1 //===- llvm/unittest/ADT/APInt.cpp - APInt unit tests ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/APInt.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/Twine.h" 13 #include "gtest/gtest.h" 14 #include <array> 15 16 using namespace llvm; 17 18 namespace { 19 20 TEST(APIntTest, ValueInit) { 21 APInt Zero = APInt(); 22 EXPECT_TRUE(!Zero); 23 EXPECT_TRUE(!Zero.zext(64)); 24 EXPECT_TRUE(!Zero.sext(64)); 25 } 26 27 // Test that APInt shift left works when bitwidth > 64 and shiftamt == 0 28 TEST(APIntTest, ShiftLeftByZero) { 29 APInt One = APInt::getNullValue(65) + 1; 30 APInt Shl = One.shl(0); 31 EXPECT_TRUE(Shl[0]); 32 EXPECT_FALSE(Shl[1]); 33 } 34 35 TEST(APIntTest, i64_ArithmeticRightShiftNegative) { 36 const APInt neg_one(64, static_cast<uint64_t>(-1), true); 37 EXPECT_EQ(neg_one, neg_one.ashr(7)); 38 } 39 40 TEST(APIntTest, i128_NegativeCount) { 41 APInt Minus3(128, static_cast<uint64_t>(-3), true); 42 EXPECT_EQ(126u, Minus3.countLeadingOnes()); 43 EXPECT_EQ(-3, Minus3.getSExtValue()); 44 45 APInt Minus1(128, static_cast<uint64_t>(-1), true); 46 EXPECT_EQ(0u, Minus1.countLeadingZeros()); 47 EXPECT_EQ(128u, Minus1.countLeadingOnes()); 48 EXPECT_EQ(128u, Minus1.getActiveBits()); 49 EXPECT_EQ(0u, Minus1.countTrailingZeros()); 50 EXPECT_EQ(128u, Minus1.countTrailingOnes()); 51 EXPECT_EQ(128u, Minus1.countPopulation()); 52 EXPECT_EQ(-1, Minus1.getSExtValue()); 53 } 54 55 TEST(APIntTest, i33_Count) { 56 APInt i33minus2(33, static_cast<uint64_t>(-2), true); 57 EXPECT_EQ(0u, i33minus2.countLeadingZeros()); 58 EXPECT_EQ(32u, i33minus2.countLeadingOnes()); 59 EXPECT_EQ(33u, i33minus2.getActiveBits()); 60 EXPECT_EQ(1u, i33minus2.countTrailingZeros()); 61 EXPECT_EQ(32u, i33minus2.countPopulation()); 62 EXPECT_EQ(-2, i33minus2.getSExtValue()); 63 EXPECT_EQ(((uint64_t)-2)&((1ull<<33) -1), i33minus2.getZExtValue()); 64 } 65 66 TEST(APIntTest, i61_Count) { 67 APInt i61(61, 1 << 15); 68 EXPECT_EQ(45u, i61.countLeadingZeros()); 69 EXPECT_EQ(0u, i61.countLeadingOnes()); 70 EXPECT_EQ(16u, i61.getActiveBits()); 71 EXPECT_EQ(15u, i61.countTrailingZeros()); 72 EXPECT_EQ(1u, i61.countPopulation()); 73 EXPECT_EQ(static_cast<int64_t>(1 << 15), i61.getSExtValue()); 74 EXPECT_EQ(static_cast<uint64_t>(1 << 15), i61.getZExtValue()); 75 76 i61.setBits(8, 19); 77 EXPECT_EQ(42u, i61.countLeadingZeros()); 78 EXPECT_EQ(0u, i61.countLeadingOnes()); 79 EXPECT_EQ(19u, i61.getActiveBits()); 80 EXPECT_EQ(8u, i61.countTrailingZeros()); 81 EXPECT_EQ(11u, i61.countPopulation()); 82 EXPECT_EQ(static_cast<int64_t>((1 << 19) - (1 << 8)), i61.getSExtValue()); 83 EXPECT_EQ(static_cast<uint64_t>((1 << 19) - (1 << 8)), i61.getZExtValue()); 84 } 85 86 TEST(APIntTest, i65_Count) { 87 APInt i65(65, 0, true); 88 EXPECT_EQ(65u, i65.countLeadingZeros()); 89 EXPECT_EQ(0u, i65.countLeadingOnes()); 90 EXPECT_EQ(0u, i65.getActiveBits()); 91 EXPECT_EQ(1u, i65.getActiveWords()); 92 EXPECT_EQ(65u, i65.countTrailingZeros()); 93 EXPECT_EQ(0u, i65.countPopulation()); 94 95 APInt i65minus(65, 0, true); 96 i65minus.setBit(64); 97 EXPECT_EQ(0u, i65minus.countLeadingZeros()); 98 EXPECT_EQ(1u, i65minus.countLeadingOnes()); 99 EXPECT_EQ(65u, i65minus.getActiveBits()); 100 EXPECT_EQ(64u, i65minus.countTrailingZeros()); 101 EXPECT_EQ(1u, i65minus.countPopulation()); 102 } 103 104 TEST(APIntTest, i128_PositiveCount) { 105 APInt u128max = APInt::getAllOnesValue(128); 106 EXPECT_EQ(128u, u128max.countLeadingOnes()); 107 EXPECT_EQ(0u, u128max.countLeadingZeros()); 108 EXPECT_EQ(128u, u128max.getActiveBits()); 109 EXPECT_EQ(0u, u128max.countTrailingZeros()); 110 EXPECT_EQ(128u, u128max.countTrailingOnes()); 111 EXPECT_EQ(128u, u128max.countPopulation()); 112 113 APInt u64max(128, static_cast<uint64_t>(-1), false); 114 EXPECT_EQ(64u, u64max.countLeadingZeros()); 115 EXPECT_EQ(0u, u64max.countLeadingOnes()); 116 EXPECT_EQ(64u, u64max.getActiveBits()); 117 EXPECT_EQ(0u, u64max.countTrailingZeros()); 118 EXPECT_EQ(64u, u64max.countTrailingOnes()); 119 EXPECT_EQ(64u, u64max.countPopulation()); 120 EXPECT_EQ((uint64_t)~0ull, u64max.getZExtValue()); 121 122 APInt zero(128, 0, true); 123 EXPECT_EQ(128u, zero.countLeadingZeros()); 124 EXPECT_EQ(0u, zero.countLeadingOnes()); 125 EXPECT_EQ(0u, zero.getActiveBits()); 126 EXPECT_EQ(128u, zero.countTrailingZeros()); 127 EXPECT_EQ(0u, zero.countTrailingOnes()); 128 EXPECT_EQ(0u, zero.countPopulation()); 129 EXPECT_EQ(0u, zero.getSExtValue()); 130 EXPECT_EQ(0u, zero.getZExtValue()); 131 132 APInt one(128, 1, true); 133 EXPECT_EQ(127u, one.countLeadingZeros()); 134 EXPECT_EQ(0u, one.countLeadingOnes()); 135 EXPECT_EQ(1u, one.getActiveBits()); 136 EXPECT_EQ(0u, one.countTrailingZeros()); 137 EXPECT_EQ(1u, one.countTrailingOnes()); 138 EXPECT_EQ(1u, one.countPopulation()); 139 EXPECT_EQ(1, one.getSExtValue()); 140 EXPECT_EQ(1u, one.getZExtValue()); 141 142 APInt s128(128, 2, true); 143 EXPECT_EQ(126u, s128.countLeadingZeros()); 144 EXPECT_EQ(0u, s128.countLeadingOnes()); 145 EXPECT_EQ(2u, s128.getActiveBits()); 146 EXPECT_EQ(1u, s128.countTrailingZeros()); 147 EXPECT_EQ(0u, s128.countTrailingOnes()); 148 EXPECT_EQ(1u, s128.countPopulation()); 149 EXPECT_EQ(2, s128.getSExtValue()); 150 EXPECT_EQ(2u, s128.getZExtValue()); 151 152 // NOP Test 153 s128.setBits(42, 42); 154 EXPECT_EQ(126u, s128.countLeadingZeros()); 155 EXPECT_EQ(0u, s128.countLeadingOnes()); 156 EXPECT_EQ(2u, s128.getActiveBits()); 157 EXPECT_EQ(1u, s128.countTrailingZeros()); 158 EXPECT_EQ(0u, s128.countTrailingOnes()); 159 EXPECT_EQ(1u, s128.countPopulation()); 160 EXPECT_EQ(2, s128.getSExtValue()); 161 EXPECT_EQ(2u, s128.getZExtValue()); 162 163 s128.setBits(3, 32); 164 EXPECT_EQ(96u, s128.countLeadingZeros()); 165 EXPECT_EQ(0u, s128.countLeadingOnes()); 166 EXPECT_EQ(32u, s128.getActiveBits()); 167 EXPECT_EQ(33u, s128.getMinSignedBits()); 168 EXPECT_EQ(1u, s128.countTrailingZeros()); 169 EXPECT_EQ(0u, s128.countTrailingOnes()); 170 EXPECT_EQ(30u, s128.countPopulation()); 171 EXPECT_EQ(static_cast<uint32_t>((~0u << 3) | 2), s128.getZExtValue()); 172 173 s128.setBits(62, 128); 174 EXPECT_EQ(0u, s128.countLeadingZeros()); 175 EXPECT_EQ(66u, s128.countLeadingOnes()); 176 EXPECT_EQ(128u, s128.getActiveBits()); 177 EXPECT_EQ(63u, s128.getMinSignedBits()); 178 EXPECT_EQ(1u, s128.countTrailingZeros()); 179 EXPECT_EQ(0u, s128.countTrailingOnes()); 180 EXPECT_EQ(96u, s128.countPopulation()); 181 EXPECT_EQ(static_cast<int64_t>((3ull << 62) | 182 static_cast<uint32_t>((~0u << 3) | 2)), 183 s128.getSExtValue()); 184 } 185 186 TEST(APIntTest, i256) { 187 APInt s256(256, 15, true); 188 EXPECT_EQ(252u, s256.countLeadingZeros()); 189 EXPECT_EQ(0u, s256.countLeadingOnes()); 190 EXPECT_EQ(4u, s256.getActiveBits()); 191 EXPECT_EQ(0u, s256.countTrailingZeros()); 192 EXPECT_EQ(4u, s256.countTrailingOnes()); 193 EXPECT_EQ(4u, s256.countPopulation()); 194 EXPECT_EQ(15, s256.getSExtValue()); 195 EXPECT_EQ(15u, s256.getZExtValue()); 196 197 s256.setBits(62, 66); 198 EXPECT_EQ(190u, s256.countLeadingZeros()); 199 EXPECT_EQ(0u, s256.countLeadingOnes()); 200 EXPECT_EQ(66u, s256.getActiveBits()); 201 EXPECT_EQ(67u, s256.getMinSignedBits()); 202 EXPECT_EQ(0u, s256.countTrailingZeros()); 203 EXPECT_EQ(4u, s256.countTrailingOnes()); 204 EXPECT_EQ(8u, s256.countPopulation()); 205 206 s256.setBits(60, 256); 207 EXPECT_EQ(0u, s256.countLeadingZeros()); 208 EXPECT_EQ(196u, s256.countLeadingOnes()); 209 EXPECT_EQ(256u, s256.getActiveBits()); 210 EXPECT_EQ(61u, s256.getMinSignedBits()); 211 EXPECT_EQ(0u, s256.countTrailingZeros()); 212 EXPECT_EQ(4u, s256.countTrailingOnes()); 213 EXPECT_EQ(200u, s256.countPopulation()); 214 EXPECT_EQ(static_cast<int64_t>((~0ull << 60) | 15), s256.getSExtValue()); 215 } 216 217 TEST(APIntTest, i1) { 218 const APInt neg_two(1, static_cast<uint64_t>(-2), true); 219 const APInt neg_one(1, static_cast<uint64_t>(-1), true); 220 const APInt zero(1, 0); 221 const APInt one(1, 1); 222 const APInt two(1, 2); 223 224 EXPECT_EQ(0, neg_two.getSExtValue()); 225 EXPECT_EQ(-1, neg_one.getSExtValue()); 226 EXPECT_EQ(1u, neg_one.getZExtValue()); 227 EXPECT_EQ(0u, zero.getZExtValue()); 228 EXPECT_EQ(-1, one.getSExtValue()); 229 EXPECT_EQ(1u, one.getZExtValue()); 230 EXPECT_EQ(0u, two.getZExtValue()); 231 EXPECT_EQ(0, two.getSExtValue()); 232 233 // Basic equalities for 1-bit values. 234 EXPECT_EQ(zero, two); 235 EXPECT_EQ(zero, neg_two); 236 EXPECT_EQ(one, neg_one); 237 EXPECT_EQ(two, neg_two); 238 239 // Min/max signed values. 240 EXPECT_TRUE(zero.isMaxSignedValue()); 241 EXPECT_FALSE(one.isMaxSignedValue()); 242 EXPECT_FALSE(zero.isMinSignedValue()); 243 EXPECT_TRUE(one.isMinSignedValue()); 244 245 // Additions. 246 EXPECT_EQ(two, one + one); 247 EXPECT_EQ(zero, neg_one + one); 248 EXPECT_EQ(neg_two, neg_one + neg_one); 249 250 // Subtractions. 251 EXPECT_EQ(neg_two, neg_one - one); 252 EXPECT_EQ(two, one - neg_one); 253 EXPECT_EQ(zero, one - one); 254 255 // And 256 EXPECT_EQ(zero, zero & zero); 257 EXPECT_EQ(zero, one & zero); 258 EXPECT_EQ(zero, zero & one); 259 EXPECT_EQ(one, one & one); 260 EXPECT_EQ(zero, zero & zero); 261 EXPECT_EQ(zero, neg_one & zero); 262 EXPECT_EQ(zero, zero & neg_one); 263 EXPECT_EQ(neg_one, neg_one & neg_one); 264 265 // Or 266 EXPECT_EQ(zero, zero | zero); 267 EXPECT_EQ(one, one | zero); 268 EXPECT_EQ(one, zero | one); 269 EXPECT_EQ(one, one | one); 270 EXPECT_EQ(zero, zero | zero); 271 EXPECT_EQ(neg_one, neg_one | zero); 272 EXPECT_EQ(neg_one, zero | neg_one); 273 EXPECT_EQ(neg_one, neg_one | neg_one); 274 275 // Xor 276 EXPECT_EQ(zero, zero ^ zero); 277 EXPECT_EQ(one, one ^ zero); 278 EXPECT_EQ(one, zero ^ one); 279 EXPECT_EQ(zero, one ^ one); 280 EXPECT_EQ(zero, zero ^ zero); 281 EXPECT_EQ(neg_one, neg_one ^ zero); 282 EXPECT_EQ(neg_one, zero ^ neg_one); 283 EXPECT_EQ(zero, neg_one ^ neg_one); 284 285 // Shifts. 286 EXPECT_EQ(zero, one << one); 287 EXPECT_EQ(one, one << zero); 288 EXPECT_EQ(zero, one.shl(1)); 289 EXPECT_EQ(one, one.shl(0)); 290 EXPECT_EQ(zero, one.lshr(1)); 291 EXPECT_EQ(one, one.ashr(1)); 292 293 // Rotates. 294 EXPECT_EQ(one, one.rotl(0)); 295 EXPECT_EQ(one, one.rotl(1)); 296 EXPECT_EQ(one, one.rotr(0)); 297 EXPECT_EQ(one, one.rotr(1)); 298 299 // Multiplies. 300 EXPECT_EQ(neg_one, neg_one * one); 301 EXPECT_EQ(neg_one, one * neg_one); 302 EXPECT_EQ(one, neg_one * neg_one); 303 EXPECT_EQ(one, one * one); 304 305 // Divides. 306 EXPECT_EQ(neg_one, one.sdiv(neg_one)); 307 EXPECT_EQ(neg_one, neg_one.sdiv(one)); 308 EXPECT_EQ(one, neg_one.sdiv(neg_one)); 309 EXPECT_EQ(one, one.sdiv(one)); 310 311 EXPECT_EQ(neg_one, one.udiv(neg_one)); 312 EXPECT_EQ(neg_one, neg_one.udiv(one)); 313 EXPECT_EQ(one, neg_one.udiv(neg_one)); 314 EXPECT_EQ(one, one.udiv(one)); 315 316 // Remainders. 317 EXPECT_EQ(zero, neg_one.srem(one)); 318 EXPECT_EQ(zero, neg_one.urem(one)); 319 EXPECT_EQ(zero, one.srem(neg_one)); 320 321 // sdivrem 322 { 323 APInt q(8, 0); 324 APInt r(8, 0); 325 APInt one(8, 1); 326 APInt two(8, 2); 327 APInt nine(8, 9); 328 APInt four(8, 4); 329 330 EXPECT_EQ(nine.srem(two), one); 331 EXPECT_EQ(nine.srem(-two), one); 332 EXPECT_EQ((-nine).srem(two), -one); 333 EXPECT_EQ((-nine).srem(-two), -one); 334 335 APInt::sdivrem(nine, two, q, r); 336 EXPECT_EQ(four, q); 337 EXPECT_EQ(one, r); 338 APInt::sdivrem(-nine, two, q, r); 339 EXPECT_EQ(-four, q); 340 EXPECT_EQ(-one, r); 341 APInt::sdivrem(nine, -two, q, r); 342 EXPECT_EQ(-four, q); 343 EXPECT_EQ(one, r); 344 APInt::sdivrem(-nine, -two, q, r); 345 EXPECT_EQ(four, q); 346 EXPECT_EQ(-one, r); 347 } 348 } 349 350 TEST(APIntTest, compare) { 351 std::array<APInt, 5> testVals{{ 352 APInt{16, 2}, 353 APInt{16, 1}, 354 APInt{16, 0}, 355 APInt{16, (uint64_t)-1, true}, 356 APInt{16, (uint64_t)-2, true}, 357 }}; 358 359 for (auto &arg1 : testVals) 360 for (auto &arg2 : testVals) { 361 auto uv1 = arg1.getZExtValue(); 362 auto uv2 = arg2.getZExtValue(); 363 auto sv1 = arg1.getSExtValue(); 364 auto sv2 = arg2.getSExtValue(); 365 366 EXPECT_EQ(uv1 < uv2, arg1.ult(arg2)); 367 EXPECT_EQ(uv1 <= uv2, arg1.ule(arg2)); 368 EXPECT_EQ(uv1 > uv2, arg1.ugt(arg2)); 369 EXPECT_EQ(uv1 >= uv2, arg1.uge(arg2)); 370 371 EXPECT_EQ(sv1 < sv2, arg1.slt(arg2)); 372 EXPECT_EQ(sv1 <= sv2, arg1.sle(arg2)); 373 EXPECT_EQ(sv1 > sv2, arg1.sgt(arg2)); 374 EXPECT_EQ(sv1 >= sv2, arg1.sge(arg2)); 375 376 EXPECT_EQ(uv1 < uv2, arg1.ult(uv2)); 377 EXPECT_EQ(uv1 <= uv2, arg1.ule(uv2)); 378 EXPECT_EQ(uv1 > uv2, arg1.ugt(uv2)); 379 EXPECT_EQ(uv1 >= uv2, arg1.uge(uv2)); 380 381 EXPECT_EQ(sv1 < sv2, arg1.slt(sv2)); 382 EXPECT_EQ(sv1 <= sv2, arg1.sle(sv2)); 383 EXPECT_EQ(sv1 > sv2, arg1.sgt(sv2)); 384 EXPECT_EQ(sv1 >= sv2, arg1.sge(sv2)); 385 } 386 } 387 388 TEST(APIntTest, compareWithRawIntegers) { 389 EXPECT_TRUE(!APInt(8, 1).uge(256)); 390 EXPECT_TRUE(!APInt(8, 1).ugt(256)); 391 EXPECT_TRUE( APInt(8, 1).ule(256)); 392 EXPECT_TRUE( APInt(8, 1).ult(256)); 393 EXPECT_TRUE(!APInt(8, 1).sge(256)); 394 EXPECT_TRUE(!APInt(8, 1).sgt(256)); 395 EXPECT_TRUE( APInt(8, 1).sle(256)); 396 EXPECT_TRUE( APInt(8, 1).slt(256)); 397 EXPECT_TRUE(!(APInt(8, 0) == 256)); 398 EXPECT_TRUE( APInt(8, 0) != 256); 399 EXPECT_TRUE(!(APInt(8, 1) == 256)); 400 EXPECT_TRUE( APInt(8, 1) != 256); 401 402 auto uint64max = UINT64_MAX; 403 auto int64max = INT64_MAX; 404 auto int64min = INT64_MIN; 405 406 auto u64 = APInt{128, uint64max}; 407 auto s64 = APInt{128, static_cast<uint64_t>(int64max), true}; 408 auto big = u64 + 1; 409 410 EXPECT_TRUE( u64.uge(uint64max)); 411 EXPECT_TRUE(!u64.ugt(uint64max)); 412 EXPECT_TRUE( u64.ule(uint64max)); 413 EXPECT_TRUE(!u64.ult(uint64max)); 414 EXPECT_TRUE( u64.sge(int64max)); 415 EXPECT_TRUE( u64.sgt(int64max)); 416 EXPECT_TRUE(!u64.sle(int64max)); 417 EXPECT_TRUE(!u64.slt(int64max)); 418 EXPECT_TRUE( u64.sge(int64min)); 419 EXPECT_TRUE( u64.sgt(int64min)); 420 EXPECT_TRUE(!u64.sle(int64min)); 421 EXPECT_TRUE(!u64.slt(int64min)); 422 423 EXPECT_TRUE(u64 == uint64max); 424 EXPECT_TRUE(u64 != int64max); 425 EXPECT_TRUE(u64 != int64min); 426 427 EXPECT_TRUE(!s64.uge(uint64max)); 428 EXPECT_TRUE(!s64.ugt(uint64max)); 429 EXPECT_TRUE( s64.ule(uint64max)); 430 EXPECT_TRUE( s64.ult(uint64max)); 431 EXPECT_TRUE( s64.sge(int64max)); 432 EXPECT_TRUE(!s64.sgt(int64max)); 433 EXPECT_TRUE( s64.sle(int64max)); 434 EXPECT_TRUE(!s64.slt(int64max)); 435 EXPECT_TRUE( s64.sge(int64min)); 436 EXPECT_TRUE( s64.sgt(int64min)); 437 EXPECT_TRUE(!s64.sle(int64min)); 438 EXPECT_TRUE(!s64.slt(int64min)); 439 440 EXPECT_TRUE(s64 != uint64max); 441 EXPECT_TRUE(s64 == int64max); 442 EXPECT_TRUE(s64 != int64min); 443 444 EXPECT_TRUE( big.uge(uint64max)); 445 EXPECT_TRUE( big.ugt(uint64max)); 446 EXPECT_TRUE(!big.ule(uint64max)); 447 EXPECT_TRUE(!big.ult(uint64max)); 448 EXPECT_TRUE( big.sge(int64max)); 449 EXPECT_TRUE( big.sgt(int64max)); 450 EXPECT_TRUE(!big.sle(int64max)); 451 EXPECT_TRUE(!big.slt(int64max)); 452 EXPECT_TRUE( big.sge(int64min)); 453 EXPECT_TRUE( big.sgt(int64min)); 454 EXPECT_TRUE(!big.sle(int64min)); 455 EXPECT_TRUE(!big.slt(int64min)); 456 457 EXPECT_TRUE(big != uint64max); 458 EXPECT_TRUE(big != int64max); 459 EXPECT_TRUE(big != int64min); 460 } 461 462 TEST(APIntTest, compareWithInt64Min) { 463 int64_t edge = INT64_MIN; 464 int64_t edgeP1 = edge + 1; 465 int64_t edgeM1 = INT64_MAX; 466 auto a = APInt{64, static_cast<uint64_t>(edge), true}; 467 468 EXPECT_TRUE(!a.slt(edge)); 469 EXPECT_TRUE( a.sle(edge)); 470 EXPECT_TRUE(!a.sgt(edge)); 471 EXPECT_TRUE( a.sge(edge)); 472 EXPECT_TRUE( a.slt(edgeP1)); 473 EXPECT_TRUE( a.sle(edgeP1)); 474 EXPECT_TRUE(!a.sgt(edgeP1)); 475 EXPECT_TRUE(!a.sge(edgeP1)); 476 EXPECT_TRUE( a.slt(edgeM1)); 477 EXPECT_TRUE( a.sle(edgeM1)); 478 EXPECT_TRUE(!a.sgt(edgeM1)); 479 EXPECT_TRUE(!a.sge(edgeM1)); 480 } 481 482 TEST(APIntTest, compareWithHalfInt64Max) { 483 uint64_t edge = 0x4000000000000000; 484 uint64_t edgeP1 = edge + 1; 485 uint64_t edgeM1 = edge - 1; 486 auto a = APInt{64, edge}; 487 488 EXPECT_TRUE(!a.ult(edge)); 489 EXPECT_TRUE( a.ule(edge)); 490 EXPECT_TRUE(!a.ugt(edge)); 491 EXPECT_TRUE( a.uge(edge)); 492 EXPECT_TRUE( a.ult(edgeP1)); 493 EXPECT_TRUE( a.ule(edgeP1)); 494 EXPECT_TRUE(!a.ugt(edgeP1)); 495 EXPECT_TRUE(!a.uge(edgeP1)); 496 EXPECT_TRUE(!a.ult(edgeM1)); 497 EXPECT_TRUE(!a.ule(edgeM1)); 498 EXPECT_TRUE( a.ugt(edgeM1)); 499 EXPECT_TRUE( a.uge(edgeM1)); 500 501 EXPECT_TRUE(!a.slt(edge)); 502 EXPECT_TRUE( a.sle(edge)); 503 EXPECT_TRUE(!a.sgt(edge)); 504 EXPECT_TRUE( a.sge(edge)); 505 EXPECT_TRUE( a.slt(edgeP1)); 506 EXPECT_TRUE( a.sle(edgeP1)); 507 EXPECT_TRUE(!a.sgt(edgeP1)); 508 EXPECT_TRUE(!a.sge(edgeP1)); 509 EXPECT_TRUE(!a.slt(edgeM1)); 510 EXPECT_TRUE(!a.sle(edgeM1)); 511 EXPECT_TRUE( a.sgt(edgeM1)); 512 EXPECT_TRUE( a.sge(edgeM1)); 513 } 514 515 TEST(APIntTest, compareLargeIntegers) { 516 // Make sure all the combinations of signed comparisons work with big ints. 517 auto One = APInt{128, static_cast<uint64_t>(1), true}; 518 auto Two = APInt{128, static_cast<uint64_t>(2), true}; 519 auto MinusOne = APInt{128, static_cast<uint64_t>(-1), true}; 520 auto MinusTwo = APInt{128, static_cast<uint64_t>(-2), true}; 521 522 EXPECT_TRUE(!One.slt(One)); 523 EXPECT_TRUE(!Two.slt(One)); 524 EXPECT_TRUE(MinusOne.slt(One)); 525 EXPECT_TRUE(MinusTwo.slt(One)); 526 527 EXPECT_TRUE(One.slt(Two)); 528 EXPECT_TRUE(!Two.slt(Two)); 529 EXPECT_TRUE(MinusOne.slt(Two)); 530 EXPECT_TRUE(MinusTwo.slt(Two)); 531 532 EXPECT_TRUE(!One.slt(MinusOne)); 533 EXPECT_TRUE(!Two.slt(MinusOne)); 534 EXPECT_TRUE(!MinusOne.slt(MinusOne)); 535 EXPECT_TRUE(MinusTwo.slt(MinusOne)); 536 537 EXPECT_TRUE(!One.slt(MinusTwo)); 538 EXPECT_TRUE(!Two.slt(MinusTwo)); 539 EXPECT_TRUE(!MinusOne.slt(MinusTwo)); 540 EXPECT_TRUE(!MinusTwo.slt(MinusTwo)); 541 } 542 543 TEST(APIntTest, binaryOpsWithRawIntegers) { 544 // Single word check. 545 uint64_t E1 = 0x2CA7F46BF6569915ULL; 546 APInt A1(64, E1); 547 548 EXPECT_EQ(A1 & E1, E1); 549 EXPECT_EQ(A1 & 0, 0); 550 EXPECT_EQ(A1 & 1, 1); 551 EXPECT_EQ(A1 & 5, 5); 552 EXPECT_EQ(A1 & UINT64_MAX, E1); 553 554 EXPECT_EQ(A1 | E1, E1); 555 EXPECT_EQ(A1 | 0, E1); 556 EXPECT_EQ(A1 | 1, E1); 557 EXPECT_EQ(A1 | 2, E1 | 2); 558 EXPECT_EQ(A1 | UINT64_MAX, UINT64_MAX); 559 560 EXPECT_EQ(A1 ^ E1, 0); 561 EXPECT_EQ(A1 ^ 0, E1); 562 EXPECT_EQ(A1 ^ 1, E1 ^ 1); 563 EXPECT_EQ(A1 ^ 7, E1 ^ 7); 564 EXPECT_EQ(A1 ^ UINT64_MAX, ~E1); 565 566 // Multiword check. 567 uint64_t N = 0xEB6EB136591CBA21ULL; 568 APInt::WordType E2[4] = { 569 N, 570 0x7B9358BD6A33F10AULL, 571 0x7E7FFA5EADD8846ULL, 572 0x305F341CA00B613DULL 573 }; 574 APInt A2(APInt::APINT_BITS_PER_WORD*4, E2); 575 576 EXPECT_EQ(A2 & N, N); 577 EXPECT_EQ(A2 & 0, 0); 578 EXPECT_EQ(A2 & 1, 1); 579 EXPECT_EQ(A2 & 5, 1); 580 EXPECT_EQ(A2 & UINT64_MAX, N); 581 582 EXPECT_EQ(A2 | N, A2); 583 EXPECT_EQ(A2 | 0, A2); 584 EXPECT_EQ(A2 | 1, A2); 585 EXPECT_EQ(A2 | 2, A2 + 2); 586 EXPECT_EQ(A2 | UINT64_MAX, A2 - N + UINT64_MAX); 587 588 EXPECT_EQ(A2 ^ N, A2 - N); 589 EXPECT_EQ(A2 ^ 0, A2); 590 EXPECT_EQ(A2 ^ 1, A2 - 1); 591 EXPECT_EQ(A2 ^ 7, A2 + 5); 592 EXPECT_EQ(A2 ^ UINT64_MAX, A2 - N + ~N); 593 } 594 595 TEST(APIntTest, rvalue_arithmetic) { 596 // Test all combinations of lvalue/rvalue lhs/rhs of add/sub 597 598 // Lamdba to return an APInt by value, but also provide the raw value of the 599 // allocated data. 600 auto getRValue = [](const char *HexString, uint64_t const *&RawData) { 601 APInt V(129, HexString, 16); 602 RawData = V.getRawData(); 603 return V; 604 }; 605 606 APInt One(129, "1", 16); 607 APInt Two(129, "2", 16); 608 APInt Three(129, "3", 16); 609 APInt MinusOne = -One; 610 611 const uint64_t *RawDataL = nullptr; 612 const uint64_t *RawDataR = nullptr; 613 614 { 615 // 1 + 1 = 2 616 APInt AddLL = One + One; 617 EXPECT_EQ(AddLL, Two); 618 619 APInt AddLR = One + getRValue("1", RawDataR); 620 EXPECT_EQ(AddLR, Two); 621 EXPECT_EQ(AddLR.getRawData(), RawDataR); 622 623 APInt AddRL = getRValue("1", RawDataL) + One; 624 EXPECT_EQ(AddRL, Two); 625 EXPECT_EQ(AddRL.getRawData(), RawDataL); 626 627 APInt AddRR = getRValue("1", RawDataL) + getRValue("1", RawDataR); 628 EXPECT_EQ(AddRR, Two); 629 EXPECT_EQ(AddRR.getRawData(), RawDataR); 630 631 // LValue's and constants 632 APInt AddLK = One + 1; 633 EXPECT_EQ(AddLK, Two); 634 635 APInt AddKL = 1 + One; 636 EXPECT_EQ(AddKL, Two); 637 638 // RValue's and constants 639 APInt AddRK = getRValue("1", RawDataL) + 1; 640 EXPECT_EQ(AddRK, Two); 641 EXPECT_EQ(AddRK.getRawData(), RawDataL); 642 643 APInt AddKR = 1 + getRValue("1", RawDataR); 644 EXPECT_EQ(AddKR, Two); 645 EXPECT_EQ(AddKR.getRawData(), RawDataR); 646 } 647 648 { 649 // 0x0,FFFF...FFFF + 0x2 = 0x100...0001 650 APInt AllOnes(129, "0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 16); 651 APInt HighOneLowOne(129, "100000000000000000000000000000001", 16); 652 653 APInt AddLL = AllOnes + Two; 654 EXPECT_EQ(AddLL, HighOneLowOne); 655 656 APInt AddLR = AllOnes + getRValue("2", RawDataR); 657 EXPECT_EQ(AddLR, HighOneLowOne); 658 EXPECT_EQ(AddLR.getRawData(), RawDataR); 659 660 APInt AddRL = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + Two; 661 EXPECT_EQ(AddRL, HighOneLowOne); 662 EXPECT_EQ(AddRL.getRawData(), RawDataL); 663 664 APInt AddRR = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + 665 getRValue("2", RawDataR); 666 EXPECT_EQ(AddRR, HighOneLowOne); 667 EXPECT_EQ(AddRR.getRawData(), RawDataR); 668 669 // LValue's and constants 670 APInt AddLK = AllOnes + 2; 671 EXPECT_EQ(AddLK, HighOneLowOne); 672 673 APInt AddKL = 2 + AllOnes; 674 EXPECT_EQ(AddKL, HighOneLowOne); 675 676 // RValue's and constants 677 APInt AddRK = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + 2; 678 EXPECT_EQ(AddRK, HighOneLowOne); 679 EXPECT_EQ(AddRK.getRawData(), RawDataL); 680 681 APInt AddKR = 2 + getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 682 EXPECT_EQ(AddKR, HighOneLowOne); 683 EXPECT_EQ(AddKR.getRawData(), RawDataR); 684 } 685 686 { 687 // 2 - 1 = 1 688 APInt SubLL = Two - One; 689 EXPECT_EQ(SubLL, One); 690 691 APInt SubLR = Two - getRValue("1", RawDataR); 692 EXPECT_EQ(SubLR, One); 693 EXPECT_EQ(SubLR.getRawData(), RawDataR); 694 695 APInt SubRL = getRValue("2", RawDataL) - One; 696 EXPECT_EQ(SubRL, One); 697 EXPECT_EQ(SubRL.getRawData(), RawDataL); 698 699 APInt SubRR = getRValue("2", RawDataL) - getRValue("1", RawDataR); 700 EXPECT_EQ(SubRR, One); 701 EXPECT_EQ(SubRR.getRawData(), RawDataR); 702 703 // LValue's and constants 704 APInt SubLK = Two - 1; 705 EXPECT_EQ(SubLK, One); 706 707 APInt SubKL = 2 - One; 708 EXPECT_EQ(SubKL, One); 709 710 // RValue's and constants 711 APInt SubRK = getRValue("2", RawDataL) - 1; 712 EXPECT_EQ(SubRK, One); 713 EXPECT_EQ(SubRK.getRawData(), RawDataL); 714 715 APInt SubKR = 2 - getRValue("1", RawDataR); 716 EXPECT_EQ(SubKR, One); 717 EXPECT_EQ(SubKR.getRawData(), RawDataR); 718 } 719 720 { 721 // 0x100...0001 - 0x0,FFFF...FFFF = 0x2 722 APInt AllOnes(129, "0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 16); 723 APInt HighOneLowOne(129, "100000000000000000000000000000001", 16); 724 725 APInt SubLL = HighOneLowOne - AllOnes; 726 EXPECT_EQ(SubLL, Two); 727 728 APInt SubLR = HighOneLowOne - 729 getRValue("0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 730 EXPECT_EQ(SubLR, Two); 731 EXPECT_EQ(SubLR.getRawData(), RawDataR); 732 733 APInt SubRL = getRValue("100000000000000000000000000000001", RawDataL) - 734 AllOnes; 735 EXPECT_EQ(SubRL, Two); 736 EXPECT_EQ(SubRL.getRawData(), RawDataL); 737 738 APInt SubRR = getRValue("100000000000000000000000000000001", RawDataL) - 739 getRValue("0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 740 EXPECT_EQ(SubRR, Two); 741 EXPECT_EQ(SubRR.getRawData(), RawDataR); 742 743 // LValue's and constants 744 // 0x100...0001 - 0x2 = 0x0,FFFF...FFFF 745 APInt SubLK = HighOneLowOne - 2; 746 EXPECT_EQ(SubLK, AllOnes); 747 748 // 2 - (-1) = 3 749 APInt SubKL = 2 - MinusOne; 750 EXPECT_EQ(SubKL, Three); 751 752 // RValue's and constants 753 // 0x100...0001 - 0x2 = 0x0,FFFF...FFFF 754 APInt SubRK = getRValue("100000000000000000000000000000001", RawDataL) - 2; 755 EXPECT_EQ(SubRK, AllOnes); 756 EXPECT_EQ(SubRK.getRawData(), RawDataL); 757 758 APInt SubKR = 2 - getRValue("1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR); 759 EXPECT_EQ(SubKR, Three); 760 EXPECT_EQ(SubKR.getRawData(), RawDataR); 761 } 762 } 763 764 TEST(APIntTest, rvalue_bitwise) { 765 // Test all combinations of lvalue/rvalue lhs/rhs of and/or/xor 766 767 // Lamdba to return an APInt by value, but also provide the raw value of the 768 // allocated data. 769 auto getRValue = [](const char *HexString, uint64_t const *&RawData) { 770 APInt V(129, HexString, 16); 771 RawData = V.getRawData(); 772 return V; 773 }; 774 775 APInt Ten(129, "A", 16); 776 APInt Twelve(129, "C", 16); 777 778 const uint64_t *RawDataL = nullptr; 779 const uint64_t *RawDataR = nullptr; 780 781 { 782 // 12 & 10 = 8 783 APInt AndLL = Ten & Twelve; 784 EXPECT_EQ(AndLL, 0x8); 785 786 APInt AndLR = Ten & getRValue("C", RawDataR); 787 EXPECT_EQ(AndLR, 0x8); 788 EXPECT_EQ(AndLR.getRawData(), RawDataR); 789 790 APInt AndRL = getRValue("A", RawDataL) & Twelve; 791 EXPECT_EQ(AndRL, 0x8); 792 EXPECT_EQ(AndRL.getRawData(), RawDataL); 793 794 APInt AndRR = getRValue("A", RawDataL) & getRValue("C", RawDataR); 795 EXPECT_EQ(AndRR, 0x8); 796 EXPECT_EQ(AndRR.getRawData(), RawDataR); 797 798 // LValue's and constants 799 APInt AndLK = Ten & 0xc; 800 EXPECT_EQ(AndLK, 0x8); 801 802 APInt AndKL = 0xa & Twelve; 803 EXPECT_EQ(AndKL, 0x8); 804 805 // RValue's and constants 806 APInt AndRK = getRValue("A", RawDataL) & 0xc; 807 EXPECT_EQ(AndRK, 0x8); 808 EXPECT_EQ(AndRK.getRawData(), RawDataL); 809 810 APInt AndKR = 0xa & getRValue("C", RawDataR); 811 EXPECT_EQ(AndKR, 0x8); 812 EXPECT_EQ(AndKR.getRawData(), RawDataR); 813 } 814 815 { 816 // 12 | 10 = 14 817 APInt OrLL = Ten | Twelve; 818 EXPECT_EQ(OrLL, 0xe); 819 820 APInt OrLR = Ten | getRValue("C", RawDataR); 821 EXPECT_EQ(OrLR, 0xe); 822 EXPECT_EQ(OrLR.getRawData(), RawDataR); 823 824 APInt OrRL = getRValue("A", RawDataL) | Twelve; 825 EXPECT_EQ(OrRL, 0xe); 826 EXPECT_EQ(OrRL.getRawData(), RawDataL); 827 828 APInt OrRR = getRValue("A", RawDataL) | getRValue("C", RawDataR); 829 EXPECT_EQ(OrRR, 0xe); 830 EXPECT_EQ(OrRR.getRawData(), RawDataR); 831 832 // LValue's and constants 833 APInt OrLK = Ten | 0xc; 834 EXPECT_EQ(OrLK, 0xe); 835 836 APInt OrKL = 0xa | Twelve; 837 EXPECT_EQ(OrKL, 0xe); 838 839 // RValue's and constants 840 APInt OrRK = getRValue("A", RawDataL) | 0xc; 841 EXPECT_EQ(OrRK, 0xe); 842 EXPECT_EQ(OrRK.getRawData(), RawDataL); 843 844 APInt OrKR = 0xa | getRValue("C", RawDataR); 845 EXPECT_EQ(OrKR, 0xe); 846 EXPECT_EQ(OrKR.getRawData(), RawDataR); 847 } 848 849 { 850 // 12 ^ 10 = 6 851 APInt XorLL = Ten ^ Twelve; 852 EXPECT_EQ(XorLL, 0x6); 853 854 APInt XorLR = Ten ^ getRValue("C", RawDataR); 855 EXPECT_EQ(XorLR, 0x6); 856 EXPECT_EQ(XorLR.getRawData(), RawDataR); 857 858 APInt XorRL = getRValue("A", RawDataL) ^ Twelve; 859 EXPECT_EQ(XorRL, 0x6); 860 EXPECT_EQ(XorRL.getRawData(), RawDataL); 861 862 APInt XorRR = getRValue("A", RawDataL) ^ getRValue("C", RawDataR); 863 EXPECT_EQ(XorRR, 0x6); 864 EXPECT_EQ(XorRR.getRawData(), RawDataR); 865 866 // LValue's and constants 867 APInt XorLK = Ten ^ 0xc; 868 EXPECT_EQ(XorLK, 0x6); 869 870 APInt XorKL = 0xa ^ Twelve; 871 EXPECT_EQ(XorKL, 0x6); 872 873 // RValue's and constants 874 APInt XorRK = getRValue("A", RawDataL) ^ 0xc; 875 EXPECT_EQ(XorRK, 0x6); 876 EXPECT_EQ(XorRK.getRawData(), RawDataL); 877 878 APInt XorKR = 0xa ^ getRValue("C", RawDataR); 879 EXPECT_EQ(XorKR, 0x6); 880 EXPECT_EQ(XorKR.getRawData(), RawDataR); 881 } 882 } 883 884 TEST(APIntTest, rvalue_invert) { 885 // Lamdba to return an APInt by value, but also provide the raw value of the 886 // allocated data. 887 auto getRValue = [](const char *HexString, uint64_t const *&RawData) { 888 APInt V(129, HexString, 16); 889 RawData = V.getRawData(); 890 return V; 891 }; 892 893 APInt One(129, 1); 894 APInt NegativeTwo(129, -2ULL, true); 895 896 const uint64_t *RawData = nullptr; 897 898 { 899 // ~1 = -2 900 APInt NegL = ~One; 901 EXPECT_EQ(NegL, NegativeTwo); 902 903 APInt NegR = ~getRValue("1", RawData); 904 EXPECT_EQ(NegR, NegativeTwo); 905 EXPECT_EQ(NegR.getRawData(), RawData); 906 } 907 } 908 909 // Tests different div/rem varaints using scheme (a * b + c) / a 910 void testDiv(APInt a, APInt b, APInt c) { 911 ASSERT_TRUE(a.uge(b)); // Must: a >= b 912 ASSERT_TRUE(a.ugt(c)); // Must: a > c 913 914 auto p = a * b + c; 915 916 auto q = p.udiv(a); 917 auto r = p.urem(a); 918 EXPECT_EQ(b, q); 919 EXPECT_EQ(c, r); 920 APInt::udivrem(p, a, q, r); 921 EXPECT_EQ(b, q); 922 EXPECT_EQ(c, r); 923 q = p.sdiv(a); 924 r = p.srem(a); 925 EXPECT_EQ(b, q); 926 EXPECT_EQ(c, r); 927 APInt::sdivrem(p, a, q, r); 928 EXPECT_EQ(b, q); 929 EXPECT_EQ(c, r); 930 931 if (b.ugt(c)) { // Test also symmetric case 932 q = p.udiv(b); 933 r = p.urem(b); 934 EXPECT_EQ(a, q); 935 EXPECT_EQ(c, r); 936 APInt::udivrem(p, b, q, r); 937 EXPECT_EQ(a, q); 938 EXPECT_EQ(c, r); 939 q = p.sdiv(b); 940 r = p.srem(b); 941 EXPECT_EQ(a, q); 942 EXPECT_EQ(c, r); 943 APInt::sdivrem(p, b, q, r); 944 EXPECT_EQ(a, q); 945 EXPECT_EQ(c, r); 946 } 947 } 948 949 TEST(APIntTest, divrem_big1) { 950 // Tests KnuthDiv rare step D6 951 testDiv({256, "1ffffffffffffffff", 16}, 952 {256, "1ffffffffffffffff", 16}, 953 {256, 0}); 954 } 955 956 TEST(APIntTest, divrem_big2) { 957 // Tests KnuthDiv rare step D6 958 testDiv({1024, "112233ceff" 959 "cecece000000ffffffffffffffffffff" 960 "ffffffffffffffffffffffffffffffff" 961 "ffffffffffffffffffffffffffffffff" 962 "ffffffffffffffffffffffffffffff33", 16}, 963 {1024, "111111ffffffffffffffff" 964 "ffffffffffffffffffffffffffffffff" 965 "fffffffffffffffffffffffffffffccf" 966 "ffffffffffffffffffffffffffffff00", 16}, 967 {1024, 7919}); 968 } 969 970 TEST(APIntTest, divrem_big3) { 971 // Tests KnuthDiv case without shift 972 testDiv({256, "80000001ffffffffffffffff", 16}, 973 {256, "ffffffffffffff0000000", 16}, 974 {256, 4219}); 975 } 976 977 TEST(APIntTest, divrem_big4) { 978 // Tests heap allocation in divide() enfoced by huge numbers 979 testDiv(APInt{4096, 5}.shl(2001), 980 APInt{4096, 1}.shl(2000), 981 APInt{4096, 4219*13}); 982 } 983 984 TEST(APIntTest, divrem_big5) { 985 // Tests one word divisor case of divide() 986 testDiv(APInt{1024, 19}.shl(811), 987 APInt{1024, 4356013}, // one word 988 APInt{1024, 1}); 989 } 990 991 TEST(APIntTest, divrem_big6) { 992 // Tests some rare "borrow" cases in D4 step 993 testDiv(APInt{512, "ffffffffffffffff00000000000000000000000001", 16}, 994 APInt{512, "10000000000000001000000000000001", 16}, 995 APInt{512, "10000000000000000000000000000000", 16}); 996 } 997 998 TEST(APIntTest, divrem_big7) { 999 // Yet another test for KnuthDiv rare step D6. 1000 testDiv({224, "800000008000000200000005", 16}, 1001 {224, "fffffffd", 16}, 1002 {224, "80000000800000010000000f", 16}); 1003 } 1004 1005 void testDiv(APInt a, uint64_t b, APInt c) { 1006 auto p = a * b + c; 1007 1008 APInt q; 1009 uint64_t r; 1010 // Unsigned division will only work if our original number wasn't negative. 1011 if (!a.isNegative()) { 1012 q = p.udiv(b); 1013 r = p.urem(b); 1014 EXPECT_EQ(a, q); 1015 EXPECT_EQ(c, r); 1016 APInt::udivrem(p, b, q, r); 1017 EXPECT_EQ(a, q); 1018 EXPECT_EQ(c, r); 1019 } 1020 q = p.sdiv(b); 1021 r = p.srem(b); 1022 EXPECT_EQ(a, q); 1023 if (c.isNegative()) 1024 EXPECT_EQ(-c, -r); // Need to negate so the uint64_t compare will work. 1025 else 1026 EXPECT_EQ(c, r); 1027 int64_t sr; 1028 APInt::sdivrem(p, b, q, sr); 1029 EXPECT_EQ(a, q); 1030 if (c.isNegative()) 1031 EXPECT_EQ(-c, -sr); // Need to negate so the uint64_t compare will work. 1032 else 1033 EXPECT_EQ(c, sr); 1034 } 1035 1036 TEST(APIntTest, divremuint) { 1037 // Single word APInt 1038 testDiv(APInt{64, 9}, 1039 2, 1040 APInt{64, 1}); 1041 1042 // Single word negative APInt 1043 testDiv(-APInt{64, 9}, 1044 2, 1045 -APInt{64, 1}); 1046 1047 // Multiword dividend with only one significant word. 1048 testDiv(APInt{256, 9}, 1049 2, 1050 APInt{256, 1}); 1051 1052 // Negative dividend. 1053 testDiv(-APInt{256, 9}, 1054 2, 1055 -APInt{256, 1}); 1056 1057 // Multiword dividend 1058 testDiv(APInt{1024, 19}.shl(811), 1059 4356013, // one word 1060 APInt{1024, 1}); 1061 } 1062 1063 TEST(APIntTest, divrem_simple) { 1064 // Test simple cases. 1065 APInt A(65, 2), B(65, 2); 1066 APInt Q, R; 1067 1068 // X / X 1069 APInt::sdivrem(A, B, Q, R); 1070 EXPECT_EQ(Q, APInt(65, 1)); 1071 EXPECT_EQ(R, APInt(65, 0)); 1072 APInt::udivrem(A, B, Q, R); 1073 EXPECT_EQ(Q, APInt(65, 1)); 1074 EXPECT_EQ(R, APInt(65, 0)); 1075 1076 // 0 / X 1077 APInt O(65, 0); 1078 APInt::sdivrem(O, B, Q, R); 1079 EXPECT_EQ(Q, APInt(65, 0)); 1080 EXPECT_EQ(R, APInt(65, 0)); 1081 APInt::udivrem(O, B, Q, R); 1082 EXPECT_EQ(Q, APInt(65, 0)); 1083 EXPECT_EQ(R, APInt(65, 0)); 1084 1085 // X / 1 1086 APInt I(65, 1); 1087 APInt::sdivrem(A, I, Q, R); 1088 EXPECT_EQ(Q, A); 1089 EXPECT_EQ(R, APInt(65, 0)); 1090 APInt::udivrem(A, I, Q, R); 1091 EXPECT_EQ(Q, A); 1092 EXPECT_EQ(R, APInt(65, 0)); 1093 } 1094 1095 TEST(APIntTest, fromString) { 1096 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 2)); 1097 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 2)); 1098 EXPECT_EQ(APInt(32, 2), APInt(32, "10", 2)); 1099 EXPECT_EQ(APInt(32, 3), APInt(32, "11", 2)); 1100 EXPECT_EQ(APInt(32, 4), APInt(32, "100", 2)); 1101 1102 EXPECT_EQ(APInt(32, 0), APInt(32, "+0", 2)); 1103 EXPECT_EQ(APInt(32, 1), APInt(32, "+1", 2)); 1104 EXPECT_EQ(APInt(32, 2), APInt(32, "+10", 2)); 1105 EXPECT_EQ(APInt(32, 3), APInt(32, "+11", 2)); 1106 EXPECT_EQ(APInt(32, 4), APInt(32, "+100", 2)); 1107 1108 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 2)); 1109 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 2)); 1110 EXPECT_EQ(APInt(32, uint64_t(-2LL)), APInt(32, "-10", 2)); 1111 EXPECT_EQ(APInt(32, uint64_t(-3LL)), APInt(32, "-11", 2)); 1112 EXPECT_EQ(APInt(32, uint64_t(-4LL)), APInt(32, "-100", 2)); 1113 1114 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 8)); 1115 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 8)); 1116 EXPECT_EQ(APInt(32, 7), APInt(32, "7", 8)); 1117 EXPECT_EQ(APInt(32, 8), APInt(32, "10", 8)); 1118 EXPECT_EQ(APInt(32, 15), APInt(32, "17", 8)); 1119 EXPECT_EQ(APInt(32, 16), APInt(32, "20", 8)); 1120 1121 EXPECT_EQ(APInt(32, +0), APInt(32, "+0", 8)); 1122 EXPECT_EQ(APInt(32, +1), APInt(32, "+1", 8)); 1123 EXPECT_EQ(APInt(32, +7), APInt(32, "+7", 8)); 1124 EXPECT_EQ(APInt(32, +8), APInt(32, "+10", 8)); 1125 EXPECT_EQ(APInt(32, +15), APInt(32, "+17", 8)); 1126 EXPECT_EQ(APInt(32, +16), APInt(32, "+20", 8)); 1127 1128 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 8)); 1129 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 8)); 1130 EXPECT_EQ(APInt(32, uint64_t(-7LL)), APInt(32, "-7", 8)); 1131 EXPECT_EQ(APInt(32, uint64_t(-8LL)), APInt(32, "-10", 8)); 1132 EXPECT_EQ(APInt(32, uint64_t(-15LL)), APInt(32, "-17", 8)); 1133 EXPECT_EQ(APInt(32, uint64_t(-16LL)), APInt(32, "-20", 8)); 1134 1135 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 10)); 1136 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 10)); 1137 EXPECT_EQ(APInt(32, 9), APInt(32, "9", 10)); 1138 EXPECT_EQ(APInt(32, 10), APInt(32, "10", 10)); 1139 EXPECT_EQ(APInt(32, 19), APInt(32, "19", 10)); 1140 EXPECT_EQ(APInt(32, 20), APInt(32, "20", 10)); 1141 1142 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 10)); 1143 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 10)); 1144 EXPECT_EQ(APInt(32, uint64_t(-9LL)), APInt(32, "-9", 10)); 1145 EXPECT_EQ(APInt(32, uint64_t(-10LL)), APInt(32, "-10", 10)); 1146 EXPECT_EQ(APInt(32, uint64_t(-19LL)), APInt(32, "-19", 10)); 1147 EXPECT_EQ(APInt(32, uint64_t(-20LL)), APInt(32, "-20", 10)); 1148 1149 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 16)); 1150 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 16)); 1151 EXPECT_EQ(APInt(32, 15), APInt(32, "F", 16)); 1152 EXPECT_EQ(APInt(32, 16), APInt(32, "10", 16)); 1153 EXPECT_EQ(APInt(32, 31), APInt(32, "1F", 16)); 1154 EXPECT_EQ(APInt(32, 32), APInt(32, "20", 16)); 1155 1156 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 16)); 1157 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 16)); 1158 EXPECT_EQ(APInt(32, uint64_t(-15LL)), APInt(32, "-F", 16)); 1159 EXPECT_EQ(APInt(32, uint64_t(-16LL)), APInt(32, "-10", 16)); 1160 EXPECT_EQ(APInt(32, uint64_t(-31LL)), APInt(32, "-1F", 16)); 1161 EXPECT_EQ(APInt(32, uint64_t(-32LL)), APInt(32, "-20", 16)); 1162 1163 EXPECT_EQ(APInt(32, 0), APInt(32, "0", 36)); 1164 EXPECT_EQ(APInt(32, 1), APInt(32, "1", 36)); 1165 EXPECT_EQ(APInt(32, 35), APInt(32, "Z", 36)); 1166 EXPECT_EQ(APInt(32, 36), APInt(32, "10", 36)); 1167 EXPECT_EQ(APInt(32, 71), APInt(32, "1Z", 36)); 1168 EXPECT_EQ(APInt(32, 72), APInt(32, "20", 36)); 1169 1170 EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 36)); 1171 EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 36)); 1172 EXPECT_EQ(APInt(32, uint64_t(-35LL)), APInt(32, "-Z", 36)); 1173 EXPECT_EQ(APInt(32, uint64_t(-36LL)), APInt(32, "-10", 36)); 1174 EXPECT_EQ(APInt(32, uint64_t(-71LL)), APInt(32, "-1Z", 36)); 1175 EXPECT_EQ(APInt(32, uint64_t(-72LL)), APInt(32, "-20", 36)); 1176 } 1177 1178 TEST(APIntTest, SaturatingMath) { 1179 APInt AP_10 = APInt(8, 10); 1180 APInt AP_100 = APInt(8, 100); 1181 APInt AP_200 = APInt(8, 200); 1182 1183 EXPECT_EQ(APInt(8, 200), AP_100.uadd_sat(AP_100)); 1184 EXPECT_EQ(APInt(8, 255), AP_100.uadd_sat(AP_200)); 1185 EXPECT_EQ(APInt(8, 255), APInt(8, 255).uadd_sat(APInt(8, 255))); 1186 1187 EXPECT_EQ(APInt(8, 110), AP_10.sadd_sat(AP_100)); 1188 EXPECT_EQ(APInt(8, 127), AP_100.sadd_sat(AP_100)); 1189 EXPECT_EQ(APInt(8, -128), (-AP_100).sadd_sat(-AP_100)); 1190 EXPECT_EQ(APInt(8, -128), APInt(8, -128).sadd_sat(APInt(8, -128))); 1191 1192 EXPECT_EQ(APInt(8, 90), AP_100.usub_sat(AP_10)); 1193 EXPECT_EQ(APInt(8, 0), AP_100.usub_sat(AP_200)); 1194 EXPECT_EQ(APInt(8, 0), APInt(8, 0).usub_sat(APInt(8, 255))); 1195 1196 EXPECT_EQ(APInt(8, -90), AP_10.ssub_sat(AP_100)); 1197 EXPECT_EQ(APInt(8, 127), AP_100.ssub_sat(-AP_100)); 1198 EXPECT_EQ(APInt(8, -128), (-AP_100).ssub_sat(AP_100)); 1199 EXPECT_EQ(APInt(8, -128), APInt(8, -128).ssub_sat(APInt(8, 127))); 1200 } 1201 1202 TEST(APIntTest, FromArray) { 1203 EXPECT_EQ(APInt(32, uint64_t(1)), APInt(32, ArrayRef<uint64_t>(1))); 1204 } 1205 1206 TEST(APIntTest, StringBitsNeeded2) { 1207 EXPECT_EQ(1U, APInt::getBitsNeeded( "0", 2)); 1208 EXPECT_EQ(1U, APInt::getBitsNeeded( "1", 2)); 1209 EXPECT_EQ(2U, APInt::getBitsNeeded( "10", 2)); 1210 EXPECT_EQ(2U, APInt::getBitsNeeded( "11", 2)); 1211 EXPECT_EQ(3U, APInt::getBitsNeeded("100", 2)); 1212 1213 EXPECT_EQ(1U, APInt::getBitsNeeded( "+0", 2)); 1214 EXPECT_EQ(1U, APInt::getBitsNeeded( "+1", 2)); 1215 EXPECT_EQ(2U, APInt::getBitsNeeded( "+10", 2)); 1216 EXPECT_EQ(2U, APInt::getBitsNeeded( "+11", 2)); 1217 EXPECT_EQ(3U, APInt::getBitsNeeded("+100", 2)); 1218 1219 EXPECT_EQ(2U, APInt::getBitsNeeded( "-0", 2)); 1220 EXPECT_EQ(2U, APInt::getBitsNeeded( "-1", 2)); 1221 EXPECT_EQ(3U, APInt::getBitsNeeded( "-10", 2)); 1222 EXPECT_EQ(3U, APInt::getBitsNeeded( "-11", 2)); 1223 EXPECT_EQ(4U, APInt::getBitsNeeded("-100", 2)); 1224 } 1225 1226 TEST(APIntTest, StringBitsNeeded8) { 1227 EXPECT_EQ(3U, APInt::getBitsNeeded( "0", 8)); 1228 EXPECT_EQ(3U, APInt::getBitsNeeded( "7", 8)); 1229 EXPECT_EQ(6U, APInt::getBitsNeeded("10", 8)); 1230 EXPECT_EQ(6U, APInt::getBitsNeeded("17", 8)); 1231 EXPECT_EQ(6U, APInt::getBitsNeeded("20", 8)); 1232 1233 EXPECT_EQ(3U, APInt::getBitsNeeded( "+0", 8)); 1234 EXPECT_EQ(3U, APInt::getBitsNeeded( "+7", 8)); 1235 EXPECT_EQ(6U, APInt::getBitsNeeded("+10", 8)); 1236 EXPECT_EQ(6U, APInt::getBitsNeeded("+17", 8)); 1237 EXPECT_EQ(6U, APInt::getBitsNeeded("+20", 8)); 1238 1239 EXPECT_EQ(4U, APInt::getBitsNeeded( "-0", 8)); 1240 EXPECT_EQ(4U, APInt::getBitsNeeded( "-7", 8)); 1241 EXPECT_EQ(7U, APInt::getBitsNeeded("-10", 8)); 1242 EXPECT_EQ(7U, APInt::getBitsNeeded("-17", 8)); 1243 EXPECT_EQ(7U, APInt::getBitsNeeded("-20", 8)); 1244 } 1245 1246 TEST(APIntTest, StringBitsNeeded10) { 1247 EXPECT_EQ(1U, APInt::getBitsNeeded( "0", 10)); 1248 EXPECT_EQ(2U, APInt::getBitsNeeded( "3", 10)); 1249 EXPECT_EQ(4U, APInt::getBitsNeeded( "9", 10)); 1250 EXPECT_EQ(4U, APInt::getBitsNeeded("10", 10)); 1251 EXPECT_EQ(5U, APInt::getBitsNeeded("19", 10)); 1252 EXPECT_EQ(5U, APInt::getBitsNeeded("20", 10)); 1253 1254 EXPECT_EQ(1U, APInt::getBitsNeeded( "+0", 10)); 1255 EXPECT_EQ(4U, APInt::getBitsNeeded( "+9", 10)); 1256 EXPECT_EQ(4U, APInt::getBitsNeeded("+10", 10)); 1257 EXPECT_EQ(5U, APInt::getBitsNeeded("+19", 10)); 1258 EXPECT_EQ(5U, APInt::getBitsNeeded("+20", 10)); 1259 1260 EXPECT_EQ(2U, APInt::getBitsNeeded( "-0", 10)); 1261 EXPECT_EQ(5U, APInt::getBitsNeeded( "-9", 10)); 1262 EXPECT_EQ(5U, APInt::getBitsNeeded("-10", 10)); 1263 EXPECT_EQ(6U, APInt::getBitsNeeded("-19", 10)); 1264 EXPECT_EQ(6U, APInt::getBitsNeeded("-20", 10)); 1265 1266 // TODO: INT_MIN cases need 1 less bit (PR40897) 1267 EXPECT_EQ(9U, APInt::getBitsNeeded("-128", 10)); 1268 } 1269 1270 TEST(APIntTest, StringBitsNeeded16) { 1271 EXPECT_EQ(4U, APInt::getBitsNeeded( "0", 16)); 1272 EXPECT_EQ(4U, APInt::getBitsNeeded( "F", 16)); 1273 EXPECT_EQ(8U, APInt::getBitsNeeded("10", 16)); 1274 EXPECT_EQ(8U, APInt::getBitsNeeded("1F", 16)); 1275 EXPECT_EQ(8U, APInt::getBitsNeeded("20", 16)); 1276 1277 EXPECT_EQ(4U, APInt::getBitsNeeded( "+0", 16)); 1278 EXPECT_EQ(4U, APInt::getBitsNeeded( "+F", 16)); 1279 EXPECT_EQ(8U, APInt::getBitsNeeded("+10", 16)); 1280 EXPECT_EQ(8U, APInt::getBitsNeeded("+1F", 16)); 1281 EXPECT_EQ(8U, APInt::getBitsNeeded("+20", 16)); 1282 1283 EXPECT_EQ(5U, APInt::getBitsNeeded( "-0", 16)); 1284 EXPECT_EQ(5U, APInt::getBitsNeeded( "-F", 16)); 1285 EXPECT_EQ(9U, APInt::getBitsNeeded("-10", 16)); 1286 EXPECT_EQ(9U, APInt::getBitsNeeded("-1F", 16)); 1287 EXPECT_EQ(9U, APInt::getBitsNeeded("-20", 16)); 1288 } 1289 1290 TEST(APIntTest, toString) { 1291 SmallString<16> S; 1292 bool isSigned; 1293 1294 APInt(8, 0).toString(S, 2, true, true); 1295 EXPECT_EQ(S.str().str(), "0b0"); 1296 S.clear(); 1297 APInt(8, 0).toString(S, 8, true, true); 1298 EXPECT_EQ(S.str().str(), "00"); 1299 S.clear(); 1300 APInt(8, 0).toString(S, 10, true, true); 1301 EXPECT_EQ(S.str().str(), "0"); 1302 S.clear(); 1303 APInt(8, 0).toString(S, 16, true, true); 1304 EXPECT_EQ(S.str().str(), "0x0"); 1305 S.clear(); 1306 APInt(8, 0).toString(S, 36, true, false); 1307 EXPECT_EQ(S.str().str(), "0"); 1308 S.clear(); 1309 1310 isSigned = false; 1311 APInt(8, 255, isSigned).toString(S, 2, isSigned, true); 1312 EXPECT_EQ(S.str().str(), "0b11111111"); 1313 S.clear(); 1314 APInt(8, 255, isSigned).toString(S, 8, isSigned, true); 1315 EXPECT_EQ(S.str().str(), "0377"); 1316 S.clear(); 1317 APInt(8, 255, isSigned).toString(S, 10, isSigned, true); 1318 EXPECT_EQ(S.str().str(), "255"); 1319 S.clear(); 1320 APInt(8, 255, isSigned).toString(S, 16, isSigned, true); 1321 EXPECT_EQ(S.str().str(), "0xFF"); 1322 S.clear(); 1323 APInt(8, 255, isSigned).toString(S, 36, isSigned, false); 1324 EXPECT_EQ(S.str().str(), "73"); 1325 S.clear(); 1326 1327 isSigned = true; 1328 APInt(8, 255, isSigned).toString(S, 2, isSigned, true); 1329 EXPECT_EQ(S.str().str(), "-0b1"); 1330 S.clear(); 1331 APInt(8, 255, isSigned).toString(S, 8, isSigned, true); 1332 EXPECT_EQ(S.str().str(), "-01"); 1333 S.clear(); 1334 APInt(8, 255, isSigned).toString(S, 10, isSigned, true); 1335 EXPECT_EQ(S.str().str(), "-1"); 1336 S.clear(); 1337 APInt(8, 255, isSigned).toString(S, 16, isSigned, true); 1338 EXPECT_EQ(S.str().str(), "-0x1"); 1339 S.clear(); 1340 APInt(8, 255, isSigned).toString(S, 36, isSigned, false); 1341 EXPECT_EQ(S.str().str(), "-1"); 1342 S.clear(); 1343 } 1344 1345 TEST(APIntTest, Log2) { 1346 EXPECT_EQ(APInt(15, 7).logBase2(), 2U); 1347 EXPECT_EQ(APInt(15, 7).ceilLogBase2(), 3U); 1348 EXPECT_EQ(APInt(15, 7).exactLogBase2(), -1); 1349 EXPECT_EQ(APInt(15, 8).logBase2(), 3U); 1350 EXPECT_EQ(APInt(15, 8).ceilLogBase2(), 3U); 1351 EXPECT_EQ(APInt(15, 8).exactLogBase2(), 3); 1352 EXPECT_EQ(APInt(15, 9).logBase2(), 3U); 1353 EXPECT_EQ(APInt(15, 9).ceilLogBase2(), 4U); 1354 EXPECT_EQ(APInt(15, 9).exactLogBase2(), -1); 1355 } 1356 1357 TEST(APIntTest, magic) { 1358 EXPECT_EQ(APInt(32, 3).magic().m, APInt(32, "55555556", 16)); 1359 EXPECT_EQ(APInt(32, 3).magic().s, 0U); 1360 EXPECT_EQ(APInt(32, 5).magic().m, APInt(32, "66666667", 16)); 1361 EXPECT_EQ(APInt(32, 5).magic().s, 1U); 1362 EXPECT_EQ(APInt(32, 7).magic().m, APInt(32, "92492493", 16)); 1363 EXPECT_EQ(APInt(32, 7).magic().s, 2U); 1364 } 1365 1366 TEST(APIntTest, magicu) { 1367 EXPECT_EQ(APInt(32, 3).magicu().m, APInt(32, "AAAAAAAB", 16)); 1368 EXPECT_EQ(APInt(32, 3).magicu().s, 1U); 1369 EXPECT_EQ(APInt(32, 5).magicu().m, APInt(32, "CCCCCCCD", 16)); 1370 EXPECT_EQ(APInt(32, 5).magicu().s, 2U); 1371 EXPECT_EQ(APInt(32, 7).magicu().m, APInt(32, "24924925", 16)); 1372 EXPECT_EQ(APInt(32, 7).magicu().s, 3U); 1373 EXPECT_EQ(APInt(64, 25).magicu(1).m, APInt(64, "A3D70A3D70A3D70B", 16)); 1374 EXPECT_EQ(APInt(64, 25).magicu(1).s, 4U); 1375 } 1376 1377 #ifdef GTEST_HAS_DEATH_TEST 1378 #ifndef NDEBUG 1379 TEST(APIntTest, StringDeath) { 1380 EXPECT_DEATH(APInt(0, "", 0), "Bitwidth too small"); 1381 EXPECT_DEATH(APInt(32, "", 0), "Invalid string length"); 1382 EXPECT_DEATH(APInt(32, "0", 0), "Radix should be 2, 8, 10, 16, or 36!"); 1383 EXPECT_DEATH(APInt(32, "", 10), "Invalid string length"); 1384 EXPECT_DEATH(APInt(32, "-", 10), "String is only a sign, needs a value."); 1385 EXPECT_DEATH(APInt(1, "1234", 10), "Insufficient bit width"); 1386 EXPECT_DEATH(APInt(32, "\0", 10), "Invalid string length"); 1387 EXPECT_DEATH(APInt(32, StringRef("1\02", 3), 10), "Invalid character in digit string"); 1388 EXPECT_DEATH(APInt(32, "1L", 10), "Invalid character in digit string"); 1389 } 1390 #endif 1391 #endif 1392 1393 TEST(APIntTest, mul_clear) { 1394 APInt ValA(65, -1ULL); 1395 APInt ValB(65, 4); 1396 APInt ValC(65, 0); 1397 ValC = ValA * ValB; 1398 ValA *= ValB; 1399 EXPECT_EQ(ValA.toString(10, false), ValC.toString(10, false)); 1400 } 1401 1402 TEST(APIntTest, Rotate) { 1403 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotl(0)); 1404 EXPECT_EQ(APInt(8, 2), APInt(8, 1).rotl(1)); 1405 EXPECT_EQ(APInt(8, 4), APInt(8, 1).rotl(2)); 1406 EXPECT_EQ(APInt(8, 16), APInt(8, 1).rotl(4)); 1407 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotl(8)); 1408 1409 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotl(0)); 1410 EXPECT_EQ(APInt(8, 32), APInt(8, 16).rotl(1)); 1411 EXPECT_EQ(APInt(8, 64), APInt(8, 16).rotl(2)); 1412 EXPECT_EQ(APInt(8, 1), APInt(8, 16).rotl(4)); 1413 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotl(8)); 1414 1415 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(33)); 1416 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(32, 33))); 1417 1418 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(33)); 1419 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(32, 33))); 1420 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(33, 33))); 1421 EXPECT_EQ(APInt(32, (1 << 8)), APInt(32, 1).rotl(APInt(32, 40))); 1422 EXPECT_EQ(APInt(32, (1 << 30)), APInt(32, 1).rotl(APInt(31, 30))); 1423 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotl(APInt(31, 31))); 1424 1425 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotl(APInt(1, 0))); 1426 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(1, 1))); 1427 1428 EXPECT_EQ(APInt(32, 16), APInt(32, 1).rotl(APInt(3, 4))); 1429 1430 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotl(APInt(64, 64))); 1431 EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(64, 65))); 1432 1433 EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(7, 3))); 1434 EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(7, 10))); 1435 EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(5, 10))); 1436 EXPECT_EQ(APInt(7, 6), APInt(7, 3).rotl(APInt(12, 120))); 1437 1438 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotr(0)); 1439 EXPECT_EQ(APInt(8, 8), APInt(8, 16).rotr(1)); 1440 EXPECT_EQ(APInt(8, 4), APInt(8, 16).rotr(2)); 1441 EXPECT_EQ(APInt(8, 1), APInt(8, 16).rotr(4)); 1442 EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotr(8)); 1443 1444 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotr(0)); 1445 EXPECT_EQ(APInt(8, 128), APInt(8, 1).rotr(1)); 1446 EXPECT_EQ(APInt(8, 64), APInt(8, 1).rotr(2)); 1447 EXPECT_EQ(APInt(8, 16), APInt(8, 1).rotr(4)); 1448 EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotr(8)); 1449 1450 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(33)); 1451 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(32, 33))); 1452 1453 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(33)); 1454 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(32, 33))); 1455 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(33, 33))); 1456 EXPECT_EQ(APInt(32, (1 << 24)), APInt(32, 1).rotr(APInt(32, 40))); 1457 1458 EXPECT_EQ(APInt(32, (1 << 2)), APInt(32, 1).rotr(APInt(31, 30))); 1459 EXPECT_EQ(APInt(32, (1 << 1)), APInt(32, 1).rotr(APInt(31, 31))); 1460 1461 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotr(APInt(1, 0))); 1462 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(1, 1))); 1463 1464 EXPECT_EQ(APInt(32, (1 << 28)), APInt(32, 1).rotr(APInt(3, 4))); 1465 1466 EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotr(APInt(64, 64))); 1467 EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(64, 65))); 1468 1469 EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(7, 3))); 1470 EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(7, 10))); 1471 EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(5, 10))); 1472 EXPECT_EQ(APInt(7, 65), APInt(7, 3).rotr(APInt(12, 120))); 1473 1474 APInt Big(256, "00004000800000000000000000003fff8000000000000003", 16); 1475 APInt Rot(256, "3fff80000000000000030000000000000000000040008000", 16); 1476 EXPECT_EQ(Rot, Big.rotr(144)); 1477 1478 EXPECT_EQ(APInt(32, 8), APInt(32, 1).rotl(Big)); 1479 EXPECT_EQ(APInt(32, (1 << 29)), APInt(32, 1).rotr(Big)); 1480 } 1481 1482 TEST(APIntTest, Splat) { 1483 APInt ValA(8, 0x01); 1484 EXPECT_EQ(ValA, APInt::getSplat(8, ValA)); 1485 EXPECT_EQ(APInt(64, 0x0101010101010101ULL), APInt::getSplat(64, ValA)); 1486 1487 APInt ValB(3, 5); 1488 EXPECT_EQ(APInt(4, 0xD), APInt::getSplat(4, ValB)); 1489 EXPECT_EQ(APInt(15, 0xDB6D), APInt::getSplat(15, ValB)); 1490 } 1491 1492 TEST(APIntTest, tcDecrement) { 1493 // Test single word decrement. 1494 1495 // No out borrow. 1496 { 1497 APInt::WordType singleWord = ~APInt::WordType(0) << (APInt::APINT_BITS_PER_WORD - 1); 1498 APInt::WordType carry = APInt::tcDecrement(&singleWord, 1); 1499 EXPECT_EQ(carry, APInt::WordType(0)); 1500 EXPECT_EQ(singleWord, ~APInt::WordType(0) >> 1); 1501 } 1502 1503 // With out borrow. 1504 { 1505 APInt::WordType singleWord = 0; 1506 APInt::WordType carry = APInt::tcDecrement(&singleWord, 1); 1507 EXPECT_EQ(carry, APInt::WordType(1)); 1508 EXPECT_EQ(singleWord, ~APInt::WordType(0)); 1509 } 1510 1511 // Test multiword decrement. 1512 1513 // No across word borrow, no out borrow. 1514 { 1515 APInt::WordType test[4] = {0x1, 0x1, 0x1, 0x1}; 1516 APInt::WordType expected[4] = {0x0, 0x1, 0x1, 0x1}; 1517 APInt::tcDecrement(test, 4); 1518 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1519 } 1520 1521 // 1 across word borrow, no out borrow. 1522 { 1523 APInt::WordType test[4] = {0x0, 0xF, 0x1, 0x1}; 1524 APInt::WordType expected[4] = {~APInt::WordType(0), 0xE, 0x1, 0x1}; 1525 APInt::WordType carry = APInt::tcDecrement(test, 4); 1526 EXPECT_EQ(carry, APInt::WordType(0)); 1527 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1528 } 1529 1530 // 2 across word borrow, no out borrow. 1531 { 1532 APInt::WordType test[4] = {0x0, 0x0, 0xC, 0x1}; 1533 APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), 0xB, 0x1}; 1534 APInt::WordType carry = APInt::tcDecrement(test, 4); 1535 EXPECT_EQ(carry, APInt::WordType(0)); 1536 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1537 } 1538 1539 // 3 across word borrow, no out borrow. 1540 { 1541 APInt::WordType test[4] = {0x0, 0x0, 0x0, 0x1}; 1542 APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0), 0x0}; 1543 APInt::WordType carry = APInt::tcDecrement(test, 4); 1544 EXPECT_EQ(carry, APInt::WordType(0)); 1545 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1546 } 1547 1548 // 3 across word borrow, with out borrow. 1549 { 1550 APInt::WordType test[4] = {0x0, 0x0, 0x0, 0x0}; 1551 APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0)}; 1552 APInt::WordType carry = APInt::tcDecrement(test, 4); 1553 EXPECT_EQ(carry, APInt::WordType(1)); 1554 EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0); 1555 } 1556 } 1557 1558 TEST(APIntTest, arrayAccess) { 1559 // Single word check. 1560 uint64_t E1 = 0x2CA7F46BF6569915ULL; 1561 APInt A1(64, E1); 1562 for (unsigned i = 0, e = 64; i < e; ++i) { 1563 EXPECT_EQ(bool(E1 & (1ULL << i)), 1564 A1[i]); 1565 } 1566 1567 // Multiword check. 1568 APInt::WordType E2[4] = { 1569 0xEB6EB136591CBA21ULL, 1570 0x7B9358BD6A33F10AULL, 1571 0x7E7FFA5EADD8846ULL, 1572 0x305F341CA00B613DULL 1573 }; 1574 APInt A2(APInt::APINT_BITS_PER_WORD*4, E2); 1575 for (unsigned i = 0; i < 4; ++i) { 1576 for (unsigned j = 0; j < APInt::APINT_BITS_PER_WORD; ++j) { 1577 EXPECT_EQ(bool(E2[i] & (1ULL << j)), 1578 A2[i*APInt::APINT_BITS_PER_WORD + j]); 1579 } 1580 } 1581 } 1582 1583 TEST(APIntTest, LargeAPIntConstruction) { 1584 // Check that we can properly construct very large APInt. It is very 1585 // unlikely that people will ever do this, but it is a legal input, 1586 // so we should not crash on it. 1587 APInt A9(UINT32_MAX, 0); 1588 EXPECT_FALSE(A9.getBoolValue()); 1589 } 1590 1591 TEST(APIntTest, nearestLogBase2) { 1592 // Single word check. 1593 1594 // Test round up. 1595 uint64_t I1 = 0x1800001; 1596 APInt A1(64, I1); 1597 EXPECT_EQ(A1.nearestLogBase2(), A1.ceilLogBase2()); 1598 1599 // Test round down. 1600 uint64_t I2 = 0x1000011; 1601 APInt A2(64, I2); 1602 EXPECT_EQ(A2.nearestLogBase2(), A2.logBase2()); 1603 1604 // Test ties round up. 1605 uint64_t I3 = 0x1800000; 1606 APInt A3(64, I3); 1607 EXPECT_EQ(A3.nearestLogBase2(), A3.ceilLogBase2()); 1608 1609 // Multiple word check. 1610 1611 // Test round up. 1612 APInt::WordType I4[4] = {0x0, 0xF, 0x18, 0x0}; 1613 APInt A4(APInt::APINT_BITS_PER_WORD*4, I4); 1614 EXPECT_EQ(A4.nearestLogBase2(), A4.ceilLogBase2()); 1615 1616 // Test round down. 1617 APInt::WordType I5[4] = {0x0, 0xF, 0x10, 0x0}; 1618 APInt A5(APInt::APINT_BITS_PER_WORD*4, I5); 1619 EXPECT_EQ(A5.nearestLogBase2(), A5.logBase2()); 1620 1621 // Test ties round up. 1622 uint64_t I6[4] = {0x0, 0x0, 0x0, 0x18}; 1623 APInt A6(APInt::APINT_BITS_PER_WORD*4, I6); 1624 EXPECT_EQ(A6.nearestLogBase2(), A6.ceilLogBase2()); 1625 1626 // Test BitWidth == 1 special cases. 1627 APInt A7(1, 1); 1628 EXPECT_EQ(A7.nearestLogBase2(), 0ULL); 1629 APInt A8(1, 0); 1630 EXPECT_EQ(A8.nearestLogBase2(), UINT32_MAX); 1631 1632 // Test the zero case when we have a bit width large enough such 1633 // that the bit width is larger than UINT32_MAX-1. 1634 APInt A9(UINT32_MAX, 0); 1635 EXPECT_EQ(A9.nearestLogBase2(), UINT32_MAX); 1636 } 1637 1638 TEST(APIntTest, IsSplat) { 1639 APInt A(32, 0x01010101); 1640 EXPECT_FALSE(A.isSplat(1)); 1641 EXPECT_FALSE(A.isSplat(2)); 1642 EXPECT_FALSE(A.isSplat(4)); 1643 EXPECT_TRUE(A.isSplat(8)); 1644 EXPECT_TRUE(A.isSplat(16)); 1645 EXPECT_TRUE(A.isSplat(32)); 1646 1647 APInt B(24, 0xAAAAAA); 1648 EXPECT_FALSE(B.isSplat(1)); 1649 EXPECT_TRUE(B.isSplat(2)); 1650 EXPECT_TRUE(B.isSplat(4)); 1651 EXPECT_TRUE(B.isSplat(8)); 1652 EXPECT_TRUE(B.isSplat(24)); 1653 1654 APInt C(24, 0xABAAAB); 1655 EXPECT_FALSE(C.isSplat(1)); 1656 EXPECT_FALSE(C.isSplat(2)); 1657 EXPECT_FALSE(C.isSplat(4)); 1658 EXPECT_FALSE(C.isSplat(8)); 1659 EXPECT_TRUE(C.isSplat(24)); 1660 1661 APInt D(32, 0xABBAABBA); 1662 EXPECT_FALSE(D.isSplat(1)); 1663 EXPECT_FALSE(D.isSplat(2)); 1664 EXPECT_FALSE(D.isSplat(4)); 1665 EXPECT_FALSE(D.isSplat(8)); 1666 EXPECT_TRUE(D.isSplat(16)); 1667 EXPECT_TRUE(D.isSplat(32)); 1668 1669 APInt E(32, 0); 1670 EXPECT_TRUE(E.isSplat(1)); 1671 EXPECT_TRUE(E.isSplat(2)); 1672 EXPECT_TRUE(E.isSplat(4)); 1673 EXPECT_TRUE(E.isSplat(8)); 1674 EXPECT_TRUE(E.isSplat(16)); 1675 EXPECT_TRUE(E.isSplat(32)); 1676 } 1677 1678 TEST(APIntTest, isMask) { 1679 EXPECT_FALSE(APInt(32, 0x01010101).isMask()); 1680 EXPECT_FALSE(APInt(32, 0xf0000000).isMask()); 1681 EXPECT_FALSE(APInt(32, 0xffff0000).isMask()); 1682 EXPECT_FALSE(APInt(32, 0xff << 1).isMask()); 1683 1684 for (int N : { 1, 2, 3, 4, 7, 8, 16, 32, 64, 127, 128, 129, 256 }) { 1685 EXPECT_FALSE(APInt(N, 0).isMask()); 1686 1687 APInt One(N, 1); 1688 for (int I = 1; I <= N; ++I) { 1689 APInt MaskVal = One.shl(I) - 1; 1690 EXPECT_TRUE(MaskVal.isMask()); 1691 EXPECT_TRUE(MaskVal.isMask(I)); 1692 } 1693 } 1694 } 1695 1696 TEST(APIntTest, isShiftedMask) { 1697 EXPECT_FALSE(APInt(32, 0x01010101).isShiftedMask()); 1698 EXPECT_TRUE(APInt(32, 0xf0000000).isShiftedMask()); 1699 EXPECT_TRUE(APInt(32, 0xffff0000).isShiftedMask()); 1700 EXPECT_TRUE(APInt(32, 0xff << 1).isShiftedMask()); 1701 1702 for (int N : { 1, 2, 3, 4, 7, 8, 16, 32, 64, 127, 128, 129, 256 }) { 1703 EXPECT_FALSE(APInt(N, 0).isShiftedMask()); 1704 1705 APInt One(N, 1); 1706 for (int I = 1; I < N; ++I) { 1707 APInt MaskVal = One.shl(I) - 1; 1708 EXPECT_TRUE(MaskVal.isShiftedMask()); 1709 } 1710 for (int I = 1; I < N - 1; ++I) { 1711 APInt MaskVal = One.shl(I); 1712 EXPECT_TRUE(MaskVal.isShiftedMask()); 1713 } 1714 for (int I = 1; I < N; ++I) { 1715 APInt MaskVal = APInt::getHighBitsSet(N, I); 1716 EXPECT_TRUE(MaskVal.isShiftedMask()); 1717 } 1718 } 1719 } 1720 1721 // Test that self-move works, but only when we're using MSVC. 1722 #if defined(_MSC_VER) 1723 #if defined(__clang__) 1724 // Disable the pragma warning from versions of Clang without -Wself-move 1725 #pragma clang diagnostic push 1726 #pragma clang diagnostic ignored "-Wunknown-pragmas" 1727 // Disable the warning that triggers on exactly what is being tested. 1728 #pragma clang diagnostic push 1729 #pragma clang diagnostic ignored "-Wself-move" 1730 #endif 1731 TEST(APIntTest, SelfMoveAssignment) { 1732 APInt X(32, 0xdeadbeef); 1733 X = std::move(X); 1734 EXPECT_EQ(32u, X.getBitWidth()); 1735 EXPECT_EQ(0xdeadbeefULL, X.getLimitedValue()); 1736 1737 uint64_t Bits[] = {0xdeadbeefdeadbeefULL, 0xdeadbeefdeadbeefULL}; 1738 APInt Y(128, Bits); 1739 Y = std::move(Y); 1740 EXPECT_EQ(128u, Y.getBitWidth()); 1741 EXPECT_EQ(~0ULL, Y.getLimitedValue()); 1742 const uint64_t *Raw = Y.getRawData(); 1743 EXPECT_EQ(2u, Y.getNumWords()); 1744 EXPECT_EQ(0xdeadbeefdeadbeefULL, Raw[0]); 1745 EXPECT_EQ(0xdeadbeefdeadbeefULL, Raw[1]); 1746 } 1747 #if defined(__clang__) 1748 #pragma clang diagnostic pop 1749 #pragma clang diagnostic pop 1750 #endif 1751 #endif // _MSC_VER 1752 1753 TEST(APIntTest, reverseBits) { 1754 EXPECT_EQ(1, APInt(1, 1).reverseBits()); 1755 EXPECT_EQ(0, APInt(1, 0).reverseBits()); 1756 1757 EXPECT_EQ(3, APInt(2, 3).reverseBits()); 1758 EXPECT_EQ(3, APInt(2, 3).reverseBits()); 1759 1760 EXPECT_EQ(0xb, APInt(4, 0xd).reverseBits()); 1761 EXPECT_EQ(0xd, APInt(4, 0xb).reverseBits()); 1762 EXPECT_EQ(0xf, APInt(4, 0xf).reverseBits()); 1763 1764 EXPECT_EQ(0x30, APInt(7, 0x6).reverseBits()); 1765 EXPECT_EQ(0x5a, APInt(7, 0x2d).reverseBits()); 1766 1767 EXPECT_EQ(0x0f, APInt(8, 0xf0).reverseBits()); 1768 EXPECT_EQ(0xf0, APInt(8, 0x0f).reverseBits()); 1769 1770 EXPECT_EQ(0x0f0f, APInt(16, 0xf0f0).reverseBits()); 1771 EXPECT_EQ(0xf0f0, APInt(16, 0x0f0f).reverseBits()); 1772 1773 EXPECT_EQ(0x0f0f0f0f, APInt(32, 0xf0f0f0f0).reverseBits()); 1774 EXPECT_EQ(0xf0f0f0f0, APInt(32, 0x0f0f0f0f).reverseBits()); 1775 1776 EXPECT_EQ(0x402880a0 >> 1, APInt(31, 0x05011402).reverseBits()); 1777 1778 EXPECT_EQ(0x0f0f0f0f, APInt(32, 0xf0f0f0f0).reverseBits()); 1779 EXPECT_EQ(0xf0f0f0f0, APInt(32, 0x0f0f0f0f).reverseBits()); 1780 1781 EXPECT_EQ(0x0f0f0f0f0f0f0f0f, APInt(64, 0xf0f0f0f0f0f0f0f0).reverseBits()); 1782 EXPECT_EQ(0xf0f0f0f0f0f0f0f0, APInt(64, 0x0f0f0f0f0f0f0f0f).reverseBits()); 1783 1784 for (unsigned N : { 1, 8, 16, 24, 31, 32, 33, 1785 63, 64, 65, 127, 128, 257, 1024 }) { 1786 for (unsigned I = 0; I < N; ++I) { 1787 APInt X = APInt::getOneBitSet(N, I); 1788 APInt Y = APInt::getOneBitSet(N, N - (I + 1)); 1789 EXPECT_EQ(Y, X.reverseBits()); 1790 EXPECT_EQ(X, Y.reverseBits()); 1791 } 1792 } 1793 } 1794 1795 TEST(APIntTest, insertBits) { 1796 APInt iSrc(31, 0x00123456); 1797 1798 // Direct copy. 1799 APInt i31(31, 0x76543210ull); 1800 i31.insertBits(iSrc, 0); 1801 EXPECT_EQ(static_cast<int64_t>(0x00123456ull), i31.getSExtValue()); 1802 1803 // Single word src/dst insertion. 1804 APInt i63(63, 0x01234567FFFFFFFFull); 1805 i63.insertBits(iSrc, 4); 1806 EXPECT_EQ(static_cast<int64_t>(0x012345600123456Full), i63.getSExtValue()); 1807 1808 // Insert single word src into one word of dst. 1809 APInt i120(120, UINT64_MAX, true); 1810 i120.insertBits(iSrc, 8); 1811 EXPECT_EQ(static_cast<int64_t>(0xFFFFFF80123456FFull), i120.getSExtValue()); 1812 1813 // Insert single word src into two words of dst. 1814 APInt i127(127, UINT64_MAX, true); 1815 i127.insertBits(iSrc, 48); 1816 EXPECT_EQ(i127.extractBits(64, 0).getZExtValue(), 0x3456FFFFFFFFFFFFull); 1817 EXPECT_EQ(i127.extractBits(63, 64).getZExtValue(), 0x7FFFFFFFFFFF8012ull); 1818 1819 // Insert on word boundaries. 1820 APInt i128(128, 0); 1821 i128.insertBits(APInt(64, UINT64_MAX, true), 0); 1822 i128.insertBits(APInt(64, UINT64_MAX, true), 64); 1823 EXPECT_EQ(-1, i128.getSExtValue()); 1824 1825 APInt i256(256, UINT64_MAX, true); 1826 i256.insertBits(APInt(65, 0), 0); 1827 i256.insertBits(APInt(69, 0), 64); 1828 i256.insertBits(APInt(128, 0), 128); 1829 EXPECT_EQ(0u, i256.getSExtValue()); 1830 1831 APInt i257(257, 0); 1832 i257.insertBits(APInt(96, UINT64_MAX, true), 64); 1833 EXPECT_EQ(i257.extractBits(64, 0).getZExtValue(), 0x0000000000000000ull); 1834 EXPECT_EQ(i257.extractBits(64, 64).getZExtValue(), 0xFFFFFFFFFFFFFFFFull); 1835 EXPECT_EQ(i257.extractBits(64, 128).getZExtValue(), 0x00000000FFFFFFFFull); 1836 EXPECT_EQ(i257.extractBits(65, 192).getZExtValue(), 0x0000000000000000ull); 1837 1838 // General insertion. 1839 APInt i260(260, UINT64_MAX, true); 1840 i260.insertBits(APInt(129, 1ull << 48), 15); 1841 EXPECT_EQ(i260.extractBits(64, 0).getZExtValue(), 0x8000000000007FFFull); 1842 EXPECT_EQ(i260.extractBits(64, 64).getZExtValue(), 0x0000000000000000ull); 1843 EXPECT_EQ(i260.extractBits(64, 128).getZExtValue(), 0xFFFFFFFFFFFF0000ull); 1844 EXPECT_EQ(i260.extractBits(64, 192).getZExtValue(), 0xFFFFFFFFFFFFFFFFull); 1845 EXPECT_EQ(i260.extractBits(4, 256).getZExtValue(), 0x000000000000000Full); 1846 } 1847 1848 TEST(APIntTest, extractBits) { 1849 APInt i32(32, 0x1234567); 1850 EXPECT_EQ(0x3456, i32.extractBits(16, 4)); 1851 1852 APInt i257(257, 0xFFFFFFFFFF0000FFull, true); 1853 EXPECT_EQ(0xFFu, i257.extractBits(16, 0)); 1854 EXPECT_EQ((0xFFu >> 1), i257.extractBits(16, 1)); 1855 EXPECT_EQ(-1, i257.extractBits(32, 64).getSExtValue()); 1856 EXPECT_EQ(-1, i257.extractBits(128, 128).getSExtValue()); 1857 EXPECT_EQ(-1, i257.extractBits(66, 191).getSExtValue()); 1858 EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full), 1859 i257.extractBits(128, 1).getSExtValue()); 1860 EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full), 1861 i257.extractBits(129, 1).getSExtValue()); 1862 1863 EXPECT_EQ(APInt(48, 0), 1864 APInt(144, "281474976710655", 10).extractBits(48, 48)); 1865 EXPECT_EQ(APInt(48, 0x0000ffffffffffffull), 1866 APInt(144, "281474976710655", 10).extractBits(48, 0)); 1867 EXPECT_EQ(APInt(48, 0x00007fffffffffffull), 1868 APInt(144, "281474976710655", 10).extractBits(48, 1)); 1869 } 1870 1871 TEST(APIntTest, getLowBitsSet) { 1872 APInt i128lo64 = APInt::getLowBitsSet(128, 64); 1873 EXPECT_EQ(0u, i128lo64.countLeadingOnes()); 1874 EXPECT_EQ(64u, i128lo64.countLeadingZeros()); 1875 EXPECT_EQ(64u, i128lo64.getActiveBits()); 1876 EXPECT_EQ(0u, i128lo64.countTrailingZeros()); 1877 EXPECT_EQ(64u, i128lo64.countTrailingOnes()); 1878 EXPECT_EQ(64u, i128lo64.countPopulation()); 1879 } 1880 1881 TEST(APIntTest, getBitsSet) { 1882 APInt i64hi1lo1 = APInt::getBitsSet(64, 1, 63); 1883 EXPECT_EQ(0u, i64hi1lo1.countLeadingOnes()); 1884 EXPECT_EQ(1u, i64hi1lo1.countLeadingZeros()); 1885 EXPECT_EQ(63u, i64hi1lo1.getActiveBits()); 1886 EXPECT_EQ(1u, i64hi1lo1.countTrailingZeros()); 1887 EXPECT_EQ(0u, i64hi1lo1.countTrailingOnes()); 1888 EXPECT_EQ(62u, i64hi1lo1.countPopulation()); 1889 1890 APInt i127hi1lo1 = APInt::getBitsSet(127, 1, 126); 1891 EXPECT_EQ(0u, i127hi1lo1.countLeadingOnes()); 1892 EXPECT_EQ(1u, i127hi1lo1.countLeadingZeros()); 1893 EXPECT_EQ(126u, i127hi1lo1.getActiveBits()); 1894 EXPECT_EQ(1u, i127hi1lo1.countTrailingZeros()); 1895 EXPECT_EQ(0u, i127hi1lo1.countTrailingOnes()); 1896 EXPECT_EQ(125u, i127hi1lo1.countPopulation()); 1897 } 1898 1899 TEST(APIntTest, getHighBitsSet) { 1900 APInt i64hi32 = APInt::getHighBitsSet(64, 32); 1901 EXPECT_EQ(32u, i64hi32.countLeadingOnes()); 1902 EXPECT_EQ(0u, i64hi32.countLeadingZeros()); 1903 EXPECT_EQ(64u, i64hi32.getActiveBits()); 1904 EXPECT_EQ(32u, i64hi32.countTrailingZeros()); 1905 EXPECT_EQ(0u, i64hi32.countTrailingOnes()); 1906 EXPECT_EQ(32u, i64hi32.countPopulation()); 1907 } 1908 1909 TEST(APIntTest, getBitsSetFrom) { 1910 APInt i64hi31 = APInt::getBitsSetFrom(64, 33); 1911 EXPECT_EQ(31u, i64hi31.countLeadingOnes()); 1912 EXPECT_EQ(0u, i64hi31.countLeadingZeros()); 1913 EXPECT_EQ(64u, i64hi31.getActiveBits()); 1914 EXPECT_EQ(33u, i64hi31.countTrailingZeros()); 1915 EXPECT_EQ(0u, i64hi31.countTrailingOnes()); 1916 EXPECT_EQ(31u, i64hi31.countPopulation()); 1917 } 1918 1919 TEST(APIntTest, setLowBits) { 1920 APInt i64lo32(64, 0); 1921 i64lo32.setLowBits(32); 1922 EXPECT_EQ(0u, i64lo32.countLeadingOnes()); 1923 EXPECT_EQ(32u, i64lo32.countLeadingZeros()); 1924 EXPECT_EQ(32u, i64lo32.getActiveBits()); 1925 EXPECT_EQ(0u, i64lo32.countTrailingZeros()); 1926 EXPECT_EQ(32u, i64lo32.countTrailingOnes()); 1927 EXPECT_EQ(32u, i64lo32.countPopulation()); 1928 1929 APInt i128lo64(128, 0); 1930 i128lo64.setLowBits(64); 1931 EXPECT_EQ(0u, i128lo64.countLeadingOnes()); 1932 EXPECT_EQ(64u, i128lo64.countLeadingZeros()); 1933 EXPECT_EQ(64u, i128lo64.getActiveBits()); 1934 EXPECT_EQ(0u, i128lo64.countTrailingZeros()); 1935 EXPECT_EQ(64u, i128lo64.countTrailingOnes()); 1936 EXPECT_EQ(64u, i128lo64.countPopulation()); 1937 1938 APInt i128lo24(128, 0); 1939 i128lo24.setLowBits(24); 1940 EXPECT_EQ(0u, i128lo24.countLeadingOnes()); 1941 EXPECT_EQ(104u, i128lo24.countLeadingZeros()); 1942 EXPECT_EQ(24u, i128lo24.getActiveBits()); 1943 EXPECT_EQ(0u, i128lo24.countTrailingZeros()); 1944 EXPECT_EQ(24u, i128lo24.countTrailingOnes()); 1945 EXPECT_EQ(24u, i128lo24.countPopulation()); 1946 1947 APInt i128lo104(128, 0); 1948 i128lo104.setLowBits(104); 1949 EXPECT_EQ(0u, i128lo104.countLeadingOnes()); 1950 EXPECT_EQ(24u, i128lo104.countLeadingZeros()); 1951 EXPECT_EQ(104u, i128lo104.getActiveBits()); 1952 EXPECT_EQ(0u, i128lo104.countTrailingZeros()); 1953 EXPECT_EQ(104u, i128lo104.countTrailingOnes()); 1954 EXPECT_EQ(104u, i128lo104.countPopulation()); 1955 1956 APInt i128lo0(128, 0); 1957 i128lo0.setLowBits(0); 1958 EXPECT_EQ(0u, i128lo0.countLeadingOnes()); 1959 EXPECT_EQ(128u, i128lo0.countLeadingZeros()); 1960 EXPECT_EQ(0u, i128lo0.getActiveBits()); 1961 EXPECT_EQ(128u, i128lo0.countTrailingZeros()); 1962 EXPECT_EQ(0u, i128lo0.countTrailingOnes()); 1963 EXPECT_EQ(0u, i128lo0.countPopulation()); 1964 1965 APInt i80lo79(80, 0); 1966 i80lo79.setLowBits(79); 1967 EXPECT_EQ(0u, i80lo79.countLeadingOnes()); 1968 EXPECT_EQ(1u, i80lo79.countLeadingZeros()); 1969 EXPECT_EQ(79u, i80lo79.getActiveBits()); 1970 EXPECT_EQ(0u, i80lo79.countTrailingZeros()); 1971 EXPECT_EQ(79u, i80lo79.countTrailingOnes()); 1972 EXPECT_EQ(79u, i80lo79.countPopulation()); 1973 } 1974 1975 TEST(APIntTest, setHighBits) { 1976 APInt i64hi32(64, 0); 1977 i64hi32.setHighBits(32); 1978 EXPECT_EQ(32u, i64hi32.countLeadingOnes()); 1979 EXPECT_EQ(0u, i64hi32.countLeadingZeros()); 1980 EXPECT_EQ(64u, i64hi32.getActiveBits()); 1981 EXPECT_EQ(32u, i64hi32.countTrailingZeros()); 1982 EXPECT_EQ(0u, i64hi32.countTrailingOnes()); 1983 EXPECT_EQ(32u, i64hi32.countPopulation()); 1984 1985 APInt i128hi64(128, 0); 1986 i128hi64.setHighBits(64); 1987 EXPECT_EQ(64u, i128hi64.countLeadingOnes()); 1988 EXPECT_EQ(0u, i128hi64.countLeadingZeros()); 1989 EXPECT_EQ(128u, i128hi64.getActiveBits()); 1990 EXPECT_EQ(64u, i128hi64.countTrailingZeros()); 1991 EXPECT_EQ(0u, i128hi64.countTrailingOnes()); 1992 EXPECT_EQ(64u, i128hi64.countPopulation()); 1993 1994 APInt i128hi24(128, 0); 1995 i128hi24.setHighBits(24); 1996 EXPECT_EQ(24u, i128hi24.countLeadingOnes()); 1997 EXPECT_EQ(0u, i128hi24.countLeadingZeros()); 1998 EXPECT_EQ(128u, i128hi24.getActiveBits()); 1999 EXPECT_EQ(104u, i128hi24.countTrailingZeros()); 2000 EXPECT_EQ(0u, i128hi24.countTrailingOnes()); 2001 EXPECT_EQ(24u, i128hi24.countPopulation()); 2002 2003 APInt i128hi104(128, 0); 2004 i128hi104.setHighBits(104); 2005 EXPECT_EQ(104u, i128hi104.countLeadingOnes()); 2006 EXPECT_EQ(0u, i128hi104.countLeadingZeros()); 2007 EXPECT_EQ(128u, i128hi104.getActiveBits()); 2008 EXPECT_EQ(24u, i128hi104.countTrailingZeros()); 2009 EXPECT_EQ(0u, i128hi104.countTrailingOnes()); 2010 EXPECT_EQ(104u, i128hi104.countPopulation()); 2011 2012 APInt i128hi0(128, 0); 2013 i128hi0.setHighBits(0); 2014 EXPECT_EQ(0u, i128hi0.countLeadingOnes()); 2015 EXPECT_EQ(128u, i128hi0.countLeadingZeros()); 2016 EXPECT_EQ(0u, i128hi0.getActiveBits()); 2017 EXPECT_EQ(128u, i128hi0.countTrailingZeros()); 2018 EXPECT_EQ(0u, i128hi0.countTrailingOnes()); 2019 EXPECT_EQ(0u, i128hi0.countPopulation()); 2020 2021 APInt i80hi1(80, 0); 2022 i80hi1.setHighBits(1); 2023 EXPECT_EQ(1u, i80hi1.countLeadingOnes()); 2024 EXPECT_EQ(0u, i80hi1.countLeadingZeros()); 2025 EXPECT_EQ(80u, i80hi1.getActiveBits()); 2026 EXPECT_EQ(79u, i80hi1.countTrailingZeros()); 2027 EXPECT_EQ(0u, i80hi1.countTrailingOnes()); 2028 EXPECT_EQ(1u, i80hi1.countPopulation()); 2029 2030 APInt i32hi16(32, 0); 2031 i32hi16.setHighBits(16); 2032 EXPECT_EQ(16u, i32hi16.countLeadingOnes()); 2033 EXPECT_EQ(0u, i32hi16.countLeadingZeros()); 2034 EXPECT_EQ(32u, i32hi16.getActiveBits()); 2035 EXPECT_EQ(16u, i32hi16.countTrailingZeros()); 2036 EXPECT_EQ(0u, i32hi16.countTrailingOnes()); 2037 EXPECT_EQ(16u, i32hi16.countPopulation()); 2038 } 2039 2040 TEST(APIntTest, setBitsFrom) { 2041 APInt i64from63(64, 0); 2042 i64from63.setBitsFrom(63); 2043 EXPECT_EQ(1u, i64from63.countLeadingOnes()); 2044 EXPECT_EQ(0u, i64from63.countLeadingZeros()); 2045 EXPECT_EQ(64u, i64from63.getActiveBits()); 2046 EXPECT_EQ(63u, i64from63.countTrailingZeros()); 2047 EXPECT_EQ(0u, i64from63.countTrailingOnes()); 2048 EXPECT_EQ(1u, i64from63.countPopulation()); 2049 } 2050 2051 TEST(APIntTest, setAllBits) { 2052 APInt i32(32, 0); 2053 i32.setAllBits(); 2054 EXPECT_EQ(32u, i32.countLeadingOnes()); 2055 EXPECT_EQ(0u, i32.countLeadingZeros()); 2056 EXPECT_EQ(32u, i32.getActiveBits()); 2057 EXPECT_EQ(0u, i32.countTrailingZeros()); 2058 EXPECT_EQ(32u, i32.countTrailingOnes()); 2059 EXPECT_EQ(32u, i32.countPopulation()); 2060 2061 APInt i64(64, 0); 2062 i64.setAllBits(); 2063 EXPECT_EQ(64u, i64.countLeadingOnes()); 2064 EXPECT_EQ(0u, i64.countLeadingZeros()); 2065 EXPECT_EQ(64u, i64.getActiveBits()); 2066 EXPECT_EQ(0u, i64.countTrailingZeros()); 2067 EXPECT_EQ(64u, i64.countTrailingOnes()); 2068 EXPECT_EQ(64u, i64.countPopulation()); 2069 2070 APInt i96(96, 0); 2071 i96.setAllBits(); 2072 EXPECT_EQ(96u, i96.countLeadingOnes()); 2073 EXPECT_EQ(0u, i96.countLeadingZeros()); 2074 EXPECT_EQ(96u, i96.getActiveBits()); 2075 EXPECT_EQ(0u, i96.countTrailingZeros()); 2076 EXPECT_EQ(96u, i96.countTrailingOnes()); 2077 EXPECT_EQ(96u, i96.countPopulation()); 2078 2079 APInt i128(128, 0); 2080 i128.setAllBits(); 2081 EXPECT_EQ(128u, i128.countLeadingOnes()); 2082 EXPECT_EQ(0u, i128.countLeadingZeros()); 2083 EXPECT_EQ(128u, i128.getActiveBits()); 2084 EXPECT_EQ(0u, i128.countTrailingZeros()); 2085 EXPECT_EQ(128u, i128.countTrailingOnes()); 2086 EXPECT_EQ(128u, i128.countPopulation()); 2087 } 2088 2089 TEST(APIntTest, getLoBits) { 2090 APInt i32(32, 0xfa); 2091 i32.setHighBits(1); 2092 EXPECT_EQ(0xa, i32.getLoBits(4)); 2093 APInt i128(128, 0xfa); 2094 i128.setHighBits(1); 2095 EXPECT_EQ(0xa, i128.getLoBits(4)); 2096 } 2097 2098 TEST(APIntTest, getHiBits) { 2099 APInt i32(32, 0xfa); 2100 i32.setHighBits(2); 2101 EXPECT_EQ(0xc, i32.getHiBits(4)); 2102 APInt i128(128, 0xfa); 2103 i128.setHighBits(2); 2104 EXPECT_EQ(0xc, i128.getHiBits(4)); 2105 } 2106 2107 TEST(APIntTest, GCD) { 2108 using APIntOps::GreatestCommonDivisor; 2109 2110 for (unsigned Bits : {1, 2, 32, 63, 64, 65}) { 2111 // Test some corner cases near zero. 2112 APInt Zero(Bits, 0), One(Bits, 1); 2113 EXPECT_EQ(GreatestCommonDivisor(Zero, Zero), Zero); 2114 EXPECT_EQ(GreatestCommonDivisor(Zero, One), One); 2115 EXPECT_EQ(GreatestCommonDivisor(One, Zero), One); 2116 EXPECT_EQ(GreatestCommonDivisor(One, One), One); 2117 2118 if (Bits > 1) { 2119 APInt Two(Bits, 2); 2120 EXPECT_EQ(GreatestCommonDivisor(Zero, Two), Two); 2121 EXPECT_EQ(GreatestCommonDivisor(One, Two), One); 2122 EXPECT_EQ(GreatestCommonDivisor(Two, Two), Two); 2123 2124 // Test some corner cases near the highest representable value. 2125 APInt Max(Bits, 0); 2126 Max.setAllBits(); 2127 EXPECT_EQ(GreatestCommonDivisor(Zero, Max), Max); 2128 EXPECT_EQ(GreatestCommonDivisor(One, Max), One); 2129 EXPECT_EQ(GreatestCommonDivisor(Two, Max), One); 2130 EXPECT_EQ(GreatestCommonDivisor(Max, Max), Max); 2131 2132 APInt MaxOver2 = Max.udiv(Two); 2133 EXPECT_EQ(GreatestCommonDivisor(MaxOver2, Max), One); 2134 // Max - 1 == Max / 2 * 2, because Max is odd. 2135 EXPECT_EQ(GreatestCommonDivisor(MaxOver2, Max - 1), MaxOver2); 2136 } 2137 } 2138 2139 // Compute the 20th Mersenne prime. 2140 const unsigned BitWidth = 4450; 2141 APInt HugePrime = APInt::getLowBitsSet(BitWidth, 4423); 2142 2143 // 9931 and 123456 are coprime. 2144 APInt A = HugePrime * APInt(BitWidth, 9931); 2145 APInt B = HugePrime * APInt(BitWidth, 123456); 2146 APInt C = GreatestCommonDivisor(A, B); 2147 EXPECT_EQ(C, HugePrime); 2148 } 2149 2150 TEST(APIntTest, LogicalRightShift) { 2151 APInt i256(APInt::getHighBitsSet(256, 2)); 2152 2153 i256.lshrInPlace(1); 2154 EXPECT_EQ(1U, i256.countLeadingZeros()); 2155 EXPECT_EQ(253U, i256.countTrailingZeros()); 2156 EXPECT_EQ(2U, i256.countPopulation()); 2157 2158 i256.lshrInPlace(62); 2159 EXPECT_EQ(63U, i256.countLeadingZeros()); 2160 EXPECT_EQ(191U, i256.countTrailingZeros()); 2161 EXPECT_EQ(2U, i256.countPopulation()); 2162 2163 i256.lshrInPlace(65); 2164 EXPECT_EQ(128U, i256.countLeadingZeros()); 2165 EXPECT_EQ(126U, i256.countTrailingZeros()); 2166 EXPECT_EQ(2U, i256.countPopulation()); 2167 2168 i256.lshrInPlace(64); 2169 EXPECT_EQ(192U, i256.countLeadingZeros()); 2170 EXPECT_EQ(62U, i256.countTrailingZeros()); 2171 EXPECT_EQ(2U, i256.countPopulation()); 2172 2173 i256.lshrInPlace(63); 2174 EXPECT_EQ(255U, i256.countLeadingZeros()); 2175 EXPECT_EQ(0U, i256.countTrailingZeros()); 2176 EXPECT_EQ(1U, i256.countPopulation()); 2177 2178 // Ensure we handle large shifts of multi-word. 2179 const APInt neg_one(128, static_cast<uint64_t>(-1), true); 2180 EXPECT_EQ(0, neg_one.lshr(128)); 2181 } 2182 2183 TEST(APIntTest, ArithmeticRightShift) { 2184 APInt i72(APInt::getHighBitsSet(72, 1)); 2185 i72.ashrInPlace(46); 2186 EXPECT_EQ(47U, i72.countLeadingOnes()); 2187 EXPECT_EQ(25U, i72.countTrailingZeros()); 2188 EXPECT_EQ(47U, i72.countPopulation()); 2189 2190 i72 = APInt::getHighBitsSet(72, 1); 2191 i72.ashrInPlace(64); 2192 EXPECT_EQ(65U, i72.countLeadingOnes()); 2193 EXPECT_EQ(7U, i72.countTrailingZeros()); 2194 EXPECT_EQ(65U, i72.countPopulation()); 2195 2196 APInt i128(APInt::getHighBitsSet(128, 1)); 2197 i128.ashrInPlace(64); 2198 EXPECT_EQ(65U, i128.countLeadingOnes()); 2199 EXPECT_EQ(63U, i128.countTrailingZeros()); 2200 EXPECT_EQ(65U, i128.countPopulation()); 2201 2202 // Ensure we handle large shifts of multi-word. 2203 const APInt signmin32(APInt::getSignedMinValue(32)); 2204 EXPECT_TRUE(signmin32.ashr(32).isAllOnesValue()); 2205 2206 // Ensure we handle large shifts of multi-word. 2207 const APInt umax32(APInt::getSignedMaxValue(32)); 2208 EXPECT_EQ(0, umax32.ashr(32)); 2209 2210 // Ensure we handle large shifts of multi-word. 2211 const APInt signmin128(APInt::getSignedMinValue(128)); 2212 EXPECT_TRUE(signmin128.ashr(128).isAllOnesValue()); 2213 2214 // Ensure we handle large shifts of multi-word. 2215 const APInt umax128(APInt::getSignedMaxValue(128)); 2216 EXPECT_EQ(0, umax128.ashr(128)); 2217 } 2218 2219 TEST(APIntTest, LeftShift) { 2220 APInt i256(APInt::getLowBitsSet(256, 2)); 2221 2222 i256 <<= 1; 2223 EXPECT_EQ(253U, i256.countLeadingZeros()); 2224 EXPECT_EQ(1U, i256.countTrailingZeros()); 2225 EXPECT_EQ(2U, i256.countPopulation()); 2226 2227 i256 <<= 62; 2228 EXPECT_EQ(191U, i256.countLeadingZeros()); 2229 EXPECT_EQ(63U, i256.countTrailingZeros()); 2230 EXPECT_EQ(2U, i256.countPopulation()); 2231 2232 i256 <<= 65; 2233 EXPECT_EQ(126U, i256.countLeadingZeros()); 2234 EXPECT_EQ(128U, i256.countTrailingZeros()); 2235 EXPECT_EQ(2U, i256.countPopulation()); 2236 2237 i256 <<= 64; 2238 EXPECT_EQ(62U, i256.countLeadingZeros()); 2239 EXPECT_EQ(192U, i256.countTrailingZeros()); 2240 EXPECT_EQ(2U, i256.countPopulation()); 2241 2242 i256 <<= 63; 2243 EXPECT_EQ(0U, i256.countLeadingZeros()); 2244 EXPECT_EQ(255U, i256.countTrailingZeros()); 2245 EXPECT_EQ(1U, i256.countPopulation()); 2246 2247 // Ensure we handle large shifts of multi-word. 2248 const APInt neg_one(128, static_cast<uint64_t>(-1), true); 2249 EXPECT_EQ(0, neg_one.shl(128)); 2250 } 2251 2252 TEST(APIntTest, isSubsetOf) { 2253 APInt i32_1(32, 1); 2254 APInt i32_2(32, 2); 2255 APInt i32_3(32, 3); 2256 EXPECT_FALSE(i32_3.isSubsetOf(i32_1)); 2257 EXPECT_TRUE(i32_1.isSubsetOf(i32_3)); 2258 EXPECT_FALSE(i32_2.isSubsetOf(i32_1)); 2259 EXPECT_FALSE(i32_1.isSubsetOf(i32_2)); 2260 EXPECT_TRUE(i32_3.isSubsetOf(i32_3)); 2261 2262 APInt i128_1(128, 1); 2263 APInt i128_2(128, 2); 2264 APInt i128_3(128, 3); 2265 EXPECT_FALSE(i128_3.isSubsetOf(i128_1)); 2266 EXPECT_TRUE(i128_1.isSubsetOf(i128_3)); 2267 EXPECT_FALSE(i128_2.isSubsetOf(i128_1)); 2268 EXPECT_FALSE(i128_1.isSubsetOf(i128_2)); 2269 EXPECT_TRUE(i128_3.isSubsetOf(i128_3)); 2270 2271 i128_1 <<= 64; 2272 i128_2 <<= 64; 2273 i128_3 <<= 64; 2274 EXPECT_FALSE(i128_3.isSubsetOf(i128_1)); 2275 EXPECT_TRUE(i128_1.isSubsetOf(i128_3)); 2276 EXPECT_FALSE(i128_2.isSubsetOf(i128_1)); 2277 EXPECT_FALSE(i128_1.isSubsetOf(i128_2)); 2278 EXPECT_TRUE(i128_3.isSubsetOf(i128_3)); 2279 } 2280 2281 TEST(APIntTest, sext) { 2282 EXPECT_EQ(0, APInt(1, 0).sext(64)); 2283 EXPECT_EQ(~uint64_t(0), APInt(1, 1).sext(64)); 2284 2285 APInt i32_max(APInt::getSignedMaxValue(32).sext(63)); 2286 EXPECT_EQ(32U, i32_max.countLeadingZeros()); 2287 EXPECT_EQ(0U, i32_max.countTrailingZeros()); 2288 EXPECT_EQ(31U, i32_max.countPopulation()); 2289 2290 APInt i32_min(APInt::getSignedMinValue(32).sext(63)); 2291 EXPECT_EQ(32U, i32_min.countLeadingOnes()); 2292 EXPECT_EQ(31U, i32_min.countTrailingZeros()); 2293 EXPECT_EQ(32U, i32_min.countPopulation()); 2294 2295 APInt i32_neg1(APInt(32, ~uint64_t(0)).sext(63)); 2296 EXPECT_EQ(63U, i32_neg1.countLeadingOnes()); 2297 EXPECT_EQ(0U, i32_neg1.countTrailingZeros()); 2298 EXPECT_EQ(63U, i32_neg1.countPopulation()); 2299 } 2300 2301 TEST(APIntTest, multiply) { 2302 APInt i64(64, 1234); 2303 2304 EXPECT_EQ(7006652, i64 * 5678); 2305 EXPECT_EQ(7006652, 5678 * i64); 2306 2307 APInt i128 = APInt::getOneBitSet(128, 64); 2308 APInt i128_1234(128, 1234); 2309 i128_1234 <<= 64; 2310 EXPECT_EQ(i128_1234, i128 * 1234); 2311 EXPECT_EQ(i128_1234, 1234 * i128); 2312 2313 APInt i96 = APInt::getOneBitSet(96, 64); 2314 i96 *= ~0ULL; 2315 EXPECT_EQ(32U, i96.countLeadingOnes()); 2316 EXPECT_EQ(32U, i96.countPopulation()); 2317 EXPECT_EQ(64U, i96.countTrailingZeros()); 2318 } 2319 2320 TEST(APIntTest, RoundingUDiv) { 2321 for (uint64_t Ai = 1; Ai <= 255; Ai++) { 2322 APInt A(8, Ai); 2323 APInt Zero(8, 0); 2324 EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::UP)); 2325 EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::DOWN)); 2326 EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::TOWARD_ZERO)); 2327 2328 for (uint64_t Bi = 1; Bi <= 255; Bi++) { 2329 APInt B(8, Bi); 2330 { 2331 APInt Quo = APIntOps::RoundingUDiv(A, B, APInt::Rounding::UP); 2332 auto Prod = Quo.zext(16) * B.zext(16); 2333 EXPECT_TRUE(Prod.uge(Ai)); 2334 if (Prod.ugt(Ai)) { 2335 EXPECT_TRUE(((Quo - 1).zext(16) * B.zext(16)).ult(Ai)); 2336 } 2337 } 2338 { 2339 APInt Quo = A.udiv(B); 2340 EXPECT_EQ(Quo, APIntOps::RoundingUDiv(A, B, APInt::Rounding::TOWARD_ZERO)); 2341 EXPECT_EQ(Quo, APIntOps::RoundingUDiv(A, B, APInt::Rounding::DOWN)); 2342 } 2343 } 2344 } 2345 } 2346 2347 TEST(APIntTest, RoundingSDiv) { 2348 for (int64_t Ai = -128; Ai <= 127; Ai++) { 2349 APInt A(8, Ai); 2350 2351 if (Ai != 0) { 2352 APInt Zero(8, 0); 2353 EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::UP)); 2354 EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::DOWN)); 2355 EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::TOWARD_ZERO)); 2356 } 2357 2358 for (uint64_t Bi = -128; Bi <= 127; Bi++) { 2359 if (Bi == 0) 2360 continue; 2361 2362 APInt B(8, Bi); 2363 { 2364 APInt Quo = APIntOps::RoundingSDiv(A, B, APInt::Rounding::UP); 2365 auto Prod = Quo.sext(16) * B.sext(16); 2366 EXPECT_TRUE(Prod.uge(A)); 2367 if (Prod.ugt(A)) { 2368 EXPECT_TRUE(((Quo - 1).sext(16) * B.sext(16)).ult(A)); 2369 } 2370 } 2371 { 2372 APInt Quo = APIntOps::RoundingSDiv(A, B, APInt::Rounding::DOWN); 2373 auto Prod = Quo.sext(16) * B.sext(16); 2374 EXPECT_TRUE(Prod.ule(A)); 2375 if (Prod.ult(A)) { 2376 EXPECT_TRUE(((Quo + 1).sext(16) * B.sext(16)).ugt(A)); 2377 } 2378 } 2379 { 2380 APInt Quo = A.sdiv(B); 2381 EXPECT_EQ(Quo, APIntOps::RoundingSDiv(A, B, APInt::Rounding::TOWARD_ZERO)); 2382 } 2383 } 2384 } 2385 } 2386 2387 TEST(APIntTest, umul_ov) { 2388 const std::pair<uint64_t, uint64_t> Overflows[] = { 2389 {0x8000000000000000, 2}, 2390 {0x5555555555555556, 3}, 2391 {4294967296, 4294967296}, 2392 {4294967295, 4294967298}, 2393 }; 2394 const std::pair<uint64_t, uint64_t> NonOverflows[] = { 2395 {0x7fffffffffffffff, 2}, 2396 {0x5555555555555555, 3}, 2397 {4294967295, 4294967297}, 2398 }; 2399 2400 bool Overflow; 2401 for (auto &X : Overflows) { 2402 APInt A(64, X.first); 2403 APInt B(64, X.second); 2404 (void)A.umul_ov(B, Overflow); 2405 EXPECT_TRUE(Overflow); 2406 } 2407 for (auto &X : NonOverflows) { 2408 APInt A(64, X.first); 2409 APInt B(64, X.second); 2410 (void)A.umul_ov(B, Overflow); 2411 EXPECT_FALSE(Overflow); 2412 } 2413 2414 for (unsigned Bits = 1; Bits <= 5; ++Bits) 2415 for (unsigned A = 0; A != 1u << Bits; ++A) 2416 for (unsigned B = 0; B != 1u << Bits; ++B) { 2417 APInt C = APInt(Bits, A).umul_ov(APInt(Bits, B), Overflow); 2418 APInt D = APInt(2 * Bits, A) * APInt(2 * Bits, B); 2419 EXPECT_TRUE(D.getHiBits(Bits).isNullValue() != Overflow); 2420 } 2421 } 2422 2423 TEST(APIntTest, SolveQuadraticEquationWrap) { 2424 // Verify that "Solution" is the first non-negative integer that solves 2425 // Ax^2 + Bx + C = "0 or overflow", i.e. that it is a correct solution 2426 // as calculated by SolveQuadraticEquationWrap. 2427 auto Validate = [] (int A, int B, int C, unsigned Width, int Solution) { 2428 int Mask = (1 << Width) - 1; 2429 2430 // Solution should be non-negative. 2431 EXPECT_GE(Solution, 0); 2432 2433 auto OverflowBits = [] (int64_t V, unsigned W) { 2434 return V & -(1 << W); 2435 }; 2436 2437 int64_t Over0 = OverflowBits(C, Width); 2438 2439 auto IsZeroOrOverflow = [&] (int X) { 2440 int64_t ValueAtX = A*X*X + B*X + C; 2441 int64_t OverX = OverflowBits(ValueAtX, Width); 2442 return (ValueAtX & Mask) == 0 || OverX != Over0; 2443 }; 2444 2445 auto EquationToString = [&] (const char *X_str) { 2446 return (Twine(A) + Twine(X_str) + Twine("^2 + ") + Twine(B) + 2447 Twine(X_str) + Twine(" + ") + Twine(C) + Twine(", bitwidth: ") + 2448 Twine(Width)).str(); 2449 }; 2450 2451 auto IsSolution = [&] (const char *X_str, int X) { 2452 if (IsZeroOrOverflow(X)) 2453 return ::testing::AssertionSuccess() 2454 << X << " is a solution of " << EquationToString(X_str); 2455 return ::testing::AssertionFailure() 2456 << X << " is not an expected solution of " 2457 << EquationToString(X_str); 2458 }; 2459 2460 auto IsNotSolution = [&] (const char *X_str, int X) { 2461 if (!IsZeroOrOverflow(X)) 2462 return ::testing::AssertionSuccess() 2463 << X << " is not a solution of " << EquationToString(X_str); 2464 return ::testing::AssertionFailure() 2465 << X << " is an unexpected solution of " 2466 << EquationToString(X_str); 2467 }; 2468 2469 // This is the important part: make sure that there is no solution that 2470 // is less than the calculated one. 2471 if (Solution > 0) { 2472 for (int X = 1; X < Solution-1; ++X) 2473 EXPECT_PRED_FORMAT1(IsNotSolution, X); 2474 } 2475 2476 // Verify that the calculated solution is indeed a solution. 2477 EXPECT_PRED_FORMAT1(IsSolution, Solution); 2478 }; 2479 2480 // Generate all possible quadratic equations with Width-bit wide integer 2481 // coefficients, get the solution from SolveQuadraticEquationWrap, and 2482 // verify that the solution is correct. 2483 auto Iterate = [&] (unsigned Width) { 2484 assert(1 < Width && Width < 32); 2485 int Low = -(1 << (Width-1)); 2486 int High = (1 << (Width-1)); 2487 2488 for (int A = Low; A != High; ++A) { 2489 if (A == 0) 2490 continue; 2491 for (int B = Low; B != High; ++B) { 2492 for (int C = Low; C != High; ++C) { 2493 Optional<APInt> S = APIntOps::SolveQuadraticEquationWrap( 2494 APInt(Width, A), APInt(Width, B), 2495 APInt(Width, C), Width); 2496 if (S.hasValue()) 2497 Validate(A, B, C, Width, S->getSExtValue()); 2498 } 2499 } 2500 } 2501 }; 2502 2503 // Test all widths in [2..6]. 2504 for (unsigned i = 2; i <= 6; ++i) 2505 Iterate(i); 2506 } 2507 2508 TEST(APIntTest, MultiplicativeInverseExaustive) { 2509 for (unsigned BitWidth = 1; BitWidth <= 16; ++BitWidth) { 2510 for (unsigned Value = 0; Value < (1u << BitWidth); ++Value) { 2511 APInt V = APInt(BitWidth, Value); 2512 APInt MulInv = 2513 V.zext(BitWidth + 1) 2514 .multiplicativeInverse(APInt::getSignedMinValue(BitWidth + 1)) 2515 .trunc(BitWidth); 2516 APInt One = V * MulInv; 2517 EXPECT_TRUE(MulInv.isNullValue() || One.isOneValue()) 2518 << " bitwidth = " << BitWidth << ", value = " << Value 2519 << ", computed multiplicative inverse = " << MulInv 2520 << ", value * multiplicative inverse = " << One << " (should be 1)"; 2521 } 2522 } 2523 } 2524 2525 } // end anonymous namespace 2526