xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision ff5948bf6f871141d8d14957e4bf088851f2434e)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/WithColor.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cctype>
66 #include <cstring>
67 #include <system_error>
68 #include <unordered_map>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace object;
73 
74 cl::opt<bool>
75     llvm::AllHeaders("all-headers",
76                      cl::desc("Display all available header information"));
77 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
78                                  cl::aliasopt(AllHeaders));
79 
80 static cl::list<std::string>
81 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
82 
83 cl::opt<bool>
84 llvm::Disassemble("disassemble",
85   cl::desc("Display assembler mnemonics for the machine instructions"));
86 static cl::alias
87 Disassembled("d", cl::desc("Alias for --disassemble"),
88              cl::aliasopt(Disassemble));
89 
90 cl::opt<bool>
91 llvm::DisassembleAll("disassemble-all",
92   cl::desc("Display assembler mnemonics for the machine instructions"));
93 static cl::alias
94 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
95              cl::aliasopt(DisassembleAll));
96 
97 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
98                              cl::init(false));
99 
100 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
101                                cl::aliasopt(llvm::Demangle));
102 
103 static cl::list<std::string>
104 DisassembleFunctions("df",
105                      cl::CommaSeparated,
106                      cl::desc("List of functions to disassemble"));
107 static StringSet<> DisasmFuncsSet;
108 
109 cl::opt<bool>
110 llvm::Relocations("reloc",
111                   cl::desc("Display the relocation entries in the file"));
112 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
113                                   cl::NotHidden,
114                                   cl::aliasopt(llvm::Relocations));
115 
116 cl::opt<bool>
117 llvm::DynamicRelocations("dynamic-reloc",
118   cl::desc("Display the dynamic relocation entries in the file"));
119 static cl::alias
120 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
121              cl::aliasopt(DynamicRelocations));
122 
123 cl::opt<bool>
124     llvm::SectionContents("full-contents",
125                           cl::desc("Display the content of each section"));
126 static cl::alias SectionContentsShort("s",
127                                       cl::desc("Alias for --full-contents"),
128                                       cl::aliasopt(SectionContents));
129 
130 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
131 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
132                                   cl::NotHidden,
133                                   cl::aliasopt(llvm::SymbolTable));
134 
135 cl::opt<bool>
136 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
137 
138 cl::opt<bool>
139 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
140 
141 cl::opt<bool>
142 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
143 
144 cl::opt<bool>
145 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
146 
147 cl::opt<bool>
148 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
149 
150 cl::opt<bool>
151 llvm::RawClangAST("raw-clang-ast",
152     cl::desc("Dump the raw binary contents of the clang AST section"));
153 
154 static cl::opt<bool>
155 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
156 static cl::alias
157 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
158 
159 cl::opt<std::string>
160 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
161                                     "see -version for available targets"));
162 
163 cl::opt<std::string>
164 llvm::MCPU("mcpu",
165      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
166      cl::value_desc("cpu-name"),
167      cl::init(""));
168 
169 cl::opt<std::string>
170 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
171                                 "see -version for available targets"));
172 
173 cl::opt<bool>
174 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
175                                                  "headers for each section."));
176 static cl::alias
177 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
178                     cl::aliasopt(SectionHeaders));
179 static cl::alias
180 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
181                       cl::aliasopt(SectionHeaders));
182 
183 cl::list<std::string>
184 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
185                                          "With -macho dump segment,section"));
186 cl::alias
187 static FilterSectionsj("j", cl::desc("Alias for --section"),
188                  cl::aliasopt(llvm::FilterSections));
189 
190 cl::list<std::string>
191 llvm::MAttrs("mattr",
192   cl::CommaSeparated,
193   cl::desc("Target specific attributes"),
194   cl::value_desc("a1,+a2,-a3,..."));
195 
196 cl::opt<bool>
197 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
198                                                  "instructions, do not print "
199                                                  "the instruction bytes."));
200 cl::opt<bool>
201 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
202 
203 cl::opt<bool>
204 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
205 
206 static cl::alias
207 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
208                 cl::aliasopt(UnwindInfo));
209 
210 cl::opt<bool>
211 llvm::PrivateHeaders("private-headers",
212                      cl::desc("Display format specific file headers"));
213 
214 cl::opt<bool>
215 llvm::FirstPrivateHeader("private-header",
216                          cl::desc("Display only the first format specific file "
217                                   "header"));
218 
219 static cl::alias
220 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
221                     cl::aliasopt(PrivateHeaders));
222 
223 cl::opt<bool> llvm::FileHeaders(
224     "file-headers",
225     cl::desc("Display the contents of the overall file header"));
226 
227 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
228                                   cl::aliasopt(FileHeaders));
229 
230 cl::opt<bool>
231     llvm::ArchiveHeaders("archive-headers",
232                          cl::desc("Display archive header information"));
233 
234 cl::alias
235 ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
236                     cl::aliasopt(ArchiveHeaders));
237 
238 cl::opt<bool>
239     llvm::PrintImmHex("print-imm-hex",
240                       cl::desc("Use hex format for immediate values"));
241 
242 cl::opt<bool> PrintFaultMaps("fault-map-section",
243                              cl::desc("Display contents of faultmap section"));
244 
245 cl::opt<DIDumpType> llvm::DwarfDumpType(
246     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
247     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
248 
249 cl::opt<bool> PrintSource(
250     "source",
251     cl::desc(
252         "Display source inlined with disassembly. Implies disassemble object"));
253 
254 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
255                            cl::aliasopt(PrintSource));
256 
257 cl::opt<bool> PrintLines("line-numbers",
258                          cl::desc("Display source line numbers with "
259                                   "disassembly. Implies disassemble object"));
260 
261 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
262                           cl::aliasopt(PrintLines));
263 
264 cl::opt<unsigned long long>
265     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
266                  cl::value_desc("address"), cl::init(0));
267 cl::opt<unsigned long long>
268     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
269                 cl::value_desc("address"), cl::init(UINT64_MAX));
270 static StringRef ToolName;
271 
272 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
273 
274 namespace {
275 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
276 
277 class SectionFilterIterator {
278 public:
279   SectionFilterIterator(FilterPredicate P,
280                         llvm::object::section_iterator const &I,
281                         llvm::object::section_iterator const &E)
282       : Predicate(std::move(P)), Iterator(I), End(E) {
283     ScanPredicate();
284   }
285   const llvm::object::SectionRef &operator*() const { return *Iterator; }
286   SectionFilterIterator &operator++() {
287     ++Iterator;
288     ScanPredicate();
289     return *this;
290   }
291   bool operator!=(SectionFilterIterator const &Other) const {
292     return Iterator != Other.Iterator;
293   }
294 
295 private:
296   void ScanPredicate() {
297     while (Iterator != End && !Predicate(*Iterator)) {
298       ++Iterator;
299     }
300   }
301   FilterPredicate Predicate;
302   llvm::object::section_iterator Iterator;
303   llvm::object::section_iterator End;
304 };
305 
306 class SectionFilter {
307 public:
308   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
309       : Predicate(std::move(P)), Object(O) {}
310   SectionFilterIterator begin() {
311     return SectionFilterIterator(Predicate, Object.section_begin(),
312                                  Object.section_end());
313   }
314   SectionFilterIterator end() {
315     return SectionFilterIterator(Predicate, Object.section_end(),
316                                  Object.section_end());
317   }
318 
319 private:
320   FilterPredicate Predicate;
321   llvm::object::ObjectFile const &Object;
322 };
323 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
324   return SectionFilter(
325       [](llvm::object::SectionRef const &S) {
326         if (FilterSections.empty())
327           return true;
328         llvm::StringRef String;
329         std::error_code error = S.getName(String);
330         if (error)
331           return false;
332         return is_contained(FilterSections, String);
333       },
334       O);
335 }
336 }
337 
338 void llvm::error(std::error_code EC) {
339   if (!EC)
340     return;
341   WithColor::error(errs(), ToolName)
342       << "reading file: " << EC.message() << ".\n";
343   errs().flush();
344   exit(1);
345 }
346 
347 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
348   WithColor::error(errs(), ToolName) << Message << ".\n";
349   errs().flush();
350   exit(1);
351 }
352 
353 void llvm::warn(StringRef Message) {
354   WithColor::warning(errs(), ToolName) << Message << ".\n";
355   errs().flush();
356 }
357 
358 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
359                                                 Twine Message) {
360   WithColor::error(errs(), ToolName)
361       << "'" << File << "': " << Message << ".\n";
362   exit(1);
363 }
364 
365 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
366                                                 std::error_code EC) {
367   assert(EC);
368   WithColor::error(errs(), ToolName)
369       << "'" << File << "': " << EC.message() << ".\n";
370   exit(1);
371 }
372 
373 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
374                                                 llvm::Error E) {
375   assert(E);
376   std::string Buf;
377   raw_string_ostream OS(Buf);
378   logAllUnhandledErrors(std::move(E), OS);
379   OS.flush();
380   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
381   exit(1);
382 }
383 
384 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
385                                                 StringRef FileName,
386                                                 llvm::Error E,
387                                                 StringRef ArchitectureName) {
388   assert(E);
389   WithColor::error(errs(), ToolName);
390   if (ArchiveName != "")
391     errs() << ArchiveName << "(" << FileName << ")";
392   else
393     errs() << "'" << FileName << "'";
394   if (!ArchitectureName.empty())
395     errs() << " (for architecture " << ArchitectureName << ")";
396   std::string Buf;
397   raw_string_ostream OS(Buf);
398   logAllUnhandledErrors(std::move(E), OS);
399   OS.flush();
400   errs() << ": " << Buf;
401   exit(1);
402 }
403 
404 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
405                                                 const object::Archive::Child &C,
406                                                 llvm::Error E,
407                                                 StringRef ArchitectureName) {
408   Expected<StringRef> NameOrErr = C.getName();
409   // TODO: if we have a error getting the name then it would be nice to print
410   // the index of which archive member this is and or its offset in the
411   // archive instead of "???" as the name.
412   if (!NameOrErr) {
413     consumeError(NameOrErr.takeError());
414     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
415   } else
416     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
417                        ArchitectureName);
418 }
419 
420 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
421   // Figure out the target triple.
422   llvm::Triple TheTriple("unknown-unknown-unknown");
423   if (TripleName.empty()) {
424     if (Obj) {
425       TheTriple = Obj->makeTriple();
426     }
427   } else {
428     TheTriple.setTriple(Triple::normalize(TripleName));
429 
430     // Use the triple, but also try to combine with ARM build attributes.
431     if (Obj) {
432       auto Arch = Obj->getArch();
433       if (Arch == Triple::arm || Arch == Triple::armeb) {
434         Obj->setARMSubArch(TheTriple);
435       }
436     }
437   }
438 
439   // Get the target specific parser.
440   std::string Error;
441   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
442                                                          Error);
443   if (!TheTarget) {
444     if (Obj)
445       report_error(Obj->getFileName(), "can't find target: " + Error);
446     else
447       error("can't find target: " + Error);
448   }
449 
450   // Update the triple name and return the found target.
451   TripleName = TheTriple.getTriple();
452   return TheTarget;
453 }
454 
455 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
456   return a.getOffset() < b.getOffset();
457 }
458 
459 static std::string demangle(StringRef Name) {
460   char *Demangled = nullptr;
461   if (Name.startswith("_Z"))
462     Demangled = itaniumDemangle(Name.data(), Demangled, nullptr, nullptr);
463   else if (Name.startswith("?"))
464     Demangled = microsoftDemangle(Name.data(), Demangled, nullptr, nullptr);
465 
466   if (!Demangled)
467     return Name;
468 
469   std::string Ret = Demangled;
470   free(Demangled);
471   return Ret;
472 }
473 
474 template <class ELFT>
475 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
476                                                 const RelocationRef &RelRef,
477                                                 SmallVectorImpl<char> &Result) {
478   DataRefImpl Rel = RelRef.getRawDataRefImpl();
479 
480   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
481   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
482   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
483 
484   const ELFFile<ELFT> &EF = *Obj->getELFFile();
485 
486   auto SecOrErr = EF.getSection(Rel.d.a);
487   if (!SecOrErr)
488     return errorToErrorCode(SecOrErr.takeError());
489   const Elf_Shdr *Sec = *SecOrErr;
490   auto SymTabOrErr = EF.getSection(Sec->sh_link);
491   if (!SymTabOrErr)
492     return errorToErrorCode(SymTabOrErr.takeError());
493   const Elf_Shdr *SymTab = *SymTabOrErr;
494   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
495          SymTab->sh_type == ELF::SHT_DYNSYM);
496   auto StrTabSec = EF.getSection(SymTab->sh_link);
497   if (!StrTabSec)
498     return errorToErrorCode(StrTabSec.takeError());
499   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
500   if (!StrTabOrErr)
501     return errorToErrorCode(StrTabOrErr.takeError());
502   StringRef StrTab = *StrTabOrErr;
503   int64_t addend = 0;
504   // If there is no Symbol associated with the relocation, we set the undef
505   // boolean value to 'true'. This will prevent us from calling functions that
506   // requires the relocation to be associated with a symbol.
507   bool undef = false;
508   switch (Sec->sh_type) {
509   default:
510     return object_error::parse_failed;
511   case ELF::SHT_REL: {
512     // TODO: Read implicit addend from section data.
513     break;
514   }
515   case ELF::SHT_RELA: {
516     const Elf_Rela *ERela = Obj->getRela(Rel);
517     addend = ERela->r_addend;
518     undef = ERela->getSymbol(false) == 0;
519     break;
520   }
521   }
522   std::string Target;
523   if (!undef) {
524     symbol_iterator SI = RelRef.getSymbol();
525     const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
526     if (symb->getType() == ELF::STT_SECTION) {
527       Expected<section_iterator> SymSI = SI->getSection();
528       if (!SymSI)
529         return errorToErrorCode(SymSI.takeError());
530       const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
531       auto SecName = EF.getSectionName(SymSec);
532       if (!SecName)
533         return errorToErrorCode(SecName.takeError());
534       Target = *SecName;
535     } else {
536       Expected<StringRef> SymName = symb->getName(StrTab);
537       if (!SymName)
538         return errorToErrorCode(SymName.takeError());
539       Target = Demangle ? demangle(*SymName) : *SymName;
540     }
541   } else
542     Target = "*ABS*";
543 
544   // Default scheme is to print Target, as well as "+ <addend>" for nonzero
545   // addend. Should be acceptable for all normal purposes.
546   std::string fmtbuf;
547   raw_string_ostream fmt(fmtbuf);
548   fmt << Target;
549   if (addend != 0)
550     fmt << (addend < 0 ? "" : "+") << addend;
551   fmt.flush();
552   Result.append(fmtbuf.begin(), fmtbuf.end());
553   return std::error_code();
554 }
555 
556 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
557                                                 const RelocationRef &Rel,
558                                                 SmallVectorImpl<char> &Result) {
559   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
560     return getRelocationValueString(ELF32LE, Rel, Result);
561   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
562     return getRelocationValueString(ELF64LE, Rel, Result);
563   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
564     return getRelocationValueString(ELF32BE, Rel, Result);
565   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
566   return getRelocationValueString(ELF64BE, Rel, Result);
567 }
568 
569 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
570                                                 const RelocationRef &Rel,
571                                                 SmallVectorImpl<char> &Result) {
572   symbol_iterator SymI = Rel.getSymbol();
573   Expected<StringRef> SymNameOrErr = SymI->getName();
574   if (!SymNameOrErr)
575     return errorToErrorCode(SymNameOrErr.takeError());
576   StringRef SymName = *SymNameOrErr;
577   Result.append(SymName.begin(), SymName.end());
578   return std::error_code();
579 }
580 
581 static void printRelocationTargetName(const MachOObjectFile *O,
582                                       const MachO::any_relocation_info &RE,
583                                       raw_string_ostream &fmt) {
584   bool IsScattered = O->isRelocationScattered(RE);
585 
586   // Target of a scattered relocation is an address.  In the interest of
587   // generating pretty output, scan through the symbol table looking for a
588   // symbol that aligns with that address.  If we find one, print it.
589   // Otherwise, we just print the hex address of the target.
590   if (IsScattered) {
591     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
592 
593     for (const SymbolRef &Symbol : O->symbols()) {
594       std::error_code ec;
595       Expected<uint64_t> Addr = Symbol.getAddress();
596       if (!Addr)
597         report_error(O->getFileName(), Addr.takeError());
598       if (*Addr != Val)
599         continue;
600       Expected<StringRef> Name = Symbol.getName();
601       if (!Name)
602         report_error(O->getFileName(), Name.takeError());
603       fmt << *Name;
604       return;
605     }
606 
607     // If we couldn't find a symbol that this relocation refers to, try
608     // to find a section beginning instead.
609     for (const SectionRef &Section : ToolSectionFilter(*O)) {
610       std::error_code ec;
611 
612       StringRef Name;
613       uint64_t Addr = Section.getAddress();
614       if (Addr != Val)
615         continue;
616       if ((ec = Section.getName(Name)))
617         report_error(O->getFileName(), ec);
618       fmt << Name;
619       return;
620     }
621 
622     fmt << format("0x%x", Val);
623     return;
624   }
625 
626   StringRef S;
627   bool isExtern = O->getPlainRelocationExternal(RE);
628   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
629 
630   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
631     fmt << format("0x%0" PRIx64, Val);
632     return;
633   } else if (isExtern) {
634     symbol_iterator SI = O->symbol_begin();
635     advance(SI, Val);
636     Expected<StringRef> SOrErr = SI->getName();
637     if (!SOrErr)
638       report_error(O->getFileName(), SOrErr.takeError());
639     S = *SOrErr;
640   } else {
641     section_iterator SI = O->section_begin();
642     // Adjust for the fact that sections are 1-indexed.
643     if (Val == 0) {
644       fmt << "0 (?,?)";
645       return;
646     }
647     uint32_t i = Val - 1;
648     while (i != 0 && SI != O->section_end()) {
649       i--;
650       advance(SI, 1);
651     }
652     if (SI == O->section_end())
653       fmt << Val << " (?,?)";
654     else
655       SI->getName(S);
656   }
657 
658   fmt << S;
659 }
660 
661 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
662                                                 const RelocationRef &RelRef,
663                                                 SmallVectorImpl<char> &Result) {
664   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
665   symbol_iterator SI = RelRef.getSymbol();
666   std::string fmtbuf;
667   raw_string_ostream fmt(fmtbuf);
668   if (SI == Obj->symbol_end()) {
669     // Not all wasm relocations have symbols associated with them.
670     // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
671     fmt << Rel.Index;
672   } else {
673     Expected<StringRef> SymNameOrErr = SI->getName();
674     if (!SymNameOrErr)
675       return errorToErrorCode(SymNameOrErr.takeError());
676     StringRef SymName = *SymNameOrErr;
677     Result.append(SymName.begin(), SymName.end());
678   }
679   fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
680   fmt.flush();
681   Result.append(fmtbuf.begin(), fmtbuf.end());
682   return std::error_code();
683 }
684 
685 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
686                                                 const RelocationRef &RelRef,
687                                                 SmallVectorImpl<char> &Result) {
688   DataRefImpl Rel = RelRef.getRawDataRefImpl();
689   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
690 
691   unsigned Arch = Obj->getArch();
692 
693   std::string fmtbuf;
694   raw_string_ostream fmt(fmtbuf);
695   unsigned Type = Obj->getAnyRelocationType(RE);
696   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
697 
698   // Determine any addends that should be displayed with the relocation.
699   // These require decoding the relocation type, which is triple-specific.
700 
701   // X86_64 has entirely custom relocation types.
702   if (Arch == Triple::x86_64) {
703     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
704 
705     switch (Type) {
706     case MachO::X86_64_RELOC_GOT_LOAD:
707     case MachO::X86_64_RELOC_GOT: {
708       printRelocationTargetName(Obj, RE, fmt);
709       fmt << "@GOT";
710       if (isPCRel)
711         fmt << "PCREL";
712       break;
713     }
714     case MachO::X86_64_RELOC_SUBTRACTOR: {
715       DataRefImpl RelNext = Rel;
716       Obj->moveRelocationNext(RelNext);
717       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
718 
719       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
720       // X86_64_RELOC_UNSIGNED.
721       // NOTE: Scattered relocations don't exist on x86_64.
722       unsigned RType = Obj->getAnyRelocationType(RENext);
723       if (RType != MachO::X86_64_RELOC_UNSIGNED)
724         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
725                      "X86_64_RELOC_SUBTRACTOR.");
726 
727       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
728       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
729       printRelocationTargetName(Obj, RENext, fmt);
730       fmt << "-";
731       printRelocationTargetName(Obj, RE, fmt);
732       break;
733     }
734     case MachO::X86_64_RELOC_TLV:
735       printRelocationTargetName(Obj, RE, fmt);
736       fmt << "@TLV";
737       if (isPCRel)
738         fmt << "P";
739       break;
740     case MachO::X86_64_RELOC_SIGNED_1:
741       printRelocationTargetName(Obj, RE, fmt);
742       fmt << "-1";
743       break;
744     case MachO::X86_64_RELOC_SIGNED_2:
745       printRelocationTargetName(Obj, RE, fmt);
746       fmt << "-2";
747       break;
748     case MachO::X86_64_RELOC_SIGNED_4:
749       printRelocationTargetName(Obj, RE, fmt);
750       fmt << "-4";
751       break;
752     default:
753       printRelocationTargetName(Obj, RE, fmt);
754       break;
755     }
756     // X86 and ARM share some relocation types in common.
757   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
758              Arch == Triple::ppc) {
759     // Generic relocation types...
760     switch (Type) {
761     case MachO::GENERIC_RELOC_PAIR: // prints no info
762       return std::error_code();
763     case MachO::GENERIC_RELOC_SECTDIFF: {
764       DataRefImpl RelNext = Rel;
765       Obj->moveRelocationNext(RelNext);
766       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
767 
768       // X86 sect diff's must be followed by a relocation of type
769       // GENERIC_RELOC_PAIR.
770       unsigned RType = Obj->getAnyRelocationType(RENext);
771 
772       if (RType != MachO::GENERIC_RELOC_PAIR)
773         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
774                      "GENERIC_RELOC_SECTDIFF.");
775 
776       printRelocationTargetName(Obj, RE, fmt);
777       fmt << "-";
778       printRelocationTargetName(Obj, RENext, fmt);
779       break;
780     }
781     }
782 
783     if (Arch == Triple::x86 || Arch == Triple::ppc) {
784       switch (Type) {
785       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
786         DataRefImpl RelNext = Rel;
787         Obj->moveRelocationNext(RelNext);
788         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
789 
790         // X86 sect diff's must be followed by a relocation of type
791         // GENERIC_RELOC_PAIR.
792         unsigned RType = Obj->getAnyRelocationType(RENext);
793         if (RType != MachO::GENERIC_RELOC_PAIR)
794           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
795                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
796 
797         printRelocationTargetName(Obj, RE, fmt);
798         fmt << "-";
799         printRelocationTargetName(Obj, RENext, fmt);
800         break;
801       }
802       case MachO::GENERIC_RELOC_TLV: {
803         printRelocationTargetName(Obj, RE, fmt);
804         fmt << "@TLV";
805         if (IsPCRel)
806           fmt << "P";
807         break;
808       }
809       default:
810         printRelocationTargetName(Obj, RE, fmt);
811       }
812     } else { // ARM-specific relocations
813       switch (Type) {
814       case MachO::ARM_RELOC_HALF:
815       case MachO::ARM_RELOC_HALF_SECTDIFF: {
816         // Half relocations steal a bit from the length field to encode
817         // whether this is an upper16 or a lower16 relocation.
818         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
819 
820         if (isUpper)
821           fmt << ":upper16:(";
822         else
823           fmt << ":lower16:(";
824         printRelocationTargetName(Obj, RE, fmt);
825 
826         DataRefImpl RelNext = Rel;
827         Obj->moveRelocationNext(RelNext);
828         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
829 
830         // ARM half relocs must be followed by a relocation of type
831         // ARM_RELOC_PAIR.
832         unsigned RType = Obj->getAnyRelocationType(RENext);
833         if (RType != MachO::ARM_RELOC_PAIR)
834           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
835                        "ARM_RELOC_HALF");
836 
837         // NOTE: The half of the target virtual address is stashed in the
838         // address field of the secondary relocation, but we can't reverse
839         // engineer the constant offset from it without decoding the movw/movt
840         // instruction to find the other half in its immediate field.
841 
842         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
843         // symbol/section pointer of the follow-on relocation.
844         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
845           fmt << "-";
846           printRelocationTargetName(Obj, RENext, fmt);
847         }
848 
849         fmt << ")";
850         break;
851       }
852       default: { printRelocationTargetName(Obj, RE, fmt); }
853       }
854     }
855   } else
856     printRelocationTargetName(Obj, RE, fmt);
857 
858   fmt.flush();
859   Result.append(fmtbuf.begin(), fmtbuf.end());
860   return std::error_code();
861 }
862 
863 static std::error_code getRelocationValueString(const RelocationRef &Rel,
864                                                 SmallVectorImpl<char> &Result) {
865   const ObjectFile *Obj = Rel.getObject();
866   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
867     return getRelocationValueString(ELF, Rel, Result);
868   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
869     return getRelocationValueString(COFF, Rel, Result);
870   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
871     return getRelocationValueString(Wasm, Rel, Result);
872   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
873     return getRelocationValueString(MachO, Rel, Result);
874   llvm_unreachable("unknown object file format");
875 }
876 
877 /// Indicates whether this relocation should hidden when listing
878 /// relocations, usually because it is the trailing part of a multipart
879 /// relocation that will be printed as part of the leading relocation.
880 static bool getHidden(RelocationRef RelRef) {
881   const ObjectFile *Obj = RelRef.getObject();
882   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
883   if (!MachO)
884     return false;
885 
886   unsigned Arch = MachO->getArch();
887   DataRefImpl Rel = RelRef.getRawDataRefImpl();
888   uint64_t Type = MachO->getRelocationType(Rel);
889 
890   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
891   // is always hidden.
892   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
893     if (Type == MachO::GENERIC_RELOC_PAIR)
894       return true;
895   } else if (Arch == Triple::x86_64) {
896     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
897     // an X86_64_RELOC_SUBTRACTOR.
898     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
899       DataRefImpl RelPrev = Rel;
900       RelPrev.d.a--;
901       uint64_t PrevType = MachO->getRelocationType(RelPrev);
902       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
903         return true;
904     }
905   }
906 
907   return false;
908 }
909 
910 namespace {
911 class SourcePrinter {
912 protected:
913   DILineInfo OldLineInfo;
914   const ObjectFile *Obj = nullptr;
915   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
916   // File name to file contents of source
917   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
918   // Mark the line endings of the cached source
919   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
920 
921 private:
922   bool cacheSource(const DILineInfo& LineInfoFile);
923 
924 public:
925   SourcePrinter() = default;
926   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
927     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
928         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
929         DefaultArch);
930     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
931   }
932   virtual ~SourcePrinter() = default;
933   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
934                                StringRef Delimiter = "; ");
935 };
936 
937 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
938   std::unique_ptr<MemoryBuffer> Buffer;
939   if (LineInfo.Source) {
940     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
941   } else {
942     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
943     if (!BufferOrError)
944       return false;
945     Buffer = std::move(*BufferOrError);
946   }
947   // Chomp the file to get lines
948   size_t BufferSize = Buffer->getBufferSize();
949   const char *BufferStart = Buffer->getBufferStart();
950   for (const char *Start = BufferStart, *End = BufferStart;
951        End < BufferStart + BufferSize; End++)
952     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
953         (*End == '\r' && *(End + 1) == '\n')) {
954       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
955       if (*End == '\r')
956         End++;
957       Start = End + 1;
958     }
959   SourceCache[LineInfo.FileName] = std::move(Buffer);
960   return true;
961 }
962 
963 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
964                                     StringRef Delimiter) {
965   if (!Symbolizer)
966     return;
967   DILineInfo LineInfo = DILineInfo();
968   auto ExpectecLineInfo =
969       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
970   if (!ExpectecLineInfo)
971     consumeError(ExpectecLineInfo.takeError());
972   else
973     LineInfo = *ExpectecLineInfo;
974 
975   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
976       LineInfo.Line == 0)
977     return;
978 
979   if (PrintLines)
980     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
981   if (PrintSource) {
982     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
983       if (!cacheSource(LineInfo))
984         return;
985     auto FileBuffer = SourceCache.find(LineInfo.FileName);
986     if (FileBuffer != SourceCache.end()) {
987       auto LineBuffer = LineCache.find(LineInfo.FileName);
988       if (LineBuffer != LineCache.end()) {
989         if (LineInfo.Line > LineBuffer->second.size())
990           return;
991         // Vector begins at 0, line numbers are non-zero
992         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
993            << "\n";
994       }
995     }
996   }
997   OldLineInfo = LineInfo;
998 }
999 
1000 static bool isArmElf(const ObjectFile *Obj) {
1001   return (Obj->isELF() &&
1002           (Obj->getArch() == Triple::aarch64 ||
1003            Obj->getArch() == Triple::aarch64_be ||
1004            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
1005            Obj->getArch() == Triple::thumb ||
1006            Obj->getArch() == Triple::thumbeb));
1007 }
1008 
1009 class PrettyPrinter {
1010 public:
1011   virtual ~PrettyPrinter() = default;
1012   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
1013                          ArrayRef<uint8_t> Bytes, uint64_t Address,
1014                          raw_ostream &OS, StringRef Annot,
1015                          MCSubtargetInfo const &STI, SourcePrinter *SP,
1016                          std::vector<RelocationRef> *Rels = nullptr) {
1017     if (SP && (PrintSource || PrintLines))
1018       SP->printSourceLine(OS, Address);
1019     if (!NoLeadingAddr)
1020       OS << format("%8" PRIx64 ":", Address);
1021     if (!NoShowRawInsn) {
1022       OS << "\t";
1023       dumpBytes(Bytes, OS);
1024     }
1025     if (MI)
1026       IP.printInst(MI, OS, "", STI);
1027     else
1028       OS << " <unknown>";
1029   }
1030 };
1031 PrettyPrinter PrettyPrinterInst;
1032 class HexagonPrettyPrinter : public PrettyPrinter {
1033 public:
1034   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1035                  raw_ostream &OS) {
1036     uint32_t opcode =
1037       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1038     if (!NoLeadingAddr)
1039       OS << format("%8" PRIx64 ":", Address);
1040     if (!NoShowRawInsn) {
1041       OS << "\t";
1042       dumpBytes(Bytes.slice(0, 4), OS);
1043       OS << format("%08" PRIx32, opcode);
1044     }
1045   }
1046   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1047                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1048                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1049                  std::vector<RelocationRef> *Rels) override {
1050     if (SP && (PrintSource || PrintLines))
1051       SP->printSourceLine(OS, Address, "");
1052     if (!MI) {
1053       printLead(Bytes, Address, OS);
1054       OS << " <unknown>";
1055       return;
1056     }
1057     std::string Buffer;
1058     {
1059       raw_string_ostream TempStream(Buffer);
1060       IP.printInst(MI, TempStream, "", STI);
1061     }
1062     StringRef Contents(Buffer);
1063     // Split off bundle attributes
1064     auto PacketBundle = Contents.rsplit('\n');
1065     // Split off first instruction from the rest
1066     auto HeadTail = PacketBundle.first.split('\n');
1067     auto Preamble = " { ";
1068     auto Separator = "";
1069     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
1070     std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin();
1071     std::vector<RelocationRef>::const_iterator rel_end = Rels->end();
1072 
1073     // Hexagon's packets require relocations to be inline rather than
1074     // clustered at the end of the packet.
1075     auto PrintReloc = [&]() -> void {
1076       while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) {
1077         if (rel_cur->getOffset() == Address) {
1078           SmallString<16> name;
1079           SmallString<32> val;
1080           rel_cur->getTypeName(name);
1081           error(getRelocationValueString(*rel_cur, val));
1082           OS << Separator << format(Fmt.data(), Address) << name << "\t" << val
1083                 << "\n";
1084           return;
1085         }
1086         rel_cur++;
1087       }
1088     };
1089 
1090     while(!HeadTail.first.empty()) {
1091       OS << Separator;
1092       Separator = "\n";
1093       if (SP && (PrintSource || PrintLines))
1094         SP->printSourceLine(OS, Address, "");
1095       printLead(Bytes, Address, OS);
1096       OS << Preamble;
1097       Preamble = "   ";
1098       StringRef Inst;
1099       auto Duplex = HeadTail.first.split('\v');
1100       if(!Duplex.second.empty()){
1101         OS << Duplex.first;
1102         OS << "; ";
1103         Inst = Duplex.second;
1104       }
1105       else
1106         Inst = HeadTail.first;
1107       OS << Inst;
1108       HeadTail = HeadTail.second.split('\n');
1109       if (HeadTail.first.empty())
1110         OS << " } " << PacketBundle.second;
1111       PrintReloc();
1112       Bytes = Bytes.slice(4);
1113       Address += 4;
1114     }
1115   }
1116 };
1117 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1118 
1119 class AMDGCNPrettyPrinter : public PrettyPrinter {
1120 public:
1121   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1122                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1123                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1124                  std::vector<RelocationRef> *Rels) override {
1125     if (SP && (PrintSource || PrintLines))
1126       SP->printSourceLine(OS, Address);
1127 
1128     typedef support::ulittle32_t U32;
1129 
1130     if (MI) {
1131       SmallString<40> InstStr;
1132       raw_svector_ostream IS(InstStr);
1133 
1134       IP.printInst(MI, IS, "", STI);
1135 
1136       OS << left_justify(IS.str(), 60);
1137     } else {
1138       // an unrecognized encoding - this is probably data so represent it
1139       // using the .long directive, or .byte directive if fewer than 4 bytes
1140       // remaining
1141       if (Bytes.size() >= 4) {
1142         OS << format("\t.long 0x%08" PRIx32 " ",
1143                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
1144         OS.indent(42);
1145       } else {
1146           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1147           for (unsigned int i = 1; i < Bytes.size(); i++)
1148             OS << format(", 0x%02" PRIx8, Bytes[i]);
1149           OS.indent(55 - (6 * Bytes.size()));
1150       }
1151     }
1152 
1153     OS << format("// %012" PRIX64 ": ", Address);
1154     if (Bytes.size() >=4) {
1155       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
1156                                  Bytes.size() / sizeof(U32)))
1157         // D should be explicitly casted to uint32_t here as it is passed
1158         // by format to snprintf as vararg.
1159         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
1160     } else {
1161       for (unsigned int i = 0; i < Bytes.size(); i++)
1162         OS << format("%02" PRIX8 " ", Bytes[i]);
1163     }
1164 
1165     if (!Annot.empty())
1166       OS << "// " << Annot;
1167   }
1168 };
1169 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1170 
1171 class BPFPrettyPrinter : public PrettyPrinter {
1172 public:
1173   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1174                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1175                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1176                  std::vector<RelocationRef> *Rels) override {
1177     if (SP && (PrintSource || PrintLines))
1178       SP->printSourceLine(OS, Address);
1179     if (!NoLeadingAddr)
1180       OS << format("%8" PRId64 ":", Address / 8);
1181     if (!NoShowRawInsn) {
1182       OS << "\t";
1183       dumpBytes(Bytes, OS);
1184     }
1185     if (MI)
1186       IP.printInst(MI, OS, "", STI);
1187     else
1188       OS << " <unknown>";
1189   }
1190 };
1191 BPFPrettyPrinter BPFPrettyPrinterInst;
1192 
1193 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1194   switch(Triple.getArch()) {
1195   default:
1196     return PrettyPrinterInst;
1197   case Triple::hexagon:
1198     return HexagonPrettyPrinterInst;
1199   case Triple::amdgcn:
1200     return AMDGCNPrettyPrinterInst;
1201   case Triple::bpfel:
1202   case Triple::bpfeb:
1203     return BPFPrettyPrinterInst;
1204   }
1205 }
1206 }
1207 
1208 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1209   assert(Obj->isELF());
1210   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1211     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1212   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1213     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1214   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1215     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1216   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1217     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1218   llvm_unreachable("Unsupported binary format");
1219 }
1220 
1221 template <class ELFT> static void
1222 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1223                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1224   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1225     uint8_t SymbolType = Symbol.getELFType();
1226     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1227       continue;
1228 
1229     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1230     if (!AddressOrErr)
1231       report_error(Obj->getFileName(), AddressOrErr.takeError());
1232     uint64_t Address = *AddressOrErr;
1233 
1234     Expected<StringRef> Name = Symbol.getName();
1235     if (!Name)
1236       report_error(Obj->getFileName(), Name.takeError());
1237     if (Name->empty())
1238       continue;
1239 
1240     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1241     if (!SectionOrErr)
1242       report_error(Obj->getFileName(), SectionOrErr.takeError());
1243     section_iterator SecI = *SectionOrErr;
1244     if (SecI == Obj->section_end())
1245       continue;
1246 
1247     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1248   }
1249 }
1250 
1251 static void
1252 addDynamicElfSymbols(const ObjectFile *Obj,
1253                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1254   assert(Obj->isELF());
1255   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1256     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1257   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1258     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1259   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1260     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1261   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1262     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1263   else
1264     llvm_unreachable("Unsupported binary format");
1265 }
1266 
1267 static void addPltEntries(const ObjectFile *Obj,
1268                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1269                           StringSaver &Saver) {
1270   Optional<SectionRef> Plt = None;
1271   for (const SectionRef &Section : Obj->sections()) {
1272     StringRef Name;
1273     if (Section.getName(Name))
1274       continue;
1275     if (Name == ".plt")
1276       Plt = Section;
1277   }
1278   if (!Plt)
1279     return;
1280   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1281     for (auto PltEntry : ElfObj->getPltAddresses()) {
1282       SymbolRef Symbol(PltEntry.first, ElfObj);
1283 
1284       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1285 
1286       Expected<StringRef> NameOrErr = Symbol.getName();
1287       if (!NameOrErr)
1288         report_error(Obj->getFileName(), NameOrErr.takeError());
1289       if (NameOrErr->empty())
1290         continue;
1291       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
1292 
1293       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
1294     }
1295   }
1296 }
1297 
1298 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1299   if (StartAddress > StopAddress)
1300     error("Start address should be less than stop address");
1301 
1302   const Target *TheTarget = getTarget(Obj);
1303 
1304   // Package up features to be passed to target/subtarget
1305   SubtargetFeatures Features = Obj->getFeatures();
1306   if (MAttrs.size()) {
1307     for (unsigned i = 0; i != MAttrs.size(); ++i)
1308       Features.AddFeature(MAttrs[i]);
1309   }
1310 
1311   std::unique_ptr<const MCRegisterInfo> MRI(
1312       TheTarget->createMCRegInfo(TripleName));
1313   if (!MRI)
1314     report_error(Obj->getFileName(), "no register info for target " +
1315                  TripleName);
1316 
1317   // Set up disassembler.
1318   std::unique_ptr<const MCAsmInfo> AsmInfo(
1319       TheTarget->createMCAsmInfo(*MRI, TripleName));
1320   if (!AsmInfo)
1321     report_error(Obj->getFileName(), "no assembly info for target " +
1322                  TripleName);
1323   std::unique_ptr<const MCSubtargetInfo> STI(
1324       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1325   if (!STI)
1326     report_error(Obj->getFileName(), "no subtarget info for target " +
1327                  TripleName);
1328   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1329   if (!MII)
1330     report_error(Obj->getFileName(), "no instruction info for target " +
1331                  TripleName);
1332   MCObjectFileInfo MOFI;
1333   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1334   // FIXME: for now initialize MCObjectFileInfo with default values
1335   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1336 
1337   std::unique_ptr<MCDisassembler> DisAsm(
1338     TheTarget->createMCDisassembler(*STI, Ctx));
1339   if (!DisAsm)
1340     report_error(Obj->getFileName(), "no disassembler for target " +
1341                  TripleName);
1342 
1343   std::unique_ptr<const MCInstrAnalysis> MIA(
1344       TheTarget->createMCInstrAnalysis(MII.get()));
1345 
1346   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1347   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1348       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1349   if (!IP)
1350     report_error(Obj->getFileName(), "no instruction printer for target " +
1351                  TripleName);
1352   IP->setPrintImmHex(PrintImmHex);
1353   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1354 
1355   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1356                                                  "\t\t\t%08" PRIx64 ":  ";
1357 
1358   SourcePrinter SP(Obj, TheTarget->getName());
1359 
1360   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1361   // in RelocSecs contain the relocations for section S.
1362   std::error_code EC;
1363   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1364   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1365     section_iterator Sec2 = Section.getRelocatedSection();
1366     if (Sec2 != Obj->section_end())
1367       SectionRelocMap[*Sec2].push_back(Section);
1368   }
1369 
1370   // Create a mapping from virtual address to symbol name.  This is used to
1371   // pretty print the symbols while disassembling.
1372   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1373   SectionSymbolsTy AbsoluteSymbols;
1374   for (const SymbolRef &Symbol : Obj->symbols()) {
1375     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1376     if (!AddressOrErr)
1377       report_error(Obj->getFileName(), AddressOrErr.takeError());
1378     uint64_t Address = *AddressOrErr;
1379 
1380     Expected<StringRef> Name = Symbol.getName();
1381     if (!Name)
1382       report_error(Obj->getFileName(), Name.takeError());
1383     if (Name->empty())
1384       continue;
1385 
1386     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1387     if (!SectionOrErr)
1388       report_error(Obj->getFileName(), SectionOrErr.takeError());
1389 
1390     uint8_t SymbolType = ELF::STT_NOTYPE;
1391     if (Obj->isELF())
1392       SymbolType = getElfSymbolType(Obj, Symbol);
1393 
1394     section_iterator SecI = *SectionOrErr;
1395     if (SecI != Obj->section_end())
1396       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1397     else
1398       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
1399 
1400 
1401   }
1402   if (AllSymbols.empty() && Obj->isELF())
1403     addDynamicElfSymbols(Obj, AllSymbols);
1404 
1405   BumpPtrAllocator A;
1406   StringSaver Saver(A);
1407   addPltEntries(Obj, AllSymbols, Saver);
1408 
1409   // Create a mapping from virtual address to section.
1410   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1411   for (SectionRef Sec : Obj->sections())
1412     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1413   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1414 
1415   // Linked executables (.exe and .dll files) typically don't include a real
1416   // symbol table but they might contain an export table.
1417   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1418     for (const auto &ExportEntry : COFFObj->export_directories()) {
1419       StringRef Name;
1420       error(ExportEntry.getSymbolName(Name));
1421       if (Name.empty())
1422         continue;
1423       uint32_t RVA;
1424       error(ExportEntry.getExportRVA(RVA));
1425 
1426       uint64_t VA = COFFObj->getImageBase() + RVA;
1427       auto Sec = std::upper_bound(
1428           SectionAddresses.begin(), SectionAddresses.end(), VA,
1429           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1430             return LHS < RHS.first;
1431           });
1432       if (Sec != SectionAddresses.begin())
1433         --Sec;
1434       else
1435         Sec = SectionAddresses.end();
1436 
1437       if (Sec != SectionAddresses.end())
1438         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1439       else
1440         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1441     }
1442   }
1443 
1444   // Sort all the symbols, this allows us to use a simple binary search to find
1445   // a symbol near an address.
1446   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1447     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1448   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1449 
1450   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1451     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1452       continue;
1453 
1454     uint64_t SectionAddr = Section.getAddress();
1455     uint64_t SectSize = Section.getSize();
1456     if (!SectSize)
1457       continue;
1458 
1459     // Get the list of all the symbols in this section.
1460     SectionSymbolsTy &Symbols = AllSymbols[Section];
1461     std::vector<uint64_t> DataMappingSymsAddr;
1462     std::vector<uint64_t> TextMappingSymsAddr;
1463     if (isArmElf(Obj)) {
1464       for (const auto &Symb : Symbols) {
1465         uint64_t Address = std::get<0>(Symb);
1466         StringRef Name = std::get<1>(Symb);
1467         if (Name.startswith("$d"))
1468           DataMappingSymsAddr.push_back(Address - SectionAddr);
1469         if (Name.startswith("$x"))
1470           TextMappingSymsAddr.push_back(Address - SectionAddr);
1471         if (Name.startswith("$a"))
1472           TextMappingSymsAddr.push_back(Address - SectionAddr);
1473         if (Name.startswith("$t"))
1474           TextMappingSymsAddr.push_back(Address - SectionAddr);
1475       }
1476     }
1477 
1478     llvm::sort(DataMappingSymsAddr);
1479     llvm::sort(TextMappingSymsAddr);
1480 
1481     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1482       // AMDGPU disassembler uses symbolizer for printing labels
1483       std::unique_ptr<MCRelocationInfo> RelInfo(
1484         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1485       if (RelInfo) {
1486         std::unique_ptr<MCSymbolizer> Symbolizer(
1487           TheTarget->createMCSymbolizer(
1488             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1489         DisAsm->setSymbolizer(std::move(Symbolizer));
1490       }
1491     }
1492 
1493     // Make a list of all the relocations for this section.
1494     std::vector<RelocationRef> Rels;
1495     if (InlineRelocs) {
1496       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1497         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1498           Rels.push_back(Reloc);
1499         }
1500       }
1501     }
1502 
1503     // Sort relocations by address.
1504     llvm::sort(Rels, RelocAddressLess);
1505 
1506     StringRef SegmentName = "";
1507     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1508       DataRefImpl DR = Section.getRawDataRefImpl();
1509       SegmentName = MachO->getSectionFinalSegmentName(DR);
1510     }
1511     StringRef SectionName;
1512     error(Section.getName(SectionName));
1513 
1514     // If the section has no symbol at the start, just insert a dummy one.
1515     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1516       Symbols.insert(
1517           Symbols.begin(),
1518           std::make_tuple(SectionAddr, SectionName,
1519                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1520     }
1521 
1522     SmallString<40> Comments;
1523     raw_svector_ostream CommentStream(Comments);
1524 
1525     StringRef BytesStr;
1526     error(Section.getContents(BytesStr));
1527     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1528                             BytesStr.size());
1529 
1530     uint64_t Size;
1531     uint64_t Index;
1532     bool PrintedSection = false;
1533 
1534     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1535     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1536     // Disassemble symbol by symbol.
1537     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1538       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1539       // The end is either the section end or the beginning of the next
1540       // symbol.
1541       uint64_t End =
1542           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1543       // Don't try to disassemble beyond the end of section contents.
1544       if (End > SectSize)
1545         End = SectSize;
1546       // If this symbol has the same address as the next symbol, then skip it.
1547       if (Start >= End)
1548         continue;
1549 
1550       // Check if we need to skip symbol
1551       // Skip if the symbol's data is not between StartAddress and StopAddress
1552       if (End + SectionAddr < StartAddress ||
1553           Start + SectionAddr > StopAddress) {
1554         continue;
1555       }
1556 
1557       /// Skip if user requested specific symbols and this is not in the list
1558       if (!DisasmFuncsSet.empty() &&
1559           !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1560         continue;
1561 
1562       if (!PrintedSection) {
1563         PrintedSection = true;
1564         outs() << "Disassembly of section ";
1565         if (!SegmentName.empty())
1566           outs() << SegmentName << ",";
1567         outs() << SectionName << ':';
1568       }
1569 
1570       // Stop disassembly at the stop address specified
1571       if (End + SectionAddr > StopAddress)
1572         End = StopAddress - SectionAddr;
1573 
1574       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1575         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1576           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1577           Start += 256;
1578         }
1579         if (si == se - 1 ||
1580             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1581           // cut trailing zeroes at the end of kernel
1582           // cut up to 256 bytes
1583           const uint64_t EndAlign = 256;
1584           const auto Limit = End - (std::min)(EndAlign, End - Start);
1585           while (End > Limit &&
1586             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1587             End -= 4;
1588         }
1589       }
1590 
1591       outs() << '\n';
1592       StringRef SymbolName = std::get<1>(Symbols[si]);
1593       if (Demangle)
1594         outs() << demangle(SymbolName) << ":\n";
1595       else
1596         outs() << SymbolName << ":\n";
1597 
1598       // Don't print raw contents of a virtual section. A virtual section
1599       // doesn't have any contents in the file.
1600       if (Section.isVirtual()) {
1601         outs() << "...\n";
1602         continue;
1603       }
1604 
1605 #ifndef NDEBUG
1606       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1607 #else
1608       raw_ostream &DebugOut = nulls();
1609 #endif
1610 
1611       for (Index = Start; Index < End; Index += Size) {
1612         MCInst Inst;
1613 
1614         if (Index + SectionAddr < StartAddress ||
1615             Index + SectionAddr > StopAddress) {
1616           // skip byte by byte till StartAddress is reached
1617           Size = 1;
1618           continue;
1619         }
1620         // AArch64 ELF binaries can interleave data and text in the
1621         // same section. We rely on the markers introduced to
1622         // understand what we need to dump. If the data marker is within a
1623         // function, it is denoted as a word/short etc
1624         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1625             !DisassembleAll) {
1626           uint64_t Stride = 0;
1627 
1628           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1629                                       DataMappingSymsAddr.end(), Index);
1630           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1631             // Switch to data.
1632             while (Index < End) {
1633               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1634               outs() << "\t";
1635               if (Index + 4 <= End) {
1636                 Stride = 4;
1637                 dumpBytes(Bytes.slice(Index, 4), outs());
1638                 outs() << "\t.word\t";
1639                 uint32_t Data = 0;
1640                 if (Obj->isLittleEndian()) {
1641                   const auto Word =
1642                       reinterpret_cast<const support::ulittle32_t *>(
1643                           Bytes.data() + Index);
1644                   Data = *Word;
1645                 } else {
1646                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1647                       Bytes.data() + Index);
1648                   Data = *Word;
1649                 }
1650                 outs() << "0x" << format("%08" PRIx32, Data);
1651               } else if (Index + 2 <= End) {
1652                 Stride = 2;
1653                 dumpBytes(Bytes.slice(Index, 2), outs());
1654                 outs() << "\t\t.short\t";
1655                 uint16_t Data = 0;
1656                 if (Obj->isLittleEndian()) {
1657                   const auto Short =
1658                       reinterpret_cast<const support::ulittle16_t *>(
1659                           Bytes.data() + Index);
1660                   Data = *Short;
1661                 } else {
1662                   const auto Short =
1663                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1664                                                                   Index);
1665                   Data = *Short;
1666                 }
1667                 outs() << "0x" << format("%04" PRIx16, Data);
1668               } else {
1669                 Stride = 1;
1670                 dumpBytes(Bytes.slice(Index, 1), outs());
1671                 outs() << "\t\t.byte\t";
1672                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1673               }
1674               Index += Stride;
1675               outs() << "\n";
1676               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1677                                           TextMappingSymsAddr.end(), Index);
1678               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1679                 break;
1680             }
1681           }
1682         }
1683 
1684         // If there is a data symbol inside an ELF text section and we are only
1685         // disassembling text (applicable all architectures),
1686         // we are in a situation where we must print the data and not
1687         // disassemble it.
1688         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1689             !DisassembleAll && Section.isText()) {
1690           // print out data up to 8 bytes at a time in hex and ascii
1691           uint8_t AsciiData[9] = {'\0'};
1692           uint8_t Byte;
1693           int NumBytes = 0;
1694 
1695           for (Index = Start; Index < End; Index += 1) {
1696             if (((SectionAddr + Index) < StartAddress) ||
1697                 ((SectionAddr + Index) > StopAddress))
1698               continue;
1699             if (NumBytes == 0) {
1700               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1701               outs() << "\t";
1702             }
1703             Byte = Bytes.slice(Index)[0];
1704             outs() << format(" %02x", Byte);
1705             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1706 
1707             uint8_t IndentOffset = 0;
1708             NumBytes++;
1709             if (Index == End - 1 || NumBytes > 8) {
1710               // Indent the space for less than 8 bytes data.
1711               // 2 spaces for byte and one for space between bytes
1712               IndentOffset = 3 * (8 - NumBytes);
1713               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1714                 AsciiData[Excess] = '\0';
1715               NumBytes = 8;
1716             }
1717             if (NumBytes == 8) {
1718               AsciiData[8] = '\0';
1719               outs() << std::string(IndentOffset, ' ') << "         ";
1720               outs() << reinterpret_cast<char *>(AsciiData);
1721               outs() << '\n';
1722               NumBytes = 0;
1723             }
1724           }
1725         }
1726         if (Index >= End)
1727           break;
1728 
1729         // Disassemble a real instruction or a data when disassemble all is
1730         // provided
1731         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1732                                                    SectionAddr + Index, DebugOut,
1733                                                    CommentStream);
1734         if (Size == 0)
1735           Size = 1;
1736 
1737         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1738                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1739                       *STI, &SP, &Rels);
1740         outs() << CommentStream.str();
1741         Comments.clear();
1742 
1743         // Try to resolve the target of a call, tail call, etc. to a specific
1744         // symbol.
1745         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1746                     MIA->isConditionalBranch(Inst))) {
1747           uint64_t Target;
1748           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1749             // In a relocatable object, the target's section must reside in
1750             // the same section as the call instruction or it is accessed
1751             // through a relocation.
1752             //
1753             // In a non-relocatable object, the target may be in any section.
1754             //
1755             // N.B. We don't walk the relocations in the relocatable case yet.
1756             auto *TargetSectionSymbols = &Symbols;
1757             if (!Obj->isRelocatableObject()) {
1758               auto SectionAddress = std::upper_bound(
1759                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1760                   [](uint64_t LHS,
1761                       const std::pair<uint64_t, SectionRef> &RHS) {
1762                     return LHS < RHS.first;
1763                   });
1764               if (SectionAddress != SectionAddresses.begin()) {
1765                 --SectionAddress;
1766                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1767               } else {
1768                 TargetSectionSymbols = &AbsoluteSymbols;
1769               }
1770             }
1771 
1772             // Find the first symbol in the section whose offset is less than
1773             // or equal to the target. If there isn't a section that contains
1774             // the target, find the nearest preceding absolute symbol.
1775             auto TargetSym = std::upper_bound(
1776                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1777                 Target, [](uint64_t LHS,
1778                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1779                   return LHS < std::get<0>(RHS);
1780                 });
1781             if (TargetSym == TargetSectionSymbols->begin()) {
1782               TargetSectionSymbols = &AbsoluteSymbols;
1783               TargetSym = std::upper_bound(
1784                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1785                   Target, [](uint64_t LHS,
1786                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1787                             return LHS < std::get<0>(RHS);
1788                           });
1789             }
1790             if (TargetSym != TargetSectionSymbols->begin()) {
1791               --TargetSym;
1792               uint64_t TargetAddress = std::get<0>(*TargetSym);
1793               StringRef TargetName = std::get<1>(*TargetSym);
1794               outs() << " <" << TargetName;
1795               uint64_t Disp = Target - TargetAddress;
1796               if (Disp)
1797                 outs() << "+0x" << Twine::utohexstr(Disp);
1798               outs() << '>';
1799             }
1800           }
1801         }
1802         outs() << "\n";
1803 
1804         // Hexagon does this in pretty printer
1805         if (Obj->getArch() != Triple::hexagon)
1806           // Print relocation for instruction.
1807           while (rel_cur != rel_end) {
1808             bool hidden = getHidden(*rel_cur);
1809             uint64_t addr = rel_cur->getOffset();
1810             SmallString<16> name;
1811             SmallString<32> val;
1812 
1813             // If this relocation is hidden, skip it.
1814             if (hidden || ((SectionAddr + addr) < StartAddress)) {
1815               ++rel_cur;
1816               continue;
1817             }
1818 
1819             // Stop when rel_cur's address is past the current instruction.
1820             if (addr >= Index + Size) break;
1821             rel_cur->getTypeName(name);
1822             error(getRelocationValueString(*rel_cur, val));
1823             outs() << format(Fmt.data(), SectionAddr + addr) << name
1824                    << "\t" << val << "\n";
1825             ++rel_cur;
1826           }
1827       }
1828     }
1829   }
1830 }
1831 
1832 void llvm::PrintRelocations(const ObjectFile *Obj) {
1833   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1834                                                  "%08" PRIx64;
1835   // Regular objdump doesn't print relocations in non-relocatable object
1836   // files.
1837   if (!Obj->isRelocatableObject())
1838     return;
1839 
1840   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1841     if (Section.relocation_begin() == Section.relocation_end())
1842       continue;
1843     StringRef secname;
1844     error(Section.getName(secname));
1845     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1846     for (const RelocationRef &Reloc : Section.relocations()) {
1847       bool hidden = getHidden(Reloc);
1848       uint64_t address = Reloc.getOffset();
1849       SmallString<32> relocname;
1850       SmallString<32> valuestr;
1851       if (address < StartAddress || address > StopAddress || hidden)
1852         continue;
1853       Reloc.getTypeName(relocname);
1854       error(getRelocationValueString(Reloc, valuestr));
1855       outs() << format(Fmt.data(), address) << " " << relocname << " "
1856              << valuestr << "\n";
1857     }
1858     outs() << "\n";
1859   }
1860 }
1861 
1862 void llvm::PrintDynamicRelocations(const ObjectFile *Obj) {
1863 
1864   // For the moment, this option is for ELF only
1865   if (!Obj->isELF())
1866     return;
1867 
1868   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1869 
1870   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1871     error("not a dynamic object");
1872     return;
1873   }
1874 
1875   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1876 
1877   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1878   if (DynRelSec.empty())
1879     return;
1880 
1881   outs() << "DYNAMIC RELOCATION RECORDS\n";
1882   for (const SectionRef &Section : DynRelSec) {
1883     if (Section.relocation_begin() == Section.relocation_end())
1884       continue;
1885     for (const RelocationRef &Reloc : Section.relocations()) {
1886       uint64_t address = Reloc.getOffset();
1887       SmallString<32> relocname;
1888       SmallString<32> valuestr;
1889       Reloc.getTypeName(relocname);
1890       error(getRelocationValueString(Reloc, valuestr));
1891       outs() << format(Fmt.data(), address) << " " << relocname << " "
1892              << valuestr << "\n";
1893     }
1894   }
1895 }
1896 
1897 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1898   outs() << "Sections:\n"
1899             "Idx Name          Size      Address          Type\n";
1900   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1901     StringRef Name;
1902     error(Section.getName(Name));
1903     uint64_t Address = Section.getAddress();
1904     uint64_t Size = Section.getSize();
1905     bool Text = Section.isText();
1906     bool Data = Section.isData();
1907     bool BSS = Section.isBSS();
1908     std::string Type = (std::string(Text ? "TEXT " : "") +
1909                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1910     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1911                      (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1912                      Address, Type.c_str());
1913   }
1914   outs() << "\n";
1915 }
1916 
1917 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1918   std::error_code EC;
1919   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1920     StringRef Name;
1921     StringRef Contents;
1922     error(Section.getName(Name));
1923     uint64_t BaseAddr = Section.getAddress();
1924     uint64_t Size = Section.getSize();
1925     if (!Size)
1926       continue;
1927 
1928     outs() << "Contents of section " << Name << ":\n";
1929     if (Section.isBSS()) {
1930       outs() << format("<skipping contents of bss section at [%04" PRIx64
1931                        ", %04" PRIx64 ")>\n",
1932                        BaseAddr, BaseAddr + Size);
1933       continue;
1934     }
1935 
1936     error(Section.getContents(Contents));
1937 
1938     // Dump out the content as hex and printable ascii characters.
1939     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1940       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1941       // Dump line of hex.
1942       for (std::size_t i = 0; i < 16; ++i) {
1943         if (i != 0 && i % 4 == 0)
1944           outs() << ' ';
1945         if (addr + i < end)
1946           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1947                  << hexdigit(Contents[addr + i] & 0xF, true);
1948         else
1949           outs() << "  ";
1950       }
1951       // Print ascii.
1952       outs() << "  ";
1953       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1954         if (isPrint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1955           outs() << Contents[addr + i];
1956         else
1957           outs() << ".";
1958       }
1959       outs() << "\n";
1960     }
1961   }
1962 }
1963 
1964 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1965                             StringRef ArchitectureName) {
1966   outs() << "SYMBOL TABLE:\n";
1967 
1968   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1969     printCOFFSymbolTable(coff);
1970     return;
1971   }
1972   for (const SymbolRef &Symbol : o->symbols()) {
1973     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1974     if (!AddressOrError)
1975       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1976                    ArchitectureName);
1977     uint64_t Address = *AddressOrError;
1978     if ((Address < StartAddress) || (Address > StopAddress))
1979       continue;
1980     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1981     if (!TypeOrError)
1982       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1983                    ArchitectureName);
1984     SymbolRef::Type Type = *TypeOrError;
1985     uint32_t Flags = Symbol.getFlags();
1986     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1987     if (!SectionOrErr)
1988       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1989                    ArchitectureName);
1990     section_iterator Section = *SectionOrErr;
1991     StringRef Name;
1992     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1993       Section->getName(Name);
1994     } else {
1995       Expected<StringRef> NameOrErr = Symbol.getName();
1996       if (!NameOrErr)
1997         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1998                      ArchitectureName);
1999       Name = *NameOrErr;
2000     }
2001 
2002     bool Global = Flags & SymbolRef::SF_Global;
2003     bool Weak = Flags & SymbolRef::SF_Weak;
2004     bool Absolute = Flags & SymbolRef::SF_Absolute;
2005     bool Common = Flags & SymbolRef::SF_Common;
2006     bool Hidden = Flags & SymbolRef::SF_Hidden;
2007 
2008     char GlobLoc = ' ';
2009     if (Type != SymbolRef::ST_Unknown)
2010       GlobLoc = Global ? 'g' : 'l';
2011     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2012                  ? 'd' : ' ';
2013     char FileFunc = ' ';
2014     if (Type == SymbolRef::ST_File)
2015       FileFunc = 'f';
2016     else if (Type == SymbolRef::ST_Function)
2017       FileFunc = 'F';
2018     else if (Type == SymbolRef::ST_Data)
2019       FileFunc = 'O';
2020 
2021     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
2022                                                    "%08" PRIx64;
2023 
2024     outs() << format(Fmt, Address) << " "
2025            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2026            << (Weak ? 'w' : ' ') // Weak?
2027            << ' ' // Constructor. Not supported yet.
2028            << ' ' // Warning. Not supported yet.
2029            << ' ' // Indirect reference to another symbol.
2030            << Debug // Debugging (d) or dynamic (D) symbol.
2031            << FileFunc // Name of function (F), file (f) or object (O).
2032            << ' ';
2033     if (Absolute) {
2034       outs() << "*ABS*";
2035     } else if (Common) {
2036       outs() << "*COM*";
2037     } else if (Section == o->section_end()) {
2038       outs() << "*UND*";
2039     } else {
2040       if (const MachOObjectFile *MachO =
2041           dyn_cast<const MachOObjectFile>(o)) {
2042         DataRefImpl DR = Section->getRawDataRefImpl();
2043         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
2044         outs() << SegmentName << ",";
2045       }
2046       StringRef SectionName;
2047       error(Section->getName(SectionName));
2048       outs() << SectionName;
2049     }
2050 
2051     outs() << '\t';
2052     if (Common || isa<ELFObjectFileBase>(o)) {
2053       uint64_t Val =
2054           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2055       outs() << format("\t %08" PRIx64 " ", Val);
2056     }
2057 
2058     if (Hidden) {
2059       outs() << ".hidden ";
2060     }
2061 
2062     if (Demangle)
2063       outs() << demangle(Name) << '\n';
2064     else
2065       outs() << Name << '\n';
2066   }
2067 }
2068 
2069 static void PrintUnwindInfo(const ObjectFile *o) {
2070   outs() << "Unwind info:\n\n";
2071 
2072   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
2073     printCOFFUnwindInfo(coff);
2074   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2075     printMachOUnwindInfo(MachO);
2076   else {
2077     // TODO: Extract DWARF dump tool to objdump.
2078     WithColor::error(errs(), ToolName)
2079         << "This operation is only currently supported "
2080            "for COFF and MachO object files.\n";
2081     return;
2082   }
2083 }
2084 
2085 void llvm::printExportsTrie(const ObjectFile *o) {
2086   outs() << "Exports trie:\n";
2087   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2088     printMachOExportsTrie(MachO);
2089   else {
2090     WithColor::error(errs(), ToolName)
2091         << "This operation is only currently supported "
2092            "for Mach-O executable files.\n";
2093     return;
2094   }
2095 }
2096 
2097 void llvm::printRebaseTable(ObjectFile *o) {
2098   outs() << "Rebase table:\n";
2099   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2100     printMachORebaseTable(MachO);
2101   else {
2102     WithColor::error(errs(), ToolName)
2103         << "This operation is only currently supported "
2104            "for Mach-O executable files.\n";
2105     return;
2106   }
2107 }
2108 
2109 void llvm::printBindTable(ObjectFile *o) {
2110   outs() << "Bind table:\n";
2111   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2112     printMachOBindTable(MachO);
2113   else {
2114     WithColor::error(errs(), ToolName)
2115         << "This operation is only currently supported "
2116            "for Mach-O executable files.\n";
2117     return;
2118   }
2119 }
2120 
2121 void llvm::printLazyBindTable(ObjectFile *o) {
2122   outs() << "Lazy bind table:\n";
2123   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2124     printMachOLazyBindTable(MachO);
2125   else {
2126     WithColor::error(errs(), ToolName)
2127         << "This operation is only currently supported "
2128            "for Mach-O executable files.\n";
2129     return;
2130   }
2131 }
2132 
2133 void llvm::printWeakBindTable(ObjectFile *o) {
2134   outs() << "Weak bind table:\n";
2135   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2136     printMachOWeakBindTable(MachO);
2137   else {
2138     WithColor::error(errs(), ToolName)
2139         << "This operation is only currently supported "
2140            "for Mach-O executable files.\n";
2141     return;
2142   }
2143 }
2144 
2145 /// Dump the raw contents of the __clangast section so the output can be piped
2146 /// into llvm-bcanalyzer.
2147 void llvm::printRawClangAST(const ObjectFile *Obj) {
2148   if (outs().is_displayed()) {
2149     WithColor::error(errs(), ToolName)
2150         << "The -raw-clang-ast option will dump the raw binary contents of "
2151            "the clang ast section.\n"
2152            "Please redirect the output to a file or another program such as "
2153            "llvm-bcanalyzer.\n";
2154     return;
2155   }
2156 
2157   StringRef ClangASTSectionName("__clangast");
2158   if (isa<COFFObjectFile>(Obj)) {
2159     ClangASTSectionName = "clangast";
2160   }
2161 
2162   Optional<object::SectionRef> ClangASTSection;
2163   for (auto Sec : ToolSectionFilter(*Obj)) {
2164     StringRef Name;
2165     Sec.getName(Name);
2166     if (Name == ClangASTSectionName) {
2167       ClangASTSection = Sec;
2168       break;
2169     }
2170   }
2171   if (!ClangASTSection)
2172     return;
2173 
2174   StringRef ClangASTContents;
2175   error(ClangASTSection.getValue().getContents(ClangASTContents));
2176   outs().write(ClangASTContents.data(), ClangASTContents.size());
2177 }
2178 
2179 static void printFaultMaps(const ObjectFile *Obj) {
2180   const char *FaultMapSectionName = nullptr;
2181 
2182   if (isa<ELFObjectFileBase>(Obj)) {
2183     FaultMapSectionName = ".llvm_faultmaps";
2184   } else if (isa<MachOObjectFile>(Obj)) {
2185     FaultMapSectionName = "__llvm_faultmaps";
2186   } else {
2187     WithColor::error(errs(), ToolName)
2188         << "This operation is only currently supported "
2189            "for ELF and Mach-O executable files.\n";
2190     return;
2191   }
2192 
2193   Optional<object::SectionRef> FaultMapSection;
2194 
2195   for (auto Sec : ToolSectionFilter(*Obj)) {
2196     StringRef Name;
2197     Sec.getName(Name);
2198     if (Name == FaultMapSectionName) {
2199       FaultMapSection = Sec;
2200       break;
2201     }
2202   }
2203 
2204   outs() << "FaultMap table:\n";
2205 
2206   if (!FaultMapSection.hasValue()) {
2207     outs() << "<not found>\n";
2208     return;
2209   }
2210 
2211   StringRef FaultMapContents;
2212   error(FaultMapSection.getValue().getContents(FaultMapContents));
2213 
2214   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2215                      FaultMapContents.bytes_end());
2216 
2217   outs() << FMP;
2218 }
2219 
2220 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2221   if (o->isELF()) {
2222     printELFFileHeader(o);
2223     return printELFDynamicSection(o);
2224   }
2225   if (o->isCOFF())
2226     return printCOFFFileHeader(o);
2227   if (o->isWasm())
2228     return printWasmFileHeader(o);
2229   if (o->isMachO()) {
2230     printMachOFileHeader(o);
2231     if (!onlyFirst)
2232       printMachOLoadCommands(o);
2233     return;
2234   }
2235   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2236 }
2237 
2238 static void printFileHeaders(const ObjectFile *o) {
2239   if (!o->isELF() && !o->isCOFF())
2240     report_error(o->getFileName(), "Invalid/Unsupported object file format");
2241 
2242   Triple::ArchType AT = o->getArch();
2243   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2244   Expected<uint64_t> StartAddrOrErr = o->getStartAddress();
2245   if (!StartAddrOrErr)
2246     report_error(o->getFileName(), StartAddrOrErr.takeError());
2247 
2248   StringRef Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2249   uint64_t Address = StartAddrOrErr.get();
2250   outs() << "start address: "
2251          << "0x" << format(Fmt.data(), Address)
2252          << "\n";
2253 }
2254 
2255 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2256   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2257   if (!ModeOrErr) {
2258     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2259     consumeError(ModeOrErr.takeError());
2260     return;
2261   }
2262   sys::fs::perms Mode = ModeOrErr.get();
2263   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2264   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2265   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2266   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2267   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2268   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2269   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2270   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2271   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2272 
2273   outs() << " ";
2274 
2275   Expected<unsigned> UIDOrErr = C.getUID();
2276   if (!UIDOrErr)
2277     report_error(Filename, UIDOrErr.takeError());
2278   unsigned UID = UIDOrErr.get();
2279   outs() << format("%d/", UID);
2280 
2281   Expected<unsigned> GIDOrErr = C.getGID();
2282   if (!GIDOrErr)
2283     report_error(Filename, GIDOrErr.takeError());
2284   unsigned GID = GIDOrErr.get();
2285   outs() << format("%-d ", GID);
2286 
2287   Expected<uint64_t> Size = C.getRawSize();
2288   if (!Size)
2289     report_error(Filename, Size.takeError());
2290   outs() << format("%6" PRId64, Size.get()) << " ";
2291 
2292   StringRef RawLastModified = C.getRawLastModified();
2293   unsigned Seconds;
2294   if (RawLastModified.getAsInteger(10, Seconds))
2295     outs() << "(date: \"" << RawLastModified
2296            << "\" contains non-decimal chars) ";
2297   else {
2298     // Since ctime(3) returns a 26 character string of the form:
2299     // "Sun Sep 16 01:03:52 1973\n\0"
2300     // just print 24 characters.
2301     time_t t = Seconds;
2302     outs() << format("%.24s ", ctime(&t));
2303   }
2304 
2305   StringRef Name = "";
2306   Expected<StringRef> NameOrErr = C.getName();
2307   if (!NameOrErr) {
2308     consumeError(NameOrErr.takeError());
2309     Expected<StringRef> RawNameOrErr = C.getRawName();
2310     if (!RawNameOrErr)
2311       report_error(Filename, NameOrErr.takeError());
2312     Name = RawNameOrErr.get();
2313   } else {
2314     Name = NameOrErr.get();
2315   }
2316   outs() << Name << "\n";
2317 }
2318 
2319 static void DumpObject(ObjectFile *o, const Archive *a = nullptr,
2320                        const Archive::Child *c = nullptr) {
2321   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2322   // Avoid other output when using a raw option.
2323   if (!RawClangAST) {
2324     outs() << '\n';
2325     if (a)
2326       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2327     else
2328       outs() << o->getFileName();
2329     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2330   }
2331 
2332   if (ArchiveHeaders && !MachOOpt && c)
2333     printArchiveChild(ArchiveName, *c);
2334   if (Disassemble)
2335     DisassembleObject(o, Relocations);
2336   if (Relocations && !Disassemble)
2337     PrintRelocations(o);
2338   if (DynamicRelocations)
2339     PrintDynamicRelocations(o);
2340   if (SectionHeaders)
2341     PrintSectionHeaders(o);
2342   if (SectionContents)
2343     PrintSectionContents(o);
2344   if (SymbolTable)
2345     PrintSymbolTable(o, ArchiveName);
2346   if (UnwindInfo)
2347     PrintUnwindInfo(o);
2348   if (PrivateHeaders || FirstPrivateHeader)
2349     printPrivateFileHeaders(o, FirstPrivateHeader);
2350   if (FileHeaders)
2351     printFileHeaders(o);
2352   if (ExportsTrie)
2353     printExportsTrie(o);
2354   if (Rebase)
2355     printRebaseTable(o);
2356   if (Bind)
2357     printBindTable(o);
2358   if (LazyBind)
2359     printLazyBindTable(o);
2360   if (WeakBind)
2361     printWeakBindTable(o);
2362   if (RawClangAST)
2363     printRawClangAST(o);
2364   if (PrintFaultMaps)
2365     printFaultMaps(o);
2366   if (DwarfDumpType != DIDT_Null) {
2367     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2368     // Dump the complete DWARF structure.
2369     DIDumpOptions DumpOpts;
2370     DumpOpts.DumpType = DwarfDumpType;
2371     DICtx->dump(outs(), DumpOpts);
2372   }
2373 }
2374 
2375 static void DumpObject(const COFFImportFile *I, const Archive *A,
2376                        const Archive::Child *C = nullptr) {
2377   StringRef ArchiveName = A ? A->getFileName() : "";
2378 
2379   // Avoid other output when using a raw option.
2380   if (!RawClangAST)
2381     outs() << '\n'
2382            << ArchiveName << "(" << I->getFileName() << ")"
2383            << ":\tfile format COFF-import-file"
2384            << "\n\n";
2385 
2386   if (ArchiveHeaders && !MachOOpt && C)
2387     printArchiveChild(ArchiveName, *C);
2388   if (SymbolTable)
2389     printCOFFSymbolTable(I);
2390 }
2391 
2392 /// Dump each object file in \a a;
2393 static void DumpArchive(const Archive *a) {
2394   Error Err = Error::success();
2395   for (auto &C : a->children(Err)) {
2396     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2397     if (!ChildOrErr) {
2398       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2399         report_error(a->getFileName(), C, std::move(E));
2400       continue;
2401     }
2402     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2403       DumpObject(o, a, &C);
2404     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2405       DumpObject(I, a, &C);
2406     else
2407       report_error(a->getFileName(), object_error::invalid_file_type);
2408   }
2409   if (Err)
2410     report_error(a->getFileName(), std::move(Err));
2411 }
2412 
2413 /// Open file and figure out how to dump it.
2414 static void DumpInput(StringRef file) {
2415 
2416   // If we are using the Mach-O specific object file parser, then let it parse
2417   // the file and process the command line options.  So the -arch flags can
2418   // be used to select specific slices, etc.
2419   if (MachOOpt) {
2420     ParseInputMachO(file);
2421     return;
2422   }
2423 
2424   // Attempt to open the binary.
2425   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2426   if (!BinaryOrErr)
2427     report_error(file, BinaryOrErr.takeError());
2428   Binary &Binary = *BinaryOrErr.get().getBinary();
2429 
2430   if (Archive *a = dyn_cast<Archive>(&Binary))
2431     DumpArchive(a);
2432   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2433     DumpObject(o);
2434   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2435     ParseInputMachO(UB);
2436   else
2437     report_error(file, object_error::invalid_file_type);
2438 }
2439 
2440 int main(int argc, char **argv) {
2441   InitLLVM X(argc, argv);
2442 
2443   // Initialize targets and assembly printers/parsers.
2444   llvm::InitializeAllTargetInfos();
2445   llvm::InitializeAllTargetMCs();
2446   llvm::InitializeAllDisassemblers();
2447 
2448   // Register the target printer for --version.
2449   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2450 
2451   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2452 
2453   ToolName = argv[0];
2454 
2455   // Defaults to a.out if no filenames specified.
2456   if (InputFilenames.size() == 0)
2457     InputFilenames.push_back("a.out");
2458 
2459   if (AllHeaders)
2460     PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true;
2461 
2462   if (DisassembleAll || PrintSource || PrintLines)
2463     Disassemble = true;
2464 
2465   if (!Disassemble
2466       && !Relocations
2467       && !DynamicRelocations
2468       && !SectionHeaders
2469       && !SectionContents
2470       && !SymbolTable
2471       && !UnwindInfo
2472       && !PrivateHeaders
2473       && !FileHeaders
2474       && !FirstPrivateHeader
2475       && !ExportsTrie
2476       && !Rebase
2477       && !Bind
2478       && !LazyBind
2479       && !WeakBind
2480       && !RawClangAST
2481       && !(UniversalHeaders && MachOOpt)
2482       && !ArchiveHeaders
2483       && !(IndirectSymbols && MachOOpt)
2484       && !(DataInCode && MachOOpt)
2485       && !(LinkOptHints && MachOOpt)
2486       && !(InfoPlist && MachOOpt)
2487       && !(DylibsUsed && MachOOpt)
2488       && !(DylibId && MachOOpt)
2489       && !(ObjcMetaData && MachOOpt)
2490       && !(FilterSections.size() != 0 && MachOOpt)
2491       && !PrintFaultMaps
2492       && DwarfDumpType == DIDT_Null) {
2493     cl::PrintHelpMessage();
2494     return 2;
2495   }
2496 
2497   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2498                         DisassembleFunctions.end());
2499 
2500   llvm::for_each(InputFilenames, DumpInput);
2501 
2502   return EXIT_SUCCESS;
2503 }
2504