1 //===- llvm/unittest/ADT/APInt.cpp - APInt unit tests ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APInt.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/Twine.h" 14 #include "gtest/gtest.h" 15 #include <array> 16 17 using namespace llvm; 18 19 namespace { 20 21 TEST(APIntTest, ValueInit) { 22 APInt Zero = APInt(); 23 EXPECT_TRUE(!Zero); 24 EXPECT_TRUE(!Zero.zext(64)); 25 EXPECT_TRUE(!Zero.sext(64)); 26 } 27 28 // Test that APInt shift left works when bitwidth > 64 and shiftamt == 0 29 TEST(APIntTest, ShiftLeftByZero) { 30 APInt One = APInt::getNullValue(65) + 1; 31 APInt Shl = One.shl(0); 32 EXPECT_TRUE(Shl[0]); 33 EXPECT_FALSE(Shl[1]); 34 } 35 36 TEST(APIntTest, i64_ArithmeticRightShiftNegative) { 37 const APInt neg_one(64, static_cast<uint64_t>(-1), true); 38 EXPECT_EQ(neg_one, neg_one.ashr(7)); 39 } 40 41 TEST(APIntTest, i128_NegativeCount) { 42 APInt Minus3(128, static_cast<uint64_t>(-3), true); 43 EXPECT_EQ(126u, Minus3.countLeadingOnes()); 44 EXPECT_EQ(-3, Minus3.getSExtValue()); 45 46 APInt Minus1(128, static_cast<uint64_t>(-1), true); 47 EXPECT_EQ(0u, Minus1.countLeadingZeros()); 48 EXPECT_EQ(128u, Minus1.countLeadingOnes()); 49 EXPECT_EQ(128u, Minus1.getActiveBits()); 50 EXPECT_EQ(0u, Minus1.countTrailingZeros()); 51 EXPECT_EQ(128u, Minus1.countTrailingOnes()); 52 EXPECT_EQ(128u, Minus1.countPopulation()); 53 EXPECT_EQ(-1, Minus1.getSExtValue()); 54 } 55 56 TEST(APIntTest, i33_Count) { 57 APInt i33minus2(33, static_cast<uint64_t>(-2), true); 58 EXPECT_EQ(0u, i33minus2.countLeadingZeros()); 59 EXPECT_EQ(32u, i33minus2.countLeadingOnes()); 60 EXPECT_EQ(33u, i33minus2.getActiveBits()); 61 EXPECT_EQ(1u, i33minus2.countTrailingZeros()); 62 EXPECT_EQ(32u, i33minus2.countPopulation()); 63 EXPECT_EQ(-2, i33minus2.getSExtValue()); 64 EXPECT_EQ(((uint64_t)-2)&((1ull<<33) -1), i33minus2.getZExtValue()); 65 } 66 67 TEST(APIntTest, i61_Count) { 68 APInt i61(61, 1 << 15); 69 EXPECT_EQ(45u, i61.countLeadingZeros()); 70 EXPECT_EQ(0u, i61.countLeadingOnes()); 71 EXPECT_EQ(16u, i61.getActiveBits()); 72 EXPECT_EQ(15u, i61.countTrailingZeros()); 73 EXPECT_EQ(1u, i61.countPopulation()); 74 EXPECT_EQ(static_cast<int64_t>(1 << 15), i61.getSExtValue()); 75 EXPECT_EQ(static_cast<uint64_t>(1 << 15), i61.getZExtValue()); 76 77 i61.setBits(8, 19); 78 EXPECT_EQ(42u, i61.countLeadingZeros()); 79 EXPECT_EQ(0u, i61.countLeadingOnes()); 80 EXPECT_EQ(19u, i61.getActiveBits()); 81 EXPECT_EQ(8u, i61.countTrailingZeros()); 82 EXPECT_EQ(11u, i61.countPopulation()); 83 EXPECT_EQ(static_cast<int64_t>((1 << 19) - (1 << 8)), i61.getSExtValue()); 84 EXPECT_EQ(static_cast<uint64_t>((1 << 19) - (1 << 8)), i61.getZExtValue()); 85 } 86 87 TEST(APIntTest, i65_Count) { 88 APInt i65(65, 0, true); 89 EXPECT_EQ(65u, i65.countLeadingZeros()); 90 EXPECT_EQ(0u, i65.countLeadingOnes()); 91 EXPECT_EQ(0u, i65.getActiveBits()); 92 EXPECT_EQ(1u, i65.getActiveWords()); 93 EXPECT_EQ(65u, i65.countTrailingZeros()); 94 EXPECT_EQ(0u, i65.countPopulation()); 95 96 APInt i65minus(65, 0, true); 97 i65minus.setBit(64); 98 EXPECT_EQ(0u, i65minus.countLeadingZeros()); 99 EXPECT_EQ(1u, i65minus.countLeadingOnes()); 100 EXPECT_EQ(65u, i65minus.getActiveBits()); 101 EXPECT_EQ(64u, i65minus.countTrailingZeros()); 102 EXPECT_EQ(1u, i65minus.countPopulation()); 103 } 104 105 TEST(APIntTest, i128_PositiveCount) { 106 APInt u128max = APInt::getAllOnesValue(128); 107 EXPECT_EQ(128u, u128max.countLeadingOnes()); 108 EXPECT_EQ(0u, u128max.countLeadingZeros()); 109 EXPECT_EQ(128u, u128max.getActiveBits()); 110 EXPECT_EQ(0u, u128max.countTrailingZeros()); 111 EXPECT_EQ(128u, u128max.countTrailingOnes()); 112 EXPECT_EQ(128u, u128max.countPopulation()); 113 114 APInt u64max(128, static_cast<uint64_t>(-1), false); 115 EXPECT_EQ(64u, u64max.countLeadingZeros()); 116 EXPECT_EQ(0u, u64max.countLeadingOnes()); 117 EXPECT_EQ(64u, u64max.getActiveBits()); 118 EXPECT_EQ(0u, u64max.countTrailingZeros()); 119 EXPECT_EQ(64u, u64max.countTrailingOnes()); 120 EXPECT_EQ(64u, u64max.countPopulation()); 121 EXPECT_EQ((uint64_t)~0ull, u64max.getZExtValue()); 122 123 APInt zero(128, 0, true); 124 EXPECT_EQ(128u, zero.countLeadingZeros()); 125 EXPECT_EQ(0u, zero.countLeadingOnes()); 126 EXPECT_EQ(0u, zero.getActiveBits()); 127 EXPECT_EQ(128u, zero.countTrailingZeros()); 128 EXPECT_EQ(0u, zero.countTrailingOnes()); 129 EXPECT_EQ(0u, zero.countPopulation()); 130 EXPECT_EQ(0u, zero.getSExtValue()); 131 EXPECT_EQ(0u, zero.getZExtValue()); 132 133 APInt one(128, 1, true); 134 EXPECT_EQ(127u, one.countLeadingZeros()); 135 EXPECT_EQ(0u, one.countLeadingOnes()); 136 EXPECT_EQ(1u, one.getActiveBits()); 137 EXPECT_EQ(0u, one.countTrailingZeros()); 138 EXPECT_EQ(1u, one.countTrailingOnes()); 139 EXPECT_EQ(1u, one.countPopulation()); 140 EXPECT_EQ(1, one.getSExtValue()); 141 EXPECT_EQ(1u, one.getZExtValue()); 142 143 APInt s128(128, 2, true); 144 EXPECT_EQ(126u, s128.countLeadingZeros()); 145 EXPECT_EQ(0u, s128.countLeadingOnes()); 146 EXPECT_EQ(2u, s128.getActiveBits()); 147 EXPECT_EQ(1u, s128.countTrailingZeros()); 148 EXPECT_EQ(0u, s128.countTrailingOnes()); 149 EXPECT_EQ(1u, s128.countPopulation()); 150 EXPECT_EQ(2, s128.getSExtValue()); 151 EXPECT_EQ(2u, s128.getZExtValue()); 152 153 // NOP Test 154 s128.setBits(42, 42); 155 EXPECT_EQ(126u, s128.countLeadingZeros()); 156 EXPECT_EQ(0u, s128.countLeadingOnes()); 157 EXPECT_EQ(2u, s128.getActiveBits()); 158 EXPECT_EQ(1u, s128.countTrailingZeros()); 159 EXPECT_EQ(0u, s128.countTrailingOnes()); 160 EXPECT_EQ(1u, s128.countPopulation()); 161 EXPECT_EQ(2, s128.getSExtValue()); 162 EXPECT_EQ(2u, s128.getZExtValue()); 163 164 s128.setBits(3, 32); 165 EXPECT_EQ(96u, s128.countLeadingZeros()); 166 EXPECT_EQ(0u, s128.countLeadingOnes()); 167 EXPECT_EQ(32u, s128.getActiveBits()); 168 EXPECT_EQ(33u, s128.getMinSignedBits()); 169 EXPECT_EQ(1u, s128.countTrailingZeros()); 170 EXPECT_EQ(0u, s128.countTrailingOnes()); 171 EXPECT_EQ(30u, s128.countPopulation()); 172 EXPECT_EQ(static_cast<uint32_t>((~0u << 3) | 2), s128.getZExtValue()); 173 174 s128.setBits(62, 128); 175 EXPECT_EQ(0u, s128.countLeadingZeros()); 176 EXPECT_EQ(66u, s128.countLeadingOnes()); 177 EXPECT_EQ(128u, s128.getActiveBits()); 178 EXPECT_EQ(63u, s128.getMinSignedBits()); 179 EXPECT_EQ(1u, s128.countTrailingZeros()); 180 EXPECT_EQ(0u, s128.countTrailingOnes()); 181 EXPECT_EQ(96u, s128.countPopulation()); 182 EXPECT_EQ(static_cast<int64_t>((3ull << 62) | 183 static_cast<uint32_t>((~0u << 3) | 2)), 184 s128.getSExtValue()); 185 } 186 187 TEST(APIntTest, i256) { 188 APInt s256(256, 15, true); 189 EXPECT_EQ(252u, s256.countLeadingZeros()); 190 EXPECT_EQ(0u, s256.countLeadingOnes()); 191 EXPECT_EQ(4u, s256.getActiveBits()); 192 EXPECT_EQ(0u, s256.countTrailingZeros()); 193 EXPECT_EQ(4u, s256.countTrailingOnes()); 194 EXPECT_EQ(4u, s256.countPopulation()); 195 EXPECT_EQ(15, s256.getSExtValue()); 196 EXPECT_EQ(15u, s256.getZExtValue()); 197 198 s256.setBits(62, 66); 199 EXPECT_EQ(190u, s256.countLeadingZeros()); 200 EXPECT_EQ(0u, s256.countLeadingOnes()); 201 EXPECT_EQ(66u, s256.getActiveBits()); 202 EXPECT_EQ(67u, s256.getMinSignedBits()); 203 EXPECT_EQ(0u, s256.countTrailingZeros()); 204 EXPECT_EQ(4u, s256.countTrailingOnes()); 205 EXPECT_EQ(8u, s256.countPopulation()); 206 207 s256.setBits(60, 256); 208 EXPECT_EQ(0u, s256.countLeadingZeros()); 209 EXPECT_EQ(196u, s256.countLeadingOnes()); 210 EXPECT_EQ(256u, s256.getActiveBits()); 211 EXPECT_EQ(61u, s256.getMinSignedBits()); 212 EXPECT_EQ(0u, s256.countTrailingZeros()); 213 EXPECT_EQ(4u, s256.countTrailingOnes()); 214 EXPECT_EQ(200u, s256.countPopulation()); 215 EXPECT_EQ(static_cast<int64_t>((~0ull << 60) | 15), s256.getSExtValue()); 216 } 217 218 TEST(APIntTest, i1) { 219 const APInt neg_two(1, static_cast<uint64_t>(-2), true); 220 const APInt neg_one(1, static_cast<uint64_t>(-1), true); 221 const APInt zero(1, 0); 222 const APInt one(1, 1); 223 const APInt two(1, 2); 224 225 EXPECT_EQ(0, neg_two.getSExtValue()); 226 EXPECT_EQ(-1, neg_one.getSExtValue()); 227 EXPECT_EQ(1u, neg_one.getZExtValue()); 228 EXPECT_EQ(0u, zero.getZExtValue()); 229 EXPECT_EQ(-1, one.getSExtValue()); 230 EXPECT_EQ(1u, one.getZExtValue()); 231 EXPECT_EQ(0u, two.getZExtValue()); 232 EXPECT_EQ(0, two.getSExtValue()); 233 234 // Basic equalities for 1-bit values. 235 EXPECT_EQ(zero, two); 236 EXPECT_EQ(zero, neg_two); 237 EXPECT_EQ(one, neg_one); 238 EXPECT_EQ(two, neg_two); 239 240 // Min/max signed values. 241 EXPECT_TRUE(zero.isMaxSignedValue()); 242 EXPECT_FALSE(one.isMaxSignedValue()); 243 EXPECT_FALSE(zero.isMinSignedValue()); 244 EXPECT_TRUE(one.isMinSignedValue()); 245 246 // Additions. 247 EXPECT_EQ(two, one + one); 248 EXPECT_EQ(zero, neg_one + one); 249 EXPECT_EQ(neg_two, neg_one + neg_one); 250 251 // Subtractions. 252 EXPECT_EQ(neg_two, neg_one - one); 253 EXPECT_EQ(two, one - neg_one); 254 EXPECT_EQ(zero, one - one); 255 256 // And 257 EXPECT_EQ(zero, zero & zero); 258 EXPECT_EQ(zero, one & zero); 259 EXPECT_EQ(zero, zero & one); 260 EXPECT_EQ(one, one & one); 261 EXPECT_EQ(zero, zero & zero); 262 EXPECT_EQ(zero, neg_one & zero); 263 EXPECT_EQ(zero, zero & neg_one); 264 EXPECT_EQ(neg_one, neg_one & neg_one); 265 266 // Or 267 EXPECT_EQ(zero, zero | zero); 268 EXPECT_EQ(one, one | zero); 269 EXPECT_EQ(one, zero | one); 270 EXPECT_EQ(one, one | one); 271 EXPECT_EQ(zero, zero | zero); 272 EXPECT_EQ(neg_one, neg_one | zero); 273 EXPECT_EQ(neg_one, zero | neg_one); 274 EXPECT_EQ(neg_one, neg_one | neg_one); 275 276 // Xor 277 EXPECT_EQ(zero, zero ^ zero); 278 EXPECT_EQ(one, one ^ zero); 279 EXPECT_EQ(one, zero ^ one); 280 EXPECT_EQ(zero, one ^ one); 281 EXPECT_EQ(zero, zero ^ zero); 282 EXPECT_EQ(neg_one, neg_one ^ zero); 283 EXPECT_EQ(neg_one, zero ^ neg_one); 284 EXPECT_EQ(zero, neg_one ^ neg_one); 285 286 // Shifts. 287 EXPECT_EQ(zero, one << one); 288 EXPECT_EQ(one, one << zero); 289 EXPECT_EQ(zero, one.shl(1)); 290 EXPECT_EQ(one, one.shl(0)); 291 EXPECT_EQ(zero, one.lshr(1)); 292 EXPECT_EQ(one, one.ashr(1)); 293 294 // Rotates. 295 EXPECT_EQ(one, one.rotl(0)); 296 EXPECT_EQ(one, one.rotl(1)); 297 EXPECT_EQ(one, one.rotr(0)); 298 EXPECT_EQ(one, one.rotr(1)); 299 300 // Multiplies. 301 EXPECT_EQ(neg_one, neg_one * one); 302 EXPECT_EQ(neg_one, one * neg_one); 303 EXPECT_EQ(one, neg_one * neg_one); 304 EXPECT_EQ(one, one * one); 305 306 // Divides. 307 EXPECT_EQ(neg_one, one.sdiv(neg_one)); 308 EXPECT_EQ(neg_one, neg_one.sdiv(one)); 309 EXPECT_EQ(one, neg_one.sdiv(neg_one)); 310 EXPECT_EQ(one, one.sdiv(one)); 311 312 EXPECT_EQ(neg_one, one.udiv(neg_one)); 313 EXPECT_EQ(neg_one, neg_one.udiv(one)); 314 EXPECT_EQ(one, neg_one.udiv(neg_one)); 315 EXPECT_EQ(one, one.udiv(one)); 316 317 // Remainders. 318 EXPECT_EQ(zero, neg_one.srem(one)); 319 EXPECT_EQ(zero, neg_one.urem(one)); 320 EXPECT_EQ(zero, one.srem(neg_one)); 321 322 // sdivrem 323 { 324 APInt q(8, 0); 325 APInt r(8, 0); 326 APInt one(8, 1); 327 APInt two(8, 2); 328 APInt nine(8, 9); 329 APInt four(8, 4); 330 331 EXPECT_EQ(nine.srem(two), one); 332 EXPECT_EQ(nine.srem(-two), one); 333 EXPECT_EQ((-nine).srem(two), -one); 334 EXPECT_EQ((-nine).srem(-two), -one); 335 336 APInt::sdivrem(nine, two, q, r); 337 EXPECT_EQ(four, q); 338 EXPECT_EQ(one, r); 339 APInt::sdivrem(-nine, two, q, r); 340 EXPECT_EQ(-four, q); 341 EXPECT_EQ(-one, r); 342 APInt::sdivrem(nine, -two, q, r); 343 EXPECT_EQ(-four, q); 344 EXPECT_EQ(one, r); 345 APInt::sdivrem(-nine, -two, q, r); 346 EXPECT_EQ(four, q); 347 EXPECT_EQ(-one, r); 348 } 349 } 350 351 TEST(APIntTest, compare) { 352 std::array<APInt, 5> testVals{{ 353 APInt{16, 2}, 354 APInt{16, 1}, 355 APInt{16, 0}, 356 APInt{16, (uint64_t)-1, true}, 357 APInt{16, (uint64_t)-2, true}, 358 }}; 359 360 for (auto &arg1 : testVals) 361 for (auto &arg2 : testVals) { 362 auto uv1 = arg1.getZExtValue(); 363 auto uv2 = arg2.getZExtValue(); 364 auto sv1 = arg1.getSExtValue(); 365 auto sv2 = arg2.getSExtValue(); 366 367 EXPECT_EQ(uv1 < uv2, arg1.ult(arg2)); 368 EXPECT_EQ(uv1 <= uv2, arg1.ule(arg2)); 369 EXPECT_EQ(uv1 > uv2, arg1.ugt(arg2)); 370 EXPECT_EQ(uv1 >= uv2, arg1.uge(arg2)); 371 372 EXPECT_EQ(sv1 < sv2, arg1.slt(arg2)); 373 EXPECT_EQ(sv1 <= sv2, arg1.sle(arg2)); 374 EXPECT_EQ(sv1 > sv2, arg1.sgt(arg2)); 375 EXPECT_EQ(sv1 >= sv2, arg1.sge(arg2)); 376 377 EXPECT_EQ(uv1 < uv2, arg1.ult(uv2)); 378 EXPECT_EQ(uv1 <= uv2, arg1.ule(uv2)); 379 EXPECT_EQ(uv1 > uv2, arg1.ugt(uv2)); 380 EXPECT_EQ(uv1 >= uv2, arg1.uge(uv2)); 381 382 EXPECT_EQ(sv1 < sv2, arg1.slt(sv2)); 383 EXPECT_EQ(sv1 <= sv2, arg1.sle(sv2)); 384 EXPECT_EQ(sv1 > sv2, arg1.sgt(sv2)); 385 EXPECT_EQ(sv1 >= sv2, arg1.sge(sv2)); 386 } 387 } 388 389 TEST(APIntTest, compareWithRawIntegers) { 390 EXPECT_TRUE(!APInt(8, 1).uge(256)); 391 EXPECT_TRUE(!APInt(8, 1).ugt(256)); 392 EXPECT_TRUE( APInt(8, 1).ule(256)); 393 EXPECT_TRUE( APInt(8, 1).ult(256)); 394 EXPECT_TRUE(!APInt(8, 1).sge(256)); 395 EXPECT_TRUE(!APInt(8, 1).sgt(256)); 396 EXPECT_TRUE( APInt(8, 1).sle(256)); 397 EXPECT_TRUE( APInt(8, 1).slt(256)); 398 EXPECT_TRUE(!(APInt(8, 0) == 256)); 399 EXPECT_TRUE( APInt(8, 0) != 256); 400 EXPECT_TRUE(!(APInt(8, 1) == 256)); 401 EXPECT_TRUE( APInt(8, 1) != 256); 402 403 auto uint64max = UINT64_MAX; 404 auto int64max = INT64_MAX; 405 auto int64min = INT64_MIN; 406 407 auto u64 = APInt{128, uint64max}; 408 auto s64 = APInt{128, static_cast<uint64_t>(int64max), true}; 409 auto big = u64 + 1; 410 411 EXPECT_TRUE( u64.uge(uint64max)); 412 EXPECT_TRUE(!u64.ugt(uint64max)); 413 EXPECT_TRUE( u64.ule(uint64max)); 414 EXPECT_TRUE(!u64.ult(uint64max)); 415 EXPECT_TRUE( u64.sge(int64max)); 416 EXPECT_TRUE( u64.sgt(int64max)); 417 EXPECT_TRUE(!u64.sle(int64max)); 418 EXPECT_TRUE(!u64.slt(int64max)); 419 EXPECT_TRUE( u64.sge(int64min)); 420 EXPECT_TRUE( u64.sgt(int64min)); 421 EXPECT_TRUE(!u64.sle(int64min)); 422 EXPECT_TRUE(!u64.slt(int64min)); 423 424 EXPECT_TRUE(u64 == uint64max); 425 EXPECT_TRUE(u64 != int64max); 426 EXPECT_TRUE(u64 != int64min); 427 428 EXPECT_TRUE(!s64.uge(uint64max)); 429 EXPECT_TRUE(!s64.ugt(uint64max)); 430 EXPECT_TRUE( s64.ule(uint64max)); 431 EXPECT_TRUE( s64.ult(uint64max)); 432 EXPECT_TRUE( s64.sge(int64max)); 433 EXPECT_TRUE(!s64.sgt(int64max)); 434 EXPECT_TRUE( s64.sle(int64max)); 435 EXPECT_TRUE(!s64.slt(int64max)); 436 EXPECT_TRUE( s64.sge(int64min)); 437 EXPECT_TRUE( s64.sgt(int64min)); 438 EXPECT_TRUE(!s64.sle(int64min)); 439 EXPECT_TRUE(!s64.slt(int64min)); 440 441 EXPECT_TRUE(s64 != uint64max); 442 EXPECT_TRUE(s64 == int64max); 443 EXPECT_TRUE(s64 != int64min); 444 445 EXPECT_TRUE( big.uge(uint64max)); 446 EXPECT_TRUE( big.ugt(uint64max)); 447 EXPECT_TRUE(!big.ule(uint64max)); 448 EXPECT_TRUE(!big.ult(uint64max)); 449 EXPECT_TRUE( big.sge(int64max)); 450 EXPECT_TRUE( big.sgt(int64max)); 451 EXPECT_TRUE(!big.sle(int64max)); 452 EXPECT_TRUE(!big.slt(int64max)); 453 EXPECT_TRUE( big.sge(int64min)); 454 EXPECT_TRUE( big.sgt(int64min)); 455 EXPECT_TRUE(!big.sle(int64min)); 456 EXPECT_TRUE(!big.slt(int64min)); 457 458 EXPECT_TRUE(big != uint64max); 459 EXPECT_TRUE(big != int64max); 460 EXPECT_TRUE(big != int64min); 461 } 462 463 TEST(APIntTest, compareWithInt64Min) { 464 int64_t edge = INT64_MIN; 465 int64_t edgeP1 = edge + 1; 466 int64_t edgeM1 = INT64_MAX; 467 auto a = APInt{64, static_cast<uint64_t>(edge), true}; 468 469 EXPECT_TRUE(!a.slt(edge)); 470 EXPECT_TRUE( a.sle(edge)); 471 EXPECT_TRUE(!a.sgt(edge)); 472 EXPECT_TRUE( a.sge(edge)); 473 EXPECT_TRUE( a.slt(edgeP1)); 474 EXPECT_TRUE( a.sle(edgeP1)); 475 EXPECT_TRUE(!a.sgt(edgeP1)); 476 EXPECT_TRUE(!a.sge(edgeP1)); 477 EXPECT_TRUE( a.slt(edgeM1)); 478 EXPECT_TRUE( a.sle(edgeM1)); 479 EXPECT_TRUE(!a.sgt(edgeM1)); 480 EXPECT_TRUE(!a.sge(edgeM1)); 481 } 482 483 TEST(APIntTest, compareWithHalfInt64Max) { 484 uint64_t edge = 0x4000000000000000; 485 uint64_t edgeP1 = edge + 1; 486 uint64_t edgeM1 = edge - 1; 487 auto a = APInt{64, edge}; 488 489 EXPECT_TRUE(!a.ult(edge)); 490 EXPECT_TRUE( a.ule(edge)); 491 EXPECT_TRUE(!a.ugt(edge)); 492 EXPECT_TRUE( a.uge(edge)); 493 EXPECT_TRUE( a.ult(edgeP1)); 494 EXPECT_TRUE( a.ule(edgeP1)); 495 EXPECT_TRUE(!a.ugt(edgeP1)); 496 EXPECT_TRUE(!a.uge(edgeP1)); 497 EXPECT_TRUE(!a.ult(edgeM1)); 498 EXPECT_TRUE(!a.ule(edgeM1)); 499 EXPECT_TRUE( a.ugt(edgeM1)); 500 EXPECT_TRUE( a.uge(edgeM1)); 501 502 EXPECT_TRUE(!a.slt(edge)); 503 EXPECT_TRUE( a.sle(edge)); 504 EXPECT_TRUE(!a.sgt(edge)); 505 EXPECT_TRUE( a.sge(edge)); 506 EXPECT_TRUE( a.slt(edgeP1)); 507 EXPECT_TRUE( a.sle(edgeP1)); 508 EXPECT_TRUE(!a.sgt(edgeP1)); 509 EXPECT_TRUE(!a.sge(edgeP1)); 510 EXPECT_TRUE(!a.slt(edgeM1)); 511 EXPECT_TRUE(!a.sle(edgeM1)); 512 EXPECT_TRUE( a.sgt(edgeM1)); 513 EXPECT_TRUE( a.sge(edgeM1)); 514 } 515 516 TEST(APIntTest, compareLargeIntegers) { 517 // Make sure all the combinations of signed comparisons work with big ints. 518 auto One = APInt{128, static_cast<uint64_t>(1), true}; 519 auto Two = APInt{128, static_cast<uint64_t>(2), true}; 520 auto MinusOne = APInt{128, static_cast<uint64_t>(-1), true}; 521 auto MinusTwo = APInt{128, static_cast<uint64_t>(-2), true}; 522 523 EXPECT_TRUE(!One.slt(One)); 524 EXPECT_TRUE(!Two.slt(One)); 525 EXPECT_TRUE(MinusOne.slt(One)); 526 EXPECT_TRUE(MinusTwo.slt(One)); 527 528 EXPECT_TRUE(One.slt(Two)); 529 EXPECT_TRUE(!Two.slt(Two)); 530 EXPECT_TRUE(MinusOne.slt(Two)); 531 EXPECT_TRUE(MinusTwo.slt(Two)); 532 533 EXPECT_TRUE(!One.slt(MinusOne)); 534 EXPECT_TRUE(!Two.slt(MinusOne)); 535 EXPECT_TRUE(!MinusOne.slt(MinusOne)); 536 EXPECT_TRUE(MinusTwo.slt(MinusOne)); 537 538 EXPECT_TRUE(!One.slt(MinusTwo)); 539 EXPECT_TRUE(!Two.slt(MinusTwo)); 540 EXPECT_TRUE(!MinusOne.slt(MinusTwo)); 541 EXPECT_TRUE(!MinusTwo.slt(MinusTwo)); 542 } 543 544 TEST(APIntTest, binaryOpsWithRawIntegers) { 545 // Single word check. 546 uint64_t E1 = 0x2CA7F46BF6569915ULL; 547 APInt A1(64, E1); 548 549 EXPECT_EQ(A1 & E1, E1); 550 EXPECT_EQ(A1 & 0, 0); 551 EXPECT_EQ(A1 & 1, 1); 552 EXPECT_EQ(A1 & 5, 5); 553 EXPECT_EQ(A1 & UINT64_MAX, E1); 554 555 EXPECT_EQ(A1 | E1, E1); 556 EXPECT_EQ(A1 | 0, E1); 557 EXPECT_EQ(A1 | 1, E1); 558 EXPECT_EQ(A1 | 2, E1 | 2); 559 EXPECT_EQ(A1 | UINT64_MAX, UINT64_MAX); 560 561 EXPECT_EQ(A1 ^ E1, 0); 562 EXPECT_EQ(A1 ^ 0, E1); 563 EXPECT_EQ(A1 ^ 1, E1 ^ 1); 564 EXPECT_EQ(A1 ^ 7, E1 ^ 7); 565 EXPECT_EQ(A1 ^ UINT64_MAX, ~E1); 566 567 // Multiword check. 568 uint64_t N = 0xEB6EB136591CBA21ULL; 569 APInt::WordType E2[4] = { 570 N, 571 0x7B9358BD6A33F10AULL, 572 0x7E7FFA5EADD8846ULL, 573 0x305F341CA00B613DULL 574 }; 575 APInt A2(APInt::APINT_BITS_PER_WORD*4, E2); 576 577 EXPECT_EQ(A2 & N, N); 578 EXPECT_EQ(A2 & 0, 0); 579 EXPECT_EQ(A2 & 1, 1); 580 EXPECT_EQ(A2 & 5, 1); 581 EXPECT_EQ(A2 & UINT64_MAX, N); 582 583 EXPECT_EQ(A2 | N, A2); 584 EXPECT_EQ(A2 | 0, A2); 585 EXPECT_EQ(A2 | 1, A2); 586 EXPECT_EQ(A2 | 2, A2 + 2); 587 EXPECT_EQ(A2 | UINT64_MAX, A2 - N + UINT64_MAX); 588 589 EXPECT_EQ(A2 ^ N, A2 - N); 590 EXPECT_EQ(A2 ^ 0, A2); 591 EXPECT_EQ(A2 ^ 1, A2 - 1); 592 EXPECT_EQ(A2 ^ 7, A2 + 5); 593 EXPECT_EQ(A2 ^ UINT64_MAX, A2 - N + ~N); 594 } 595 596 TEST(APIntTest, rvalue_arithmetic) { 597 // Test all combinations of lvalue/rvalue lhs/rhs of add/sub 598 599 // Lamdba to return an APInt by value, but also provide the raw value of the 600 // allocated data. 601 auto getRValue = [](const char *HexString, uint64_t const *&RawData) { 602 APInt V(129, HexString, 16); 603 RawData = V.getRawData(); 604 return V; 605 }; 606 607 APInt One(129, "1", 16); 608 APInt Two(129, "2", 16); 609 APInt Three(129, "3", 16); 610 APInt MinusOne = -One; 611 612 const uint64_t *RawDataL = nullptr; 613 const uint64_t *RawDataR = nullptr; 614 615 { 616 // 1 + 1 = 2 617 APInt AddLL = One + One; 618 EXPECT_EQ(AddLL, Two); 619 620 APInt AddLR = One + getRValue("1", RawDataR); 621 EXPECT_EQ(AddLR, Two); 622 EXPECT_EQ(AddLR.getRawData(), RawDataR); 623 624 APInt AddRL = getRValue("1", RawDataL) + One; 625 EXPECT_EQ(AddRL, Two); 626 EXPECT_EQ(AddRL.getRawData(), RawDataL); 627 628 APInt AddRR = getRValue("1", RawDataL) + getRValue("1", RawDataR); 629 EXPECT_EQ(AddRR, Two); 630 EXPECT_EQ(AddRR.getRawData(), RawDataR); 631 632 // LValue's and constants 633 APInt AddLK = One + 1; 634 EXPECT_EQ(AddLK, Two); 635 636 APInt AddKL = 1 + One; 637 EXPECT_EQ(AddKL, Two); 638 639 // RValue's and constants 640 APInt AddRK = getRValue("1", RawDataL) + 1; 641 EXPECT_EQ(AddRK, Two); 642 EXPECT_EQ(AddRK.getRawData(), RawDataL); 643 644 APInt AddKR = 1 + getRValue("1", RawDataR); 645 EXPECT_EQ(AddKR, Two); 646 EXPECT_EQ(AddKR.getRawData(), RawDataR); 647 } 648 649 { 650 // 0x0,FFFF...FFFF + 0x2 = 0x100...0001 651 APInt AllOnes(129, "0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 16); 652 APInt HighOneLowOne(129, "100000000000000000000000000000001", 16); 653 654 APInt AddLL = AllOnes + Two; 655 EXPECT_EQ(AddLL, HighOneLowOne); 656 657 APInt AddLR = AllOnes + getRValue("2", RawDataR); 658 EXPECT_EQ(AddLR, HighOneLowOne); 659 EXPECT_EQ(AddLR.getRawData(), RawDataR); 660 661 APInt AddRL = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + Two; 662 EXPECT_EQ(AddRL, HighOneLowOne); 663 EXPECT_EQ(AddRL.getRawData(), RawDataL); 664 665 APInt AddRR = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + 666 getRValue("2", RawDataR); 667 EXPECT_EQ(AddRR, HighOneLowOne); 668 EXPECT_EQ(AddRR.getRawData(), RawDataR); 669 670 // LValue's and constants 671 APInt AddLK = AllOnes + 2; 672 EXPECT_EQ(AddLK, HighOneLowOne); 673 674 APInt AddKL = 2 + AllOnes; 675 EXPECT_EQ(AddKL, HighOneLowOne); 676 677 // RValue's and constants 678 APInt AddRK = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + 2; 679 EXPECT_EQ(AddRK, HighOneLowOne); 680 EXPECT_EQ(AddRK.getRawData(), RawDataL); 681 682 APInt AddKR = 2 + getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 683 EXPECT_EQ(AddKR, HighOneLowOne); 684 EXPECT_EQ(AddKR.getRawData(), RawDataR); 685 } 686 687 { 688 // 2 - 1 = 1 689 APInt SubLL = Two - One; 690 EXPECT_EQ(SubLL, One); 691 692 APInt SubLR = Two - getRValue("1", RawDataR); 693 EXPECT_EQ(SubLR, One); 694 EXPECT_EQ(SubLR.getRawData(), RawDataR); 695 696 APInt SubRL = getRValue("2", RawDataL) - One; 697 EXPECT_EQ(SubRL, One); 698 EXPECT_EQ(SubRL.getRawData(), RawDataL); 699 700 APInt SubRR = getRValue("2", RawDataL) - getRValue("1", RawDataR); 701 EXPECT_EQ(SubRR, One); 702 EXPECT_EQ(SubRR.getRawData(), RawDataR); 703 704 // LValue's and constants 705 APInt SubLK = Two - 1; 706 EXPECT_EQ(SubLK, One); 707 708 APInt SubKL = 2 - One; 709 EXPECT_EQ(SubKL, One); 710 711 // RValue's and constants 712 APInt SubRK = getRValue("2", RawDataL) - 1; 713 EXPECT_EQ(SubRK, One); 714 EXPECT_EQ(SubRK.getRawData(), RawDataL); 715 716 APInt SubKR = 2 - getRValue("1", RawDataR); 717 EXPECT_EQ(SubKR, One); 718 EXPECT_EQ(SubKR.getRawData(), RawDataR); 719 } 720 721 { 722 // 0x100...0001 - 0x0,FFFF...FFFF = 0x2 723 APInt AllOnes(129, "0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 16); 724 APInt HighOneLowOne(129, "100000000000000000000000000000001", 16); 725 726 APInt SubLL = HighOneLowOne - AllOnes; 727 EXPECT_EQ(SubLL, Two); 728 729 APInt SubLR = HighOneLowOne - 730 getRValue("0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 731 EXPECT_EQ(SubLR, Two); 732 EXPECT_EQ(SubLR.getRawData(), RawDataR); 733 734 APInt SubRL = getRValue("100000000000000000000000000000001", RawDataL) - 735 AllOnes; 736 EXPECT_EQ(SubRL, Two); 737 EXPECT_EQ(SubRL.getRawData(), RawDataL); 738 739 APInt SubRR = getRValue("100000000000000000000000000000001", RawDataL) - 740 getRValue("0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 741 EXPECT_EQ(SubRR, Two); 742 EXPECT_EQ(SubRR.getRawData(), RawDataR); 743 744 // LValue's and constants 745 // 0x100...0001 - 0x2 = 0x0,FFFF...FFFF 746 APInt SubLK = HighOneLowOne - 2; 747 EXPECT_EQ(SubLK, AllOnes); 748 749 // 2 - (-1) = 3 750 APInt SubKL = 2 - MinusOne; 751 EXPECT_EQ(SubKL, Three); 752 753 // RValue's and constants 754 // 0x100...0001 - 0x2 = 0x0,FFFF...FFFF 755 APInt SubRK = getRValue("100000000000000000000000000000001", RawDataL) - 2; 756 EXPECT_EQ(SubRK, AllOnes); 757 EXPECT_EQ(SubRK.getRawData(), RawDataL); 758 759 APInt SubKR = 2 - getRValue("1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 760 EXPECT_EQ(SubKR, Three); 761 EXPECT_EQ(SubKR.getRawData(), RawDataR); 762 } 763 } 764 765 TEST(APIntTest, rvalue_bitwise) { 766 // Test all combinations of lvalue/rvalue lhs/rhs of and/or/xor 767 768 // Lamdba to return an APInt by value, but also provide the raw value of the 769 // allocated data. 770 auto getRValue = [](const char *HexString, uint64_t const *&RawData) { 771 APInt V(129, HexString, 16); 772 RawData = V.getRawData(); 773 return V; 774 }; 775 776 APInt Ten(129, "A", 16); 777 APInt Twelve(129, "C", 16); 778 779 const uint64_t *RawDataL = nullptr; 780 const uint64_t *RawDataR = nullptr; 781 782 { 783 // 12 & 10 = 8 784 APInt AndLL = Ten & Twelve; 785 EXPECT_EQ(AndLL, 0x8); 786 787 APInt AndLR = Ten & getRValue("C", RawDataR); 788 EXPECT_EQ(AndLR, 0x8); 789 EXPECT_EQ(AndLR.getRawData(), RawDataR); 790 791 APInt AndRL = getRValue("A", RawDataL) & Twelve; 792 EXPECT_EQ(AndRL, 0x8); 793 EXPECT_EQ(AndRL.getRawData(), RawDataL); 794 795 APInt AndRR = getRValue("A", RawDataL) & getRValue("C", RawDataR); 796 EXPECT_EQ(AndRR, 0x8); 797 EXPECT_EQ(AndRR.getRawData(), RawDataR); 798 799 // LValue's and constants 800 APInt AndLK = Ten & 0xc; 801 EXPECT_EQ(AndLK, 0x8); 802 803 APInt AndKL = 0xa & Twelve; 804 EXPECT_EQ(AndKL, 0x8); 805 806 // RValue's and constants 807 APInt AndRK = getRValue("A", RawDataL) & 0xc; 808 EXPECT_EQ(AndRK, 0x8); 809 EXPECT_EQ(AndRK.getRawData(), RawDataL); 810 811 APInt AndKR = 0xa & getRValue("C", RawDataR); 812 EXPECT_EQ(AndKR, 0x8); 813 EXPECT_EQ(AndKR.getRawData(), RawDataR); 814 } 815 816 { 817 // 12 | 10 = 14 818 APInt OrLL = Ten | Twelve; 819 EXPECT_EQ(OrLL, 0xe); 820 821 APInt OrLR = Ten | getRValue("C", RawDataR); 822 EXPECT_EQ(OrLR, 0xe); 823 EXPECT_EQ(OrLR.getRawData(), RawDataR); 824 825 APInt OrRL = getRValue("A", RawDataL) | Twelve; 826 EXPECT_EQ(OrRL, 0xe); 827 EXPECT_EQ(OrRL.getRawData(), RawDataL); 828 829 APInt OrRR = getRValue("A", RawDataL) | getRValue("C", RawDataR); 830 EXPECT_EQ(OrRR, 0xe); 831 EXPECT_EQ(OrRR.getRawData(), RawDataR); 832 833 // LValue's and constants 834 APInt OrLK = Ten | 0xc; 835 EXPECT_EQ(OrLK, 0xe); 836 837 APInt OrKL = 0xa | Twelve; 838 EXPECT_EQ(OrKL, 0xe); 839 840 // RValue's and constants 841 APInt OrRK = getRValue("A", RawDataL) | 0xc; 842 EXPECT_EQ(OrRK, 0xe); 843 EXPECT_EQ(OrRK.getRawData(), RawDataL); 844 845 APInt OrKR = 0xa | getRValue("C", RawDataR); 846 EXPECT_EQ(OrKR, 0xe); 847 EXPECT_EQ(OrKR.getRawData(), RawDataR); 848 } 849 850 { 851 // 12 ^ 10 = 6 852 APInt XorLL = Ten ^ Twelve; 853 EXPECT_EQ(XorLL, 0x6); 854 855 APInt XorLR = Ten ^ getRValue("C", RawDataR); 856 EXPECT_EQ(XorLR, 0x6); 857 EXPECT_EQ(XorLR.getRawData(), RawDataR); 858 859 APInt XorRL = getRValue("A", RawDataL) ^ Twelve; 860 EXPECT_EQ(XorRL, 0x6); 861 EXPECT_EQ(XorRL.getRawData(), RawDataL); 862 863 APInt XorRR = getRValue("A", RawDataL) ^ getRValue("C", RawDataR); 864 EXPECT_EQ(XorRR, 0x6); 865 EXPECT_EQ(XorRR.getRawData(), RawDataR); 866 867 // LValue's and constants 868 APInt XorLK = Ten ^ 0xc; 869 EXPECT_EQ(XorLK, 0x6); 870 871 APInt XorKL = 0xa ^ Twelve; 872 EXPECT_EQ(XorKL, 0x6); 873 874 // RValue's and constants 875 APInt XorRK = getRValue("A", RawDataL) ^ 0xc; 876 EXPECT_EQ(XorRK, 0x6); 877 EXPECT_EQ(XorRK.getRawData(), RawDataL); 878 879 APInt XorKR = 0xa ^ getRValue("C", RawDataR); 880 EXPECT_EQ(XorKR, 0x6); 881 EXPECT_EQ(XorKR.getRawData(), RawDataR); 882 } 883 } 884 885 TEST(APIntTest, rvalue_invert) { 886 // Lamdba to return an APInt by value, but also provide the raw value of the 887 // allocated data. 888 auto getRValue = [](const char *HexString, uint64_t const *&RawData) { 889 APInt V(129, HexString, 16); 890 RawData = V.getRawData(); 891 return V; 892 }; 893 894 APInt One(129, 1); 895 APInt NegativeTwo(129, -2ULL, true); 896 897 const uint64_t *RawData = nullptr; 898 899 { 900 // ~1 = -2 901 APInt NegL = ~One; 902 EXPECT_EQ(NegL, NegativeTwo); 903 904 APInt NegR = ~getRValue("1", RawData); 905 EXPECT_EQ(NegR, NegativeTwo); 906 EXPECT_EQ(NegR.getRawData(), RawData); 907 } 908 } 909 910 // Tests different div/rem varaints using scheme (a * b + c) / a 911 void testDiv(APInt a, APInt b, APInt c) { 912 ASSERT_TRUE(a.uge(b)); // Must: a >= b 913 ASSERT_TRUE(a.ugt(c)); // Must: a > c 914 915 auto p = a * b + c; 916 917 auto q = p.udiv(a); 918 auto r = p.urem(a); 919 EXPECT_EQ(b, q); 920 EXPECT_EQ(c, r); 921 APInt::udivrem(p, a, q, r); 922 EXPECT_EQ(b, q); 923 EXPECT_EQ(c, r); 924 q = p.sdiv(a); 925 r = p.srem(a); 926 EXPECT_EQ(b, q); 927 EXPECT_EQ(c, r); 928 APInt::sdivrem(p, a, q, r); 929 EXPECT_EQ(b, q); 930 EXPECT_EQ(c, r); 931 932 if (b.ugt(c)) { // Test also symmetric case 933 q = p.udiv(b); 934 r = p.urem(b); 935 EXPECT_EQ(a, q); 936 EXPECT_EQ(c, r); 937 APInt::udivrem(p, b, q, r); 938 EXPECT_EQ(a, q); 939 EXPECT_EQ(c, r); 940 q = p.sdiv(b); 941 r = p.srem(b); 942 EXPECT_EQ(a, q); 943 EXPECT_EQ(c, r); 944 APInt::sdivrem(p, b, q, r); 945 EXPECT_EQ(a, q); 946 EXPECT_EQ(c, r); 947 } 948 } 949 950 TEST(APIntTest, divrem_big1) { 951 // Tests KnuthDiv rare step D6 952 testDiv({256, "1ffffffffffffffff", 16}, 953 {256, "1ffffffffffffffff", 16}, 954 {256, 0}); 955 } 956 957 TEST(APIntTest, divrem_big2) { 958 // Tests KnuthDiv rare step D6 959 testDiv({1024, "112233ceff" 960 "cecece000000ffffffffffffffffffff" 961 "ffffffffffffffffffffffffffffffff" 962 "ffffffffffffffffffffffffffffffff" 963 "ffffffffffffffffffffffffffffff33", 16}, 964 {1024, "111111ffffffffffffffff" 965 "ffffffffffffffffffffffffffffffff" 966 "fffffffffffffffffffffffffffffccf" 967 "ffffffffffffffffffffffffffffff00", 16}, 968 {1024, 7919}); 969 } 970 971 TEST(APIntTest, divrem_big3) { 972 // Tests KnuthDiv case without shift 973 testDiv({256, "80000001ffffffffffffffff", 16}, 974 {256, "ffffffffffffff0000000", 16}, 975 {256, 4219}); 976 } 977 978 TEST(APIntTest, divrem_big4) { 979 // Tests heap allocation in divide() enfoced by huge numbers 980 testDiv(APInt{4096, 5}.shl(2001), 981 APInt{4096, 1}.shl(2000), 982 APInt{4096, 4219*13}); 983 } 984 985 TEST(APIntTest, divrem_big5) { 986 // Tests one word divisor case of divide() 987 testDiv(APInt{1024, 19}.shl(811), 988 APInt{1024, 4356013}, // one word 989 APInt{1024, 1}); 990 } 991 992 TEST(APIntTest, divrem_big6) { 993 // Tests some rare "borrow" cases in D4 step 994 testDiv(APInt{512, "ffffffffffffffff00000000000000000000000001", 16}, 995 APInt{512, "10000000000000001000000000000001", 16}, 996 APInt{512, "10000000000000000000000000000000", 16}); 997 } 998 999 TEST(APIntTest, divrem_big7) { 1000 // Yet another test for KnuthDiv rare step D6. 1001 testDiv({224, "800000008000000200000005", 16}, 1002 {224, "fffffffd", 16}, 1003 {224, "80000000800000010000000f", 16}); 1004 } 1005 1006 void testDiv(APInt a, uint64_t b, APInt c) { 1007 auto p = a * b + c; 1008 1009 APInt q; 1010 uint64_t r; 1011 // Unsigned division will only work if our original number wasn't negative. 1012 if (!a.isNegative()) { 1013 q = p.udiv(b); 1014 r = p.urem(b); 1015 EXPECT_EQ(a, q); 1016 EXPECT_EQ(c, r); 1017 APInt::udivrem(p, b, q, r); 1018 EXPECT_EQ(a, q); 1019 EXPECT_EQ(c, r); 1020 } 1021 q = p.sdiv(b); 1022 r = p.srem(b); 1023 EXPECT_EQ(a, q); 1024 if (c.isNegative()) 1025 EXPECT_EQ(-c, -r); // Need to negate so the uint64_t compare will work. 1026 else 1027 EXPECT_EQ(c, r); 1028 int64_t sr; 1029 APInt::sdivrem(p, b, q, sr); 1030 EXPECT_EQ(a, q); 1031 if (c.isNegative()) 1032 EXPECT_EQ(-c, -sr); // Need to negate so the uint64_t compare will work. 1033 else 1034 EXPECT_EQ(c, sr); 1035 } 1036 1037 TEST(APIntTest, divremuint) { 1038 // Single word APInt 1039 testDiv(APInt{64, 9}, 1040 2, 1041 APInt{64, 1}); 1042 1043 // Single word negative APInt 1044 testDiv(-APInt{64, 9}, 1045 2, 1046 -APInt{64, 1}); 1047 1048 // Multiword dividend with only one significant word. 1049 testDiv(APInt{256, 9}, 1050 2, 1051 APInt{256, 1}); 1052 1053 // Negative dividend. 1054 testDiv(-APInt{256, 9}, 1055 2, 1056 -APInt{256, 1}); 1057 1058 // Multiword dividend 1059 testDiv(APInt{1024, 19}.shl(811), 1060 4356013, // one word 1061 APInt{1024, 1}); 1062 } 1063 1064 TEST(APIntTest, divrem_simple) { 1065 // Test simple cases. 1066 APInt A(65, 2), B(65, 2); 1067 APInt Q, R; 1068 1069 // X / X 1070 APInt::sdivrem(A, B, Q, R); 1071 EXPECT_EQ(Q, APInt(65, 1)); 1072 EXPECT_EQ(R, APInt(65, 0)); 1073 APInt::udivrem(A, B, Q, R); 1074 EXPECT_EQ(Q, APInt(65, 1)); 1075 EXPECT_EQ(R, APInt(65, 0)); 1076 1077 // 0 / X 1078 APInt O(65, 0); 1079 APInt::sdivrem(O, B, Q, R); 1080 EXPECT_EQ(Q, APInt(65, 0)); 1081 EXPECT_EQ(R, APInt(65, 0)); 1082 APInt::udivrem(O, B, Q, R); 1083 EXPECT_EQ(Q, APInt(65, 0)); 1084 EXPECT_EQ(R, APInt(65, 0)); 1085 1086 // X / 1 1087 APInt I(65, 1); 1088 APInt::sdivrem(A, I, Q, R); 1089 EXPECT_EQ(Q, A); 1090 EXPECT_EQ(R, APInt(65, 0)); 1091 APInt::udivrem(A, I, Q, R); 1092 EXPECT_EQ(Q, A); 1093 EXPECT_EQ(R, APInt(65, 0)); 1094 } 1095 1096 TEST(APIntTest, fromString) { 1097 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 2)); 1098 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 2)); 1099 EXPECT_EQ(APInt(32, 2), APInt(32, "10", 2)); 1100 EXPECT_EQ(APInt(32, 3), APInt(32, "11", 2)); 1101 EXPECT_EQ(APInt(32, 4), APInt(32, "100", 2)); 1102 1103 EXPECT_EQ(APInt(32, 0), APInt(32, "+0", 2)); 1104 EXPECT_EQ(APInt(32, 1), APInt(32, "+1", 2)); 1105 EXPECT_EQ(APInt(32, 2), APInt(32, "+10", 2)); 1106 EXPECT_EQ(APInt(32, 3), APInt(32, "+11", 2)); 1107 EXPECT_EQ(APInt(32, 4), APInt(32, "+100", 2)); 1108 1109 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 2)); 1110 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 2)); 1111 EXPECT_EQ(APInt(32, uint64_t(-2LL)), APInt(32, "-10", 2)); 1112 EXPECT_EQ(APInt(32, uint64_t(-3LL)), APInt(32, "-11", 2)); 1113 EXPECT_EQ(APInt(32, uint64_t(-4LL)), APInt(32, "-100", 2)); 1114 1115 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 8)); 1116 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 8)); 1117 EXPECT_EQ(APInt(32, 7), APInt(32, "7", 8)); 1118 EXPECT_EQ(APInt(32, 8), APInt(32, "10", 8)); 1119 EXPECT_EQ(APInt(32, 15), APInt(32, "17", 8)); 1120 EXPECT_EQ(APInt(32, 16), APInt(32, "20", 8)); 1121 1122 EXPECT_EQ(APInt(32, +0), APInt(32, "+0", 8)); 1123 EXPECT_EQ(APInt(32, +1), APInt(32, "+1", 8)); 1124 EXPECT_EQ(APInt(32, +7), APInt(32, "+7", 8)); 1125 EXPECT_EQ(APInt(32, +8), APInt(32, "+10", 8)); 1126 EXPECT_EQ(APInt(32, +15), APInt(32, "+17", 8)); 1127 EXPECT_EQ(APInt(32, +16), APInt(32, "+20", 8)); 1128 1129 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 8)); 1130 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 8)); 1131 EXPECT_EQ(APInt(32, uint64_t(-7LL)), APInt(32, "-7", 8)); 1132 EXPECT_EQ(APInt(32, uint64_t(-8LL)), APInt(32, "-10", 8)); 1133 EXPECT_EQ(APInt(32, uint64_t(-15LL)), APInt(32, "-17", 8)); 1134 EXPECT_EQ(APInt(32, uint64_t(-16LL)), APInt(32, "-20", 8)); 1135 1136 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 10)); 1137 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 10)); 1138 EXPECT_EQ(APInt(32, 9), APInt(32, "9", 10)); 1139 EXPECT_EQ(APInt(32, 10), APInt(32, "10", 10)); 1140 EXPECT_EQ(APInt(32, 19), APInt(32, "19", 10)); 1141 EXPECT_EQ(APInt(32, 20), APInt(32, "20", 10)); 1142 1143 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 10)); 1144 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 10)); 1145 EXPECT_EQ(APInt(32, uint64_t(-9LL)), APInt(32, "-9", 10)); 1146 EXPECT_EQ(APInt(32, uint64_t(-10LL)), APInt(32, "-10", 10)); 1147 EXPECT_EQ(APInt(32, uint64_t(-19LL)), APInt(32, "-19", 10)); 1148 EXPECT_EQ(APInt(32, uint64_t(-20LL)), APInt(32, "-20", 10)); 1149 1150 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 16)); 1151 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 16)); 1152 EXPECT_EQ(APInt(32, 15), APInt(32, "F", 16)); 1153 EXPECT_EQ(APInt(32, 16), APInt(32, "10", 16)); 1154 EXPECT_EQ(APInt(32, 31), APInt(32, "1F", 16)); 1155 EXPECT_EQ(APInt(32, 32), APInt(32, "20", 16)); 1156 1157 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 16)); 1158 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 16)); 1159 EXPECT_EQ(APInt(32, uint64_t(-15LL)), APInt(32, "-F", 16)); 1160 EXPECT_EQ(APInt(32, uint64_t(-16LL)), APInt(32, "-10", 16)); 1161 EXPECT_EQ(APInt(32, uint64_t(-31LL)), APInt(32, "-1F", 16)); 1162 EXPECT_EQ(APInt(32, uint64_t(-32LL)), APInt(32, "-20", 16)); 1163 1164 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 36)); 1165 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 36)); 1166 EXPECT_EQ(APInt(32, 35), APInt(32, "Z", 36)); 1167 EXPECT_EQ(APInt(32, 36), APInt(32, "10", 36)); 1168 EXPECT_EQ(APInt(32, 71), APInt(32, "1Z", 36)); 1169 EXPECT_EQ(APInt(32, 72), APInt(32, "20", 36)); 1170 1171 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 36)); 1172 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 36)); 1173 EXPECT_EQ(APInt(32, uint64_t(-35LL)), APInt(32, "-Z", 36)); 1174 EXPECT_EQ(APInt(32, uint64_t(-36LL)), APInt(32, "-10", 36)); 1175 EXPECT_EQ(APInt(32, uint64_t(-71LL)), APInt(32, "-1Z", 36)); 1176 EXPECT_EQ(APInt(32, uint64_t(-72LL)), APInt(32, "-20", 36)); 1177 } 1178 1179 TEST(APIntTest, SaturatingMath) { 1180 APInt AP_10 = APInt(8, 10); 1181 APInt AP_100 = APInt(8, 100); 1182 APInt AP_200 = APInt(8, 200); 1183 1184 EXPECT_EQ(APInt(8, 200), AP_100.uadd_sat(AP_100)); 1185 EXPECT_EQ(APInt(8, 255), AP_100.uadd_sat(AP_200)); 1186 EXPECT_EQ(APInt(8, 255), APInt(8, 255).uadd_sat(APInt(8, 255))); 1187 1188 EXPECT_EQ(APInt(8, 110), AP_10.sadd_sat(AP_100)); 1189 EXPECT_EQ(APInt(8, 127), AP_100.sadd_sat(AP_100)); 1190 EXPECT_EQ(APInt(8, -128), (-AP_100).sadd_sat(-AP_100)); 1191 EXPECT_EQ(APInt(8, -128), APInt(8, -128).sadd_sat(APInt(8, -128))); 1192 1193 EXPECT_EQ(APInt(8, 90), AP_100.usub_sat(AP_10)); 1194 EXPECT_EQ(APInt(8, 0), AP_100.usub_sat(AP_200)); 1195 EXPECT_EQ(APInt(8, 0), APInt(8, 0).usub_sat(APInt(8, 255))); 1196 1197 EXPECT_EQ(APInt(8, -90), AP_10.ssub_sat(AP_100)); 1198 EXPECT_EQ(APInt(8, 127), AP_100.ssub_sat(-AP_100)); 1199 EXPECT_EQ(APInt(8, -128), (-AP_100).ssub_sat(AP_100)); 1200 EXPECT_EQ(APInt(8, -128), APInt(8, -128).ssub_sat(APInt(8, 127))); 1201 } 1202 1203 TEST(APIntTest, FromArray) { 1204 EXPECT_EQ(APInt(32, uint64_t(1)), APInt(32, ArrayRef<uint64_t>(1))); 1205 } 1206 1207 TEST(APIntTest, StringBitsNeeded2) { 1208 EXPECT_EQ(1U, APInt::getBitsNeeded( "0", 2)); 1209 EXPECT_EQ(1U, APInt::getBitsNeeded( "1", 2)); 1210 EXPECT_EQ(2U, APInt::getBitsNeeded( "10", 2)); 1211 EXPECT_EQ(2U, APInt::getBitsNeeded( "11", 2)); 1212 EXPECT_EQ(3U, APInt::getBitsNeeded("100", 2)); 1213 1214 EXPECT_EQ(1U, APInt::getBitsNeeded( "+0", 2)); 1215 EXPECT_EQ(1U, APInt::getBitsNeeded( "+1", 2)); 1216 EXPECT_EQ(2U, APInt::getBitsNeeded( "+10", 2)); 1217 EXPECT_EQ(2U, APInt::getBitsNeeded( "+11", 2)); 1218 EXPECT_EQ(3U, APInt::getBitsNeeded("+100", 2)); 1219 1220 EXPECT_EQ(2U, APInt::getBitsNeeded( "-0", 2)); 1221 EXPECT_EQ(2U, APInt::getBitsNeeded( "-1", 2)); 1222 EXPECT_EQ(3U, APInt::getBitsNeeded( "-10", 2)); 1223 EXPECT_EQ(3U, APInt::getBitsNeeded( "-11", 2)); 1224 EXPECT_EQ(4U, APInt::getBitsNeeded("-100", 2)); 1225 } 1226 1227 TEST(APIntTest, StringBitsNeeded8) { 1228 EXPECT_EQ(3U, APInt::getBitsNeeded( "0", 8)); 1229 EXPECT_EQ(3U, APInt::getBitsNeeded( "7", 8)); 1230 EXPECT_EQ(6U, APInt::getBitsNeeded("10", 8)); 1231 EXPECT_EQ(6U, APInt::getBitsNeeded("17", 8)); 1232 EXPECT_EQ(6U, APInt::getBitsNeeded("20", 8)); 1233 1234 EXPECT_EQ(3U, APInt::getBitsNeeded( "+0", 8)); 1235 EXPECT_EQ(3U, APInt::getBitsNeeded( "+7", 8)); 1236 EXPECT_EQ(6U, APInt::getBitsNeeded("+10", 8)); 1237 EXPECT_EQ(6U, APInt::getBitsNeeded("+17", 8)); 1238 EXPECT_EQ(6U, APInt::getBitsNeeded("+20", 8)); 1239 1240 EXPECT_EQ(4U, APInt::getBitsNeeded( "-0", 8)); 1241 EXPECT_EQ(4U, APInt::getBitsNeeded( "-7", 8)); 1242 EXPECT_EQ(7U, APInt::getBitsNeeded("-10", 8)); 1243 EXPECT_EQ(7U, APInt::getBitsNeeded("-17", 8)); 1244 EXPECT_EQ(7U, APInt::getBitsNeeded("-20", 8)); 1245 } 1246 1247 TEST(APIntTest, StringBitsNeeded10) { 1248 EXPECT_EQ(1U, APInt::getBitsNeeded( "0", 10)); 1249 EXPECT_EQ(2U, APInt::getBitsNeeded( "3", 10)); 1250 EXPECT_EQ(4U, APInt::getBitsNeeded( "9", 10)); 1251 EXPECT_EQ(4U, APInt::getBitsNeeded("10", 10)); 1252 EXPECT_EQ(5U, APInt::getBitsNeeded("19", 10)); 1253 EXPECT_EQ(5U, APInt::getBitsNeeded("20", 10)); 1254 1255 EXPECT_EQ(1U, APInt::getBitsNeeded( "+0", 10)); 1256 EXPECT_EQ(4U, APInt::getBitsNeeded( "+9", 10)); 1257 EXPECT_EQ(4U, APInt::getBitsNeeded("+10", 10)); 1258 EXPECT_EQ(5U, APInt::getBitsNeeded("+19", 10)); 1259 EXPECT_EQ(5U, APInt::getBitsNeeded("+20", 10)); 1260 1261 EXPECT_EQ(2U, APInt::getBitsNeeded( "-0", 10)); 1262 EXPECT_EQ(5U, APInt::getBitsNeeded( "-9", 10)); 1263 EXPECT_EQ(5U, APInt::getBitsNeeded("-10", 10)); 1264 EXPECT_EQ(6U, APInt::getBitsNeeded("-19", 10)); 1265 EXPECT_EQ(6U, APInt::getBitsNeeded("-20", 10)); 1266 } 1267 1268 TEST(APIntTest, StringBitsNeeded16) { 1269 EXPECT_EQ(4U, APInt::getBitsNeeded( "0", 16)); 1270 EXPECT_EQ(4U, APInt::getBitsNeeded( "F", 16)); 1271 EXPECT_EQ(8U, APInt::getBitsNeeded("10", 16)); 1272 EXPECT_EQ(8U, APInt::getBitsNeeded("1F", 16)); 1273 EXPECT_EQ(8U, APInt::getBitsNeeded("20", 16)); 1274 1275 EXPECT_EQ(4U, APInt::getBitsNeeded( "+0", 16)); 1276 EXPECT_EQ(4U, APInt::getBitsNeeded( "+F", 16)); 1277 EXPECT_EQ(8U, APInt::getBitsNeeded("+10", 16)); 1278 EXPECT_EQ(8U, APInt::getBitsNeeded("+1F", 16)); 1279 EXPECT_EQ(8U, APInt::getBitsNeeded("+20", 16)); 1280 1281 EXPECT_EQ(5U, APInt::getBitsNeeded( "-0", 16)); 1282 EXPECT_EQ(5U, APInt::getBitsNeeded( "-F", 16)); 1283 EXPECT_EQ(9U, APInt::getBitsNeeded("-10", 16)); 1284 EXPECT_EQ(9U, APInt::getBitsNeeded("-1F", 16)); 1285 EXPECT_EQ(9U, APInt::getBitsNeeded("-20", 16)); 1286 } 1287 1288 TEST(APIntTest, toString) { 1289 SmallString<16> S; 1290 bool isSigned; 1291 1292 APInt(8, 0).toString(S, 2, true, true); 1293 EXPECT_EQ(S.str().str(), "0b0"); 1294 S.clear(); 1295 APInt(8, 0).toString(S, 8, true, true); 1296 EXPECT_EQ(S.str().str(), "00"); 1297 S.clear(); 1298 APInt(8, 0).toString(S, 10, true, true); 1299 EXPECT_EQ(S.str().str(), "0"); 1300 S.clear(); 1301 APInt(8, 0).toString(S, 16, true, true); 1302 EXPECT_EQ(S.str().str(), "0x0"); 1303 S.clear(); 1304 APInt(8, 0).toString(S, 36, true, false); 1305 EXPECT_EQ(S.str().str(), "0"); 1306 S.clear(); 1307 1308 isSigned = false; 1309 APInt(8, 255, isSigned).toString(S, 2, isSigned, true); 1310 EXPECT_EQ(S.str().str(), "0b11111111"); 1311 S.clear(); 1312 APInt(8, 255, isSigned).toString(S, 8, isSigned, true); 1313 EXPECT_EQ(S.str().str(), "0377"); 1314 S.clear(); 1315 APInt(8, 255, isSigned).toString(S, 10, isSigned, true); 1316 EXPECT_EQ(S.str().str(), "255"); 1317 S.clear(); 1318 APInt(8, 255, isSigned).toString(S, 16, isSigned, true); 1319 EXPECT_EQ(S.str().str(), "0xFF"); 1320 S.clear(); 1321 APInt(8, 255, isSigned).toString(S, 36, isSigned, false); 1322 EXPECT_EQ(S.str().str(), "73"); 1323 S.clear(); 1324 1325 isSigned = true; 1326 APInt(8, 255, isSigned).toString(S, 2, isSigned, true); 1327 EXPECT_EQ(S.str().str(), "-0b1"); 1328 S.clear(); 1329 APInt(8, 255, isSigned).toString(S, 8, isSigned, true); 1330 EXPECT_EQ(S.str().str(), "-01"); 1331 S.clear(); 1332 APInt(8, 255, isSigned).toString(S, 10, isSigned, true); 1333 EXPECT_EQ(S.str().str(), "-1"); 1334 S.clear(); 1335 APInt(8, 255, isSigned).toString(S, 16, isSigned, true); 1336 EXPECT_EQ(S.str().str(), "-0x1"); 1337 S.clear(); 1338 APInt(8, 255, isSigned).toString(S, 36, isSigned, false); 1339 EXPECT_EQ(S.str().str(), "-1"); 1340 S.clear(); 1341 } 1342 1343 TEST(APIntTest, Log2) { 1344 EXPECT_EQ(APInt(15, 7).logBase2(), 2U); 1345 EXPECT_EQ(APInt(15, 7).ceilLogBase2(), 3U); 1346 EXPECT_EQ(APInt(15, 7).exactLogBase2(), -1); 1347 EXPECT_EQ(APInt(15, 8).logBase2(), 3U); 1348 EXPECT_EQ(APInt(15, 8).ceilLogBase2(), 3U); 1349 EXPECT_EQ(APInt(15, 8).exactLogBase2(), 3); 1350 EXPECT_EQ(APInt(15, 9).logBase2(), 3U); 1351 EXPECT_EQ(APInt(15, 9).ceilLogBase2(), 4U); 1352 EXPECT_EQ(APInt(15, 9).exactLogBase2(), -1); 1353 } 1354 1355 TEST(APIntTest, magic) { 1356 EXPECT_EQ(APInt(32, 3).magic().m, APInt(32, "55555556", 16)); 1357 EXPECT_EQ(APInt(32, 3).magic().s, 0U); 1358 EXPECT_EQ(APInt(32, 5).magic().m, APInt(32, "66666667", 16)); 1359 EXPECT_EQ(APInt(32, 5).magic().s, 1U); 1360 EXPECT_EQ(APInt(32, 7).magic().m, APInt(32, "92492493", 16)); 1361 EXPECT_EQ(APInt(32, 7).magic().s, 2U); 1362 } 1363 1364 TEST(APIntTest, magicu) { 1365 EXPECT_EQ(APInt(32, 3).magicu().m, APInt(32, "AAAAAAAB", 16)); 1366 EXPECT_EQ(APInt(32, 3).magicu().s, 1U); 1367 EXPECT_EQ(APInt(32, 5).magicu().m, APInt(32, "CCCCCCCD", 16)); 1368 EXPECT_EQ(APInt(32, 5).magicu().s, 2U); 1369 EXPECT_EQ(APInt(32, 7).magicu().m, APInt(32, "24924925", 16)); 1370 EXPECT_EQ(APInt(32, 7).magicu().s, 3U); 1371 EXPECT_EQ(APInt(64, 25).magicu(1).m, APInt(64, "A3D70A3D70A3D70B", 16)); 1372 EXPECT_EQ(APInt(64, 25).magicu(1).s, 4U); 1373 } 1374 1375 #ifdef GTEST_HAS_DEATH_TEST 1376 #ifndef NDEBUG 1377 TEST(APIntTest, StringDeath) { 1378 EXPECT_DEATH(APInt(0, "", 0), "Bitwidth too small"); 1379 EXPECT_DEATH(APInt(32, "", 0), "Invalid string length"); 1380 EXPECT_DEATH(APInt(32, "0", 0), "Radix should be 2, 8, 10, 16, or 36!"); 1381 EXPECT_DEATH(APInt(32, "", 10), "Invalid string length"); 1382 EXPECT_DEATH(APInt(32, "-", 10), "String is only a sign, needs a value."); 1383 EXPECT_DEATH(APInt(1, "1234", 10), "Insufficient bit width"); 1384 EXPECT_DEATH(APInt(32, "\0", 10), "Invalid string length"); 1385 EXPECT_DEATH(APInt(32, StringRef("1\02", 3), 10), "Invalid character in digit string"); 1386 EXPECT_DEATH(APInt(32, "1L", 10), "Invalid character in digit string"); 1387 } 1388 #endif 1389 #endif 1390 1391 TEST(APIntTest, mul_clear) { 1392 APInt ValA(65, -1ULL); 1393 APInt ValB(65, 4); 1394 APInt ValC(65, 0); 1395 ValC = ValA * ValB; 1396 ValA *= ValB; 1397 EXPECT_EQ(ValA.toString(10, false), ValC.toString(10, false)); 1398 } 1399 1400 TEST(APIntTest, Rotate) { 1401 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotl(0)); 1402 EXPECT_EQ(APInt(8, 2), APInt(8, 1).rotl(1)); 1403 EXPECT_EQ(APInt(8, 4), APInt(8, 1).rotl(2)); 1404 EXPECT_EQ(APInt(8, 16), APInt(8, 1).rotl(4)); 1405 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotl(8)); 1406 1407 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotl(0)); 1408 EXPECT_EQ(APInt(8, 32), APInt(8, 16).rotl(1)); 1409 EXPECT_EQ(APInt(8, 64), APInt(8, 16).rotl(2)); 1410 EXPECT_EQ(APInt(8, 1), APInt(8, 16).rotl(4)); 1411 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotl(8)); 1412 1413 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(33)); 1414 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(32, 33))); 1415 1416 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(33)); 1417 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(32, 33))); 1418 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(33, 33))); 1419 EXPECT_EQ(APInt(32, (1 << 8)), APInt(32, 1).rotl(APInt(32, 40))); 1420 EXPECT_EQ(APInt(32, (1 << 30)), APInt(32, 1).rotl(APInt(31, 30))); 1421 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotl(APInt(31, 31))); 1422 1423 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotl(APInt(1, 0))); 1424 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(1, 1))); 1425 1426 EXPECT_EQ(APInt(32, 16), APInt(32, 1).rotl(APInt(3, 4))); 1427 1428 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotl(APInt(64, 64))); 1429 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(64, 65))); 1430 1431 EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(7, 3))); 1432 EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(7, 10))); 1433 EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(5, 10))); 1434 EXPECT_EQ(APInt(7, 6), APInt(7, 3).rotl(APInt(12, 120))); 1435 1436 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotr(0)); 1437 EXPECT_EQ(APInt(8, 8), APInt(8, 16).rotr(1)); 1438 EXPECT_EQ(APInt(8, 4), APInt(8, 16).rotr(2)); 1439 EXPECT_EQ(APInt(8, 1), APInt(8, 16).rotr(4)); 1440 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotr(8)); 1441 1442 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotr(0)); 1443 EXPECT_EQ(APInt(8, 128), APInt(8, 1).rotr(1)); 1444 EXPECT_EQ(APInt(8, 64), APInt(8, 1).rotr(2)); 1445 EXPECT_EQ(APInt(8, 16), APInt(8, 1).rotr(4)); 1446 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotr(8)); 1447 1448 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(33)); 1449 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(32, 33))); 1450 1451 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(33)); 1452 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(32, 33))); 1453 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(33, 33))); 1454 EXPECT_EQ(APInt(32, (1 << 24)), APInt(32, 1).rotr(APInt(32, 40))); 1455 1456 EXPECT_EQ(APInt(32, (1 << 2)), APInt(32, 1).rotr(APInt(31, 30))); 1457 EXPECT_EQ(APInt(32, (1 << 1)), APInt(32, 1).rotr(APInt(31, 31))); 1458 1459 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotr(APInt(1, 0))); 1460 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(1, 1))); 1461 1462 EXPECT_EQ(APInt(32, (1 << 28)), APInt(32, 1).rotr(APInt(3, 4))); 1463 1464 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotr(APInt(64, 64))); 1465 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(64, 65))); 1466 1467 EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(7, 3))); 1468 EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(7, 10))); 1469 EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(5, 10))); 1470 EXPECT_EQ(APInt(7, 65), APInt(7, 3).rotr(APInt(12, 120))); 1471 1472 APInt Big(256, "00004000800000000000000000003fff8000000000000003", 16); 1473 APInt Rot(256, "3fff80000000000000030000000000000000000040008000", 16); 1474 EXPECT_EQ(Rot, Big.rotr(144)); 1475 1476 EXPECT_EQ(APInt(32, 8), APInt(32, 1).rotl(Big)); 1477 EXPECT_EQ(APInt(32, (1 << 29)), APInt(32, 1).rotr(Big)); 1478 } 1479 1480 TEST(APIntTest, Splat) { 1481 APInt ValA(8, 0x01); 1482 EXPECT_EQ(ValA, APInt::getSplat(8, ValA)); 1483 EXPECT_EQ(APInt(64, 0x0101010101010101ULL), APInt::getSplat(64, ValA)); 1484 1485 APInt ValB(3, 5); 1486 EXPECT_EQ(APInt(4, 0xD), APInt::getSplat(4, ValB)); 1487 EXPECT_EQ(APInt(15, 0xDB6D), APInt::getSplat(15, ValB)); 1488 } 1489 1490 TEST(APIntTest, tcDecrement) { 1491 // Test single word decrement. 1492 1493 // No out borrow. 1494 { 1495 APInt::WordType singleWord = ~APInt::WordType(0) << (APInt::APINT_BITS_PER_WORD - 1); 1496 APInt::WordType carry = APInt::tcDecrement(&singleWord, 1); 1497 EXPECT_EQ(carry, APInt::WordType(0)); 1498 EXPECT_EQ(singleWord, ~APInt::WordType(0) >> 1); 1499 } 1500 1501 // With out borrow. 1502 { 1503 APInt::WordType singleWord = 0; 1504 APInt::WordType carry = APInt::tcDecrement(&singleWord, 1); 1505 EXPECT_EQ(carry, APInt::WordType(1)); 1506 EXPECT_EQ(singleWord, ~APInt::WordType(0)); 1507 } 1508 1509 // Test multiword decrement. 1510 1511 // No across word borrow, no out borrow. 1512 { 1513 APInt::WordType test[4] = {0x1, 0x1, 0x1, 0x1}; 1514 APInt::WordType expected[4] = {0x0, 0x1, 0x1, 0x1}; 1515 APInt::tcDecrement(test, 4); 1516 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1517 } 1518 1519 // 1 across word borrow, no out borrow. 1520 { 1521 APInt::WordType test[4] = {0x0, 0xF, 0x1, 0x1}; 1522 APInt::WordType expected[4] = {~APInt::WordType(0), 0xE, 0x1, 0x1}; 1523 APInt::WordType carry = APInt::tcDecrement(test, 4); 1524 EXPECT_EQ(carry, APInt::WordType(0)); 1525 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1526 } 1527 1528 // 2 across word borrow, no out borrow. 1529 { 1530 APInt::WordType test[4] = {0x0, 0x0, 0xC, 0x1}; 1531 APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), 0xB, 0x1}; 1532 APInt::WordType carry = APInt::tcDecrement(test, 4); 1533 EXPECT_EQ(carry, APInt::WordType(0)); 1534 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1535 } 1536 1537 // 3 across word borrow, no out borrow. 1538 { 1539 APInt::WordType test[4] = {0x0, 0x0, 0x0, 0x1}; 1540 APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0), 0x0}; 1541 APInt::WordType carry = APInt::tcDecrement(test, 4); 1542 EXPECT_EQ(carry, APInt::WordType(0)); 1543 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1544 } 1545 1546 // 3 across word borrow, with out borrow. 1547 { 1548 APInt::WordType test[4] = {0x0, 0x0, 0x0, 0x0}; 1549 APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0)}; 1550 APInt::WordType carry = APInt::tcDecrement(test, 4); 1551 EXPECT_EQ(carry, APInt::WordType(1)); 1552 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1553 } 1554 } 1555 1556 TEST(APIntTest, arrayAccess) { 1557 // Single word check. 1558 uint64_t E1 = 0x2CA7F46BF6569915ULL; 1559 APInt A1(64, E1); 1560 for (unsigned i = 0, e = 64; i < e; ++i) { 1561 EXPECT_EQ(bool(E1 & (1ULL << i)), 1562 A1[i]); 1563 } 1564 1565 // Multiword check. 1566 APInt::WordType E2[4] = { 1567 0xEB6EB136591CBA21ULL, 1568 0x7B9358BD6A33F10AULL, 1569 0x7E7FFA5EADD8846ULL, 1570 0x305F341CA00B613DULL 1571 }; 1572 APInt A2(APInt::APINT_BITS_PER_WORD*4, E2); 1573 for (unsigned i = 0; i < 4; ++i) { 1574 for (unsigned j = 0; j < APInt::APINT_BITS_PER_WORD; ++j) { 1575 EXPECT_EQ(bool(E2[i] & (1ULL << j)), 1576 A2[i*APInt::APINT_BITS_PER_WORD + j]); 1577 } 1578 } 1579 } 1580 1581 TEST(APIntTest, LargeAPIntConstruction) { 1582 // Check that we can properly construct very large APInt. It is very 1583 // unlikely that people will ever do this, but it is a legal input, 1584 // so we should not crash on it. 1585 APInt A9(UINT32_MAX, 0); 1586 EXPECT_FALSE(A9.getBoolValue()); 1587 } 1588 1589 TEST(APIntTest, nearestLogBase2) { 1590 // Single word check. 1591 1592 // Test round up. 1593 uint64_t I1 = 0x1800001; 1594 APInt A1(64, I1); 1595 EXPECT_EQ(A1.nearestLogBase2(), A1.ceilLogBase2()); 1596 1597 // Test round down. 1598 uint64_t I2 = 0x1000011; 1599 APInt A2(64, I2); 1600 EXPECT_EQ(A2.nearestLogBase2(), A2.logBase2()); 1601 1602 // Test ties round up. 1603 uint64_t I3 = 0x1800000; 1604 APInt A3(64, I3); 1605 EXPECT_EQ(A3.nearestLogBase2(), A3.ceilLogBase2()); 1606 1607 // Multiple word check. 1608 1609 // Test round up. 1610 APInt::WordType I4[4] = {0x0, 0xF, 0x18, 0x0}; 1611 APInt A4(APInt::APINT_BITS_PER_WORD*4, I4); 1612 EXPECT_EQ(A4.nearestLogBase2(), A4.ceilLogBase2()); 1613 1614 // Test round down. 1615 APInt::WordType I5[4] = {0x0, 0xF, 0x10, 0x0}; 1616 APInt A5(APInt::APINT_BITS_PER_WORD*4, I5); 1617 EXPECT_EQ(A5.nearestLogBase2(), A5.logBase2()); 1618 1619 // Test ties round up. 1620 uint64_t I6[4] = {0x0, 0x0, 0x0, 0x18}; 1621 APInt A6(APInt::APINT_BITS_PER_WORD*4, I6); 1622 EXPECT_EQ(A6.nearestLogBase2(), A6.ceilLogBase2()); 1623 1624 // Test BitWidth == 1 special cases. 1625 APInt A7(1, 1); 1626 EXPECT_EQ(A7.nearestLogBase2(), 0ULL); 1627 APInt A8(1, 0); 1628 EXPECT_EQ(A8.nearestLogBase2(), UINT32_MAX); 1629 1630 // Test the zero case when we have a bit width large enough such 1631 // that the bit width is larger than UINT32_MAX-1. 1632 APInt A9(UINT32_MAX, 0); 1633 EXPECT_EQ(A9.nearestLogBase2(), UINT32_MAX); 1634 } 1635 1636 TEST(APIntTest, IsSplat) { 1637 APInt A(32, 0x01010101); 1638 EXPECT_FALSE(A.isSplat(1)); 1639 EXPECT_FALSE(A.isSplat(2)); 1640 EXPECT_FALSE(A.isSplat(4)); 1641 EXPECT_TRUE(A.isSplat(8)); 1642 EXPECT_TRUE(A.isSplat(16)); 1643 EXPECT_TRUE(A.isSplat(32)); 1644 1645 APInt B(24, 0xAAAAAA); 1646 EXPECT_FALSE(B.isSplat(1)); 1647 EXPECT_TRUE(B.isSplat(2)); 1648 EXPECT_TRUE(B.isSplat(4)); 1649 EXPECT_TRUE(B.isSplat(8)); 1650 EXPECT_TRUE(B.isSplat(24)); 1651 1652 APInt C(24, 0xABAAAB); 1653 EXPECT_FALSE(C.isSplat(1)); 1654 EXPECT_FALSE(C.isSplat(2)); 1655 EXPECT_FALSE(C.isSplat(4)); 1656 EXPECT_FALSE(C.isSplat(8)); 1657 EXPECT_TRUE(C.isSplat(24)); 1658 1659 APInt D(32, 0xABBAABBA); 1660 EXPECT_FALSE(D.isSplat(1)); 1661 EXPECT_FALSE(D.isSplat(2)); 1662 EXPECT_FALSE(D.isSplat(4)); 1663 EXPECT_FALSE(D.isSplat(8)); 1664 EXPECT_TRUE(D.isSplat(16)); 1665 EXPECT_TRUE(D.isSplat(32)); 1666 1667 APInt E(32, 0); 1668 EXPECT_TRUE(E.isSplat(1)); 1669 EXPECT_TRUE(E.isSplat(2)); 1670 EXPECT_TRUE(E.isSplat(4)); 1671 EXPECT_TRUE(E.isSplat(8)); 1672 EXPECT_TRUE(E.isSplat(16)); 1673 EXPECT_TRUE(E.isSplat(32)); 1674 } 1675 1676 TEST(APIntTest, isMask) { 1677 EXPECT_FALSE(APInt(32, 0x01010101).isMask()); 1678 EXPECT_FALSE(APInt(32, 0xf0000000).isMask()); 1679 EXPECT_FALSE(APInt(32, 0xffff0000).isMask()); 1680 EXPECT_FALSE(APInt(32, 0xff << 1).isMask()); 1681 1682 for (int N : { 1, 2, 3, 4, 7, 8, 16, 32, 64, 127, 128, 129, 256 }) { 1683 EXPECT_FALSE(APInt(N, 0).isMask()); 1684 1685 APInt One(N, 1); 1686 for (int I = 1; I <= N; ++I) { 1687 APInt MaskVal = One.shl(I) - 1; 1688 EXPECT_TRUE(MaskVal.isMask()); 1689 EXPECT_TRUE(MaskVal.isMask(I)); 1690 } 1691 } 1692 } 1693 1694 TEST(APIntTest, isShiftedMask) { 1695 EXPECT_FALSE(APInt(32, 0x01010101).isShiftedMask()); 1696 EXPECT_TRUE(APInt(32, 0xf0000000).isShiftedMask()); 1697 EXPECT_TRUE(APInt(32, 0xffff0000).isShiftedMask()); 1698 EXPECT_TRUE(APInt(32, 0xff << 1).isShiftedMask()); 1699 1700 for (int N : { 1, 2, 3, 4, 7, 8, 16, 32, 64, 127, 128, 129, 256 }) { 1701 EXPECT_FALSE(APInt(N, 0).isShiftedMask()); 1702 1703 APInt One(N, 1); 1704 for (int I = 1; I < N; ++I) { 1705 APInt MaskVal = One.shl(I) - 1; 1706 EXPECT_TRUE(MaskVal.isShiftedMask()); 1707 } 1708 for (int I = 1; I < N - 1; ++I) { 1709 APInt MaskVal = One.shl(I); 1710 EXPECT_TRUE(MaskVal.isShiftedMask()); 1711 } 1712 for (int I = 1; I < N; ++I) { 1713 APInt MaskVal = APInt::getHighBitsSet(N, I); 1714 EXPECT_TRUE(MaskVal.isShiftedMask()); 1715 } 1716 } 1717 } 1718 1719 // Test that self-move works, but only when we're using MSVC. 1720 #if defined(_MSC_VER) 1721 #if defined(__clang__) 1722 // Disable the pragma warning from versions of Clang without -Wself-move 1723 #pragma clang diagnostic push 1724 #pragma clang diagnostic ignored "-Wunknown-pragmas" 1725 // Disable the warning that triggers on exactly what is being tested. 1726 #pragma clang diagnostic push 1727 #pragma clang diagnostic ignored "-Wself-move" 1728 #endif 1729 TEST(APIntTest, SelfMoveAssignment) { 1730 APInt X(32, 0xdeadbeef); 1731 X = std::move(X); 1732 EXPECT_EQ(32u, X.getBitWidth()); 1733 EXPECT_EQ(0xdeadbeefULL, X.getLimitedValue()); 1734 1735 uint64_t Bits[] = {0xdeadbeefdeadbeefULL, 0xdeadbeefdeadbeefULL}; 1736 APInt Y(128, Bits); 1737 Y = std::move(Y); 1738 EXPECT_EQ(128u, Y.getBitWidth()); 1739 EXPECT_EQ(~0ULL, Y.getLimitedValue()); 1740 const uint64_t *Raw = Y.getRawData(); 1741 EXPECT_EQ(2u, Y.getNumWords()); 1742 EXPECT_EQ(0xdeadbeefdeadbeefULL, Raw[0]); 1743 EXPECT_EQ(0xdeadbeefdeadbeefULL, Raw[1]); 1744 } 1745 #if defined(__clang__) 1746 #pragma clang diagnostic pop 1747 #pragma clang diagnostic pop 1748 #endif 1749 #endif // _MSC_VER 1750 1751 TEST(APIntTest, reverseBits) { 1752 EXPECT_EQ(1, APInt(1, 1).reverseBits()); 1753 EXPECT_EQ(0, APInt(1, 0).reverseBits()); 1754 1755 EXPECT_EQ(3, APInt(2, 3).reverseBits()); 1756 EXPECT_EQ(3, APInt(2, 3).reverseBits()); 1757 1758 EXPECT_EQ(0xb, APInt(4, 0xd).reverseBits()); 1759 EXPECT_EQ(0xd, APInt(4, 0xb).reverseBits()); 1760 EXPECT_EQ(0xf, APInt(4, 0xf).reverseBits()); 1761 1762 EXPECT_EQ(0x30, APInt(7, 0x6).reverseBits()); 1763 EXPECT_EQ(0x5a, APInt(7, 0x2d).reverseBits()); 1764 1765 EXPECT_EQ(0x0f, APInt(8, 0xf0).reverseBits()); 1766 EXPECT_EQ(0xf0, APInt(8, 0x0f).reverseBits()); 1767 1768 EXPECT_EQ(0x0f0f, APInt(16, 0xf0f0).reverseBits()); 1769 EXPECT_EQ(0xf0f0, APInt(16, 0x0f0f).reverseBits()); 1770 1771 EXPECT_EQ(0x0f0f0f0f, APInt(32, 0xf0f0f0f0).reverseBits()); 1772 EXPECT_EQ(0xf0f0f0f0, APInt(32, 0x0f0f0f0f).reverseBits()); 1773 1774 EXPECT_EQ(0x402880a0 >> 1, APInt(31, 0x05011402).reverseBits()); 1775 1776 EXPECT_EQ(0x0f0f0f0f, APInt(32, 0xf0f0f0f0).reverseBits()); 1777 EXPECT_EQ(0xf0f0f0f0, APInt(32, 0x0f0f0f0f).reverseBits()); 1778 1779 EXPECT_EQ(0x0f0f0f0f0f0f0f0f, APInt(64, 0xf0f0f0f0f0f0f0f0).reverseBits()); 1780 EXPECT_EQ(0xf0f0f0f0f0f0f0f0, APInt(64, 0x0f0f0f0f0f0f0f0f).reverseBits()); 1781 1782 for (unsigned N : { 1, 8, 16, 24, 31, 32, 33, 1783 63, 64, 65, 127, 128, 257, 1024 }) { 1784 for (unsigned I = 0; I < N; ++I) { 1785 APInt X = APInt::getOneBitSet(N, I); 1786 APInt Y = APInt::getOneBitSet(N, N - (I + 1)); 1787 EXPECT_EQ(Y, X.reverseBits()); 1788 EXPECT_EQ(X, Y.reverseBits()); 1789 } 1790 } 1791 } 1792 1793 TEST(APIntTest, insertBits) { 1794 APInt iSrc(31, 0x00123456); 1795 1796 // Direct copy. 1797 APInt i31(31, 0x76543210ull); 1798 i31.insertBits(iSrc, 0); 1799 EXPECT_EQ(static_cast<int64_t>(0x00123456ull), i31.getSExtValue()); 1800 1801 // Single word src/dst insertion. 1802 APInt i63(63, 0x01234567FFFFFFFFull); 1803 i63.insertBits(iSrc, 4); 1804 EXPECT_EQ(static_cast<int64_t>(0x012345600123456Full), i63.getSExtValue()); 1805 1806 // Insert single word src into one word of dst. 1807 APInt i120(120, UINT64_MAX, true); 1808 i120.insertBits(iSrc, 8); 1809 EXPECT_EQ(static_cast<int64_t>(0xFFFFFF80123456FFull), i120.getSExtValue()); 1810 1811 // Insert single word src into two words of dst. 1812 APInt i127(127, UINT64_MAX, true); 1813 i127.insertBits(iSrc, 48); 1814 EXPECT_EQ(i127.extractBits(64, 0).getZExtValue(), 0x3456FFFFFFFFFFFFull); 1815 EXPECT_EQ(i127.extractBits(63, 64).getZExtValue(), 0x7FFFFFFFFFFF8012ull); 1816 1817 // Insert on word boundaries. 1818 APInt i128(128, 0); 1819 i128.insertBits(APInt(64, UINT64_MAX, true), 0); 1820 i128.insertBits(APInt(64, UINT64_MAX, true), 64); 1821 EXPECT_EQ(-1, i128.getSExtValue()); 1822 1823 APInt i256(256, UINT64_MAX, true); 1824 i256.insertBits(APInt(65, 0), 0); 1825 i256.insertBits(APInt(69, 0), 64); 1826 i256.insertBits(APInt(128, 0), 128); 1827 EXPECT_EQ(0u, i256.getSExtValue()); 1828 1829 APInt i257(257, 0); 1830 i257.insertBits(APInt(96, UINT64_MAX, true), 64); 1831 EXPECT_EQ(i257.extractBits(64, 0).getZExtValue(), 0x0000000000000000ull); 1832 EXPECT_EQ(i257.extractBits(64, 64).getZExtValue(), 0xFFFFFFFFFFFFFFFFull); 1833 EXPECT_EQ(i257.extractBits(64, 128).getZExtValue(), 0x00000000FFFFFFFFull); 1834 EXPECT_EQ(i257.extractBits(65, 192).getZExtValue(), 0x0000000000000000ull); 1835 1836 // General insertion. 1837 APInt i260(260, UINT64_MAX, true); 1838 i260.insertBits(APInt(129, 1ull << 48), 15); 1839 EXPECT_EQ(i260.extractBits(64, 0).getZExtValue(), 0x8000000000007FFFull); 1840 EXPECT_EQ(i260.extractBits(64, 64).getZExtValue(), 0x0000000000000000ull); 1841 EXPECT_EQ(i260.extractBits(64, 128).getZExtValue(), 0xFFFFFFFFFFFF0000ull); 1842 EXPECT_EQ(i260.extractBits(64, 192).getZExtValue(), 0xFFFFFFFFFFFFFFFFull); 1843 EXPECT_EQ(i260.extractBits(4, 256).getZExtValue(), 0x000000000000000Full); 1844 } 1845 1846 TEST(APIntTest, extractBits) { 1847 APInt i32(32, 0x1234567); 1848 EXPECT_EQ(0x3456, i32.extractBits(16, 4)); 1849 1850 APInt i257(257, 0xFFFFFFFFFF0000FFull, true); 1851 EXPECT_EQ(0xFFu, i257.extractBits(16, 0)); 1852 EXPECT_EQ((0xFFu >> 1), i257.extractBits(16, 1)); 1853 EXPECT_EQ(-1, i257.extractBits(32, 64).getSExtValue()); 1854 EXPECT_EQ(-1, i257.extractBits(128, 128).getSExtValue()); 1855 EXPECT_EQ(-1, i257.extractBits(66, 191).getSExtValue()); 1856 EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full), 1857 i257.extractBits(128, 1).getSExtValue()); 1858 EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full), 1859 i257.extractBits(129, 1).getSExtValue()); 1860 1861 EXPECT_EQ(APInt(48, 0), 1862 APInt(144, "281474976710655", 10).extractBits(48, 48)); 1863 EXPECT_EQ(APInt(48, 0x0000ffffffffffffull), 1864 APInt(144, "281474976710655", 10).extractBits(48, 0)); 1865 EXPECT_EQ(APInt(48, 0x00007fffffffffffull), 1866 APInt(144, "281474976710655", 10).extractBits(48, 1)); 1867 } 1868 1869 TEST(APIntTest, getLowBitsSet) { 1870 APInt i128lo64 = APInt::getLowBitsSet(128, 64); 1871 EXPECT_EQ(0u, i128lo64.countLeadingOnes()); 1872 EXPECT_EQ(64u, i128lo64.countLeadingZeros()); 1873 EXPECT_EQ(64u, i128lo64.getActiveBits()); 1874 EXPECT_EQ(0u, i128lo64.countTrailingZeros()); 1875 EXPECT_EQ(64u, i128lo64.countTrailingOnes()); 1876 EXPECT_EQ(64u, i128lo64.countPopulation()); 1877 } 1878 1879 TEST(APIntTest, getBitsSet) { 1880 APInt i64hi1lo1 = APInt::getBitsSet(64, 1, 63); 1881 EXPECT_EQ(0u, i64hi1lo1.countLeadingOnes()); 1882 EXPECT_EQ(1u, i64hi1lo1.countLeadingZeros()); 1883 EXPECT_EQ(63u, i64hi1lo1.getActiveBits()); 1884 EXPECT_EQ(1u, i64hi1lo1.countTrailingZeros()); 1885 EXPECT_EQ(0u, i64hi1lo1.countTrailingOnes()); 1886 EXPECT_EQ(62u, i64hi1lo1.countPopulation()); 1887 1888 APInt i127hi1lo1 = APInt::getBitsSet(127, 1, 126); 1889 EXPECT_EQ(0u, i127hi1lo1.countLeadingOnes()); 1890 EXPECT_EQ(1u, i127hi1lo1.countLeadingZeros()); 1891 EXPECT_EQ(126u, i127hi1lo1.getActiveBits()); 1892 EXPECT_EQ(1u, i127hi1lo1.countTrailingZeros()); 1893 EXPECT_EQ(0u, i127hi1lo1.countTrailingOnes()); 1894 EXPECT_EQ(125u, i127hi1lo1.countPopulation()); 1895 } 1896 1897 TEST(APIntTest, getHighBitsSet) { 1898 APInt i64hi32 = APInt::getHighBitsSet(64, 32); 1899 EXPECT_EQ(32u, i64hi32.countLeadingOnes()); 1900 EXPECT_EQ(0u, i64hi32.countLeadingZeros()); 1901 EXPECT_EQ(64u, i64hi32.getActiveBits()); 1902 EXPECT_EQ(32u, i64hi32.countTrailingZeros()); 1903 EXPECT_EQ(0u, i64hi32.countTrailingOnes()); 1904 EXPECT_EQ(32u, i64hi32.countPopulation()); 1905 } 1906 1907 TEST(APIntTest, getBitsSetFrom) { 1908 APInt i64hi31 = APInt::getBitsSetFrom(64, 33); 1909 EXPECT_EQ(31u, i64hi31.countLeadingOnes()); 1910 EXPECT_EQ(0u, i64hi31.countLeadingZeros()); 1911 EXPECT_EQ(64u, i64hi31.getActiveBits()); 1912 EXPECT_EQ(33u, i64hi31.countTrailingZeros()); 1913 EXPECT_EQ(0u, i64hi31.countTrailingOnes()); 1914 EXPECT_EQ(31u, i64hi31.countPopulation()); 1915 } 1916 1917 TEST(APIntTest, setLowBits) { 1918 APInt i64lo32(64, 0); 1919 i64lo32.setLowBits(32); 1920 EXPECT_EQ(0u, i64lo32.countLeadingOnes()); 1921 EXPECT_EQ(32u, i64lo32.countLeadingZeros()); 1922 EXPECT_EQ(32u, i64lo32.getActiveBits()); 1923 EXPECT_EQ(0u, i64lo32.countTrailingZeros()); 1924 EXPECT_EQ(32u, i64lo32.countTrailingOnes()); 1925 EXPECT_EQ(32u, i64lo32.countPopulation()); 1926 1927 APInt i128lo64(128, 0); 1928 i128lo64.setLowBits(64); 1929 EXPECT_EQ(0u, i128lo64.countLeadingOnes()); 1930 EXPECT_EQ(64u, i128lo64.countLeadingZeros()); 1931 EXPECT_EQ(64u, i128lo64.getActiveBits()); 1932 EXPECT_EQ(0u, i128lo64.countTrailingZeros()); 1933 EXPECT_EQ(64u, i128lo64.countTrailingOnes()); 1934 EXPECT_EQ(64u, i128lo64.countPopulation()); 1935 1936 APInt i128lo24(128, 0); 1937 i128lo24.setLowBits(24); 1938 EXPECT_EQ(0u, i128lo24.countLeadingOnes()); 1939 EXPECT_EQ(104u, i128lo24.countLeadingZeros()); 1940 EXPECT_EQ(24u, i128lo24.getActiveBits()); 1941 EXPECT_EQ(0u, i128lo24.countTrailingZeros()); 1942 EXPECT_EQ(24u, i128lo24.countTrailingOnes()); 1943 EXPECT_EQ(24u, i128lo24.countPopulation()); 1944 1945 APInt i128lo104(128, 0); 1946 i128lo104.setLowBits(104); 1947 EXPECT_EQ(0u, i128lo104.countLeadingOnes()); 1948 EXPECT_EQ(24u, i128lo104.countLeadingZeros()); 1949 EXPECT_EQ(104u, i128lo104.getActiveBits()); 1950 EXPECT_EQ(0u, i128lo104.countTrailingZeros()); 1951 EXPECT_EQ(104u, i128lo104.countTrailingOnes()); 1952 EXPECT_EQ(104u, i128lo104.countPopulation()); 1953 1954 APInt i128lo0(128, 0); 1955 i128lo0.setLowBits(0); 1956 EXPECT_EQ(0u, i128lo0.countLeadingOnes()); 1957 EXPECT_EQ(128u, i128lo0.countLeadingZeros()); 1958 EXPECT_EQ(0u, i128lo0.getActiveBits()); 1959 EXPECT_EQ(128u, i128lo0.countTrailingZeros()); 1960 EXPECT_EQ(0u, i128lo0.countTrailingOnes()); 1961 EXPECT_EQ(0u, i128lo0.countPopulation()); 1962 1963 APInt i80lo79(80, 0); 1964 i80lo79.setLowBits(79); 1965 EXPECT_EQ(0u, i80lo79.countLeadingOnes()); 1966 EXPECT_EQ(1u, i80lo79.countLeadingZeros()); 1967 EXPECT_EQ(79u, i80lo79.getActiveBits()); 1968 EXPECT_EQ(0u, i80lo79.countTrailingZeros()); 1969 EXPECT_EQ(79u, i80lo79.countTrailingOnes()); 1970 EXPECT_EQ(79u, i80lo79.countPopulation()); 1971 } 1972 1973 TEST(APIntTest, setHighBits) { 1974 APInt i64hi32(64, 0); 1975 i64hi32.setHighBits(32); 1976 EXPECT_EQ(32u, i64hi32.countLeadingOnes()); 1977 EXPECT_EQ(0u, i64hi32.countLeadingZeros()); 1978 EXPECT_EQ(64u, i64hi32.getActiveBits()); 1979 EXPECT_EQ(32u, i64hi32.countTrailingZeros()); 1980 EXPECT_EQ(0u, i64hi32.countTrailingOnes()); 1981 EXPECT_EQ(32u, i64hi32.countPopulation()); 1982 1983 APInt i128hi64(128, 0); 1984 i128hi64.setHighBits(64); 1985 EXPECT_EQ(64u, i128hi64.countLeadingOnes()); 1986 EXPECT_EQ(0u, i128hi64.countLeadingZeros()); 1987 EXPECT_EQ(128u, i128hi64.getActiveBits()); 1988 EXPECT_EQ(64u, i128hi64.countTrailingZeros()); 1989 EXPECT_EQ(0u, i128hi64.countTrailingOnes()); 1990 EXPECT_EQ(64u, i128hi64.countPopulation()); 1991 1992 APInt i128hi24(128, 0); 1993 i128hi24.setHighBits(24); 1994 EXPECT_EQ(24u, i128hi24.countLeadingOnes()); 1995 EXPECT_EQ(0u, i128hi24.countLeadingZeros()); 1996 EXPECT_EQ(128u, i128hi24.getActiveBits()); 1997 EXPECT_EQ(104u, i128hi24.countTrailingZeros()); 1998 EXPECT_EQ(0u, i128hi24.countTrailingOnes()); 1999 EXPECT_EQ(24u, i128hi24.countPopulation()); 2000 2001 APInt i128hi104(128, 0); 2002 i128hi104.setHighBits(104); 2003 EXPECT_EQ(104u, i128hi104.countLeadingOnes()); 2004 EXPECT_EQ(0u, i128hi104.countLeadingZeros()); 2005 EXPECT_EQ(128u, i128hi104.getActiveBits()); 2006 EXPECT_EQ(24u, i128hi104.countTrailingZeros()); 2007 EXPECT_EQ(0u, i128hi104.countTrailingOnes()); 2008 EXPECT_EQ(104u, i128hi104.countPopulation()); 2009 2010 APInt i128hi0(128, 0); 2011 i128hi0.setHighBits(0); 2012 EXPECT_EQ(0u, i128hi0.countLeadingOnes()); 2013 EXPECT_EQ(128u, i128hi0.countLeadingZeros()); 2014 EXPECT_EQ(0u, i128hi0.getActiveBits()); 2015 EXPECT_EQ(128u, i128hi0.countTrailingZeros()); 2016 EXPECT_EQ(0u, i128hi0.countTrailingOnes()); 2017 EXPECT_EQ(0u, i128hi0.countPopulation()); 2018 2019 APInt i80hi1(80, 0); 2020 i80hi1.setHighBits(1); 2021 EXPECT_EQ(1u, i80hi1.countLeadingOnes()); 2022 EXPECT_EQ(0u, i80hi1.countLeadingZeros()); 2023 EXPECT_EQ(80u, i80hi1.getActiveBits()); 2024 EXPECT_EQ(79u, i80hi1.countTrailingZeros()); 2025 EXPECT_EQ(0u, i80hi1.countTrailingOnes()); 2026 EXPECT_EQ(1u, i80hi1.countPopulation()); 2027 2028 APInt i32hi16(32, 0); 2029 i32hi16.setHighBits(16); 2030 EXPECT_EQ(16u, i32hi16.countLeadingOnes()); 2031 EXPECT_EQ(0u, i32hi16.countLeadingZeros()); 2032 EXPECT_EQ(32u, i32hi16.getActiveBits()); 2033 EXPECT_EQ(16u, i32hi16.countTrailingZeros()); 2034 EXPECT_EQ(0u, i32hi16.countTrailingOnes()); 2035 EXPECT_EQ(16u, i32hi16.countPopulation()); 2036 } 2037 2038 TEST(APIntTest, setBitsFrom) { 2039 APInt i64from63(64, 0); 2040 i64from63.setBitsFrom(63); 2041 EXPECT_EQ(1u, i64from63.countLeadingOnes()); 2042 EXPECT_EQ(0u, i64from63.countLeadingZeros()); 2043 EXPECT_EQ(64u, i64from63.getActiveBits()); 2044 EXPECT_EQ(63u, i64from63.countTrailingZeros()); 2045 EXPECT_EQ(0u, i64from63.countTrailingOnes()); 2046 EXPECT_EQ(1u, i64from63.countPopulation()); 2047 } 2048 2049 TEST(APIntTest, setAllBits) { 2050 APInt i32(32, 0); 2051 i32.setAllBits(); 2052 EXPECT_EQ(32u, i32.countLeadingOnes()); 2053 EXPECT_EQ(0u, i32.countLeadingZeros()); 2054 EXPECT_EQ(32u, i32.getActiveBits()); 2055 EXPECT_EQ(0u, i32.countTrailingZeros()); 2056 EXPECT_EQ(32u, i32.countTrailingOnes()); 2057 EXPECT_EQ(32u, i32.countPopulation()); 2058 2059 APInt i64(64, 0); 2060 i64.setAllBits(); 2061 EXPECT_EQ(64u, i64.countLeadingOnes()); 2062 EXPECT_EQ(0u, i64.countLeadingZeros()); 2063 EXPECT_EQ(64u, i64.getActiveBits()); 2064 EXPECT_EQ(0u, i64.countTrailingZeros()); 2065 EXPECT_EQ(64u, i64.countTrailingOnes()); 2066 EXPECT_EQ(64u, i64.countPopulation()); 2067 2068 APInt i96(96, 0); 2069 i96.setAllBits(); 2070 EXPECT_EQ(96u, i96.countLeadingOnes()); 2071 EXPECT_EQ(0u, i96.countLeadingZeros()); 2072 EXPECT_EQ(96u, i96.getActiveBits()); 2073 EXPECT_EQ(0u, i96.countTrailingZeros()); 2074 EXPECT_EQ(96u, i96.countTrailingOnes()); 2075 EXPECT_EQ(96u, i96.countPopulation()); 2076 2077 APInt i128(128, 0); 2078 i128.setAllBits(); 2079 EXPECT_EQ(128u, i128.countLeadingOnes()); 2080 EXPECT_EQ(0u, i128.countLeadingZeros()); 2081 EXPECT_EQ(128u, i128.getActiveBits()); 2082 EXPECT_EQ(0u, i128.countTrailingZeros()); 2083 EXPECT_EQ(128u, i128.countTrailingOnes()); 2084 EXPECT_EQ(128u, i128.countPopulation()); 2085 } 2086 2087 TEST(APIntTest, getLoBits) { 2088 APInt i32(32, 0xfa); 2089 i32.setHighBits(1); 2090 EXPECT_EQ(0xa, i32.getLoBits(4)); 2091 APInt i128(128, 0xfa); 2092 i128.setHighBits(1); 2093 EXPECT_EQ(0xa, i128.getLoBits(4)); 2094 } 2095 2096 TEST(APIntTest, getHiBits) { 2097 APInt i32(32, 0xfa); 2098 i32.setHighBits(2); 2099 EXPECT_EQ(0xc, i32.getHiBits(4)); 2100 APInt i128(128, 0xfa); 2101 i128.setHighBits(2); 2102 EXPECT_EQ(0xc, i128.getHiBits(4)); 2103 } 2104 2105 TEST(APIntTest, GCD) { 2106 using APIntOps::GreatestCommonDivisor; 2107 2108 for (unsigned Bits : {1, 2, 32, 63, 64, 65}) { 2109 // Test some corner cases near zero. 2110 APInt Zero(Bits, 0), One(Bits, 1); 2111 EXPECT_EQ(GreatestCommonDivisor(Zero, Zero), Zero); 2112 EXPECT_EQ(GreatestCommonDivisor(Zero, One), One); 2113 EXPECT_EQ(GreatestCommonDivisor(One, Zero), One); 2114 EXPECT_EQ(GreatestCommonDivisor(One, One), One); 2115 2116 if (Bits > 1) { 2117 APInt Two(Bits, 2); 2118 EXPECT_EQ(GreatestCommonDivisor(Zero, Two), Two); 2119 EXPECT_EQ(GreatestCommonDivisor(One, Two), One); 2120 EXPECT_EQ(GreatestCommonDivisor(Two, Two), Two); 2121 2122 // Test some corner cases near the highest representable value. 2123 APInt Max(Bits, 0); 2124 Max.setAllBits(); 2125 EXPECT_EQ(GreatestCommonDivisor(Zero, Max), Max); 2126 EXPECT_EQ(GreatestCommonDivisor(One, Max), One); 2127 EXPECT_EQ(GreatestCommonDivisor(Two, Max), One); 2128 EXPECT_EQ(GreatestCommonDivisor(Max, Max), Max); 2129 2130 APInt MaxOver2 = Max.udiv(Two); 2131 EXPECT_EQ(GreatestCommonDivisor(MaxOver2, Max), One); 2132 // Max - 1 == Max / 2 * 2, because Max is odd. 2133 EXPECT_EQ(GreatestCommonDivisor(MaxOver2, Max - 1), MaxOver2); 2134 } 2135 } 2136 2137 // Compute the 20th Mersenne prime. 2138 const unsigned BitWidth = 4450; 2139 APInt HugePrime = APInt::getLowBitsSet(BitWidth, 4423); 2140 2141 // 9931 and 123456 are coprime. 2142 APInt A = HugePrime * APInt(BitWidth, 9931); 2143 APInt B = HugePrime * APInt(BitWidth, 123456); 2144 APInt C = GreatestCommonDivisor(A, B); 2145 EXPECT_EQ(C, HugePrime); 2146 } 2147 2148 TEST(APIntTest, LogicalRightShift) { 2149 APInt i256(APInt::getHighBitsSet(256, 2)); 2150 2151 i256.lshrInPlace(1); 2152 EXPECT_EQ(1U, i256.countLeadingZeros()); 2153 EXPECT_EQ(253U, i256.countTrailingZeros()); 2154 EXPECT_EQ(2U, i256.countPopulation()); 2155 2156 i256.lshrInPlace(62); 2157 EXPECT_EQ(63U, i256.countLeadingZeros()); 2158 EXPECT_EQ(191U, i256.countTrailingZeros()); 2159 EXPECT_EQ(2U, i256.countPopulation()); 2160 2161 i256.lshrInPlace(65); 2162 EXPECT_EQ(128U, i256.countLeadingZeros()); 2163 EXPECT_EQ(126U, i256.countTrailingZeros()); 2164 EXPECT_EQ(2U, i256.countPopulation()); 2165 2166 i256.lshrInPlace(64); 2167 EXPECT_EQ(192U, i256.countLeadingZeros()); 2168 EXPECT_EQ(62U, i256.countTrailingZeros()); 2169 EXPECT_EQ(2U, i256.countPopulation()); 2170 2171 i256.lshrInPlace(63); 2172 EXPECT_EQ(255U, i256.countLeadingZeros()); 2173 EXPECT_EQ(0U, i256.countTrailingZeros()); 2174 EXPECT_EQ(1U, i256.countPopulation()); 2175 2176 // Ensure we handle large shifts of multi-word. 2177 const APInt neg_one(128, static_cast<uint64_t>(-1), true); 2178 EXPECT_EQ(0, neg_one.lshr(128)); 2179 } 2180 2181 TEST(APIntTest, ArithmeticRightShift) { 2182 APInt i72(APInt::getHighBitsSet(72, 1)); 2183 i72.ashrInPlace(46); 2184 EXPECT_EQ(47U, i72.countLeadingOnes()); 2185 EXPECT_EQ(25U, i72.countTrailingZeros()); 2186 EXPECT_EQ(47U, i72.countPopulation()); 2187 2188 i72 = APInt::getHighBitsSet(72, 1); 2189 i72.ashrInPlace(64); 2190 EXPECT_EQ(65U, i72.countLeadingOnes()); 2191 EXPECT_EQ(7U, i72.countTrailingZeros()); 2192 EXPECT_EQ(65U, i72.countPopulation()); 2193 2194 APInt i128(APInt::getHighBitsSet(128, 1)); 2195 i128.ashrInPlace(64); 2196 EXPECT_EQ(65U, i128.countLeadingOnes()); 2197 EXPECT_EQ(63U, i128.countTrailingZeros()); 2198 EXPECT_EQ(65U, i128.countPopulation()); 2199 2200 // Ensure we handle large shifts of multi-word. 2201 const APInt signmin32(APInt::getSignedMinValue(32)); 2202 EXPECT_TRUE(signmin32.ashr(32).isAllOnesValue()); 2203 2204 // Ensure we handle large shifts of multi-word. 2205 const APInt umax32(APInt::getSignedMaxValue(32)); 2206 EXPECT_EQ(0, umax32.ashr(32)); 2207 2208 // Ensure we handle large shifts of multi-word. 2209 const APInt signmin128(APInt::getSignedMinValue(128)); 2210 EXPECT_TRUE(signmin128.ashr(128).isAllOnesValue()); 2211 2212 // Ensure we handle large shifts of multi-word. 2213 const APInt umax128(APInt::getSignedMaxValue(128)); 2214 EXPECT_EQ(0, umax128.ashr(128)); 2215 } 2216 2217 TEST(APIntTest, LeftShift) { 2218 APInt i256(APInt::getLowBitsSet(256, 2)); 2219 2220 i256 <<= 1; 2221 EXPECT_EQ(253U, i256.countLeadingZeros()); 2222 EXPECT_EQ(1U, i256.countTrailingZeros()); 2223 EXPECT_EQ(2U, i256.countPopulation()); 2224 2225 i256 <<= 62; 2226 EXPECT_EQ(191U, i256.countLeadingZeros()); 2227 EXPECT_EQ(63U, i256.countTrailingZeros()); 2228 EXPECT_EQ(2U, i256.countPopulation()); 2229 2230 i256 <<= 65; 2231 EXPECT_EQ(126U, i256.countLeadingZeros()); 2232 EXPECT_EQ(128U, i256.countTrailingZeros()); 2233 EXPECT_EQ(2U, i256.countPopulation()); 2234 2235 i256 <<= 64; 2236 EXPECT_EQ(62U, i256.countLeadingZeros()); 2237 EXPECT_EQ(192U, i256.countTrailingZeros()); 2238 EXPECT_EQ(2U, i256.countPopulation()); 2239 2240 i256 <<= 63; 2241 EXPECT_EQ(0U, i256.countLeadingZeros()); 2242 EXPECT_EQ(255U, i256.countTrailingZeros()); 2243 EXPECT_EQ(1U, i256.countPopulation()); 2244 2245 // Ensure we handle large shifts of multi-word. 2246 const APInt neg_one(128, static_cast<uint64_t>(-1), true); 2247 EXPECT_EQ(0, neg_one.shl(128)); 2248 } 2249 2250 TEST(APIntTest, isSubsetOf) { 2251 APInt i32_1(32, 1); 2252 APInt i32_2(32, 2); 2253 APInt i32_3(32, 3); 2254 EXPECT_FALSE(i32_3.isSubsetOf(i32_1)); 2255 EXPECT_TRUE(i32_1.isSubsetOf(i32_3)); 2256 EXPECT_FALSE(i32_2.isSubsetOf(i32_1)); 2257 EXPECT_FALSE(i32_1.isSubsetOf(i32_2)); 2258 EXPECT_TRUE(i32_3.isSubsetOf(i32_3)); 2259 2260 APInt i128_1(128, 1); 2261 APInt i128_2(128, 2); 2262 APInt i128_3(128, 3); 2263 EXPECT_FALSE(i128_3.isSubsetOf(i128_1)); 2264 EXPECT_TRUE(i128_1.isSubsetOf(i128_3)); 2265 EXPECT_FALSE(i128_2.isSubsetOf(i128_1)); 2266 EXPECT_FALSE(i128_1.isSubsetOf(i128_2)); 2267 EXPECT_TRUE(i128_3.isSubsetOf(i128_3)); 2268 2269 i128_1 <<= 64; 2270 i128_2 <<= 64; 2271 i128_3 <<= 64; 2272 EXPECT_FALSE(i128_3.isSubsetOf(i128_1)); 2273 EXPECT_TRUE(i128_1.isSubsetOf(i128_3)); 2274 EXPECT_FALSE(i128_2.isSubsetOf(i128_1)); 2275 EXPECT_FALSE(i128_1.isSubsetOf(i128_2)); 2276 EXPECT_TRUE(i128_3.isSubsetOf(i128_3)); 2277 } 2278 2279 TEST(APIntTest, sext) { 2280 EXPECT_EQ(0, APInt(1, 0).sext(64)); 2281 EXPECT_EQ(~uint64_t(0), APInt(1, 1).sext(64)); 2282 2283 APInt i32_max(APInt::getSignedMaxValue(32).sext(63)); 2284 EXPECT_EQ(32U, i32_max.countLeadingZeros()); 2285 EXPECT_EQ(0U, i32_max.countTrailingZeros()); 2286 EXPECT_EQ(31U, i32_max.countPopulation()); 2287 2288 APInt i32_min(APInt::getSignedMinValue(32).sext(63)); 2289 EXPECT_EQ(32U, i32_min.countLeadingOnes()); 2290 EXPECT_EQ(31U, i32_min.countTrailingZeros()); 2291 EXPECT_EQ(32U, i32_min.countPopulation()); 2292 2293 APInt i32_neg1(APInt(32, ~uint64_t(0)).sext(63)); 2294 EXPECT_EQ(63U, i32_neg1.countLeadingOnes()); 2295 EXPECT_EQ(0U, i32_neg1.countTrailingZeros()); 2296 EXPECT_EQ(63U, i32_neg1.countPopulation()); 2297 } 2298 2299 TEST(APIntTest, multiply) { 2300 APInt i64(64, 1234); 2301 2302 EXPECT_EQ(7006652, i64 * 5678); 2303 EXPECT_EQ(7006652, 5678 * i64); 2304 2305 APInt i128 = APInt::getOneBitSet(128, 64); 2306 APInt i128_1234(128, 1234); 2307 i128_1234 <<= 64; 2308 EXPECT_EQ(i128_1234, i128 * 1234); 2309 EXPECT_EQ(i128_1234, 1234 * i128); 2310 2311 APInt i96 = APInt::getOneBitSet(96, 64); 2312 i96 *= ~0ULL; 2313 EXPECT_EQ(32U, i96.countLeadingOnes()); 2314 EXPECT_EQ(32U, i96.countPopulation()); 2315 EXPECT_EQ(64U, i96.countTrailingZeros()); 2316 } 2317 2318 TEST(APIntTest, RoundingUDiv) { 2319 for (uint64_t Ai = 1; Ai <= 255; Ai++) { 2320 APInt A(8, Ai); 2321 APInt Zero(8, 0); 2322 EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::UP)); 2323 EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::DOWN)); 2324 EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::TOWARD_ZERO)); 2325 2326 for (uint64_t Bi = 1; Bi <= 255; Bi++) { 2327 APInt B(8, Bi); 2328 { 2329 APInt Quo = APIntOps::RoundingUDiv(A, B, APInt::Rounding::UP); 2330 auto Prod = Quo.zext(16) * B.zext(16); 2331 EXPECT_TRUE(Prod.uge(Ai)); 2332 if (Prod.ugt(Ai)) { 2333 EXPECT_TRUE(((Quo - 1).zext(16) * B.zext(16)).ult(Ai)); 2334 } 2335 } 2336 { 2337 APInt Quo = A.udiv(B); 2338 EXPECT_EQ(Quo, APIntOps::RoundingUDiv(A, B, APInt::Rounding::TOWARD_ZERO)); 2339 EXPECT_EQ(Quo, APIntOps::RoundingUDiv(A, B, APInt::Rounding::DOWN)); 2340 } 2341 } 2342 } 2343 } 2344 2345 TEST(APIntTest, RoundingSDiv) { 2346 for (int64_t Ai = -128; Ai <= 127; Ai++) { 2347 APInt A(8, Ai); 2348 2349 if (Ai != 0) { 2350 APInt Zero(8, 0); 2351 EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::UP)); 2352 EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::DOWN)); 2353 EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::TOWARD_ZERO)); 2354 } 2355 2356 for (uint64_t Bi = -128; Bi <= 127; Bi++) { 2357 if (Bi == 0) 2358 continue; 2359 2360 APInt B(8, Bi); 2361 { 2362 APInt Quo = APIntOps::RoundingSDiv(A, B, APInt::Rounding::UP); 2363 auto Prod = Quo.sext(16) * B.sext(16); 2364 EXPECT_TRUE(Prod.uge(A)); 2365 if (Prod.ugt(A)) { 2366 EXPECT_TRUE(((Quo - 1).sext(16) * B.sext(16)).ult(A)); 2367 } 2368 } 2369 { 2370 APInt Quo = APIntOps::RoundingSDiv(A, B, APInt::Rounding::DOWN); 2371 auto Prod = Quo.sext(16) * B.sext(16); 2372 EXPECT_TRUE(Prod.ule(A)); 2373 if (Prod.ult(A)) { 2374 EXPECT_TRUE(((Quo + 1).sext(16) * B.sext(16)).ugt(A)); 2375 } 2376 } 2377 { 2378 APInt Quo = A.sdiv(B); 2379 EXPECT_EQ(Quo, APIntOps::RoundingSDiv(A, B, APInt::Rounding::TOWARD_ZERO)); 2380 } 2381 } 2382 } 2383 } 2384 2385 TEST(APIntTest, SolveQuadraticEquationWrap) { 2386 // Verify that "Solution" is the first non-negative integer that solves 2387 // Ax^2 + Bx + C = "0 or overflow", i.e. that it is a correct solution 2388 // as calculated by SolveQuadraticEquationWrap. 2389 auto Validate = [] (int A, int B, int C, unsigned Width, int Solution) { 2390 int Mask = (1 << Width) - 1; 2391 2392 // Solution should be non-negative. 2393 EXPECT_GE(Solution, 0); 2394 2395 auto OverflowBits = [] (int64_t V, unsigned W) { 2396 return V & -(1 << W); 2397 }; 2398 2399 int64_t Over0 = OverflowBits(C, Width); 2400 2401 auto IsZeroOrOverflow = [&] (int X) { 2402 int64_t ValueAtX = A*X*X + B*X + C; 2403 int64_t OverX = OverflowBits(ValueAtX, Width); 2404 return (ValueAtX & Mask) == 0 || OverX != Over0; 2405 }; 2406 2407 auto EquationToString = [&] (const char *X_str) { 2408 return (Twine(A) + Twine(X_str) + Twine("^2 + ") + Twine(B) + 2409 Twine(X_str) + Twine(" + ") + Twine(C) + Twine(", bitwidth: ") + 2410 Twine(Width)).str(); 2411 }; 2412 2413 auto IsSolution = [&] (const char *X_str, int X) { 2414 if (IsZeroOrOverflow(X)) 2415 return ::testing::AssertionSuccess() 2416 << X << " is a solution of " << EquationToString(X_str); 2417 return ::testing::AssertionFailure() 2418 << X << " is not an expected solution of " 2419 << EquationToString(X_str); 2420 }; 2421 2422 auto IsNotSolution = [&] (const char *X_str, int X) { 2423 if (!IsZeroOrOverflow(X)) 2424 return ::testing::AssertionSuccess() 2425 << X << " is not a solution of " << EquationToString(X_str); 2426 return ::testing::AssertionFailure() 2427 << X << " is an unexpected solution of " 2428 << EquationToString(X_str); 2429 }; 2430 2431 // This is the important part: make sure that there is no solution that 2432 // is less than the calculated one. 2433 if (Solution > 0) { 2434 for (int X = 1; X < Solution-1; ++X) 2435 EXPECT_PRED_FORMAT1(IsNotSolution, X); 2436 } 2437 2438 // Verify that the calculated solution is indeed a solution. 2439 EXPECT_PRED_FORMAT1(IsSolution, Solution); 2440 }; 2441 2442 // Generate all possible quadratic equations with Width-bit wide integer 2443 // coefficients, get the solution from SolveQuadraticEquationWrap, and 2444 // verify that the solution is correct. 2445 auto Iterate = [&] (unsigned Width) { 2446 assert(1 < Width && Width < 32); 2447 int Low = -(1 << (Width-1)); 2448 int High = (1 << (Width-1)); 2449 2450 for (int A = Low; A != High; ++A) { 2451 if (A == 0) 2452 continue; 2453 for (int B = Low; B != High; ++B) { 2454 for (int C = Low; C != High; ++C) { 2455 Optional<APInt> S = APIntOps::SolveQuadraticEquationWrap( 2456 APInt(Width, A), APInt(Width, B), 2457 APInt(Width, C), Width); 2458 if (S.hasValue()) 2459 Validate(A, B, C, Width, S->getSExtValue()); 2460 } 2461 } 2462 } 2463 }; 2464 2465 // Test all widths in [2..6]. 2466 for (unsigned i = 2; i <= 6; ++i) 2467 Iterate(i); 2468 } 2469 2470 } // end anonymous namespace 2471