r(8, 0); 326 APInt one(8, 1); 327 APInt two(8, 2); 328 APInt nine(8, 9); 329 APInt four(8, 4); 330 331 EXPECT_EQ(nine.srem(two), one); 332 EXPECT_EQ(nine.srem(-two), one); 333 EXPECT_EQ((-nine).srem(two), -one); 334 EXPECT_EQ((-nine).srem(-two), -one); 335 336 APInt::sdivrem(nine, two, q, r); 337 EXPECT_EQ(four, q); 338 EXPECT_EQ(one, r); 339 APInt::sdivrem(-nine, two, q, r); 340 EXPECT_EQ(-four, q); 341 EXPECT_EQ(-one, r); 342 APInt::sdivrem(nine, -two, q, r); 343 EXPECT_EQ(-four, q); 344 EXPECT_EQ(one, r); 345 APInt::sdivrem(-nine, -two, q, r); 346 EXPECT_EQ(four, q); 347 EXPECT_EQ(-one, r); 348 } 349 } 350 351 TEST(APIntTest, compare) { 352 std::array<APInt, 5> testVals{{ 353 APInt{16, 2}, 354 APInt{16, 1}, 355 APInt{16, 0}, 356 APInt{16, (uint64_t)-1, true}, 357 APInt{16, (uint64_t)-2, true}, 358 }}; 359 360 for (auto &arg1 : testVals) 361 for (auto &arg2 : testVals) { 362 auto uv1 = arg1.getZExtValue(); 363 auto uv2 = arg2.getZExtValue(); 364 auto sv1 = arg1.getSExtValue(); 365 auto sv2 = arg2.getSExtValue(); 366 367 EXPECT_EQ(uv1 < uv2, arg1.ult(arg2)); 368 EXPECT_EQ(uv1 <= uv2, arg1.ule(arg2)); 369 EXPECT_EQ(uv1 > uv2, arg1.ugt(arg2)); 370 EXPECT_EQ(uv1 >= uv2, arg1.uge(arg2)); 371 372 EXPECT_EQ(sv1 < sv2, arg1.slt(arg2)); 373 EXPECT_EQ(sv1 <= sv2, arg1.sle(arg2)); 374 EXPECT_EQ(sv1 > sv2, arg1.sgt(arg2)); 375 EXPECT_EQ(sv1 >= sv2, arg1.sge(arg2)); 376 377 EXPECT_EQ(uv1 < uv2, arg1.ult(uv2)); 378 EXPECT_EQ(uv1 <= uv2, arg1.ule(uv2)); 379 EXPECT_EQ(uv1 > uv2, arg1.ugt(uv2)); 380 EXPECT_EQ(uv1 >= uv2, arg1.uge(uv2)); 381 382 EXPECT_EQ(sv1 < sv2, arg1.slt(sv2)); 383 EXPECT_EQ(sv1 <= sv2, arg1.sle(sv2)); 384 EXPECT_EQ(sv1 > sv2, arg1.sgt(sv2)); 385 EXPECT_EQ(sv1 >= sv2, arg1.sge(sv2)); 386 } 387 } 388 389 TEST(APIntTest, compareWithRawIntegers) { 390 EXPECT_TRUE(!APInt(8, 1).uge(256)); 391 EXPECT_TRUE(!APInt(8, 1).ugt(256)); 392 EXPECT_TRUE( APInt(8, 1).ule(256)); 393 EXPECT_TRUE( APInt(8, 1).ult(256)); 394 EXPECT_TRUE(!APInt(8, 1).sge(256)); 395 EXPECT_TRUE(!APInt(8, 1).sgt(256)); 396 EXPECT_TRUE( APInt(8, 1).sle(256)); 397 EXPECT_TRUE( APInt(8, 1).slt(256)); 398 EXPECT_TRUE(!(APInt(8, 0) == 256)); 399 EXPECT_TRUE( APInt(8, 0) != 256); 400 EXPECT_TRUE(!(APInt(8, 1) == 256)); 401 EXPECT_TRUE( APInt(8, 1) != 256); 402 403 auto uint64max = UINT64_MAX; 404 auto int64max = INT64_MAX; 405 auto int64min = INT64_MIN; 406 407 auto u64 = APInt{128, uint64max}; 408 auto s64 = APInt{128, static_cast<uint64_t>(int64max), true}; 409 auto big = u64 + 1; 410 411 EXPECT_TRUE( u64.uge(uint64max)); 412 EXPECT_TRUE(!u64.ugt(uint64max)); 413 EXPECT_TRUE( u64.ule(uint64max)); 414 EXPECT_TRUE(!u64.ult(uint64max)); 415 EXPECT_TRUE( u64.sge(int64max)); 416 EXPECT_TRUE( u64.sgt(int64max)); 417 EXPECT_TRUE(!u64.sle(int64max)); 418 EXPECT_TRUE(!u64.slt(int64max)); 419 EXPECT_TRUE( u64.sge(int64min)); 420 EXPECT_TRUE( u64.sgt(int64min)); 421 EXPECT_TRUE(!u64.sle(int64min)); 422 EXPECT_TRUE(!u64.slt(int64min)); 423 424 EXPECT_TRUE(u64 == uint64max); 425 EXPECT_TRUE(u64 != int64max); 426 EXPECT_TRUE(u64 != int64min); 427 428 EXPECT_TRUE(!s64.uge(uint64max)); 429 EXPECT_TRUE(!s64.ugt(uint64max)); 430 EXPECT_TRUE( s64.ule(uint64max)); 431 EXPECT_TRUE( s64.ult(uint64max)); 432 EXPECT_TRUE( s64.sge(int64max)); 433 EXPECT_TRUE(!s64.sgt(int64max)); 434 EXPECT_TRUE( s64.sle(int64max)); 435 EXPECT_TRUE(!s64.slt(int64max)); 436 EXPECT_TRUE( s64.sge(int64min)); 437 EXPECT_TRUE( s64.sgt(int64min)); 438 EXPECT_TRUE(!s64.sle(int64min)); 439 EXPECT_TRUE(!s64.slt(int64min)); 440 441 EXPECT_TRUE(s64 != uint64max); 442 EXPECT_TRUE(s64 == int64max); 443 EXPECT_TRUE(s64 != int64min); 444 445 EXPECT_TRUE( big.uge(uint64max)); 446 EXPECT_TRUE( big.ugt(uint64max)); 447 EXPECT_TRUE(!big.ule(uint64max)); 448 EXPECT_TRUE(!big.ult(uint64max)); 449 EXPECT_TRUE( big.sge(int64max)); 450 EXPECT_TRUE( big.sgt(int64max)); 451 EXPECT_TRUE(!big.sle(int64max)); 452 EXPECT_TRUE(!big.slt(int64max)); 453 EXPECT_TRUE( big.sge(int64min)); 454 EXPECT_TRUE( big.sgt(int64min)); 455 EXPECT_TRUE(!big.sle(int64min)); 456 EXPECT_TRUE(!big.slt(int64min)); 457 458 EXPECT_TRUE(big != uint64max); 459 EXPECT_TRUE(big != int64max); 460 EXPECT_TRUE(big != int64min); 461 } 462 463 TEST(APIntTest, compareWithInt64Min) { 464 int64_t edge = INT64_MIN; 465 int64_t edgeP1 = edge + 1; 466 int64_t edgeM1 = INT64_MAX; 467 auto a = APInt{64, static_cast<uint64_t>(edge), true}; 468 469 EXPECT_TRUE(!a.slt(edge)); 470 EXPECT_TRUE( a.sle(edge)); 471 EXPECT_TRUE(!a.sgt(edge)); 472 EXPECT_TRUE( a.sge(edge)); 473 EXPECT_TRUE( a.slt(edgeP1)); 474 EXPECT_TRUE( a.sle(edgeP1)); 475 EXPECT_TRUE(!a.sgt(edgeP1)); 476 EXPECT_TRUE(!a.sge(edgeP1)); 477 EXPECT_TRUE( a.slt(edgeM1)); 478 EXPECT_TRUE( a.sle(edgeM1)); 479 EXPECT_TRUE(!a.sgt(edgeM1)); 480 EXPECT_TRUE(!a.sge(edgeM1)); 481 } 482 483 TEST(APIntTest, compareWithHalfInt64Max) { 484 uint64_t edge = 0x4000000000000000; 485 uint64_t edgeP1 = edge + 1; 486 uint64_t edgeM1 = edge - 1; 487 auto a = APInt{64, edge}; 488 489 EXPECT_TRUE(!a.ult(edge)); 490 EXPECT_TRUE( a.ule(edge)); 491 EXPECT_TRUE(!a.ugt(edge)); 492 EXPECT_TRUE( a.uge(edge)); 493 EXPECT_TRUE( a.ult(edgeP1)); 494 EXPECT_TRUE( a.ule(edgeP1)); 495 EXPECT_TRUE(!a.ugt(edgeP1)); 496 EXPECT_TRUE(!a.uge(edgeP1)); 497 EXPECT_TRUE(!a.ult(edgeM1)); 498 EXPECT_TRUE(!a.ule(edgeM1)); 499 EXPECT_TRUE( a.ugt(edgeM1)); 500 EXPECT_TRUE( a.uge(edgeM1)); 501 502 EXPECT_TRUE(!a.slt(edge)); 503 EXPECT_TRUE( a.sle(edge)); 504 EXPECT_TRUE(!a.sgt(edge)); 505 EXPECT_TRUE( a.sge(edge)); 506 EXPECT_TRUE( a.slt(edgeP1)); 507 EXPECT_TRUE( a.sle(edgeP1)); 508 EXPECT_TRUE(!a.sgt(edgeP1)); 509 EXPECT_TRUE(!a.sge(edgeP1)); 510 EXPECT_TRUE(!a.slt(edgeM1)); 511 EXPECT_TRUE(!a.sle(edgeM1)); 512 EXPECT_TRUE( a.sgt(edgeM1)); 513 EXPECT_TRUE( a.sge(edgeM1)); 514 } 515 516 TEST(APIntTest, compareLargeIntegers) { 517 // Make sure all the combinations of signed comparisons work with big ints. 518 auto One = APInt{128, static_cast<uint64_t>(1), true}; 519 auto Two = APInt{128, static_cast<uint64_t>(2), true}; 520 auto MinusOne = APInt{128, static_cast<uint64_t>(-1), true}; 521 auto MinusTwo = APInt{128, static_cast<uint64_t>(-2), true}; 522 523 EXPECT_TRUE(!One.slt(One)); 524 EXPECT_TRUE(!Two.slt(One)); 525 EXPECT_TRUE(MinusOne.slt(One)); 526 EXPECT_TRUE(MinusTwo.slt(One)); 527 528 EXPECT_TRUE(One.slt(Two)); 529 EXPECT_TRUE(!Two.slt(Two)); 530 EXPECT_TRUE(MinusOne.slt(Two)); 531 EXPECT_TRUE(MinusTwo.slt(Two)); 532 533 EXPECT_TRUE(!One.slt(MinusOne)); 534 EXPECT_TRUE(!Two.slt(MinusOne)); 535 EXPECT_TRUE(!MinusOne.slt(MinusOne)); 536 EXPECT_TRUE(MinusTwo.slt(MinusOne)); 537 538 EXPECT_TRUE(!One.slt(MinusTwo)); 539 EXPECT_TRUE(!Two.slt(MinusTwo)); 540 EXPECT_TRUE(!MinusOne.slt(MinusTwo)); 541 EXPECT_TRUE(!MinusTwo.slt(MinusTwo)); 542 } 543 544 TEST(APIntTest, binaryOpsWithRawIntegers) { 545 // Single word check. 546 uint64_t E1 = 0x2CA7F46BF6569915ULL; 547 APInt A1(64, E1); 548 549 EXPECT_EQ(A1 & E1, E1); 550 EXPECT_EQ(A1 & 0, 0); 551 EXPECT_EQ(A1 & 1, 1); 552 EXPECT_EQ(A1 & 5, 5); 553 EXPECT_EQ(A1 & UINT64_MAX, E1); 554 555 EXPECT_EQ(A1 | E1, E1); 556 EXPECT_EQ(A1 | 0, E1); 557 EXPECT_EQ(A1 | 1, E1); 558 EXPECT_EQ(A1 | 2, E1 | 2); 559 EXPECT_EQ(A1 | UINT64_MAX, UINT64_MAX); 560 561 EXPECT_EQ(A1 ^ E1, 0); 562 EXPECT_EQ(A1 ^ 0, E1); 563 EXPECT_EQ(A1 ^ 1, E1 ^ 1); 564 EXPECT_EQ(A1 ^ 7, E1 ^ 7); 565 EXPECT_EQ(A1 ^ UINT64_MAX, ~E1); 566 567 // Multiword check. 568 uint64_t N = 0xEB6EB136591CBA21ULL; 569 APInt::WordType E2[4] = { 570 N, 571 0x7B9358BD6A33F10AULL, 572 0x7E7FFA5EADD8846ULL, 573 0x305F341CA00B613DULL 574 }; 575 APInt A2(APInt::APINT_BITS_PER_WORD*4, E2); 576 577 EXPECT_EQ(A2 & N, N); 578 EXPECT_EQ(A2 & 0, 0); 579 EXPECT_EQ(A2 & 1, 1); 580 EXPECT_EQ(A2 & 5, 1); 581 EXPECT_EQ(A2 & UINT64_MAX, N); 582 583 EXPECT_EQ(A2 | N, A2); 584 EXPECT_EQ(A2 | 0, A2); 585 EXPECT_EQ(A2 | 1, A2); 586 EXPECT_EQ(A2 | 2, A2 + 2); 587 EXPECT_EQ(A2 | UINT64_MAX, A2 - N + UINT64_MAX); 588 589 EXPECT_EQ(A2 ^ N, A2 - N); 590 EXPECT_EQ(A2 ^ 0, A2); 591 EXPECT_EQ(A2 ^ 1, A2 - 1); 592 EXPECT_EQ(A2 ^ 7, A2 + 5); 593 EXPECT_EQ(A2 ^ UINT64_MAX, A2 - N + ~N); 594 } 595 596 TEST(APIntTest, rvalue_arithmetic) { 597 // Test all combinations of lvalue/rvalue lhs/rhs of add/sub 598 599 // Lamdba to return an APInt by value, but also provide the raw value of the 600 // allocated data. 601 auto getRValue = [](const char *HexString, uint64_t const *&RawData) { 602 APInt V(129, HexString, 16); 603 RawData = V.getRawData(); 604 return V; 605 }; 606 607 APInt One(129, "1", 16); 608 APInt Two(129, "2", 16); 609 APInt Three(129, "3", 16); 610 APInt MinusOne = -One; 611 612 const uint64_t *RawDataL = nullptr; 613 const uint64_t *RawDataR = nullptr; 614 615 { 616 // 1 + 1 = 2 617 APInt AddLL = One + One; 618 EXPECT_EQ(AddLL, Two); 619 620 APInt AddLR = One + getRValue("1", RawDataR); 621 EXPECT_EQ(AddLR, Two); 622 EXPECT_EQ(AddLR.getRawData(), RawDataR); 623 624 APInt AddRL = getRValue("1", RawDataL) + One; 625 EXPECT_EQ(AddRL, Two); 626 EXPECT_EQ(AddRL.getRawData(), RawDataL); 627 628 APInt AddRR = getRValue("1", RawDataL) + getRValue("1", RawDataR); 629 EXPECT_EQ(AddRR, Two); 630 EXPECT_EQ(AddRR.getRawData(), RawDataR); 631 632 // LValue's and constants 633 APInt AddLK = One + 1; 634 EXPECT_EQ(AddLK, Two); 635 636 APInt AddKL = 1 + One; 637 EXPECT_EQ(AddKL, Two); 638 639 // RValue's and constants 640 APInt AddRK = getRValue("1", RawDataL) + 1; 641 EXPECT_EQ(AddRK, Two); 642 EXPECT_EQ(AddRK.getRawData(), RawDataL); 643 644 APInt AddKR = 1 + getRValue("1", RawDataR); 645 EXPECT_EQ(AddKR, Two); 646 EXPECT_EQ(AddKR.getRawData(), RawDataR); 647 } 648 649 { 650 // 0x0,FFFF...FFFF + 0x2 = 0x100...0001 651 APInt AllOnes(129, "0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 16); 652 APInt HighOneLowOne(129, "100000000000000000000000000000001", 16); 653 654 APInt AddLL = AllOnes + Two; 655 EXPECT_EQ(AddLL, HighOneLowOne); 656 657 APInt AddLR = AllOnes + getRValue("2", RawDataR); 658 EXPECT_EQ(AddLR, HighOneLowOne); 659 EXPECT_EQ(AddLR.getRawData(), RawDataR); 660 661 APInt AddRL = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + Two; 662 EXPECT_EQ(AddRL, HighOneLowOne); 663 EXPECT_EQ(AddRL.getRawData(), RawDataL); 664 665 APInt AddRR = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + 666 getRValue("2", RawDataR); 667 EXPECT_EQ(AddRR, HighOneLowOne); 668 EXPECT_EQ(AddRR.getRawData(), RawDataR); 669 670 // LValue's and constants 671 APInt AddLK = AllOnes + 2; 672 EXPECT_EQ(AddLK, HighOneLowOne); 673 674 APInt AddKL = 2 + AllOnes; 675 EXPECT_EQ(AddKL, HighOneLowOne); 676 677 // RValue's and constants 678 APInt AddRK = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + 2; 679 EXPECT_EQ(AddRK, HighOneLowOne); 680 EXPECT_EQ(AddRK.getRawData(), RawDataL); 681 682 APInt AddKR = 2 + getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 683 EXPECT_EQ(AddKR, HighOneLowOne); 684 EXPECT_EQ(AddKR.getRawData(), RawDataR); 685 } 686 687 { 688 // 2 - 1 = 1 689 APInt SubLL = Two - One; 690 EXPECT_EQ(SubLL, One); 691 692 APInt SubLR = Two - getRValue("1", RawDataR); 693 EXPECT_EQ(SubLR, One); 694 EXPECT_EQ(SubLR.getRawData(), RawDataR); 695 696 APInt SubRL = getRValue("2", RawDataL) - One; 697 EXPECT_EQ(SubRL, One); 698 EXPECT_EQ(SubRL.getRawData(), RawDataL); 699 700 APInt SubRR = getRValue("2", RawDataL) - getRValue("1", RawDataR); 701 EXPECT_EQ(SubRR, One); 702 EXPECT_EQ(SubRR.getRawData(), RawDataR); 703 704 // LValue's and constants 705 APInt SubLK = Two - 1; 706 EXPECT_EQ(SubLK, One); 707 708 APInt SubKL = 2 - One; 709 EXPECT_EQ(SubKL, One); 710 711 // RValue's and constants 712 APInt SubRK = getRValue("2", RawDataL) - 1; 713 EXPECT_EQ(SubRK, One); 714 EXPECT_EQ(SubRK.getRawData(), RawDataL); 715 716 APInt SubKR = 2 - getRValue("1", RawDataR); 717 EXPECT_EQ(SubKR, One); 718 EXPECT_EQ(SubKR.getRawData(), RawDataR); 719 } 720 721 { 722 // 0x100...0001 - 0x0,FFFF...FFFF = 0x2 723 APInt AllOnes(129, "0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 16); 724 APInt HighOneLowOne(129, "100000000000000000000000000000001", 16); 725 726 APInt SubLL = HighOneLowOne - AllOnes; 727 EXPECT_EQ(SubLL, Two); 728 729 APInt SubLR = HighOneLowOne - 730 getRValue("0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 731 EXPECT_EQ(SubLR, Two); 732 EXPECT_EQ(SubLR.getRawData(), RawDataR); 733 734 APInt SubRL = getRValue("100000000000000000000000000000001", RawDataL) - 735 AllOnes; 736 EXPECT_EQ(SubRL, Two); 737 EXPECT_EQ(SubRL.getRawData(), RawDataL); 738 739 APInt SubRR = getRValue("100000000000000000000000000000001", RawDataL) - 740 getRValue("0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 741 EXPECT_EQ(SubRR, Two); 742 EXPECT_EQ(SubRR.getRawData(), RawDataR); 743 744 // LValue's and constants 745 // 0x100...0001 - 0x2 = 0x0,FFFF...FFFF 746 APInt SubLK = HighOneLowOne - 2; 747 EXPECT_EQ(SubLK, AllOnes); 748 749 // 2 - (-1) = 3 750 APInt SubKL = 2 - MinusOne; 751 EXPECT_EQ(SubKL, Three); 752 753 // RValue's and constants 754 // 0x100...0001 - 0x2 = 0x0,FFFF...FFFF 755 APInt SubRK = getRValue("100000000000000000000000000000001", RawDataL) - 2; 756 EXPECT_EQ(SubRK, AllOnes); 757 EXPECT_EQ(SubRK.getRawData(), RawDataL); 758 759 APInt SubKR = 2 - getRValue("1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 760 EXPECT_EQ(SubKR, Three); 761 EXPECT_EQ(SubKR.getRawData(), RawDataR); 762 } 763 } 764 765 TEST(APIntTest, rvalue_bitwise) { 766 // Test all combinations of lvalue/rvalue lhs/rhs of and/or/xor 767 768 // Lamdba to return an APInt by value, but also provide the raw value of the 769 // allocated data. 770 auto getRValue = [](const char *HexString, uint64_t const *&RawData) { 771 APInt V(129, HexString, 16); 772 RawData = V.getRawData(); 773 return V; 774 }; 775 776 APInt Ten(129, "A", 16); 777 APInt Twelve(129, "C", 16); 778 779 const uint64_t *RawDataL = nullptr; 780 const uint64_t *RawDataR = nullptr; 781 782 { 783 // 12 & 10 = 8 784 APInt AndLL = Ten & Twelve; 785 EXPECT_EQ(AndLL, 0x8); 786 787 APInt AndLR = Ten & getRValue("C", RawDataR); 788 EXPECT_EQ(AndLR, 0x8); 789 EXPECT_EQ(AndLR.getRawData(), RawDataR); 790 791 APInt AndRL = getRValue("A", RawDataL) & Twelve; 792 EXPECT_EQ(AndRL, 0x8); 793 EXPECT_EQ(AndRL.getRawData(), RawDataL); 794 795 APInt AndRR = getRValue("A", RawDataL) & getRValue("C", RawDataR); 796 EXPECT_EQ(AndRR, 0x8); 797 EXPECT_EQ(AndRR.getRawData(), RawDataR); 798 799 // LValue's and constants 800 APInt AndLK = Ten & 0xc; 801 EXPECT_EQ(AndLK, 0x8); 802 803 APInt AndKL = 0xa & Twelve; 804 EXPECT_EQ(AndKL, 0x8); 805 806 // RValue's and constants 807 APInt AndRK = getRValue("A", RawDataL) & 0xc; 808 EXPECT_EQ(AndRK, 0x8); 809 EXPECT_EQ(AndRK.getRawData(), RawDataL); 810 811 APInt AndKR = 0xa & getRValue("C", RawDataR); 812 EXPECT_EQ(AndKR, 0x8); 813 EXPECT_EQ(AndKR.getRawData(), RawDataR); 814 } 815 816 { 817 // 12 | 10 = 14 818 APInt OrLL = Ten | Twelve; 819 EXPECT_EQ(OrLL, 0xe); 820 821 APInt OrLR = Ten | getRValue("C", RawDataR); 822 EXPECT_EQ(OrLR, 0xe); 823 EXPECT_EQ(OrLR.getRawData(), RawDataR); 824 825 APInt OrRL = getRValue("A", RawDataL) | Twelve; 826 EXPECT_EQ(OrRL, 0xe); 827 EXPECT_EQ(OrRL.getRawData(), RawDataL); 828 829 APInt OrRR = getRValue("A", RawDataL) | getRValue("C", RawDataR); 830 EXPECT_EQ(OrRR, 0xe); 831 EXPECT_EQ(OrRR.getRawData(), RawDataR); 832 833 // LValue's and constants 834 APInt OrLK = Ten | 0xc; 835 EXPECT_EQ(OrLK, 0xe); 836 837 APInt OrKL = 0xa | Twelve; 838 EXPECT_EQ(OrKL, 0xe); 839 840 // RValue's and constants 841 APInt OrRK = getRValue("A", RawDataL) | 0xc; 842 EXPECT_EQ(OrRK, 0xe); 843 EXPECT_EQ(OrRK.getRawData(), RawDataL); 844 845 APInt OrKR = 0xa | getRValue("C", RawDataR); 846 EXPECT_EQ(OrKR, 0xe); 847 EXPECT_EQ(OrKR.getRawData(), RawDataR); 848 } 849 850 { 851 // 12 ^ 10 = 6 852 APInt XorLL = Ten ^ Twelve; 853 EXPECT_EQ(XorLL, 0x6); 854 855 APInt XorLR = Ten ^ getRValue("C", RawDataR); 856 EXPECT_EQ(XorLR, 0x6); 857 EXPECT_EQ(XorLR.getRawData(), RawDataR); 858 859 APInt XorRL = getRValue("A", RawDataL) ^ Twelve; 860 EXPECT_EQ(XorRL, 0x6); 861 EXPECT_EQ(XorRL.getRawData(), RawDataL); 862 863 APInt XorRR = getRValue("A", RawDataL) ^ getRValue("C", RawDataR); 864 EXPECT_EQ(XorRR, 0x6); 865 EXPECT_EQ(XorRR.getRawData(), RawDataR); 866 867 // LValue's and constants 868 APInt XorLK = Ten ^ 0xc; 869 EXPECT_EQ(XorLK, 0x6); 870 871 APInt XorKL = 0xa ^ Twelve; 872 EXPECT_EQ(XorKL, 0x6); 873 874 // RValue's and constants 875 APInt XorRK = getRValue("A", RawDataL) ^ 0xc; 876 EXPECT_EQ(XorRK, 0x6); 877 EXPECT_EQ(XorRK.getRawData(), RawDataL); 878 879 APInt XorKR = 0xa ^ getRValue("C", RawDataR); 880 EXPECT_EQ(XorKR, 0x6); 881 EXPECT_EQ(XorKR.getRawData(), RawDataR); 882 } 883 } 884 885 TEST(APIntTest, rvalue_invert) { 886 // Lamdba to return an APInt by value, but also provide the raw value of the 887 // allocated data. 888 auto getRValue = [](const char *HexString, uint64_t const *&RawData) { 889 APInt V(129, HexString, 16); 890 RawData = V.getRawData(); 891 return V; 892 }; 893 894 APInt One(129, 1); 895 APInt NegativeTwo(129, -2ULL, true); 896 897 const uint64_t *RawData = nullptr; 898 899 { 900 // ~1 = -2 901 APInt NegL = ~One; 902 EXPECT_EQ(NegL, NegativeTwo); 903 904 APInt NegR = ~getRValue("1", RawData); 905 EXPECT_EQ(NegR, NegativeTwo); 906 EXPECT_EQ(NegR.getRawData(), RawData); 907 } 908 } 909 910 // Tests different div/rem varaints using scheme (a * b + c) / a 911 void testDiv(APInt a, APInt b, APInt c) { 912 ASSERT_TRUE(a.uge(b)); // Must: a >= b 913 ASSERT_TRUE(a.ugt(c)); // Must: a > c 914 915 auto p = a * b + c; 916 917 auto q = p.udiv(a); 918 auto r = p.urem(a); 919 EXPECT_EQ(b, q); 920 EXPECT_EQ(c, r); 921 APInt::udivrem(p, a, q, r); 922 EXPECT_EQ(b, q); 923 EXPECT_EQ(c, r); 924 q = p.sdiv(a); 925 r = p.srem(a); 926 EXPECT_EQ(b, q); 927 EXPECT_EQ(c, r); 928 APInt::sdivrem(p, a, q, r); 929 EXPECT_EQ(b, q); 930 EXPECT_EQ(c, r); 931 932 if (b.ugt(c)) { // Test also symmetric case 933 q = p.udiv(b); 934 r = p.urem(b); 935 EXPECT_EQ(a, q); 936 EXPECT_EQ(c, r); 937 APInt::udivrem(p, b, q, r); 938 EXPECT_EQ(a, q); 939 EXPECT_EQ(c, r); 940 q = p.sdiv(b); 941 r = p.srem(b); 942 EXPECT_EQ(a, q); 943 EXPECT_EQ(c, r); 944 APInt::sdivrem(p, b, q, r); 945 EXPECT_EQ(a, q); 946 EXPECT_EQ(c, r); 947 } 948 } 949 950 TEST(APIntTest, divrem_big1) { 951 // Tests KnuthDiv rare step D6 952 testDiv({256, "1ffffffffffffffff", 16}, 953 {256, "1ffffffffffffffff", 16}, 954 {256, 0}); 955 } 956 957 TEST(APIntTest, divrem_big2) { 958 // Tests KnuthDiv rare step D6 959 testDiv({1024, "112233ceff" 960 "cecece000000ffffffffffffffffffff" 961 "ffffffffffffffffffffffffffffffff" 962 "ffffffffffffffffffffffffffffffff" 963 "ffffffffffffffffffffffffffffff33", 16}, 964 {1024, "111111ffffffffffffffff" 965 "ffffffffffffffffffffffffffffffff" 966 "fffffffffffffffffffffffffffffccf" 967 "ffffffffffffffffffffffffffffff00", 16}, 968 {1024, 7919}); 969 } 970 971 TEST(APIntTest, divrem_big3) { 972 // Tests KnuthDiv case without shift 973 testDiv({256, "80000001ffffffffffffffff", 16}, 974 {256, "ffffffffffffff0000000", 16}, 975 {256, 4219}); 976 } 977 978 TEST(APIntTest, divrem_big4) { 979 // Tests heap allocation in divide() enfoced by huge numbers 980 testDiv(APInt{4096, 5}.shl(2001), 981 APInt{4096, 1}.shl(2000), 982 APInt{4096, 4219*13}); 983 } 984 985 TEST(APIntTest, divrem_big5) { 986 // Tests one word divisor case of divide() 987 testDiv(APInt{1024, 19}.shl(811), 988 APInt{1024, 4356013}, // one word 989 APInt{1024, 1}); 990 } 991 992 TEST(APIntTest, divrem_big6) { 993 // Tests some rare "borrow" cases in D4 step 994 testDiv(APInt{512, "ffffffffffffffff00000000000000000000000001", 16}, 995 APInt{512, "10000000000000001000000000000001", 16}, 996 APInt{512, "10000000000000000000000000000000", 16}); 997 } 998 999 TEST(APIntTest, divrem_big7) { 1000 // Yet another test for KnuthDiv rare step D6. 1001 testDiv({224, "800000008000000200000005", 16}, 1002 {224, "fffffffd", 16}, 1003 {224, "80000000800000010000000f", 16}); 1004 } 1005 1006 void testDiv(APInt a, uint64_t b, APInt c) { 1007 auto p = a * b + c; 1008 1009 APInt q; 1010 uint64_t r; 1011 // Unsigned division will only work if our original number wasn't negative. 1012 if (!a.isNegative()) { 1013 q = p.udiv(b); 1014 r = p.urem(b); 1015 EXPECT_EQ(a, q); 1016 EXPECT_EQ(c, r); 1017 APInt::udivrem(p, b, q, r); 1018 EXPECT_EQ(a, q); 1019 EXPECT_EQ(c, r); 1020 } 1021 q = p.sdiv(b); 1022 r = p.srem(b); 1023 EXPECT_EQ(a, q); 1024 if (c.isNegative()) 1025 EXPECT_EQ(-c, -r); // Need to negate so the uint64_t compare will work. 1026 else 1027 EXPECT_EQ(c, r); 1028 int64_t sr; 1029 APInt::sdivrem(p, b, q, sr); 1030 EXPECT_EQ(a, q); 1031 if (c.isNegative()) 1032 EXPECT_EQ(-c, -sr); // Need to negate so the uint64_t compare will work. 1033 else 1034 EXPECT_EQ(c, sr); 1035 } 1036 1037 TEST(APIntTest, divremuint) { 1038 // Single word APInt 1039 testDiv(APInt{64, 9}, 1040 2, 1041 APInt{64, 1}); 1042 1043 // Single word negative APInt 1044 testDiv(-APInt{64, 9}, 1045 2, 1046 -APInt{64, 1}); 1047 1048 // Multiword dividend with only one significant word. 1049 testDiv(APInt{256, 9}, 1050 2, 1051 APInt{256, 1}); 1052 1053 // Negative dividend. 1054 testDiv(-APInt{256, 9}, 1055 2, 1056 -APInt{256, 1}); 1057 1058 // Multiword dividend 1059 testDiv(APInt{1024, 19}.shl(811), 1060 4356013, // one word 1061 APInt{1024, 1}); 1062 } 1063 1064 TEST(APIntTest, divrem_simple) { 1065 // Test simple cases. 1066 APInt A(65, 2), B(65, 2); 1067 APInt Q, R; 1068 1069 // X / X 1070 APInt::sdivrem(A, B, Q, R); 1071 EXPECT_EQ(Q, APInt(65, 1)); 1072 EXPECT_EQ(R, APInt(65, 0)); 1073 APInt::udivrem(A, B, Q, R); 1074 EXPECT_EQ(Q, APInt(65, 1)); 1075 EXPECT_EQ(R, APInt(65, 0)); 1076 1077 // 0 / X 1078 APInt O(65, 0); 1079 APInt::sdivrem(O, B, Q, R); 1080 EXPECT_EQ(Q, APInt(65, 0)); 1081 EXPECT_EQ(R, APInt(65, 0)); 1082 APInt::udivrem(O, B, Q, R); 1083 EXPECT_EQ(Q, APInt(65, 0)); 1084 EXPECT_EQ(R, APInt(65, 0)); 1085 1086 // X / 1 1087 APInt I(65, 1); 1088 APInt::sdivrem(A, I, Q, R); 1089 EXPECT_EQ(Q, A); 1090 EXPECT_EQ(R, APInt(65, 0)); 1091 APInt::udivrem(A, I, Q, R); 1092 EXPECT_EQ(Q, A); 1093 EXPECT_EQ(R, APInt(65, 0)); 1094 } 1095 1096 TEST(APIntTest, fromString) { 1097 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 2)); 1098 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 2)); 1099 EXPECT_EQ(APInt(32, 2), APInt(32, "10", 2)); 1100 EXPECT_EQ(APInt(32, 3), APInt(32, "11", 2)); 1101 EXPECT_EQ(APInt(32, 4), APInt(32, "100", 2)); 1102 1103 EXPECT_EQ(APInt(32, 0), APInt(32, "+0", 2)); 1104 EXPECT_EQ(APInt(32, 1), APInt(32, "+1", 2)); 1105 EXPECT_EQ(APInt(32, 2), APInt(32, "+10", 2)); 1106 EXPECT_EQ(APInt(32, 3), APInt(32, "+11", 2)); 1107 EXPECT_EQ(APInt(32, 4), APInt(32, "+100", 2)); 1108 1109 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 2)); 1110 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 2)); 1111 EXPECT_EQ(APInt(32, uint64_t(-2LL)), APInt(32, "-10", 2)); 1112 EXPECT_EQ(APInt(32, uint64_t(-3LL)), APInt(32, "-11", 2)); 1113 EXPECT_EQ(APInt(32, uint64_t(-4LL)), APInt(32, "-100", 2)); 1114 1115 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 8)); 1116 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 8)); 1117 EXPECT_EQ(APInt(32, 7), APInt(32, "7", 8)); 1118 EXPECT_EQ(APInt(32, 8), APInt(32, "10", 8)); 1119 EXPECT_EQ(APInt(32, 15), APInt(32, "17", 8)); 1120 EXPECT_EQ(APInt(32, 16), APInt(32, "20", 8)); 1121 1122 EXPECT_EQ(APInt(32, +0), APInt(32, "+0", 8)); 1123 EXPECT_EQ(APInt(32, +1), APInt(32, "+1", 8)); 1124 EXPECT_EQ(APInt(32, +7), APInt(32, "+7", 8)); 1125 EXPECT_EQ(APInt(32, +8), APInt(32, "+10", 8)); 1126 EXPECT_EQ(APInt(32, +15), APInt(32, "+17", 8)); 1127 EXPECT_EQ(APInt(32, +16), APInt(32, "+20", 8)); 1128 1129 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 8)); 1130 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 8)); 1131 EXPECT_EQ(APInt(32, uint64_t(-7LL)), APInt(32, "-7", 8)); 1132 EXPECT_EQ(APInt(32, uint64_t(-8LL)), APInt(32, "-10", 8)); 1133 EXPECT_EQ(APInt(32, uint64_t(-15LL)), APInt(32, "-17", 8)); 1134 EXPECT_EQ(APInt(32, uint64_t(-16LL)), APInt(32, "-20", 8)); 1135 1136 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 10)); 1137 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 10)); 1138 EXPECT_EQ(APInt(32, 9), APInt(32, "9", 10)); 1139 EXPECT_EQ(APInt(32, 10), APInt(32, "10", 10)); 1140 EXPECT_EQ(APInt(32, 19), APInt(32, "19", 10)); 1141 EXPECT_EQ(APInt(32, 20), APInt(32, "20", 10)); 1142 1143 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 10)); 1144 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 10)); 1145 EXPECT_EQ(APInt(32, uint64_t(-9LL)), APInt(32, "-9", 10)); 1146 EXPECT_EQ(APInt(32, uint64_t(-10LL)), APInt(32, "-10", 10)); 1147 EXPECT_EQ(APInt(32, uint64_t(-19LL)), APInt(32, "-19", 10)); 1148 EXPECT_EQ(APInt(32, uint64_t(-20LL)), APInt(32, "-20", 10)); 1149 1150 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 16)); 1151 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 16)); 1152 EXPECT_EQ(APInt(32, 15), APInt(32, "F", 16)); 1153 EXPECT_EQ(APInt(32, 16), APInt(32, "10", 16)); 1154 EXPECT_EQ(APInt(32, 31), APInt(32, "1F", 16)); 1155 EXPECT_EQ(APInt(32, 32), APInt(32, "20", 16)); 1156 1157 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 16)); 1158 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 16)); 1159 EXPECT_EQ(APInt(32, uint64_t(-15LL)), APInt(32, "-F", 16)); 1160 EXPECT_EQ(APInt(32, uint64_t(-16LL)), APInt(32, "-10", 16)); 1161 EXPECT_EQ(APInt(32, uint64_t(-31LL)), APInt(32, "-1F", 16)); 1162 EXPECT_EQ(APInt(32, uint64_t(-32LL)), APInt(32, "-20", 16)); 1163 1164 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 36)); 1165 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 36)); 1166 EXPECT_EQ(APInt(32, 35), APInt(32, "Z", 36)); 1167 EXPECT_EQ(APInt(32, 36), APInt(32, "10", 36)); 1168 EXPECT_EQ(APInt(32, 71), APInt(32, "1Z", 36)); 1169 EXPECT_EQ(APInt(32, 72), APInt(32, "20", 36)); 1170 1171 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 36)); 1172 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 36)); 1173 EXPECT_EQ(APInt(32, uint64_t(-35LL)), APInt(32, "-Z", 36)); 1174 EXPECT_EQ(APInt(32, uint64_t(-36LL)), APInt(32, "-10", 36)); 1175 EXPECT_EQ(APInt(32, uint64_t(-71LL)), APInt(32, "-1Z", 36)); 1176 EXPECT_EQ(APInt(32, uint64_t(-72LL)), APInt(32, "-20", 36)); 1177 } 1178 1179 TEST(APIntTest, FromArray) { 1180 EXPECT_EQ(APInt(32, uint64_t(1)), APInt(32, ArrayRef<uint64_t>(1))); 1181 } 1182 1183 TEST(APIntTest, StringBitsNeeded2) { 1184 EXPECT_EQ(1U, APInt::getBitsNeeded( "0", 2)); 1185 EXPECT_EQ(1U, APInt::getBitsNeeded( "1", 2)); 1186 EXPECT_EQ(2U, APInt::getBitsNeeded( "10", 2)); 1187 EXPECT_EQ(2U, APInt::getBitsNeeded( "11", 2)); 1188 EXPECT_EQ(3U, APInt::getBitsNeeded("100", 2)); 1189 1190 EXPECT_EQ(1U, APInt::getBitsNeeded( "+0", 2)); 1191 EXPECT_EQ(1U, APInt::getBitsNeeded( "+1", 2)); 1192 EXPECT_EQ(2U, APInt::getBitsNeeded( "+10", 2)); 1193 EXPECT_EQ(2U, APInt::getBitsNeeded( "+11", 2)); 1194 EXPECT_EQ(3U, APInt::getBitsNeeded("+100", 2)); 1195 1196 EXPECT_EQ(2U, APInt::getBitsNeeded( "-0", 2)); 1197 EXPECT_EQ(2U, APInt::getBitsNeeded( "-1", 2)); 1198 EXPECT_EQ(3U, APInt::getBitsNeeded( "-10", 2)); 1199 EXPECT_EQ(3U, APInt::getBitsNeeded( "-11", 2)); 1200 EXPECT_EQ(4U, APInt::getBitsNeeded("-100", 2)); 1201 } 1202 1203 TEST(APIntTest, StringBitsNeeded8) { 1204 EXPECT_EQ(3U, APInt::getBitsNeeded( "0", 8)); 1205 EXPECT_EQ(3U, APInt::getBitsNeeded( "7", 8)); 1206 EXPECT_EQ(6U, APInt::getBitsNeeded("10", 8)); 1207 EXPECT_EQ(6U, APInt::getBitsNeeded("17", 8)); 1208 EXPECT_EQ(6U, APInt::getBitsNeeded("20", 8)); 1209 1210 EXPECT_EQ(3U, APInt::getBitsNeeded( "+0", 8)); 1211 EXPECT_EQ(3U, APInt::getBitsNeeded( "+7", 8)); 1212 EXPECT_EQ(6U, APInt::getBitsNeeded("+10", 8)); 1213 EXPECT_EQ(6U, APInt::getBitsNeeded("+17", 8)); 1214 EXPECT_EQ(6U, APInt::getBitsNeeded("+20", 8)); 1215 1216 EXPECT_EQ(4U, APInt::getBitsNeeded( "-0", 8)); 1217 EXPECT_EQ(4U, APInt::getBitsNeeded( "-7", 8)); 1218 EXPECT_EQ(7U, APInt::getBitsNeeded("-10", 8)); 1219 EXPECT_EQ(7U, APInt::getBitsNeeded("-17", 8)); 1220 EXPECT_EQ(7U, APInt::getBitsNeeded("-20", 8)); 1221 } 1222 1223 TEST(APIntTest, StringBitsNeeded10) { 1224 EXPECT_EQ(1U, APInt::getBitsNeeded( "0", 10)); 1225 EXPECT_EQ(2U, APInt::getBitsNeeded( "3", 10)); 1226 EXPECT_EQ(4U, APInt::getBitsNeeded( "9", 10)); 1227 EXPECT_EQ(4U, APInt::getBitsNeeded("10", 10)); 1228 EXPECT_EQ(5U, APInt::getBitsNeeded("19", 10)); 1229 EXPECT_EQ(5U, APInt::getBitsNeeded("20", 10)); 1230 1231 EXPECT_EQ(1U, APInt::getBitsNeeded( "+0", 10)); 1232 EXPECT_EQ(4U, APInt::getBitsNeeded( "+9", 10)); 1233 EXPECT_EQ(4U, APInt::getBitsNeeded("+10", 10)); 1234 EXPECT_EQ(5U, APInt::getBitsNeeded("+19", 10)); 1235 EXPECT_EQ(5U, APInt::getBitsNeeded("+20", 10)); 1236 1237 EXPECT_EQ(2U, APInt::getBitsNeeded( "-0", 10)); 1238 EXPECT_EQ(5U, APInt::getBitsNeeded( "-9", 10)); 1239 EXPECT_EQ(5U, APInt::getBitsNeeded("-10", 10)); 1240 EXPECT_EQ(6U, APInt::getBitsNeeded("-19", 10)); 1241 EXPECT_EQ(6U, APInt::getBitsNeeded("-20", 10)); 1242 } 1243 1244 TEST(APIntTest, StringBitsNeeded16) { 1245 EXPECT_EQ(4U, APInt::getBitsNeeded( "0", 16)); 1246 EXPECT_EQ(4U, APInt::getBitsNeeded( "F", 16)); 1247 EXPECT_EQ(8U, APInt::getBitsNeeded("10", 16)); 1248 EXPECT_EQ(8U, APInt::getBitsNeeded("1F", 16)); 1249 EXPECT_EQ(8U, APInt::getBitsNeeded("20", 16)); 1250 1251 EXPECT_EQ(4U, APInt::getBitsNeeded( "+0", 16)); 1252 EXPECT_EQ(4U, APInt::getBitsNeeded( "+F", 16)); 1253 EXPECT_EQ(8U, APInt::getBitsNeeded("+10", 16)); 1254 EXPECT_EQ(8U, APInt::getBitsNeeded("+1F", 16)); 1255 EXPECT_EQ(8U, APInt::getBitsNeeded("+20", 16)); 1256 1257 EXPECT_EQ(5U, APInt::getBitsNeeded( "-0", 16)); 1258 EXPECT_EQ(5U, APInt::getBitsNeeded( "-F", 16)); 1259 EXPECT_EQ(9U, APInt::getBitsNeeded("-10", 16)); 1260 EXPECT_EQ(9U, APInt::getBitsNeeded("-1F", 16)); 1261 EXPECT_EQ(9U, APInt::getBitsNeeded("-20", 16)); 1262 } 1263 1264 TEST(APIntTest, toString) { 1265 SmallString<16> S; 1266 bool isSigned; 1267 1268 APInt(8, 0).toString(S, 2, true, true); 1269 EXPECT_EQ(S.str().str(), "0b0"); 1270 S.clear(); 1271 APInt(8, 0).toString(S, 8, true, true); 1272 EXPECT_EQ(S.str().str(), "00"); 1273 S.clear(); 1274 APInt(8, 0).toString(S, 10, true, true); 1275 EXPECT_EQ(S.str().str(), "0"); 1276 S.clear(); 1277 APInt(8, 0).toString(S, 16, true, true); 1278 EXPECT_EQ(S.str().str(), "0x0"); 1279 S.clear(); 1280 APInt(8, 0).toString(S, 36, true, false); 1281 EXPECT_EQ(S.str().str(), "0"); 1282 S.clear(); 1283 1284 isSigned = false; 1285 APInt(8, 255, isSigned).toString(S, 2, isSigned, true); 1286 EXPECT_EQ(S.str().str(), "0b11111111"); 1287 S.clear(); 1288 APInt(8, 255, isSigned).toString(S, 8, isSigned, true); 1289 EXPECT_EQ(S.str().str(), "0377"); 1290 S.clear(); 1291 APInt(8, 255, isSigned).toString(S, 10, isSigned, true); 1292 EXPECT_EQ(S.str().str(), "255"); 1293 S.clear(); 1294 APInt(8, 255, isSigned).toString(S, 16, isSigned, true); 1295 EXPECT_EQ(S.str().str(), "0xFF"); 1296 S.clear(); 1297 APInt(8, 255, isSigned).toString(S, 36, isSigned, false); 1298 EXPECT_EQ(S.str().str(), "73"); 1299 S.clear(); 1300 1301 isSigned = true; 1302 APInt(8, 255, isSigned).toString(S, 2, isSigned, true); 1303 EXPECT_EQ(S.str().str(), "-0b1"); 1304 S.clear(); 1305 APInt(8, 255, isSigned).toString(S, 8, isSigned, true); 1306 EXPECT_EQ(S.str().str(), "-01"); 1307 S.clear(); 1308 APInt(8, 255, isSigned).toString(S, 10, isSigned, true); 1309 EXPECT_EQ(S.str().str(), "-1"); 1310 S.clear(); 1311 APInt(8, 255, isSigned).toString(S, 16, isSigned, true); 1312 EXPECT_EQ(S.str().str(), "-0x1"); 1313 S.clear(); 1314 APInt(8, 255, isSigned).toString(S, 36, isSigned, false); 1315 EXPECT_EQ(S.str().str(), "-1"); 1316 S.clear(); 1317 } 1318 1319 TEST(APIntTest, Log2) { 1320 EXPECT_EQ(APInt(15, 7).logBase2(), 2U); 1321 EXPECT_EQ(APInt(15, 7).ceilLogBase2(), 3U); 1322 EXPECT_EQ(APInt(15, 7).exactLogBase2(), -1); 1323 EXPECT_EQ(APInt(15, 8).logBase2(), 3U); 1324 EXPECT_EQ(APInt(15, 8).ceilLogBase2(), 3U); 1325 EXPECT_EQ(APInt(15, 8).exactLogBase2(), 3); 1326 EXPECT_EQ(APInt(15, 9).logBase2(), 3U); 1327 EXPECT_EQ(APInt(15, 9).ceilLogBase2(), 4U); 1328 EXPECT_EQ(APInt(15, 9).exactLogBase2(), -1); 1329 } 1330 1331 TEST(APIntTest, magic) { 1332 EXPECT_EQ(APInt(32, 3).magic().m, APInt(32, "55555556", 16)); 1333 EXPECT_EQ(APInt(32, 3).magic().s, 0U); 1334 EXPECT_EQ(APInt(32, 5).magic().m, APInt(32, "66666667", 16)); 1335 EXPECT_EQ(APInt(32, 5).magic().s, 1U); 1336 EXPECT_EQ(APInt(32, 7).magic().m, APInt(32, "92492493", 16)); 1337 EXPECT_EQ(APInt(32, 7).magic().s, 2U); 1338 } 1339 1340 TEST(APIntTest, magicu) { 1341 EXPECT_EQ(APInt(32, 3).magicu().m, APInt(32, "AAAAAAAB", 16)); 1342 EXPECT_EQ(APInt(32, 3).magicu().s, 1U); 1343 EXPECT_EQ(APInt(32, 5).magicu().m, APInt(32, "CCCCCCCD", 16)); 1344 EXPECT_EQ(APInt(32, 5).magicu().s, 2U); 1345 EXPECT_EQ(APInt(32, 7).magicu().m, APInt(32, "24924925", 16)); 1346 EXPECT_EQ(APInt(32, 7).magicu().s, 3U); 1347 EXPECT_EQ(APInt(64, 25).magicu(1).m, APInt(64, "A3D70A3D70A3D70B", 16)); 1348 EXPECT_EQ(APInt(64, 25).magicu(1).s, 4U); 1349 } 1350 1351 #ifdef GTEST_HAS_DEATH_TEST 1352 #ifndef NDEBUG 1353 TEST(APIntTest, StringDeath) { 1354 EXPECT_DEATH(APInt(0, "", 0), "Bitwidth too small"); 1355 EXPECT_DEATH(APInt(32, "", 0), "Invalid string length"); 1356 EXPECT_DEATH(APInt(32, "0", 0), "Radix should be 2, 8, 10, 16, or 36!"); 1357 EXPECT_DEATH(APInt(32, "", 10), "Invalid string length"); 1358 EXPECT_DEATH(APInt(32, "-", 10), "String is only a sign, needs a value."); 1359 EXPECT_DEATH(APInt(1, "1234", 10), "Insufficient bit width"); 1360 EXPECT_DEATH(APInt(32, "\0", 10), "Invalid string length"); 1361 EXPECT_DEATH(APInt(32, StringRef("1\02", 3), 10), "Invalid character in digit string"); 1362 EXPECT_DEATH(APInt(32, "1L", 10), "Invalid character in digit string"); 1363 } 1364 #endif 1365 #endif 1366 1367 TEST(APIntTest, mul_clear) { 1368 APInt ValA(65, -1ULL); 1369 APInt ValB(65, 4); 1370 APInt ValC(65, 0); 1371 ValC = ValA * ValB; 1372 ValA *= ValB; 1373 EXPECT_EQ(ValA.toString(10, false), ValC.toString(10, false)); 1374 } 1375 1376 TEST(APIntTest, Rotate) { 1377 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotl(0)); 1378 EXPECT_EQ(APInt(8, 2), APInt(8, 1).rotl(1)); 1379 EXPECT_EQ(APInt(8, 4), APInt(8, 1).rotl(2)); 1380 EXPECT_EQ(APInt(8, 16), APInt(8, 1).rotl(4)); 1381 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotl(8)); 1382 1383 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotl(0)); 1384 EXPECT_EQ(APInt(8, 32), APInt(8, 16).rotl(1)); 1385 EXPECT_EQ(APInt(8, 64), APInt(8, 16).rotl(2)); 1386 EXPECT_EQ(APInt(8, 1), APInt(8, 16).rotl(4)); 1387 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotl(8)); 1388 1389 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(33)); 1390 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(32, 33))); 1391 1392 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(33)); 1393 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(32, 33))); 1394 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(33, 33))); 1395 EXPECT_EQ(APInt(32, (1 << 8)), APInt(32, 1).rotl(APInt(32, 40))); 1396 EXPECT_EQ(APInt(32, (1 << 30)), APInt(32, 1).rotl(APInt(31, 30))); 1397 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotl(APInt(31, 31))); 1398 1399 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotl(APInt(1, 0))); 1400 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(1, 1))); 1401 1402 EXPECT_EQ(APInt(32, 16), APInt(32, 1).rotl(APInt(3, 4))); 1403 1404 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotl(APInt(64, 64))); 1405 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(64, 65))); 1406 1407 EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(7, 3))); 1408 EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(7, 10))); 1409 EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(5, 10))); 1410 EXPECT_EQ(APInt(7, 6), APInt(7, 3).rotl(APInt(12, 120))); 1411 1412 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotr(0)); 1413 EXPECT_EQ(APInt(8, 8), APInt(8, 16).rotr(1)); 1414 EXPECT_EQ(APInt(8, 4), APInt(8, 16).rotr(2)); 1415 EXPECT_EQ(APInt(8, 1), APInt(8, 16).rotr(4)); 1416 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotr(8)); 1417 1418 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotr(0)); 1419 EXPECT_EQ(APInt(8, 128), APInt(8, 1).rotr(1)); 1420 EXPECT_EQ(APInt(8, 64), APInt(8, 1).rotr(2)); 1421 EXPECT_EQ(APInt(8, 16), APInt(8, 1).rotr(4)); 1422 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotr(8)); 1423 1424 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(33)); 1425 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(32, 33))); 1426 1427 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(33)); 1428 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(32, 33))); 1429 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(33, 33))); 1430 EXPECT_EQ(APInt(32, (1 << 24)), APInt(32, 1).rotr(APInt(32, 40))); 1431 1432 EXPECT_EQ(APInt(32, (1 << 2)), APInt(32, 1).rotr(APInt(31, 30))); 1433 EXPECT_EQ(APInt(32, (1 << 1)), APInt(32, 1).rotr(APInt(31, 31))); 1434 1435 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotr(APInt(1, 0))); 1436 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(1, 1))); 1437 1438 EXPECT_EQ(APInt(32, (1 << 28)), APInt(32, 1).rotr(APInt(3, 4))); 1439 1440 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotr(APInt(64, 64))); 1441 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(64, 65))); 1442 1443 EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(7, 3))); 1444 EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(7, 10))); 1445 EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(5, 10))); 1446 EXPECT_EQ(APInt(7, 65), APInt(7, 3).rotr(APInt(12, 120))); 1447 1448 APInt Big(256, "00004000800000000000000000003fff8000000000000003", 16); 1449 APInt Rot(256, "3fff80000000000000030000000000000000000040008000", 16); 1450 EXPECT_EQ(Rot, Big.rotr(144)); 1451 1452 EXPECT_EQ(APInt(32, 8), APInt(32, 1).rotl(Big)); 1453 EXPECT_EQ(APInt(32, (1 << 29)), APInt(32, 1).rotr(Big)); 1454 } 1455 1456 TEST(APIntTest, Splat) { 1457 APInt ValA(8, 0x01); 1458 EXPECT_EQ(ValA, APInt::getSplat(8, ValA)); 1459 EXPECT_EQ(APInt(64, 0x0101010101010101ULL), APInt::getSplat(64, ValA)); 1460 1461 APInt ValB(3, 5); 1462 EXPECT_EQ(APInt(4, 0xD), APInt::getSplat(4, ValB)); 1463 EXPECT_EQ(APInt(15, 0xDB6D), APInt::getSplat(15, ValB)); 1464 } 1465 1466 TEST(APIntTest, tcDecrement) { 1467 // Test single word decrement. 1468 1469 // No out borrow. 1470 { 1471 APInt::WordType singleWord = ~APInt::WordType(0) << (APInt::APINT_BITS_PER_WORD - 1); 1472 APInt::WordType carry = APInt::tcDecrement(&singleWord, 1); 1473 EXPECT_EQ(carry, APInt::WordType(0)); 1474 EXPECT_EQ(singleWord, ~APInt::WordType(0) >> 1); 1475 } 1476 1477 // With out borrow. 1478 { 1479 APInt::WordType singleWord = 0; 1480 APInt::WordType carry = APInt::tcDecrement(&singleWord, 1); 1481 EXPECT_EQ(carry, APInt::WordType(1)); 1482 EXPECT_EQ(singleWord, ~APInt::WordType(0)); 1483 } 1484 1485 // Test multiword decrement. 1486 1487 // No across word borrow, no out borrow. 1488 { 1489 APInt::WordType test[4] = {0x1, 0x1, 0x1, 0x1}; 1490 APInt::WordType expected[4] = {0x0, 0x1, 0x1, 0x1}; 1491 APInt::tcDecrement(test, 4); 1492 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1493 } 1494 1495 // 1 across word borrow, no out borrow. 1496 { 1497 APInt::WordType test[4] = {0x0, 0xF, 0x1, 0x1}; 1498 APInt::WordType expected[4] = {~APInt::WordType(0), 0xE, 0x1, 0x1}; 1499 APInt::WordType carry = APInt::tcDecrement(test, 4); 1500 EXPECT_EQ(carry, APInt::WordType(0)); 1501 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1502 } 1503 1504 // 2 across word borrow, no out borrow. 1505 { 1506 APInt::WordType test[4] = {0x0, 0x0, 0xC, 0x1}; 1507 APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), 0xB, 0x1}; 1508 APInt::WordType carry = APInt::tcDecrement(test, 4); 1509 EXPECT_EQ(carry, APInt::WordType(0)); 1510 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1511 } 1512 1513 // 3 across word borrow, no out borrow. 1514 { 1515 APInt::WordType test[4] = {0x0, 0x0, 0x0, 0x1}; 1516 APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0), 0x0}; 1517 APInt::WordType carry = APInt::tcDecrement(test, 4); 1518 EXPECT_EQ(carry, APInt::WordType(0)); 1519 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1520 } 1521 1522 // 3 across word borrow, with out borrow. 1523 { 1524 APInt::WordType test[4] = {0x0, 0x0, 0x0, 0x0}; 1525 APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0)}; 1526 APInt::WordType carry = APInt::tcDecrement(test, 4); 1527 EXPECT_EQ(carry, APInt::WordType(1)); 1528 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1529 } 1530 } 1531 1532 TEST(APIntTest, arrayAccess) { 1533 // Single word check. 1534 uint64_t E1 = 0x2CA7F46BF6569915ULL; 1535 APInt A1(64, E1); 1536 for (unsigned i = 0, e = 64; i < e; ++i) { 1537 EXPECT_EQ(bool(E1 & (1ULL << i)), 1538 A1[i]); 1539 } 1540 1541 // Multiword check. 1542 APInt::WordType E2[4] = { 1543 0xEB6EB136591CBA21ULL, 1544 0x7B9358BD6A33F10AULL, 1545 0x7E7FFA5EADD8846ULL, 1546 0x305F341CA00B613DULL 1547 }; 1548 APInt A2(APInt::APINT_BITS_PER_WORD*4, E2); 1549 for (unsigned i = 0; i < 4; ++i) { 1550 for (unsigned j = 0; j < APInt::APINT_BITS_PER_WORD; ++j) { 1551 EXPECT_EQ(bool(E2[i] & (1ULL << j)), 1552 A2[i*APInt::APINT_BITS_PER_WORD + j]); 1553 } 1554 } 1555 } 1556 1557 TEST(APIntTest, LargeAPIntConstruction) { 1558 // Check that we can properly construct very large APInt. It is very 1559 // unlikely that people will ever do this, but it is a legal input, 1560 // so we should not crash on it. 1561 APInt A9(UINT32_MAX, 0); 1562 EXPECT_FALSE(A9.getBoolValue()); 1563 } 1564 1565 TEST(APIntTest, nearestLogBase2) { 1566 // Single word check. 1567 1568 // Test round up. 1569 uint64_t I1 = 0x1800001; 1570 APInt A1(64, I1); 1571 EXPECT_EQ(A1.nearestLogBase2(), A1.ceilLogBase2()); 1572 1573 // Test round down. 1574 uint64_t I2 = 0x1000011; 1575 APInt A2(64, I2); 1576 EXPECT_EQ(A2.nearestLogBase2(), A2.logBase2()); 1577 1578 // Test ties round up. 1579 uint64_t I3 = 0x1800000; 1580 APInt A3(64, I3); 1581 EXPECT_EQ(A3.nearestLogBase2(), A3.ceilLogBase2()); 1582 1583 // Multiple word check. 1584 1585 // Test round up. 1586 APInt::WordType I4[4] = {0x0, 0xF, 0x18, 0x0}; 1587 APInt A4(APInt::APINT_BITS_PER_WORD*4, I4); 1588 EXPECT_EQ(A4.nearestLogBase2(), A4.ceilLogBase2()); 1589 1590 // Test round down. 1591 APInt::WordType I5[4] = {0x0, 0xF, 0x10, 0x0}; 1592 APInt A5(APInt::APINT_BITS_PER_WORD*4, I5); 1593 EXPECT_EQ(A5.nearestLogBase2(), A5.logBase2()); 1594 1595 // Test ties round up. 1596 uint64_t I6[4] = {0x0, 0x0, 0x0, 0x18}; 1597 APInt A6(APInt::APINT_BITS_PER_WORD*4, I6); 1598 EXPECT_EQ(A6.nearestLogBase2(), A6.ceilLogBase2()); 1599 1600 // Test BitWidth == 1 special cases. 1601 APInt A7(1, 1); 1602 EXPECT_EQ(A7.nearestLogBase2(), 0ULL); 1603 APInt A8(1, 0); 1604 EXPECT_EQ(A8.nearestLogBase2(), UINT32_MAX); 1605 1606 // Test the zero case when we have a bit width large enough such 1607 // that the bit width is larger than UINT32_MAX-1. 1608 APInt A9(UINT32_MAX, 0); 1609 EXPECT_EQ(A9.nearestLogBase2(), UINT32_MAX); 1610 } 1611 1612 TEST(APIntTest, IsSplat) { 1613 APInt A(32, 0x01010101); 1614 EXPECT_FALSE(A.isSplat(1)); 1615 EXPECT_FALSE(A.isSplat(2)); 1616 EXPECT_FALSE(A.isSplat(4)); 1617 EXPECT_TRUE(A.isSplat(8)); 1618 EXPECT_TRUE(A.isSplat(16)); 1619 EXPECT_TRUE(A.isSplat(32)); 1620 1621 APInt B(24, 0xAAAAAA); 1622 EXPECT_FALSE(B.isSplat(1)); 1623 EXPECT_TRUE(B.isSplat(2)); 1624 EXPECT_TRUE(B.isSplat(4)); 1625 EXPECT_TRUE(B.isSplat(8)); 1626 EXPECT_TRUE(B.isSplat(24)); 1627 1628 APInt C(24, 0xABAAAB); 1629 EXPECT_FALSE(C.isSplat(1)); 1630 EXPECT_FALSE(C.isSplat(2)); 1631 EXPECT_FALSE(C.isSplat(4)); 1632 EXPECT_FALSE(C.isSplat(8)); 1633 EXPECT_TRUE(C.isSplat(24)); 1634 1635 APInt D(32, 0xABBAABBA); 1636 EXPECT_FALSE(D.isSplat(1)); 1637 EXPECT_FALSE(D.isSplat(2)); 1638 EXPECT_FALSE(D.isSplat(4)); 1639 EXPECT_FALSE(D.isSplat(8)); 1640 EXPECT_TRUE(D.isSplat(16)); 1641 EXPECT_TRUE(D.isSplat(32)); 1642 1643 APInt E(32, 0); 1644 EXPECT_TRUE(E.isSplat(1)); 1645 EXPECT_TRUE(E.isSplat(2)); 1646 EXPECT_TRUE(E.isSplat(4)); 1647 EXPECT_TRUE(E.isSplat(8)); 1648 EXPECT_TRUE(E.isSplat(16)); 1649 EXPECT_TRUE(E.isSplat(32)); 1650 } 1651 1652 TEST(APIntTest, isMask) { 1653 EXPECT_FALSE(APInt(32, 0x01010101).isMask()); 1654 EXPECT_FALSE(APInt(32, 0xf0000000).isMask()); 1655 EXPECT_FALSE(APInt(32, 0xffff0000).isMask()); 1656 EXPECT_FALSE(APInt(32, 0xff << 1).isMask()); 1657 1658 for (int N : { 1, 2, 3, 4, 7, 8, 16, 32, 64, 127, 128, 129, 256 }) { 1659 EXPECT_FALSE(APInt(N, 0).isMask()); 1660 1661 APInt One(N, 1); 1662 for (int I = 1; I <= N; ++I) { 1663 APInt MaskVal = One.shl(I) - 1; 1664 EXPECT_TRUE(MaskVal.isMask()); 1665 EXPECT_TRUE(MaskVal.isMask(I)); 1666 } 1667 } 1668 } 1669 1670 TEST(APIntTest, isShiftedMask) { 1671 EXPECT_FALSE(APInt(32, 0x01010101).isShiftedMask()); 1672 EXPECT_TRUE(APInt(32, 0xf0000000).isShiftedMask()); 1673 EXPECT_TRUE(APInt(32, 0xffff0000).isShiftedMask()); 1674 EXPECT_TRUE(APInt(32, 0xff << 1).isShiftedMask()); 1675 1676 for (int N : { 1, 2, 3, 4, 7, 8, 16, 32, 64, 127, 128, 129, 256 }) { 1677 EXPECT_FALSE(APInt(N, 0).isShiftedMask()); 1678 1679 APInt One(N, 1); 1680 for (int I = 1; I < N; ++I) { 1681 APInt MaskVal = One.shl(I) - 1; 1682 EXPECT_TRUE(MaskVal.isShiftedMask()); 1683 } 1684 for (int I = 1; I < N - 1; ++I) { 1685 APInt MaskVal = One.shl(I); 1686 EXPECT_TRUE(MaskVal.isShiftedMask()); 1687 } 1688 for (int I = 1; I < N; ++I) { 1689 APInt MaskVal = APInt::getHighBitsSet(N, I); 1690 EXPECT_TRUE(MaskVal.isShiftedMask()); 1691 } 1692 } 1693 } 1694 1695 // Test that self-move works, but only when we're using MSVC. 1696 #if defined(_MSC_VER) 1697 #if defined(__clang__) 1698 // Disable the pragma warning from versions of Clang without -Wself-move 1699 #pragma clang diagnostic push 1700 #pragma clang diagnostic ignored "-Wunknown-pragmas" 1701 // Disable the warning that triggers on exactly what is being tested. 1702 #pragma clang diagnostic push 1703 #pragma clang diagnostic ignored "-Wself-move" 1704 #endif 1705 TEST(APIntTest, SelfMoveAssignment) { 1706 APInt X(32, 0xdeadbeef); 1707 X = std::move(X); 1708 EXPECT_EQ(32u, X.getBitWidth()); 1709 EXPECT_EQ(0xdeadbeefULL, X.getLimitedValue()); 1710 1711 uint64_t Bits[] = {0xdeadbeefdeadbeefULL, 0xdeadbeefdeadbeefULL}; 1712 APInt Y(128, Bits); 1713 Y = std::move(Y); 1714 EXPECT_EQ(128u, Y.getBitWidth()); 1715 EXPECT_EQ(~0ULL, Y.getLimitedValue()); 1716 const uint64_t *Raw = Y.getRawData(); 1717 EXPECT_EQ(2u, Y.getNumWords()); 1718 EXPECT_EQ(0xdeadbeefdeadbeefULL, Raw[0]); 1719 EXPECT_EQ(0xdeadbeefdeadbeefULL, Raw[1]); 1720 } 1721 #if defined(__clang__) 1722 #pragma clang diagnostic pop 1723 #pragma clang diagnostic pop 1724 #endif 1725 #endif // _MSC_VER 1726 1727 TEST(APIntTest, reverseBits) { 1728 EXPECT_EQ(1, APInt(1, 1).reverseBits()); 1729 EXPECT_EQ(0, APInt(1, 0).reverseBits()); 1730 1731 EXPECT_EQ(3, APInt(2, 3).reverseBits()); 1732 EXPECT_EQ(3, APInt(2, 3).reverseBits()); 1733 1734 EXPECT_EQ(0xb, APInt(4, 0xd).reverseBits()); 1735 EXPECT_EQ(0xd, APInt(4, 0xb).reverseBits()); 1736 EXPECT_EQ(0xf, APInt(4, 0xf).reverseBits()); 1737 1738 EXPECT_EQ(0x30, APInt(7, 0x6).reverseBits()); 1739 EXPECT_EQ(0x5a, APInt(7, 0x2d).reverseBits()); 1740 1741 EXPECT_EQ(0x0f, APInt(8, 0xf0).reverseBits()); 1742 EXPECT_EQ(0xf0, APInt(8, 0x0f).reverseBits()); 1743 1744 EXPECT_EQ(0x0f0f, APInt(16, 0xf0f0).reverseBits()); 1745 EXPECT_EQ(0xf0f0, APInt(16, 0x0f0f).reverseBits()); 1746 1747 EXPECT_EQ(0x0f0f0f0f, APInt(32, 0xf0f0f0f0).reverseBits()); 1748 EXPECT_EQ(0xf0f0f0f0, APInt(32, 0x0f0f0f0f).reverseBits()); 1749 1750 EXPECT_EQ(0x402880a0 >> 1, APInt(31, 0x05011402).reverseBits()); 1751 1752 EXPECT_EQ(0x0f0f0f0f, APInt(32, 0xf0f0f0f0).reverseBits()); 1753 EXPECT_EQ(0xf0f0f0f0, APInt(32, 0x0f0f0f0f).reverseBits()); 1754 1755 EXPECT_EQ(0x0f0f0f0f0f0f0f0f, APInt(64, 0xf0f0f0f0f0f0f0f0).reverseBits()); 1756 EXPECT_EQ(0xf0f0f0f0f0f0f0f0, APInt(64, 0x0f0f0f0f0f0f0f0f).reverseBits()); 1757 1758 for (unsigned N : { 1, 8, 16, 24, 31, 32, 33, 1759 63, 64, 65, 127, 128, 257, 1024 }) { 1760 for (unsigned I = 0; I < N; ++I) { 1761 APInt X = APInt::getOneBitSet(N, I); 1762 APInt Y = APInt::getOneBitSet(N, N - (I + 1)); 1763 EXPECT_EQ(Y, X.reverseBits()); 1764 EXPECT_EQ(X, Y.reverseBits()); 1765 } 1766 } 1767 } 1768 1769 TEST(APIntTest, insertBits) { 1770 APInt iSrc(31, 0x00123456); 1771 1772 // Direct copy. 1773 APInt i31(31, 0x76543210ull); 1774 i31.insertBits(iSrc, 0); 1775 EXPECT_EQ(static_cast<int64_t>(0x00123456ull), i31.getSExtValue()); 1776 1777 // Single word src/dst insertion. 1778 APInt i63(63, 0x01234567FFFFFFFFull); 1779 i63.insertBits(iSrc, 4); 1780 EXPECT_EQ(static_cast<int64_t>(0x012345600123456Full), i63.getSExtValue()); 1781 1782 // Insert single word src into one word of dst. 1783 APInt i120(120, UINT64_MAX, true); 1784 i120.insertBits(iSrc, 8); 1785 EXPECT_EQ(static_cast<int64_t>(0xFFFFFF80123456FFull), i120.getSExtValue()); 1786 1787 // Insert single word src into two words of dst. 1788 APInt i127(127, UINT64_MAX, true); 1789 i127.insertBits(iSrc, 48); 1790 EXPECT_EQ(i127.extractBits(64, 0).getZExtValue(), 0x3456FFFFFFFFFFFFull); 1791 EXPECT_EQ(i127.extractBits(63, 64).getZExtValue(), 0x7FFFFFFFFFFF8012ull); 1792 1793 // Insert on word boundaries. 1794 APInt i128(128, 0); 1795 i128.insertBits(APInt(64, UINT64_MAX, true), 0); 1796 i128.insertBits(APInt(64, UINT64_MAX, true), 64); 1797 EXPECT_EQ(-1, i128.getSExtValue()); 1798 1799 APInt i256(256, UINT64_MAX, true); 1800 i256.insertBits(APInt(65, 0), 0); 1801 i256.insertBits(APInt(69, 0), 64); 1802 i256.insertBits(APInt(128, 0), 128); 1803 EXPECT_EQ(0u, i256.getSExtValue()); 1804 1805 APInt i257(257, 0); 1806 i257.insertBits(APInt(96, UINT64_MAX, true), 64); 1807 EXPECT_EQ(i257.extractBits(64, 0).getZExtValue(), 0x0000000000000000ull); 1808 EXPECT_EQ(i257.extractBits(64, 64).getZExtValue(), 0xFFFFFFFFFFFFFFFFull); 1809 EXPECT_EQ(i257.extractBits(64, 128).getZExtValue(), 0x00000000FFFFFFFFull); 1810 EXPECT_EQ(i257.extractBits(65, 192).getZExtValue(), 0x0000000000000000ull); 1811 1812 // General insertion. 1813 APInt i260(260, UINT64_MAX, true); 1814 i260.insertBits(APInt(129, 1ull << 48), 15); 1815 EXPECT_EQ(i260.extractBits(64, 0).getZExtValue(), 0x8000000000007FFFull); 1816 EXPECT_EQ(i260.extractBits(64, 64).getZExtValue(), 0x0000000000000000ull); 1817 EXPECT_EQ(i260.extractBits(64, 128).getZExtValue(), 0xFFFFFFFFFFFF0000ull); 1818 EXPECT_EQ(i260.extractBits(64, 192).getZExtValue(), 0xFFFFFFFFFFFFFFFFull); 1819 EXPECT_EQ(i260.extractBits(4, 256).getZExtValue(), 0x000000000000000Full); 1820 } 1821 1822 TEST(APIntTest, extractBits) { 1823 APInt i32(32, 0x1234567); 1824 EXPECT_EQ(0x3456, i32.extractBits(16, 4)); 1825 1826 APInt i257(257, 0xFFFFFFFFFF0000FFull, true); 1827 EXPECT_EQ(0xFFu, i257.extractBits(16, 0)); 1828 EXPECT_EQ((0xFFu >> 1), i257.extractBits(16, 1)); 1829 EXPECT_EQ(-1, i257.extractBits(32, 64).getSExtValue()); 1830 EXPECT_EQ(-1, i257.extractBits(128, 128).getSExtValue()); 1831 EXPECT_EQ(-1, i257.extractBits(66, 191).getSExtValue()); 1832 EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full), 1833 i257.extractBits(128, 1).getSExtValue()); 1834 EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full), 1835 i257.extractBits(129, 1).getSExtValue()); 1836 1837 EXPECT_EQ(APInt(48, 0), 1838 APInt(144, "281474976710655", 10).extractBits(48, 48)); 1839 EXPECT_EQ(APInt(48, 0x0000ffffffffffffull), 1840 APInt(144, "281474976710655", 10).extractBits(48, 0)); 1841 EXPECT_EQ(APInt(48, 0x00007fffffffffffull), 1842 APInt(144, "281474976710655", 10).extractBits(48, 1)); 1843 } 1844 1845 TEST(APIntTest, getLowBitsSet) { 1846 APInt i128lo64 = APInt::getLowBitsSet(128, 64); 1847 EXPECT_EQ(0u, i128lo64.countLeadingOnes()); 1848 EXPECT_EQ(64u, i128lo64.countLeadingZeros()); 1849 EXPECT_EQ(64u, i128lo64.getActiveBits()); 1850 EXPECT_EQ(0u, i128lo64.countTrailingZeros()); 1851 EXPECT_EQ(64u, i128lo64.countTrailingOnes()); 1852 EXPECT_EQ(64u, i128lo64.countPopulation()); 1853 } 1854 1855 TEST(APIntTest, getBitsSet) { 1856 APInt i64hi1lo1 = APInt::getBitsSet(64, 1, 63); 1857 EXPECT_EQ(0u, i64hi1lo1.countLeadingOnes()); 1858 EXPECT_EQ(1u, i64hi1lo1.countLeadingZeros()); 1859 EXPECT_EQ(63u, i64hi1lo1.getActiveBits()); 1860 EXPECT_EQ(1u, i64hi1lo1.countTrailingZeros()); 1861 EXPECT_EQ(0u, i64hi1lo1.countTrailingOnes()); 1862 EXPECT_EQ(62u, i64hi1lo1.countPopulation()); 1863 1864 APInt i127hi1lo1 = APInt::getBitsSet(127, 1, 126); 1865 EXPECT_EQ(0u, i127hi1lo1.countLeadingOnes()); 1866 EXPECT_EQ(1u, i127hi1lo1.countLeadingZeros()); 1867 EXPECT_EQ(126u, i127hi1lo1.getActiveBits()); 1868 EXPECT_EQ(1u, i127hi1lo1.countTrailingZeros()); 1869 EXPECT_EQ(0u, i127hi1lo1.countTrailingOnes()); 1870 EXPECT_EQ(125u, i127hi1lo1.countPopulation()); 1871 } 1872 1873 TEST(APIntTest, getHighBitsSet) { 1874 APInt i64hi32 = APInt::getHighBitsSet(64, 32); 1875 EXPECT_EQ(32u, i64hi32.countLeadingOnes()); 1876 EXPECT_EQ(0u, i64hi32.countLeadingZeros()); 1877 EXPECT_EQ(64u, i64hi32.getActiveBits()); 1878 EXPECT_EQ(32u, i64hi32.countTrailingZeros()); 1879 EXPECT_EQ(0u, i64hi32.countTrailingOnes()); 1880 EXPECT_EQ(32u, i64hi32.countPopulation()); 1881 } 1882 1883 TEST(APIntTest, getBitsSetFrom) { 1884 APInt i64hi31 = APInt::getBitsSetFrom(64, 33); 1885 EXPECT_EQ(31u, i64hi31.countLeadingOnes()); 1886 EXPECT_EQ(0u, i64hi31.countLeadingZeros()); 1887 EXPECT_EQ(64u, i64hi31.getActiveBits()); 1888 EXPECT_EQ(33u, i64hi31.countTrailingZeros()); 1889 EXPECT_EQ(0u, i64hi31.countTrailingOnes()); 1890 EXPECT_EQ(31u, i64hi31.countPopulation()); 1891 } 1892 1893 TEST(APIntTest, setLowBits) { 1894 APInt i64lo32(64, 0); 1895 i64lo32.setLowBits(32); 1896 EXPECT_EQ(0u, i64lo32.countLeadingOnes()); 1897 EXPECT_EQ(32u, i64lo32.countLeadingZeros()); 1898 EXPECT_EQ(32u, i64lo32.getActiveBits()); 1899 EXPECT_EQ(0u, i64lo32.countTrailingZeros()); 1900 EXPECT_EQ(32u, i64lo32.countTrailingOnes()); 1901 EXPECT_EQ(32u, i64lo32.countPopulation()); 1902 1903 APInt i128lo64(128, 0); 1904 i128lo64.setLowBits(64); 1905 EXPECT_EQ(0u, i128lo64.countLeadingOnes()); 1906 EXPECT_EQ(64u, i128lo64.countLeadingZeros()); 1907 EXPECT_EQ(64u, i128lo64.getActiveBits()); 1908 EXPECT_EQ(0u, i128lo64.countTrailingZeros()); 1909 EXPECT_EQ(64u, i128lo64.countTrailingOnes()); 1910 EXPECT_EQ(64u, i128lo64.countPopulation()); 1911 1912 APInt i128lo24(128, 0); 1913 i128lo24.setLowBits(24); 1914 EXPECT_EQ(0u, i128lo24.countLeadingOnes()); 1915 EXPECT_EQ(104u, i128lo24.countLeadingZeros()); 1916 EXPECT_EQ(24u, i128lo24.getActiveBits()); 1917 EXPECT_EQ(0u, i128lo24.countTrailingZeros()); 1918 EXPECT_EQ(24u, i128lo24.countTrailingOnes()); 1919 EXPECT_EQ(24u, i128lo24.countPopulation()); 1920 1921 APInt i128lo104(128, 0); 1922 i128lo104.setLowBits(104); 1923 EXPECT_EQ(0u, i128lo104.countLeadingOnes()); 1924 EXPECT_EQ(24u, i128lo104.countLeadingZeros()); 1925 EXPECT_EQ(104u, i128lo104.getActiveBits()); 1926 EXPECT_EQ(0u, i128lo104.countTrailingZeros()); 1927 EXPECT_EQ(104u, i128lo104.countTrailingOnes()); 1928 EXPECT_EQ(104u, i128lo104.countPopulation()); 1929 1930 APInt i128lo0(128, 0); 1931 i128lo0.setLowBits(0); 1932 EXPECT_EQ(0u, i128lo0.countLeadingOnes()); 1933 EXPECT_EQ(128u, i128lo0.countLeadingZeros()); 1934 EXPECT_EQ(0u, i128lo0.getActiveBits()); 1935 EXPECT_EQ(128u, i128lo0.countTrailingZeros()); 1936 EXPECT_EQ(0u, i128lo0.countTrailingOnes()); 1937 EXPECT_EQ(0u, i128lo0.countPopulation()); 1938 1939 APInt i80lo79(80, 0); 1940 i80lo79.setLowBits(79); 1941 EXPECT_EQ(0u, i80lo79.countLeadingOnes()); 1942 EXPECT_EQ(1u, i80lo79.countLeadingZeros()); 1943 EXPECT_EQ(79u, i80lo79.getActiveBits()); 1944 EXPECT_EQ(0u, i80lo79.countTrailingZeros()); 1945 EXPECT_EQ(79u, i80lo79.countTrailingOnes()); 1946 EXPECT_EQ(79u, i80lo79.countPopulation()); 1947 } 1948 1949 TEST(APIntTest, setHighBits) { 1950 APInt i64hi32(64, 0); 1951 i64hi32.setHighBits(32); 1952 EXPECT_EQ(32u, i64hi32.countLeadingOnes()); 1953 EXPECT_EQ(0u, i64hi32.countLeadingZeros()); 1954 EXPECT_EQ(64u, i64hi32.getActiveBits()); 1955 EXPECT_EQ(32u, i64hi32.countTrailingZeros()); 1956 EXPECT_EQ(0u, i64hi32.countTrailingOnes()); 1957 EXPECT_EQ(32u, i64hi32.countPopulation()); 1958 1959 APInt i128hi64(128, 0); 1960 i128hi64.setHighBits(64); 1961 EXPECT_EQ(64u, i128hi64.countLeadingOnes()); 1962 EXPECT_EQ(0u, i128hi64.countLeadingZeros()); 1963 EXPECT_EQ(128u, i128hi64.getActiveBits()); 1964 EXPECT_EQ(64u, i128hi64.countTrailingZeros()); 1965 EXPECT_EQ(0u, i128hi64.countTrailingOnes()); 1966 EXPECT_EQ(64u, i128hi64.countPopulation()); 1967 1968 APInt i128hi24(128, 0); 1969 i128hi24.setHighBits(24); 1970 EXPECT_EQ(24u, i128hi24.countLeadingOnes()); 1971 EXPECT_EQ(0u, i128hi24.countLeadingZeros()); 1972 EXPECT_EQ(128u, i128hi24.getActiveBits()); 1973 EXPECT_EQ(104u, i128hi24.countTrailingZeros()); 1974 EXPECT_EQ(0u, i128hi24.countTrailingOnes()); 1975 EXPECT_EQ(24u, i128hi24.countPopulation()); 1976 1977 APInt i128hi104(128, 0); 1978 i128hi104.setHighBits(104); 1979 EXPECT_EQ(104u, i128hi104.countLeadingOnes()); 1980 EXPECT_EQ(0u, i128hi104.countLeadingZeros()); 1981 EXPECT_EQ(128u, i128hi104.getActiveBits()); 1982 EXPECT_EQ(24u, i128hi104.countTrailingZeros()); 1983 EXPECT_EQ(0u, i128hi104.countTrailingOnes()); 1984 EXPECT_EQ(104u, i128hi104.countPopulation()); 1985 1986 APInt i128hi0(128, 0); 1987 i128hi0.setHighBits(0); 1988 EXPECT_EQ(0u, i128hi0.countLeadingOnes()); 1989 EXPECT_EQ(128u, i128hi0.countLeadingZeros()); 1990 EXPECT_EQ(0u, i128hi0.getActiveBits()); 1991 EXPECT_EQ(128u, i128hi0.countTrailingZeros()); 1992 EXPECT_EQ(0u, i128hi0.countTrailingOnes()); 1993 EXPECT_EQ(0u, i128hi0.countPopulation()); 1994 1995 APInt i80hi1(80, 0); 1996 i80hi1.setHighBits(1); 1997 EXPECT_EQ(1u, i80hi1.countLeadingOnes()); 1998 EXPECT_EQ(0u, i80hi1.countLeadingZeros()); 1999 EXPECT_EQ(80u, i80hi1.getActiveBits()); 2000 EXPECT_EQ(79u, i80hi1.countTrailingZeros()); 2001 EXPECT_EQ(0u, i80hi1.countTrailingOnes()); 2002 EXPECT_EQ(1u, i80hi1.countPopulation()); 2003 2004 APInt i32hi16(32, 0); 2005 i32hi16.setHighBits(16); 2006 EXPECT_EQ(16u, i32hi16.countLeadingOnes()); 2007 EXPECT_EQ(0u, i32hi16.countLeadingZeros()); 2008 EXPECT_EQ(32u, i32hi16.getActiveBits()); 2009 EXPECT_EQ(16u, i32hi16.countTrailingZeros()); 2010 EXPECT_EQ(0u, i32hi16.countTrailingOnes()); 2011 EXPECT_EQ(16u, i32hi16.countPopulation()); 2012 } 2013 2014 TEST(APIntTest, setBitsFrom) { 2015 APInt i64from63(64, 0); 2016 i64from63.setBitsFrom(63); 2017 EXPECT_EQ(1u, i64from63.countLeadingOnes()); 2018 EXPECT_EQ(0u, i64from63.countLeadingZeros()); 2019 EXPECT_EQ(64u, i64from63.getActiveBits()); 2020 EXPECT_EQ(63u, i64from63.countTrailingZeros()); 2021 EXPECT_EQ(0u, i64from63.countTrailingOnes()); 2022 EXPECT_EQ(1u, i64from63.countPopulation()); 2023 } 2024 2025 TEST(APIntTest, setAllBits) { 2026 APInt i32(32, 0); 2027 i32.setAllBits(); 2028 EXPECT_EQ(32u, i32.countLeadingOnes()); 2029 EXPECT_EQ(0u, i32.countLeadingZeros()); 2030 EXPECT_EQ(32u, i32.getActiveBits()); 2031 EXPECT_EQ(0u, i32.countTrailingZeros()); 2032 EXPECT_EQ(32u, i32.countTrailingOnes()); 2033 EXPECT_EQ(32u, i32.countPopulation()); 2034 2035 APInt i64(64, 0); 2036 i64.setAllBits(); 2037 EXPECT_EQ(64u, i64.countLeadingOnes()); 2038 EXPECT_EQ(0u, i64.countLeadingZeros()); 2039 EXPECT_EQ(64u, i64.getActiveBits()); 2040 EXPECT_EQ(0u, i64.countTrailingZeros()); 2041 EXPECT_EQ(64u, i64.countTrailingOnes()); 2042 EXPECT_EQ(64u, i64.countPopulation()); 2043 2044 APInt i96(96, 0); 2045 i96.setAllBits(); 2046 EXPECT_EQ(96u, i96.countLeadingOnes()); 2047 EXPECT_EQ(0u, i96.countLeadingZeros()); 2048 EXPECT_EQ(96u, i96.getActiveBits()); 2049 EXPECT_EQ(0u, i96.countTrailingZeros()); 2050 EXPECT_EQ(96u, i96.countTrailingOnes()); 2051 EXPECT_EQ(96u, i96.countPopulation()); 2052 2053 APInt i128(128, 0); 2054 i128.setAllBits(); 2055 EXPECT_EQ(128u, i128.countLeadingOnes()); 2056 EXPECT_EQ(0u, i128.countLeadingZeros()); 2057 EXPECT_EQ(128u, i128.getActiveBits()); 2058 EXPECT_EQ(0u, i128.countTrailingZeros()); 2059 EXPECT_EQ(128u, i128.countTrailingOnes()); 2060 EXPECT_EQ(128u, i128.countPopulation()); 2061 } 2062 2063 TEST(APIntTest, getLoBits) { 2064 APInt i32(32, 0xfa); 2065 i32.setHighBits(1); 2066 EXPECT_EQ(0xa, i32.getLoBits(4)); 2067 APInt i128(128, 0xfa); 2068 i128.setHighBits(1); 2069 EXPECT_EQ(0xa, i128.getLoBits(4)); 2070 } 2071 2072 TEST(APIntTest, getHiBits) { 2073 APInt i32(32, 0xfa); 2074 i32.setHighBits(2); 2075 EXPECT_EQ(0xc, i32.getHiBits(4)); 2076 APInt i128(128, 0xfa); 2077 i128.setHighBits(2); 2078 EXPECT_EQ(0xc, i128.getHiBits(4)); 2079 } 2080 2081 TEST(APIntTest, GCD) { 2082 using APIntOps::GreatestCommonDivisor; 2083 2084 for (unsigned Bits : {1, 2, 32, 63, 64, 65}) { 2085 // Test some corner cases near zero. 2086 APInt Zero(Bits, 0), One(Bits, 1); 2087 EXPECT_EQ(GreatestCommonDivisor(Zero, Zero), Zero); 2088 EXPECT_EQ(GreatestCommonDivisor(Zero, One), One); 2089 EXPECT_EQ(GreatestCommonDivisor(One, Zero), One); 2090 EXPECT_EQ(GreatestCommonDivisor(One, One), One); 2091 2092 if (Bits > 1) { 2093 APInt Two(Bits, 2); 2094 EXPECT_EQ(GreatestCommonDivisor(Zero, Two), Two); 2095 EXPECT_EQ(GreatestCommonDivisor(One, Two), One); 2096 EXPECT_EQ(GreatestCommonDivisor(Two, Two), Two); 2097 2098 // Test some corner cases near the highest representable value. 2099 APInt Max(Bits, 0); 2100 Max.setAllBits(); 2101 EXPECT_EQ(GreatestCommonDivisor(Zero, Max), Max); 2102 EXPECT_EQ(GreatestCommonDivisor(One, Max), One); 2103 EXPECT_EQ(GreatestCommonDivisor(Two, Max), One); 2104 EXPECT_EQ(GreatestCommonDivisor(Max, Max), Max); 2105 2106 APInt MaxOver2 = Max.udiv(Two); 2107 EXPECT_EQ(GreatestCommonDivisor(MaxOver2, Max), One); 2108 // Max - 1 == Max / 2 * 2, because Max is odd. 2109 EXPECT_EQ(GreatestCommonDivisor(MaxOver2, Max - 1), MaxOver2); 2110 } 2111 } 2112 2113 // Compute the 20th Mersenne prime. 2114 const unsigned BitWidth = 4450; 2115 APInt HugePrime = APInt::getLowBitsSet(BitWidth, 4423); 2116 2117 // 9931 and 123456 are coprime. 2118 APInt A = HugePrime * APInt(BitWidth, 9931); 2119 APInt B = HugePrime * APInt(BitWidth, 123456); 2120 APInt C = GreatestCommonDivisor(A, B); 2121 EXPECT_EQ(C, HugePrime); 2122 } 2123 2124 TEST(APIntTest, LogicalRightShift) { 2125 APInt i256(APInt::getHighBitsSet(256, 2)); 2126 2127 i256.lshrInPlace(1); 2128 EXPECT_EQ(1U, i256.countLeadingZeros()); 2129 EXPECT_EQ(253U, i256.countTrailingZeros()); 2130 EXPECT_EQ(2U, i256.countPopulation()); 2131 2132 i256.lshrInPlace(62); 2133 EXPECT_EQ(63U, i256.countLeadingZeros()); 2134 EXPECT_EQ(191U, i256.countTrailingZeros()); 2135 EXPECT_EQ(2U, i256.countPopulation()); 2136 2137 i256.lshrInPlace(65); 2138 EXPECT_EQ(128U, i256.countLeadingZeros()); 2139 EXPECT_EQ(126U, i256.countTrailingZeros()); 2140 EXPECT_EQ(2U, i256.countPopulation()); 2141 2142 i256.lshrInPlace(64); 2143 EXPECT_EQ(192U, i256.countLeadingZeros()); 2144 EXPECT_EQ(62U, i256.countTrailingZeros()); 2145 EXPECT_EQ(2U, i256.countPopulation()); 2146 2147 i256.lshrInPlace(63); 2148 EXPECT_EQ(255U, i256.countLeadingZeros()); 2149 EXPECT_EQ(0U, i256.countTrailingZeros()); 2150 EXPECT_EQ(1U, i256.countPopulation()); 2151 2152 // Ensure we handle large shifts of multi-word. 2153 const APInt neg_one(128, static_cast<uint64_t>(-1), true); 2154 EXPECT_EQ(0, neg_one.lshr(128)); 2155 } 2156 2157 TEST(APIntTest, ArithmeticRightShift) { 2158 APInt i72(APInt::getHighBitsSet(72, 1)); 2159 i72.ashrInPlace(46); 2160 EXPECT_EQ(47U, i72.countLeadingOnes()); 2161 EXPECT_EQ(25U, i72.countTrailingZeros()); 2162 EXPECT_EQ(47U, i72.countPopulation()); 2163 2164 i72 = APInt::getHighBitsSet(72, 1); 2165 i72.ashrInPlace(64); 2166 EXPECT_EQ(65U, i72.countLeadingOnes()); 2167 EXPECT_EQ(7U, i72.countTrailingZeros()); 2168 EXPECT_EQ(65U, i72.countPopulation()); 2169 2170 APInt i128(APInt::getHighBitsSet(128, 1)); 2171 i128.ashrInPlace(64); 2172 EXPECT_EQ(65U, i128.countLeadingOnes()); 2173 EXPECT_EQ(63U, i128.countTrailingZeros()); 2174 EXPECT_EQ(65U, i128.countPopulation()); 2175 2176 // Ensure we handle large shifts of multi-word. 2177 const APInt signmin32(APInt::getSignedMinValue(32)); 2178 EXPECT_TRUE(signmin32.ashr(32).isAllOnesValue()); 2179 2180 // Ensure we handle large shifts of multi-word. 2181 const APInt umax32(APInt::getSignedMaxValue(32)); 2182 EXPECT_EQ(0, umax32.ashr(32)); 2183 2184 // Ensure we handle large shifts of multi-word. 2185 const APInt signmin128(APInt::getSignedMinValue(128)); 2186 EXPECT_TRUE(signmin128.ashr(128).isAllOnesValue()); 2187 2188 // Ensure we handle large shifts of multi-word. 2189 const APInt umax128(APInt::getSignedMaxValue(128)); 2190 EXPECT_EQ(0, umax128.ashr(128)); 2191 } 2192 2193 TEST(APIntTest, LeftShift) { 2194 APInt i256(APInt::getLowBitsSet(256, 2)); 2195 2196 i256 <<= 1; 2197 EXPECT_EQ(253U, i256.countLeadingZeros()); 2198 EXPECT_EQ(1U, i256.countTrailingZeros()); 2199 EXPECT_EQ(2U, i256.countPopulation()); 2200 2201 i256 <<= 62; 2202 EXPECT_EQ(191U, i256.countLeadingZeros()); 2203 EXPECT_EQ(63U, i256.countTrailingZeros()); 2204 EXPECT_EQ(2U, i256.countPopulation()); 2205 2206 i256 <<= 65; 2207 EXPECT_EQ(126U, i256.countLeadingZeros()); 2208 EXPECT_EQ(128U, i256.countTrailingZeros()); 2209 EXPECT_EQ(2U, i256.countPopulation()); 2210 2211 i256 <<= 64; 2212 EXPECT_EQ(62U, i256.countLeadingZeros()); 2213 EXPECT_EQ(192U, i256.countTrailingZeros()); 2214 EXPECT_EQ(2U, i256.countPopulation()); 2215 2216 i256 <<= 63; 2217 EXPECT_EQ(0U, i256.countLeadingZeros()); 2218 EXPECT_EQ(255U, i256.countTrailingZeros()); 2219 EXPECT_EQ(1U, i256.countPopulation()); 2220 2221 // Ensure we handle large shifts of multi-word. 2222 const APInt neg_one(128, static_cast<uint64_t>(-1), true); 2223 EXPECT_EQ(0, neg_one.shl(128)); 2224 } 2225 2226 TEST(APIntTest, isSubsetOf) { 2227 APInt i32_1(32, 1); 2228 APInt i32_2(32, 2); 2229 APInt i32_3(32, 3); 2230 EXPECT_FALSE(i32_3.isSubsetOf(i32_1)); 2231 EXPECT_TRUE(i32_1.isSubsetOf(i32_3)); 2232 EXPECT_FALSE(i32_2.isSubsetOf(i32_1)); 2233 EXPECT_FALSE(i32_1.isSubsetOf(i32_2)); 2234 EXPECT_TRUE(i32_3.isSubsetOf(i32_3)); 2235 2236 APInt i128_1(128, 1); 2237 APInt i128_2(128, 2); 2238 APInt i128_3(128, 3); 2239 EXPECT_FALSE(i128_3.isSubsetOf(i128_1)); 2240 EXPECT_TRUE(i128_1.isSubsetOf(i128_3)); 2241 EXPECT_FALSE(i128_2.isSubsetOf(i128_1)); 2242 EXPECT_FALSE(i128_1.isSubsetOf(i128_2)); 2243 EXPECT_TRUE(i128_3.isSubsetOf(i128_3)); 2244 2245 i128_1 <<= 64; 2246 i128_2 <<= 64; 2247 i128_3 <<= 64; 2248 EXPECT_FALSE(i128_3.isSubsetOf(i128_1)); 2249 EXPECT_TRUE(i128_1.isSubsetOf(i128_3)); 2250 EXPECT_FALSE(i128_2.isSubsetOf(i128_1)); 2251 EXPECT_FALSE(i128_1.isSubsetOf(i128_2)); 2252 EXPECT_TRUE(i128_3.isSubsetOf(i128_3)); 2253 } 2254 2255 TEST(APIntTest, sext) { 2256 EXPECT_EQ(0, APInt(1, 0).sext(64)); 2257 EXPECT_EQ(~uint64_t(0), APInt(1, 1).sext(64)); 2258 2259 APInt i32_max(APInt::getSignedMaxValue(32).sext(63)); 2260 EXPECT_EQ(32U, i32_max.countLeadingZeros()); 2261 EXPECT_EQ(0U, i32_max.countTrailingZeros()); 2262 EXPECT_EQ(31U, i32_max.countPopulation()); 2263 2264 APInt i32_min(APInt::getSignedMinValue(32).sext(63)); 2265 EXPECT_EQ(32U, i32_min.countLeadingOnes()); 2266 EXPECT_EQ(31U, i32_min.countTrailingZeros()); 2267 EXPECT_EQ(32U, i32_min.countPopulation()); 2268 2269 APInt i32_neg1(APInt(32, ~uint64_t(0)).sext(63)); 2270 EXPECT_EQ(63U, i32_neg1.countLeadingOnes()); 2271 EXPECT_EQ(0U, i32_neg1.countTrailingZeros()); 2272 EXPECT_EQ(63U, i32_neg1.countPopulation()); 2273 } 2274 2275 TEST(APIntTest, multiply) { 2276 APInt i64(64, 1234); 2277 2278 EXPECT_EQ(7006652, i64 * 5678); 2279 EXPECT_EQ(7006652, 5678 * i64); 2280 2281 APInt i128 = APInt::getOneBitSet(128, 64); 2282 APInt i128_1234(128, 1234); 2283 i128_1234 <<= 64; 2284 EXPECT_EQ(i128_1234, i128 * 1234); 2285 EXPECT_EQ(i128_1234, 1234 * i128); 2286 2287 APInt i96 = APInt::getOneBitSet(96, 64); 2288 i96 *= ~0ULL; 2289 EXPECT_EQ(32U, i96.countLeadingOnes()); 2290 EXPECT_EQ(32U, i96.countPopulation()); 2291 EXPECT_EQ(64U, i96.countTrailingZeros()); 2292 } 2293 2294 TEST(APIntTest, RoundingUDiv) { 2295 for (uint64_t Ai = 1; Ai <= 255; Ai++) { 2296 APInt A(8, Ai); 2297 APInt Zero(8, 0); 2298 EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::UP)); 2299 EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::DOWN)); 2300 EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::TOWARD_ZERO)); 2301 2302 for (uint64_t Bi = 1; Bi <= 255; Bi++) { 2303 APInt B(8, Bi); 2304 { 2305 APInt Quo = APIntOps::RoundingUDiv(A, B, APInt::Rounding::UP); 2306 auto Prod = Quo.zext(16) * B.zext(16); 2307 EXPECT_TRUE(Prod.uge(Ai)); 2308 if (Prod.ugt(Ai)) { 2309 EXPECT_TRUE(((Quo - 1).zext(16) * B.zext(16)).ult(Ai)); 2310 } 2311 } 2312 { 2313 APInt Quo = A.udiv(B); 2314 EXPECT_EQ(Quo, APIntOps::RoundingUDiv(A, B, APInt::Rounding::TOWARD_ZERO)); 2315 EXPECT_EQ(Quo, APIntOps::RoundingUDiv(A, B, APInt::Rounding::DOWN)); 2316 } 2317 } 2318 } 2319 } 2320 2321 TEST(APIntTest, RoundingSDiv) { 2322 for (int64_t Ai = -128; Ai <= 127; Ai++) { 2323 APInt A(8, Ai); 2324 2325 if (Ai != 0) { 2326 APInt Zero(8, 0); 2327 EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::UP)); 2328 EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::DOWN)); 2329 EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::TOWARD_ZERO)); 2330 } 2331 2332 for (uint64_t Bi = -128; Bi <= 127; Bi++) { 2333 if (Bi == 0) 2334 continue; 2335 2336 APInt B(8, Bi); 2337 { 2338 APInt Quo = APIntOps::RoundingSDiv(A, B, APInt::Rounding::UP); 2339 auto Prod = Quo.sext(16) * B.sext(16); 2340 EXPECT_TRUE(Prod.uge(A)); 2341 if (Prod.ugt(A)) { 2342 EXPECT_TRUE(((Quo - 1).sext(16) * B.sext(16)).ult(A)); 2343 } 2344 } 2345 { 2346 APInt Quo = APIntOps::RoundingSDiv(A, B, APInt::Rounding::DOWN); 2347 auto Prod = Quo.sext(16) * B.sext(16); 2348 EXPECT_TRUE(Prod.ule(A)); 2349 if (Prod.ult(A)) { 2350 EXPECT_TRUE(((Quo + 1).sext(16) * B.sext(16)).ugt(A)); 2351 } 2352 } 2353 { 2354 APInt Quo = A.sdiv(B); 2355 EXPECT_EQ(Quo, APIntOps::RoundingSDiv(A, B, APInt::Rounding::TOWARD_ZERO)); 2356 } 2357 } 2358 } 2359 } 2360 2361 TEST(APIntTest, SolveQuadraticEquationWrap) { 2362 // Verify that "Solution" is the first non-negative integer that solves 2363 // Ax^2 + Bx + C = "0 or overflow", i.e. that it is a correct solution 2364 // as calculated by SolveQuadraticEquationWrap. 2365 auto Validate = [] (int A, int B, int C, unsigned Width, int Solution) { 2366 int Mask = (1 << Width) - 1; 2367 2368 // Solution should be non-negative. 2369 EXPECT_GE(Solution, 0); 2370 2371 auto OverflowBits = [] (int64_t V, unsigned W) { 2372 return V & -(1 << W); 2373 }; 2374 2375 int64_t Over0 = OverflowBits(C, Width); 2376 2377 auto IsZeroOrOverflow = [&] (int X) { 2378 int64_t ValueAtX = A*X*X + B*X + C; 2379 int64_t OverX = OverflowBits(ValueAtX, Width); 2380 return (ValueAtX & Mask) == 0 || OverX != Over0; 2381 }; 2382 2383 auto EquationToString = [&] (const char *X_str) { 2384 return (Twine(A) + Twine(X_str) + Twine("^2 + ") + Twine(B) + 2385 Twine(X_str) + Twine(" + ") + Twine(C) + Twine(", bitwidth: ") + 2386 Twine(Width)).str(); 2387 }; 2388 2389 auto IsSolution = [&] (const char *X_str, int X) { 2390 if (IsZeroOrOverflow(X)) 2391 return ::testing::AssertionSuccess() 2392 << X << " is a solution of " << EquationToString(X_str); 2393 return ::testing::AssertionFailure() 2394 << X << " is not an expected solution of " 2395 << EquationToString(X_str); 2396 }; 2397 2398 auto IsNotSolution = [&] (const char *X_str, int X) { 2399 if (!IsZeroOrOverflow(X)) 2400 return ::testing::AssertionSuccess() 2401 << X << " is not a solution of " << EquationToString(X_str); 2402 return ::testing::AssertionFailure() 2403 << X << " is an unexpected solution of " 2404 << EquationToString(X_str); 2405 }; 2406 2407 // This is the important part: make sure that there is no solution that 2408 // is less than the calculated one. 2409 if (Solution > 0) { 2410 for (int X = 1; X < Solution-1; ++X) 2411 EXPECT_PRED_FORMAT1(IsNotSolution, X); 2412 } 2413 2414 // Verify that the calculated solution is indeed a solution. 2415 EXPECT_PRED_FORMAT1(IsSolution, Solution); 2416 }; 2417 2418 // Generate all possible quadratic equations with Width-bit wide integer 2419 // coefficients, get the solution from SolveQuadraticEquationWrap, and 2420 // verify that the solution is correct. 2421 auto Iterate = [&] (unsigned Width) { 2422 assert(1 < Width && Width < 32); 2423 int Low = -(1 << (Width-1)); 2424 int High = (1 << (Width-1)); 2425 2426 for (int A = Low; A != High; ++A) { 2427 if (A == 0) 2428 continue; 2429 for (int B = Low; B != High; ++B) { 2430 for (int C = Low; C != High; ++C) { 2431 Optional<APInt> S = APIntOps::SolveQuadraticEquationWrap( 2432 APInt(Width, A), APInt(Width, B), 2433 APInt(Width, C), Width); 2434 if (S.hasValue()) 2435 Validate(A, B, C, Width, S->getSExtValue()); 2436 } 2437 } 2438 } 2439 }; 2440 2441 // Test all widths in [2..6]. 2442 for (unsigned i = 2; i <= 6; ++i) 2443 Iterate(i); 2444 } 2445 2446 } // end anonymous namespace 2447