1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/FaultMaps.h" 26 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 27 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 28 #include "llvm/Demangle/Demangle.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCInstrAnalysis.h" 36 #include "llvm/MC/MCInstrInfo.h" 37 #include "llvm/MC/MCObjectFileInfo.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/MC/MCSubtargetInfo.h" 40 #include "llvm/Object/Archive.h" 41 #include "llvm/Object/COFF.h" 42 #include "llvm/Object/COFFImportFile.h" 43 #include "llvm/Object/ELFObjectFile.h" 44 #include "llvm/Object/MachO.h" 45 #include "llvm/Object/MachOUniversal.h" 46 #include "llvm/Object/ObjectFile.h" 47 #include "llvm/Object/Wasm.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/Errc.h" 52 #include "llvm/Support/FileSystem.h" 53 #include "llvm/Support/Format.h" 54 #include "llvm/Support/FormatVariadic.h" 55 #include "llvm/Support/GraphWriter.h" 56 #include "llvm/Support/Host.h" 57 #include "llvm/Support/InitLLVM.h" 58 #include "llvm/Support/MemoryBuffer.h" 59 #include "llvm/Support/SourceMgr.h" 60 #include "llvm/Support/StringSaver.h" 61 #include "llvm/Support/TargetRegistry.h" 62 #include "llvm/Support/TargetSelect.h" 63 #include "llvm/Support/WithColor.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cctype> 67 #include <cstring> 68 #include <system_error> 69 #include <unordered_map> 70 #include <utility> 71 72 using namespace llvm::object; 73 74 namespace llvm { 75 76 cl::OptionCategory ObjdumpCat("llvm-objdump Options"); 77 78 // MachO specific 79 extern cl::OptionCategory MachOCat; 80 extern cl::opt<bool> Bind; 81 extern cl::opt<bool> DataInCode; 82 extern cl::opt<bool> DylibsUsed; 83 extern cl::opt<bool> DylibId; 84 extern cl::opt<bool> ExportsTrie; 85 extern cl::opt<bool> FirstPrivateHeader; 86 extern cl::opt<bool> IndirectSymbols; 87 extern cl::opt<bool> InfoPlist; 88 extern cl::opt<bool> LazyBind; 89 extern cl::opt<bool> LinkOptHints; 90 extern cl::opt<bool> ObjcMetaData; 91 extern cl::opt<bool> Rebase; 92 extern cl::opt<bool> UniversalHeaders; 93 extern cl::opt<bool> WeakBind; 94 95 static cl::opt<uint64_t> AdjustVMA( 96 "adjust-vma", 97 cl::desc("Increase the displayed address by the specified offset"), 98 cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat)); 99 100 static cl::opt<bool> 101 AllHeaders("all-headers", 102 cl::desc("Display all available header information"), 103 cl::cat(ObjdumpCat)); 104 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"), 105 cl::NotHidden, cl::Grouping, 106 cl::aliasopt(AllHeaders)); 107 108 static cl::opt<std::string> 109 ArchName("arch-name", 110 cl::desc("Target arch to disassemble for, " 111 "see -version for available targets"), 112 cl::cat(ObjdumpCat)); 113 114 cl::opt<bool> ArchiveHeaders("archive-headers", 115 cl::desc("Display archive header information"), 116 cl::cat(ObjdumpCat)); 117 static cl::alias ArchiveHeadersShort("a", 118 cl::desc("Alias for --archive-headers"), 119 cl::NotHidden, cl::Grouping, 120 cl::aliasopt(ArchiveHeaders)); 121 122 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"), 123 cl::init(false), cl::cat(ObjdumpCat)); 124 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"), 125 cl::NotHidden, cl::Grouping, 126 cl::aliasopt(Demangle)); 127 128 cl::opt<bool> Disassemble( 129 "disassemble", 130 cl::desc("Display assembler mnemonics for the machine instructions"), 131 cl::cat(ObjdumpCat)); 132 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"), 133 cl::NotHidden, cl::Grouping, 134 cl::aliasopt(Disassemble)); 135 136 cl::opt<bool> DisassembleAll( 137 "disassemble-all", 138 cl::desc("Display assembler mnemonics for the machine instructions"), 139 cl::cat(ObjdumpCat)); 140 static cl::alias DisassembleAllShort("D", 141 cl::desc("Alias for --disassemble-all"), 142 cl::NotHidden, cl::Grouping, 143 cl::aliasopt(DisassembleAll)); 144 145 static cl::list<std::string> 146 DisassembleFunctions("disassemble-functions", cl::CommaSeparated, 147 cl::desc("List of functions to disassemble. " 148 "Accept demangled names when --demangle is " 149 "specified, otherwise accept mangled names"), 150 cl::cat(ObjdumpCat)); 151 152 static cl::opt<bool> DisassembleZeroes( 153 "disassemble-zeroes", 154 cl::desc("Do not skip blocks of zeroes when disassembling"), 155 cl::cat(ObjdumpCat)); 156 static cl::alias 157 DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"), 158 cl::NotHidden, cl::Grouping, 159 cl::aliasopt(DisassembleZeroes)); 160 161 static cl::list<std::string> 162 DisassemblerOptions("disassembler-options", 163 cl::desc("Pass target specific disassembler options"), 164 cl::value_desc("options"), cl::CommaSeparated, 165 cl::cat(ObjdumpCat)); 166 static cl::alias 167 DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"), 168 cl::NotHidden, cl::Grouping, cl::Prefix, 169 cl::CommaSeparated, 170 cl::aliasopt(DisassemblerOptions)); 171 172 cl::opt<DIDumpType> DwarfDumpType( 173 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), 174 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")), 175 cl::cat(ObjdumpCat)); 176 177 static cl::opt<bool> DynamicRelocations( 178 "dynamic-reloc", 179 cl::desc("Display the dynamic relocation entries in the file"), 180 cl::cat(ObjdumpCat)); 181 static cl::alias DynamicRelocationShort("R", 182 cl::desc("Alias for --dynamic-reloc"), 183 cl::NotHidden, cl::Grouping, 184 cl::aliasopt(DynamicRelocations)); 185 186 static cl::opt<bool> 187 FaultMapSection("fault-map-section", 188 cl::desc("Display contents of faultmap section"), 189 cl::cat(ObjdumpCat)); 190 191 static cl::opt<bool> 192 FileHeaders("file-headers", 193 cl::desc("Display the contents of the overall file header"), 194 cl::cat(ObjdumpCat)); 195 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"), 196 cl::NotHidden, cl::Grouping, 197 cl::aliasopt(FileHeaders)); 198 199 cl::opt<bool> SectionContents("full-contents", 200 cl::desc("Display the content of each section"), 201 cl::cat(ObjdumpCat)); 202 static cl::alias SectionContentsShort("s", 203 cl::desc("Alias for --full-contents"), 204 cl::NotHidden, cl::Grouping, 205 cl::aliasopt(SectionContents)); 206 207 static cl::list<std::string> InputFilenames(cl::Positional, 208 cl::desc("<input object files>"), 209 cl::ZeroOrMore, 210 cl::cat(ObjdumpCat)); 211 212 static cl::opt<bool> 213 PrintLines("line-numbers", 214 cl::desc("Display source line numbers with " 215 "disassembly. Implies disassemble object"), 216 cl::cat(ObjdumpCat)); 217 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"), 218 cl::NotHidden, cl::Grouping, 219 cl::aliasopt(PrintLines)); 220 221 static cl::opt<bool> MachOOpt("macho", 222 cl::desc("Use MachO specific object file parser"), 223 cl::cat(ObjdumpCat)); 224 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden, 225 cl::Grouping, cl::aliasopt(MachOOpt)); 226 227 cl::opt<std::string> 228 MCPU("mcpu", 229 cl::desc("Target a specific cpu type (-mcpu=help for details)"), 230 cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat)); 231 232 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated, 233 cl::desc("Target specific attributes"), 234 cl::value_desc("a1,+a2,-a3,..."), 235 cl::cat(ObjdumpCat)); 236 237 cl::opt<bool> NoShowRawInsn("no-show-raw-insn", 238 cl::desc("When disassembling " 239 "instructions, do not print " 240 "the instruction bytes."), 241 cl::cat(ObjdumpCat)); 242 cl::opt<bool> NoLeadingAddr("no-leading-addr", 243 cl::desc("Print no leading address"), 244 cl::cat(ObjdumpCat)); 245 246 static cl::opt<bool> RawClangAST( 247 "raw-clang-ast", 248 cl::desc("Dump the raw binary contents of the clang AST section"), 249 cl::cat(ObjdumpCat)); 250 251 cl::opt<bool> 252 Relocations("reloc", cl::desc("Display the relocation entries in the file"), 253 cl::cat(ObjdumpCat)); 254 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"), 255 cl::NotHidden, cl::Grouping, 256 cl::aliasopt(Relocations)); 257 258 cl::opt<bool> PrintImmHex("print-imm-hex", 259 cl::desc("Use hex format for immediate values"), 260 cl::cat(ObjdumpCat)); 261 262 cl::opt<bool> PrivateHeaders("private-headers", 263 cl::desc("Display format specific file headers"), 264 cl::cat(ObjdumpCat)); 265 static cl::alias PrivateHeadersShort("p", 266 cl::desc("Alias for --private-headers"), 267 cl::NotHidden, cl::Grouping, 268 cl::aliasopt(PrivateHeaders)); 269 270 cl::list<std::string> 271 FilterSections("section", 272 cl::desc("Operate on the specified sections only. " 273 "With -macho dump segment,section"), 274 cl::cat(ObjdumpCat)); 275 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"), 276 cl::NotHidden, cl::Grouping, cl::Prefix, 277 cl::aliasopt(FilterSections)); 278 279 cl::opt<bool> SectionHeaders("section-headers", 280 cl::desc("Display summaries of the " 281 "headers for each section."), 282 cl::cat(ObjdumpCat)); 283 static cl::alias SectionHeadersShort("headers", 284 cl::desc("Alias for --section-headers"), 285 cl::NotHidden, 286 cl::aliasopt(SectionHeaders)); 287 static cl::alias SectionHeadersShorter("h", 288 cl::desc("Alias for --section-headers"), 289 cl::NotHidden, cl::Grouping, 290 cl::aliasopt(SectionHeaders)); 291 292 static cl::opt<bool> 293 ShowLMA("show-lma", 294 cl::desc("Display LMA column when dumping ELF section headers"), 295 cl::cat(ObjdumpCat)); 296 297 static cl::opt<bool> PrintSource( 298 "source", 299 cl::desc( 300 "Display source inlined with disassembly. Implies disassemble object"), 301 cl::cat(ObjdumpCat)); 302 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), 303 cl::NotHidden, cl::Grouping, 304 cl::aliasopt(PrintSource)); 305 306 static cl::opt<uint64_t> 307 StartAddress("start-address", cl::desc("Disassemble beginning at address"), 308 cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat)); 309 static cl::opt<uint64_t> StopAddress("stop-address", 310 cl::desc("Stop disassembly at address"), 311 cl::value_desc("address"), 312 cl::init(UINT64_MAX), cl::cat(ObjdumpCat)); 313 314 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"), 315 cl::cat(ObjdumpCat)); 316 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"), 317 cl::NotHidden, cl::Grouping, 318 cl::aliasopt(SymbolTable)); 319 320 cl::opt<std::string> TripleName("triple", 321 cl::desc("Target triple to disassemble for, " 322 "see -version for available targets"), 323 cl::cat(ObjdumpCat)); 324 325 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"), 326 cl::cat(ObjdumpCat)); 327 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), 328 cl::NotHidden, cl::Grouping, 329 cl::aliasopt(UnwindInfo)); 330 331 static cl::opt<bool> 332 Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"), 333 cl::cat(ObjdumpCat)); 334 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide)); 335 336 static cl::extrahelp 337 HelpResponse("\nPass @FILE as argument to read options from FILE.\n"); 338 339 static StringSet<> DisasmFuncsSet; 340 static StringSet<> FoundSectionSet; 341 static StringRef ToolName; 342 343 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy; 344 345 static bool shouldKeep(object::SectionRef S) { 346 if (FilterSections.empty()) 347 return true; 348 349 Expected<StringRef> SecNameOrErr = S.getName(); 350 if (!SecNameOrErr) { 351 consumeError(SecNameOrErr.takeError()); 352 return false; 353 } 354 StringRef SecName = *SecNameOrErr; 355 356 // StringSet does not allow empty key so avoid adding sections with 357 // no name (such as the section with index 0) here. 358 if (!SecName.empty()) 359 FoundSectionSet.insert(SecName); 360 return is_contained(FilterSections, SecName); 361 } 362 363 SectionFilter ToolSectionFilter(object::ObjectFile const &O) { 364 return SectionFilter([](object::SectionRef S) { return shouldKeep(S); }, O); 365 } 366 367 std::string getFileNameForError(const object::Archive::Child &C, 368 unsigned Index) { 369 Expected<StringRef> NameOrErr = C.getName(); 370 if (NameOrErr) 371 return NameOrErr.get(); 372 // If we have an error getting the name then we print the index of the archive 373 // member. Since we are already in an error state, we just ignore this error. 374 consumeError(NameOrErr.takeError()); 375 return "<file index: " + std::to_string(Index) + ">"; 376 } 377 378 void reportWarning(Twine Message, StringRef File) { 379 // Output order between errs() and outs() matters especially for archive 380 // files where the output is per member object. 381 outs().flush(); 382 WithColor::warning(errs(), ToolName) 383 << "'" << File << "': " << Message << "\n"; 384 errs().flush(); 385 } 386 387 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) { 388 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 389 exit(1); 390 } 391 392 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef File) { 393 assert(E); 394 std::string Buf; 395 raw_string_ostream OS(Buf); 396 logAllUnhandledErrors(std::move(E), OS); 397 OS.flush(); 398 WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf; 399 exit(1); 400 } 401 402 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef ArchiveName, 403 StringRef FileName, 404 StringRef ArchitectureName) { 405 assert(E); 406 WithColor::error(errs(), ToolName); 407 if (ArchiveName != "") 408 errs() << ArchiveName << "(" << FileName << ")"; 409 else 410 errs() << "'" << FileName << "'"; 411 if (!ArchitectureName.empty()) 412 errs() << " (for architecture " << ArchitectureName << ")"; 413 std::string Buf; 414 raw_string_ostream OS(Buf); 415 logAllUnhandledErrors(std::move(E), OS); 416 OS.flush(); 417 errs() << ": " << Buf; 418 exit(1); 419 } 420 421 static void reportCmdLineWarning(Twine Message) { 422 WithColor::warning(errs(), ToolName) << Message << "\n"; 423 } 424 425 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) { 426 WithColor::error(errs(), ToolName) << Message << "\n"; 427 exit(1); 428 } 429 430 static void warnOnNoMatchForSections() { 431 SetVector<StringRef> MissingSections; 432 for (StringRef S : FilterSections) { 433 if (FoundSectionSet.count(S)) 434 return; 435 // User may specify a unnamed section. Don't warn for it. 436 if (!S.empty()) 437 MissingSections.insert(S); 438 } 439 440 // Warn only if no section in FilterSections is matched. 441 for (StringRef S : MissingSections) 442 reportCmdLineWarning("section '" + S + 443 "' mentioned in a -j/--section option, but not " 444 "found in any input file"); 445 } 446 447 static const Target *getTarget(const ObjectFile *Obj) { 448 // Figure out the target triple. 449 Triple TheTriple("unknown-unknown-unknown"); 450 if (TripleName.empty()) { 451 TheTriple = Obj->makeTriple(); 452 } else { 453 TheTriple.setTriple(Triple::normalize(TripleName)); 454 auto Arch = Obj->getArch(); 455 if (Arch == Triple::arm || Arch == Triple::armeb) 456 Obj->setARMSubArch(TheTriple); 457 } 458 459 // Get the target specific parser. 460 std::string Error; 461 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 462 Error); 463 if (!TheTarget) 464 reportError(Obj->getFileName(), "can't find target: " + Error); 465 466 // Update the triple name and return the found target. 467 TripleName = TheTriple.getTriple(); 468 return TheTarget; 469 } 470 471 bool isRelocAddressLess(RelocationRef A, RelocationRef B) { 472 return A.getOffset() < B.getOffset(); 473 } 474 475 static Error getRelocationValueString(const RelocationRef &Rel, 476 SmallVectorImpl<char> &Result) { 477 const ObjectFile *Obj = Rel.getObject(); 478 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 479 return getELFRelocationValueString(ELF, Rel, Result); 480 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 481 return getCOFFRelocationValueString(COFF, Rel, Result); 482 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 483 return getWasmRelocationValueString(Wasm, Rel, Result); 484 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 485 return getMachORelocationValueString(MachO, Rel, Result); 486 llvm_unreachable("unknown object file format"); 487 } 488 489 /// Indicates whether this relocation should hidden when listing 490 /// relocations, usually because it is the trailing part of a multipart 491 /// relocation that will be printed as part of the leading relocation. 492 static bool getHidden(RelocationRef RelRef) { 493 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 494 if (!MachO) 495 return false; 496 497 unsigned Arch = MachO->getArch(); 498 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 499 uint64_t Type = MachO->getRelocationType(Rel); 500 501 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 502 // is always hidden. 503 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 504 return Type == MachO::GENERIC_RELOC_PAIR; 505 506 if (Arch == Triple::x86_64) { 507 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 508 // an X86_64_RELOC_SUBTRACTOR. 509 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 510 DataRefImpl RelPrev = Rel; 511 RelPrev.d.a--; 512 uint64_t PrevType = MachO->getRelocationType(RelPrev); 513 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 514 return true; 515 } 516 } 517 518 return false; 519 } 520 521 namespace { 522 class SourcePrinter { 523 protected: 524 DILineInfo OldLineInfo; 525 const ObjectFile *Obj = nullptr; 526 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer; 527 // File name to file contents of source. 528 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache; 529 // Mark the line endings of the cached source. 530 std::unordered_map<std::string, std::vector<StringRef>> LineCache; 531 // Keep track of missing sources. 532 StringSet<> MissingSources; 533 // Only emit 'no debug info' warning once. 534 bool WarnedNoDebugInfo; 535 536 private: 537 bool cacheSource(const DILineInfo& LineInfoFile); 538 539 public: 540 SourcePrinter() = default; 541 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) 542 : Obj(Obj), WarnedNoDebugInfo(false) { 543 symbolize::LLVMSymbolizer::Options SymbolizerOpts; 544 SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None; 545 SymbolizerOpts.Demangle = false; 546 SymbolizerOpts.DefaultArch = DefaultArch; 547 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); 548 } 549 virtual ~SourcePrinter() = default; 550 virtual void printSourceLine(raw_ostream &OS, 551 object::SectionedAddress Address, 552 StringRef ObjectFilename, 553 StringRef Delimiter = "; "); 554 }; 555 556 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) { 557 std::unique_ptr<MemoryBuffer> Buffer; 558 if (LineInfo.Source) { 559 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source); 560 } else { 561 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName); 562 if (!BufferOrError) { 563 if (MissingSources.insert(LineInfo.FileName).second) 564 reportWarning("failed to find source " + LineInfo.FileName, 565 Obj->getFileName()); 566 return false; 567 } 568 Buffer = std::move(*BufferOrError); 569 } 570 // Chomp the file to get lines 571 const char *BufferStart = Buffer->getBufferStart(), 572 *BufferEnd = Buffer->getBufferEnd(); 573 std::vector<StringRef> &Lines = LineCache[LineInfo.FileName]; 574 const char *Start = BufferStart; 575 for (const char *I = BufferStart; I != BufferEnd; ++I) 576 if (*I == '\n') { 577 Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r')); 578 Start = I + 1; 579 } 580 if (Start < BufferEnd) 581 Lines.emplace_back(Start, BufferEnd - Start); 582 SourceCache[LineInfo.FileName] = std::move(Buffer); 583 return true; 584 } 585 586 void SourcePrinter::printSourceLine(raw_ostream &OS, 587 object::SectionedAddress Address, 588 StringRef ObjectFilename, 589 StringRef Delimiter) { 590 if (!Symbolizer) 591 return; 592 593 DILineInfo LineInfo = DILineInfo(); 594 auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address); 595 std::string ErrorMessage; 596 if (!ExpectedLineInfo) 597 ErrorMessage = toString(ExpectedLineInfo.takeError()); 598 else 599 LineInfo = *ExpectedLineInfo; 600 601 if (LineInfo.FileName == DILineInfo::BadString) { 602 if (!WarnedNoDebugInfo) { 603 std::string Warning = 604 "failed to parse debug information for " + ObjectFilename.str(); 605 if (!ErrorMessage.empty()) 606 Warning += ": " + ErrorMessage; 607 reportWarning(Warning, ObjectFilename); 608 WarnedNoDebugInfo = true; 609 } 610 return; 611 } 612 613 if (LineInfo.Line == 0 || ((OldLineInfo.Line == LineInfo.Line) && 614 (OldLineInfo.FileName == LineInfo.FileName))) 615 return; 616 617 if (PrintLines) 618 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n"; 619 if (PrintSource) { 620 if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) 621 if (!cacheSource(LineInfo)) 622 return; 623 auto LineBuffer = LineCache.find(LineInfo.FileName); 624 if (LineBuffer != LineCache.end()) { 625 if (LineInfo.Line > LineBuffer->second.size()) { 626 reportWarning( 627 formatv( 628 "debug info line number {0} exceeds the number of lines in {1}", 629 LineInfo.Line, LineInfo.FileName), 630 ObjectFilename); 631 return; 632 } 633 // Vector begins at 0, line numbers are non-zero 634 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n'; 635 } 636 } 637 OldLineInfo = LineInfo; 638 } 639 640 static bool isAArch64Elf(const ObjectFile *Obj) { 641 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 642 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 643 } 644 645 static bool isArmElf(const ObjectFile *Obj) { 646 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 647 return Elf && Elf->getEMachine() == ELF::EM_ARM; 648 } 649 650 static bool hasMappingSymbols(const ObjectFile *Obj) { 651 return isArmElf(Obj) || isAArch64Elf(Obj); 652 } 653 654 static void printRelocation(StringRef FileName, const RelocationRef &Rel, 655 uint64_t Address, bool Is64Bits) { 656 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; 657 SmallString<16> Name; 658 SmallString<32> Val; 659 Rel.getTypeName(Name); 660 if (Error E = getRelocationValueString(Rel, Val)) 661 reportError(std::move(E), FileName); 662 outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n"; 663 } 664 665 class PrettyPrinter { 666 public: 667 virtual ~PrettyPrinter() = default; 668 virtual void printInst(MCInstPrinter &IP, const MCInst *MI, 669 ArrayRef<uint8_t> Bytes, 670 object::SectionedAddress Address, raw_ostream &OS, 671 StringRef Annot, MCSubtargetInfo const &STI, 672 SourcePrinter *SP, StringRef ObjectFilename, 673 std::vector<RelocationRef> *Rels = nullptr) { 674 if (SP && (PrintSource || PrintLines)) 675 SP->printSourceLine(OS, Address, ObjectFilename); 676 677 size_t Start = OS.tell(); 678 if (!NoLeadingAddr) 679 OS << format("%8" PRIx64 ":", Address.Address); 680 if (!NoShowRawInsn) { 681 OS << ' '; 682 dumpBytes(Bytes, OS); 683 } 684 685 // The output of printInst starts with a tab. Print some spaces so that 686 // the tab has 1 column and advances to the target tab stop. 687 unsigned TabStop = NoShowRawInsn ? 16 : 40; 688 unsigned Column = OS.tell() - Start; 689 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 690 691 if (MI) 692 IP.printInst(MI, OS, "", STI); 693 else 694 OS << "\t<unknown>"; 695 } 696 }; 697 PrettyPrinter PrettyPrinterInst; 698 699 class HexagonPrettyPrinter : public PrettyPrinter { 700 public: 701 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 702 raw_ostream &OS) { 703 uint32_t opcode = 704 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 705 if (!NoLeadingAddr) 706 OS << format("%8" PRIx64 ":", Address); 707 if (!NoShowRawInsn) { 708 OS << "\t"; 709 dumpBytes(Bytes.slice(0, 4), OS); 710 OS << format("\t%08" PRIx32, opcode); 711 } 712 } 713 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 714 object::SectionedAddress Address, raw_ostream &OS, 715 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 716 StringRef ObjectFilename, 717 std::vector<RelocationRef> *Rels) override { 718 if (SP && (PrintSource || PrintLines)) 719 SP->printSourceLine(OS, Address, ObjectFilename, ""); 720 if (!MI) { 721 printLead(Bytes, Address.Address, OS); 722 OS << " <unknown>"; 723 return; 724 } 725 std::string Buffer; 726 { 727 raw_string_ostream TempStream(Buffer); 728 IP.printInst(MI, TempStream, "", STI); 729 } 730 StringRef Contents(Buffer); 731 // Split off bundle attributes 732 auto PacketBundle = Contents.rsplit('\n'); 733 // Split off first instruction from the rest 734 auto HeadTail = PacketBundle.first.split('\n'); 735 auto Preamble = " { "; 736 auto Separator = ""; 737 738 // Hexagon's packets require relocations to be inline rather than 739 // clustered at the end of the packet. 740 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 741 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 742 auto PrintReloc = [&]() -> void { 743 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 744 if (RelCur->getOffset() == Address.Address) { 745 printRelocation(ObjectFilename, *RelCur, Address.Address, false); 746 return; 747 } 748 ++RelCur; 749 } 750 }; 751 752 while (!HeadTail.first.empty()) { 753 OS << Separator; 754 Separator = "\n"; 755 if (SP && (PrintSource || PrintLines)) 756 SP->printSourceLine(OS, Address, ObjectFilename, ""); 757 printLead(Bytes, Address.Address, OS); 758 OS << Preamble; 759 Preamble = " "; 760 StringRef Inst; 761 auto Duplex = HeadTail.first.split('\v'); 762 if (!Duplex.second.empty()) { 763 OS << Duplex.first; 764 OS << "; "; 765 Inst = Duplex.second; 766 } 767 else 768 Inst = HeadTail.first; 769 OS << Inst; 770 HeadTail = HeadTail.second.split('\n'); 771 if (HeadTail.first.empty()) 772 OS << " } " << PacketBundle.second; 773 PrintReloc(); 774 Bytes = Bytes.slice(4); 775 Address.Address += 4; 776 } 777 } 778 }; 779 HexagonPrettyPrinter HexagonPrettyPrinterInst; 780 781 class AMDGCNPrettyPrinter : public PrettyPrinter { 782 public: 783 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 784 object::SectionedAddress Address, raw_ostream &OS, 785 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 786 StringRef ObjectFilename, 787 std::vector<RelocationRef> *Rels) override { 788 if (SP && (PrintSource || PrintLines)) 789 SP->printSourceLine(OS, Address, ObjectFilename); 790 791 if (MI) { 792 SmallString<40> InstStr; 793 raw_svector_ostream IS(InstStr); 794 795 IP.printInst(MI, IS, "", STI); 796 797 OS << left_justify(IS.str(), 60); 798 } else { 799 // an unrecognized encoding - this is probably data so represent it 800 // using the .long directive, or .byte directive if fewer than 4 bytes 801 // remaining 802 if (Bytes.size() >= 4) { 803 OS << format("\t.long 0x%08" PRIx32 " ", 804 support::endian::read32<support::little>(Bytes.data())); 805 OS.indent(42); 806 } else { 807 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 808 for (unsigned int i = 1; i < Bytes.size(); i++) 809 OS << format(", 0x%02" PRIx8, Bytes[i]); 810 OS.indent(55 - (6 * Bytes.size())); 811 } 812 } 813 814 OS << format("// %012" PRIX64 ":", Address.Address); 815 if (Bytes.size() >= 4) { 816 // D should be casted to uint32_t here as it is passed by format to 817 // snprintf as vararg. 818 for (uint32_t D : makeArrayRef( 819 reinterpret_cast<const support::little32_t *>(Bytes.data()), 820 Bytes.size() / 4)) 821 OS << format(" %08" PRIX32, D); 822 } else { 823 for (unsigned char B : Bytes) 824 OS << format(" %02" PRIX8, B); 825 } 826 827 if (!Annot.empty()) 828 OS << " // " << Annot; 829 } 830 }; 831 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 832 833 class BPFPrettyPrinter : public PrettyPrinter { 834 public: 835 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 836 object::SectionedAddress Address, raw_ostream &OS, 837 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 838 StringRef ObjectFilename, 839 std::vector<RelocationRef> *Rels) override { 840 if (SP && (PrintSource || PrintLines)) 841 SP->printSourceLine(OS, Address, ObjectFilename); 842 if (!NoLeadingAddr) 843 OS << format("%8" PRId64 ":", Address.Address / 8); 844 if (!NoShowRawInsn) { 845 OS << "\t"; 846 dumpBytes(Bytes, OS); 847 } 848 if (MI) 849 IP.printInst(MI, OS, "", STI); 850 else 851 OS << "\t<unknown>"; 852 } 853 }; 854 BPFPrettyPrinter BPFPrettyPrinterInst; 855 856 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 857 switch(Triple.getArch()) { 858 default: 859 return PrettyPrinterInst; 860 case Triple::hexagon: 861 return HexagonPrettyPrinterInst; 862 case Triple::amdgcn: 863 return AMDGCNPrettyPrinterInst; 864 case Triple::bpfel: 865 case Triple::bpfeb: 866 return BPFPrettyPrinterInst; 867 } 868 } 869 } 870 871 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 872 assert(Obj->isELF()); 873 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 874 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 875 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 876 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 877 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 878 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 879 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 880 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 881 llvm_unreachable("Unsupported binary format"); 882 } 883 884 template <class ELFT> static void 885 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 886 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 887 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 888 uint8_t SymbolType = Symbol.getELFType(); 889 if (SymbolType == ELF::STT_SECTION) 890 continue; 891 892 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName()); 893 // ELFSymbolRef::getAddress() returns size instead of value for common 894 // symbols which is not desirable for disassembly output. Overriding. 895 if (SymbolType == ELF::STT_COMMON) 896 Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value; 897 898 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 899 if (Name.empty()) 900 continue; 901 902 section_iterator SecI = 903 unwrapOrError(Symbol.getSection(), Obj->getFileName()); 904 if (SecI == Obj->section_end()) 905 continue; 906 907 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 908 } 909 } 910 911 static void 912 addDynamicElfSymbols(const ObjectFile *Obj, 913 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 914 assert(Obj->isELF()); 915 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 916 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 917 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 918 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 919 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 920 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 921 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 922 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 923 else 924 llvm_unreachable("Unsupported binary format"); 925 } 926 927 static void addPltEntries(const ObjectFile *Obj, 928 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 929 StringSaver &Saver) { 930 Optional<SectionRef> Plt = None; 931 for (const SectionRef &Section : Obj->sections()) { 932 Expected<StringRef> SecNameOrErr = Section.getName(); 933 if (!SecNameOrErr) { 934 consumeError(SecNameOrErr.takeError()); 935 continue; 936 } 937 if (*SecNameOrErr == ".plt") 938 Plt = Section; 939 } 940 if (!Plt) 941 return; 942 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 943 for (auto PltEntry : ElfObj->getPltAddresses()) { 944 SymbolRef Symbol(PltEntry.first, ElfObj); 945 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 946 947 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 948 if (!Name.empty()) 949 AllSymbols[*Plt].emplace_back( 950 PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType); 951 } 952 } 953 } 954 955 // Normally the disassembly output will skip blocks of zeroes. This function 956 // returns the number of zero bytes that can be skipped when dumping the 957 // disassembly of the instructions in Buf. 958 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 959 // Find the number of leading zeroes. 960 size_t N = 0; 961 while (N < Buf.size() && !Buf[N]) 962 ++N; 963 964 // We may want to skip blocks of zero bytes, but unless we see 965 // at least 8 of them in a row. 966 if (N < 8) 967 return 0; 968 969 // We skip zeroes in multiples of 4 because do not want to truncate an 970 // instruction if it starts with a zero byte. 971 return N & ~0x3; 972 } 973 974 // Returns a map from sections to their relocations. 975 static std::map<SectionRef, std::vector<RelocationRef>> 976 getRelocsMap(object::ObjectFile const &Obj) { 977 std::map<SectionRef, std::vector<RelocationRef>> Ret; 978 for (SectionRef Sec : Obj.sections()) { 979 section_iterator Relocated = Sec.getRelocatedSection(); 980 if (Relocated == Obj.section_end() || !shouldKeep(*Relocated)) 981 continue; 982 std::vector<RelocationRef> &V = Ret[*Relocated]; 983 for (const RelocationRef &R : Sec.relocations()) 984 V.push_back(R); 985 // Sort relocations by address. 986 llvm::stable_sort(V, isRelocAddressLess); 987 } 988 return Ret; 989 } 990 991 // Used for --adjust-vma to check if address should be adjusted by the 992 // specified value for a given section. 993 // For ELF we do not adjust non-allocatable sections like debug ones, 994 // because they are not loadable. 995 // TODO: implement for other file formats. 996 static bool shouldAdjustVA(const SectionRef &Section) { 997 const ObjectFile *Obj = Section.getObject(); 998 if (isa<object::ELFObjectFileBase>(Obj)) 999 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1000 return false; 1001 } 1002 1003 1004 typedef std::pair<uint64_t, char> MappingSymbolPair; 1005 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1006 uint64_t Address) { 1007 auto It = 1008 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1009 return Val.first <= Address; 1010 }); 1011 // Return zero for any address before the first mapping symbol; this means 1012 // we should use the default disassembly mode, depending on the target. 1013 if (It == MappingSymbols.begin()) 1014 return '\x00'; 1015 return (It - 1)->second; 1016 } 1017 1018 static uint64_t 1019 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1020 const ObjectFile *Obj, ArrayRef<uint8_t> Bytes, 1021 ArrayRef<MappingSymbolPair> MappingSymbols) { 1022 support::endianness Endian = 1023 Obj->isLittleEndian() ? support::little : support::big; 1024 while (Index < End) { 1025 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1026 outs() << "\t"; 1027 if (Index + 4 <= End) { 1028 dumpBytes(Bytes.slice(Index, 4), outs()); 1029 outs() << "\t.word\t" 1030 << format_hex( 1031 support::endian::read32(Bytes.data() + Index, Endian), 10); 1032 Index += 4; 1033 } else if (Index + 2 <= End) { 1034 dumpBytes(Bytes.slice(Index, 2), outs()); 1035 outs() << "\t\t.short\t" 1036 << format_hex( 1037 support::endian::read16(Bytes.data() + Index, Endian), 6); 1038 Index += 2; 1039 } else { 1040 dumpBytes(Bytes.slice(Index, 1), outs()); 1041 outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4); 1042 ++Index; 1043 } 1044 outs() << "\n"; 1045 if (getMappingSymbolKind(MappingSymbols, Index) != 'd') 1046 break; 1047 } 1048 return Index; 1049 } 1050 1051 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1052 ArrayRef<uint8_t> Bytes) { 1053 // print out data up to 8 bytes at a time in hex and ascii 1054 uint8_t AsciiData[9] = {'\0'}; 1055 uint8_t Byte; 1056 int NumBytes = 0; 1057 1058 for (; Index < End; ++Index) { 1059 if (NumBytes == 0) 1060 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1061 Byte = Bytes.slice(Index)[0]; 1062 outs() << format(" %02x", Byte); 1063 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1064 1065 uint8_t IndentOffset = 0; 1066 NumBytes++; 1067 if (Index == End - 1 || NumBytes > 8) { 1068 // Indent the space for less than 8 bytes data. 1069 // 2 spaces for byte and one for space between bytes 1070 IndentOffset = 3 * (8 - NumBytes); 1071 for (int Excess = NumBytes; Excess < 8; Excess++) 1072 AsciiData[Excess] = '\0'; 1073 NumBytes = 8; 1074 } 1075 if (NumBytes == 8) { 1076 AsciiData[8] = '\0'; 1077 outs() << std::string(IndentOffset, ' ') << " "; 1078 outs() << reinterpret_cast<char *>(AsciiData); 1079 outs() << '\n'; 1080 NumBytes = 0; 1081 } 1082 } 1083 } 1084 1085 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, 1086 MCContext &Ctx, MCDisassembler *PrimaryDisAsm, 1087 MCDisassembler *SecondaryDisAsm, 1088 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1089 const MCSubtargetInfo *PrimarySTI, 1090 const MCSubtargetInfo *SecondarySTI, 1091 PrettyPrinter &PIP, 1092 SourcePrinter &SP, bool InlineRelocs) { 1093 const MCSubtargetInfo *STI = PrimarySTI; 1094 MCDisassembler *DisAsm = PrimaryDisAsm; 1095 bool PrimaryIsThumb = false; 1096 if (isArmElf(Obj)) 1097 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1098 1099 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1100 if (InlineRelocs) 1101 RelocMap = getRelocsMap(*Obj); 1102 bool Is64Bits = Obj->getBytesInAddress() > 4; 1103 1104 // Create a mapping from virtual address to symbol name. This is used to 1105 // pretty print the symbols while disassembling. 1106 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1107 SectionSymbolsTy AbsoluteSymbols; 1108 const StringRef FileName = Obj->getFileName(); 1109 for (const SymbolRef &Symbol : Obj->symbols()) { 1110 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName); 1111 1112 StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1113 if (Name.empty()) 1114 continue; 1115 1116 uint8_t SymbolType = ELF::STT_NOTYPE; 1117 if (Obj->isELF()) { 1118 SymbolType = getElfSymbolType(Obj, Symbol); 1119 if (SymbolType == ELF::STT_SECTION) 1120 continue; 1121 } 1122 1123 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1124 if (SecI != Obj->section_end()) 1125 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1126 else 1127 AbsoluteSymbols.emplace_back(Address, Name, SymbolType); 1128 } 1129 if (AllSymbols.empty() && Obj->isELF()) 1130 addDynamicElfSymbols(Obj, AllSymbols); 1131 1132 BumpPtrAllocator A; 1133 StringSaver Saver(A); 1134 addPltEntries(Obj, AllSymbols, Saver); 1135 1136 // Create a mapping from virtual address to section. 1137 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1138 for (SectionRef Sec : Obj->sections()) 1139 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1140 array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); 1141 1142 // Linked executables (.exe and .dll files) typically don't include a real 1143 // symbol table but they might contain an export table. 1144 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1145 for (const auto &ExportEntry : COFFObj->export_directories()) { 1146 StringRef Name; 1147 if (std::error_code EC = ExportEntry.getSymbolName(Name)) 1148 reportError(errorCodeToError(EC), Obj->getFileName()); 1149 if (Name.empty()) 1150 continue; 1151 1152 uint32_t RVA; 1153 if (std::error_code EC = ExportEntry.getExportRVA(RVA)) 1154 reportError(errorCodeToError(EC), Obj->getFileName()); 1155 1156 uint64_t VA = COFFObj->getImageBase() + RVA; 1157 auto Sec = partition_point( 1158 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1159 return O.first <= VA; 1160 }); 1161 if (Sec != SectionAddresses.begin()) { 1162 --Sec; 1163 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1164 } else 1165 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1166 } 1167 } 1168 1169 // Sort all the symbols, this allows us to use a simple binary search to find 1170 // a symbol near an address. 1171 StringSet<> FoundDisasmFuncsSet; 1172 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1173 array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); 1174 array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); 1175 1176 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1177 if (FilterSections.empty() && !DisassembleAll && 1178 (!Section.isText() || Section.isVirtual())) 1179 continue; 1180 1181 uint64_t SectionAddr = Section.getAddress(); 1182 uint64_t SectSize = Section.getSize(); 1183 if (!SectSize) 1184 continue; 1185 1186 // Get the list of all the symbols in this section. 1187 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1188 std::vector<MappingSymbolPair> MappingSymbols; 1189 if (hasMappingSymbols(Obj)) { 1190 for (const auto &Symb : Symbols) { 1191 uint64_t Address = std::get<0>(Symb); 1192 StringRef Name = std::get<1>(Symb); 1193 if (Name.startswith("$d")) 1194 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1195 if (Name.startswith("$x")) 1196 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1197 if (Name.startswith("$a")) 1198 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1199 if (Name.startswith("$t")) 1200 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1201 } 1202 } 1203 1204 llvm::sort(MappingSymbols); 1205 1206 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1207 // AMDGPU disassembler uses symbolizer for printing labels 1208 std::unique_ptr<MCRelocationInfo> RelInfo( 1209 TheTarget->createMCRelocationInfo(TripleName, Ctx)); 1210 if (RelInfo) { 1211 std::unique_ptr<MCSymbolizer> Symbolizer( 1212 TheTarget->createMCSymbolizer( 1213 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1214 DisAsm->setSymbolizer(std::move(Symbolizer)); 1215 } 1216 } 1217 1218 StringRef SegmentName = ""; 1219 if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) { 1220 DataRefImpl DR = Section.getRawDataRefImpl(); 1221 SegmentName = MachO->getSectionFinalSegmentName(DR); 1222 } 1223 1224 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName()); 1225 // If the section has no symbol at the start, just insert a dummy one. 1226 if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) { 1227 Symbols.insert( 1228 Symbols.begin(), 1229 std::make_tuple(SectionAddr, SectionName, 1230 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); 1231 } 1232 1233 SmallString<40> Comments; 1234 raw_svector_ostream CommentStream(Comments); 1235 1236 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1237 unwrapOrError(Section.getContents(), Obj->getFileName())); 1238 1239 uint64_t VMAAdjustment = 0; 1240 if (shouldAdjustVA(Section)) 1241 VMAAdjustment = AdjustVMA; 1242 1243 uint64_t Size; 1244 uint64_t Index; 1245 bool PrintedSection = false; 1246 std::vector<RelocationRef> Rels = RelocMap[Section]; 1247 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1248 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1249 // Disassemble symbol by symbol. 1250 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { 1251 std::string SymbolName = std::get<1>(Symbols[SI]).str(); 1252 if (Demangle) 1253 SymbolName = demangle(SymbolName); 1254 1255 // Skip if --disassemble-functions is not empty and the symbol is not in 1256 // the list. 1257 if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName)) 1258 continue; 1259 1260 uint64_t Start = std::get<0>(Symbols[SI]); 1261 if (Start < SectionAddr || StopAddress <= Start) 1262 continue; 1263 else 1264 FoundDisasmFuncsSet.insert(SymbolName); 1265 1266 // The end is the section end, the beginning of the next symbol, or 1267 // --stop-address. 1268 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1269 if (SI + 1 < SE) 1270 End = std::min(End, std::get<0>(Symbols[SI + 1])); 1271 if (Start >= End || End <= StartAddress) 1272 continue; 1273 Start -= SectionAddr; 1274 End -= SectionAddr; 1275 1276 if (!PrintedSection) { 1277 PrintedSection = true; 1278 outs() << "\nDisassembly of section "; 1279 if (!SegmentName.empty()) 1280 outs() << SegmentName << ","; 1281 outs() << SectionName << ":\n"; 1282 } 1283 1284 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1285 if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1286 // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) 1287 Start += 256; 1288 } 1289 if (SI == SE - 1 || 1290 std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1291 // cut trailing zeroes at the end of kernel 1292 // cut up to 256 bytes 1293 const uint64_t EndAlign = 256; 1294 const auto Limit = End - (std::min)(EndAlign, End - Start); 1295 while (End > Limit && 1296 *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0) 1297 End -= 4; 1298 } 1299 } 1300 1301 outs() << '\n'; 1302 if (!NoLeadingAddr) 1303 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1304 SectionAddr + Start + VMAAdjustment); 1305 1306 outs() << SymbolName << ":\n"; 1307 1308 // Don't print raw contents of a virtual section. A virtual section 1309 // doesn't have any contents in the file. 1310 if (Section.isVirtual()) { 1311 outs() << "...\n"; 1312 continue; 1313 } 1314 1315 #ifndef NDEBUG 1316 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); 1317 #else 1318 raw_ostream &DebugOut = nulls(); 1319 #endif 1320 1321 // Some targets (like WebAssembly) have a special prelude at the start 1322 // of each symbol. 1323 DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start), 1324 SectionAddr + Start, DebugOut, CommentStream); 1325 Start += Size; 1326 1327 Index = Start; 1328 if (SectionAddr < StartAddress) 1329 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1330 1331 // If there is a data/common symbol inside an ELF text section and we are 1332 // only disassembling text (applicable all architectures), we are in a 1333 // situation where we must print the data and not disassemble it. 1334 if (Obj->isELF() && !DisassembleAll && Section.isText()) { 1335 uint8_t SymTy = std::get<2>(Symbols[SI]); 1336 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) { 1337 dumpELFData(SectionAddr, Index, End, Bytes); 1338 Index = End; 1339 } 1340 } 1341 1342 bool CheckARMELFData = hasMappingSymbols(Obj) && 1343 std::get<2>(Symbols[SI]) != ELF::STT_OBJECT && 1344 !DisassembleAll; 1345 while (Index < End) { 1346 // ARM and AArch64 ELF binaries can interleave data and text in the 1347 // same section. We rely on the markers introduced to understand what 1348 // we need to dump. If the data marker is within a function, it is 1349 // denoted as a word/short etc. 1350 if (CheckARMELFData && 1351 getMappingSymbolKind(MappingSymbols, Index) == 'd') { 1352 Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1353 MappingSymbols); 1354 continue; 1355 } 1356 1357 // When -z or --disassemble-zeroes are given we always dissasemble 1358 // them. Otherwise we might want to skip zero bytes we see. 1359 if (!DisassembleZeroes) { 1360 uint64_t MaxOffset = End - Index; 1361 // For -reloc: print zero blocks patched by relocations, so that 1362 // relocations can be shown in the dump. 1363 if (RelCur != RelEnd) 1364 MaxOffset = RelCur->getOffset() - Index; 1365 1366 if (size_t N = 1367 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1368 outs() << "\t\t..." << '\n'; 1369 Index += N; 1370 continue; 1371 } 1372 } 1373 1374 if (SecondarySTI) { 1375 if (getMappingSymbolKind(MappingSymbols, Index) == 'a') { 1376 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1377 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1378 } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') { 1379 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1380 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1381 } 1382 } 1383 1384 // Disassemble a real instruction or a data when disassemble all is 1385 // provided 1386 MCInst Inst; 1387 bool Disassembled = DisAsm->getInstruction( 1388 Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut, 1389 CommentStream); 1390 if (Size == 0) 1391 Size = 1; 1392 1393 PIP.printInst(*IP, Disassembled ? &Inst : nullptr, 1394 Bytes.slice(Index, Size), 1395 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, 1396 outs(), "", *STI, &SP, Obj->getFileName(), &Rels); 1397 outs() << CommentStream.str(); 1398 Comments.clear(); 1399 1400 // Try to resolve the target of a call, tail call, etc. to a specific 1401 // symbol. 1402 if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || 1403 MIA->isConditionalBranch(Inst))) { 1404 uint64_t Target; 1405 if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { 1406 // In a relocatable object, the target's section must reside in 1407 // the same section as the call instruction or it is accessed 1408 // through a relocation. 1409 // 1410 // In a non-relocatable object, the target may be in any section. 1411 // 1412 // N.B. We don't walk the relocations in the relocatable case yet. 1413 auto *TargetSectionSymbols = &Symbols; 1414 if (!Obj->isRelocatableObject()) { 1415 auto It = partition_point( 1416 SectionAddresses, 1417 [=](const std::pair<uint64_t, SectionRef> &O) { 1418 return O.first <= Target; 1419 }); 1420 if (It != SectionAddresses.begin()) { 1421 --It; 1422 TargetSectionSymbols = &AllSymbols[It->second]; 1423 } else { 1424 TargetSectionSymbols = &AbsoluteSymbols; 1425 } 1426 } 1427 1428 // Find the last symbol in the section whose offset is less than 1429 // or equal to the target. If there isn't a section that contains 1430 // the target, find the nearest preceding absolute symbol. 1431 auto TargetSym = partition_point( 1432 *TargetSectionSymbols, 1433 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) { 1434 return std::get<0>(O) <= Target; 1435 }); 1436 if (TargetSym == TargetSectionSymbols->begin()) { 1437 TargetSectionSymbols = &AbsoluteSymbols; 1438 TargetSym = partition_point( 1439 AbsoluteSymbols, 1440 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) { 1441 return std::get<0>(O) <= Target; 1442 }); 1443 } 1444 if (TargetSym != TargetSectionSymbols->begin()) { 1445 --TargetSym; 1446 uint64_t TargetAddress = std::get<0>(*TargetSym); 1447 StringRef TargetName = std::get<1>(*TargetSym); 1448 outs() << " <" << TargetName; 1449 uint64_t Disp = Target - TargetAddress; 1450 if (Disp) 1451 outs() << "+0x" << Twine::utohexstr(Disp); 1452 outs() << '>'; 1453 } 1454 } 1455 } 1456 outs() << "\n"; 1457 1458 // Hexagon does this in pretty printer 1459 if (Obj->getArch() != Triple::hexagon) { 1460 // Print relocation for instruction. 1461 while (RelCur != RelEnd) { 1462 uint64_t Offset = RelCur->getOffset(); 1463 // If this relocation is hidden, skip it. 1464 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1465 ++RelCur; 1466 continue; 1467 } 1468 1469 // Stop when RelCur's offset is past the current instruction. 1470 if (Offset >= Index + Size) 1471 break; 1472 1473 // When --adjust-vma is used, update the address printed. 1474 if (RelCur->getSymbol() != Obj->symbol_end()) { 1475 Expected<section_iterator> SymSI = 1476 RelCur->getSymbol()->getSection(); 1477 if (SymSI && *SymSI != Obj->section_end() && 1478 shouldAdjustVA(**SymSI)) 1479 Offset += AdjustVMA; 1480 } 1481 1482 printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset, 1483 Is64Bits); 1484 ++RelCur; 1485 } 1486 } 1487 1488 Index += Size; 1489 } 1490 } 1491 } 1492 StringSet<> MissingDisasmFuncsSet = 1493 set_difference(DisasmFuncsSet, FoundDisasmFuncsSet); 1494 for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys()) 1495 reportWarning("failed to disassemble missing function " + MissingDisasmFunc, 1496 FileName); 1497 } 1498 1499 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1500 const Target *TheTarget = getTarget(Obj); 1501 1502 // Package up features to be passed to target/subtarget 1503 SubtargetFeatures Features = Obj->getFeatures(); 1504 if (!MAttrs.empty()) 1505 for (unsigned I = 0; I != MAttrs.size(); ++I) 1506 Features.AddFeature(MAttrs[I]); 1507 1508 std::unique_ptr<const MCRegisterInfo> MRI( 1509 TheTarget->createMCRegInfo(TripleName)); 1510 if (!MRI) 1511 reportError(Obj->getFileName(), 1512 "no register info for target " + TripleName); 1513 1514 // Set up disassembler. 1515 std::unique_ptr<const MCAsmInfo> AsmInfo( 1516 TheTarget->createMCAsmInfo(*MRI, TripleName)); 1517 if (!AsmInfo) 1518 reportError(Obj->getFileName(), 1519 "no assembly info for target " + TripleName); 1520 std::unique_ptr<const MCSubtargetInfo> STI( 1521 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1522 if (!STI) 1523 reportError(Obj->getFileName(), 1524 "no subtarget info for target " + TripleName); 1525 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1526 if (!MII) 1527 reportError(Obj->getFileName(), 1528 "no instruction info for target " + TripleName); 1529 MCObjectFileInfo MOFI; 1530 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); 1531 // FIXME: for now initialize MCObjectFileInfo with default values 1532 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); 1533 1534 std::unique_ptr<MCDisassembler> DisAsm( 1535 TheTarget->createMCDisassembler(*STI, Ctx)); 1536 if (!DisAsm) 1537 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 1538 1539 // If we have an ARM object file, we need a second disassembler, because 1540 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 1541 // We use mapping symbols to switch between the two assemblers, where 1542 // appropriate. 1543 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 1544 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 1545 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) { 1546 if (STI->checkFeatures("+thumb-mode")) 1547 Features.AddFeature("-thumb-mode"); 1548 else 1549 Features.AddFeature("+thumb-mode"); 1550 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 1551 Features.getString())); 1552 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 1553 } 1554 1555 std::unique_ptr<const MCInstrAnalysis> MIA( 1556 TheTarget->createMCInstrAnalysis(MII.get())); 1557 1558 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1559 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1560 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1561 if (!IP) 1562 reportError(Obj->getFileName(), 1563 "no instruction printer for target " + TripleName); 1564 IP->setPrintImmHex(PrintImmHex); 1565 1566 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1567 SourcePrinter SP(Obj, TheTarget->getName()); 1568 1569 for (StringRef Opt : DisassemblerOptions) 1570 if (!IP->applyTargetSpecificCLOption(Opt)) 1571 reportError(Obj->getFileName(), 1572 "Unrecognized disassembler option: " + Opt); 1573 1574 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(), 1575 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, 1576 SP, InlineRelocs); 1577 } 1578 1579 void printRelocations(const ObjectFile *Obj) { 1580 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1581 "%08" PRIx64; 1582 // Regular objdump doesn't print relocations in non-relocatable object 1583 // files. 1584 if (!Obj->isRelocatableObject()) 1585 return; 1586 1587 // Build a mapping from relocation target to a vector of relocation 1588 // sections. Usually, there is an only one relocation section for 1589 // each relocated section. 1590 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 1591 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1592 if (Section.relocation_begin() == Section.relocation_end()) 1593 continue; 1594 const SectionRef TargetSec = *Section.getRelocatedSection(); 1595 SecToRelSec[TargetSec].push_back(Section); 1596 } 1597 1598 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 1599 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 1600 outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n"; 1601 1602 for (SectionRef Section : P.second) { 1603 for (const RelocationRef &Reloc : Section.relocations()) { 1604 uint64_t Address = Reloc.getOffset(); 1605 SmallString<32> RelocName; 1606 SmallString<32> ValueStr; 1607 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 1608 continue; 1609 Reloc.getTypeName(RelocName); 1610 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1611 reportError(std::move(E), Obj->getFileName()); 1612 1613 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 1614 << ValueStr << "\n"; 1615 } 1616 } 1617 outs() << "\n"; 1618 } 1619 } 1620 1621 void printDynamicRelocations(const ObjectFile *Obj) { 1622 // For the moment, this option is for ELF only 1623 if (!Obj->isELF()) 1624 return; 1625 1626 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1627 if (!Elf || Elf->getEType() != ELF::ET_DYN) { 1628 reportError(Obj->getFileName(), "not a dynamic object"); 1629 return; 1630 } 1631 1632 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1633 if (DynRelSec.empty()) 1634 return; 1635 1636 outs() << "DYNAMIC RELOCATION RECORDS\n"; 1637 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1638 for (const SectionRef &Section : DynRelSec) 1639 for (const RelocationRef &Reloc : Section.relocations()) { 1640 uint64_t Address = Reloc.getOffset(); 1641 SmallString<32> RelocName; 1642 SmallString<32> ValueStr; 1643 Reloc.getTypeName(RelocName); 1644 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1645 reportError(std::move(E), Obj->getFileName()); 1646 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 1647 << ValueStr << "\n"; 1648 } 1649 } 1650 1651 // Returns true if we need to show LMA column when dumping section headers. We 1652 // show it only when the platform is ELF and either we have at least one section 1653 // whose VMA and LMA are different and/or when --show-lma flag is used. 1654 static bool shouldDisplayLMA(const ObjectFile *Obj) { 1655 if (!Obj->isELF()) 1656 return false; 1657 for (const SectionRef &S : ToolSectionFilter(*Obj)) 1658 if (S.getAddress() != getELFSectionLMA(S)) 1659 return true; 1660 return ShowLMA; 1661 } 1662 1663 void printSectionHeaders(const ObjectFile *Obj) { 1664 bool HasLMAColumn = shouldDisplayLMA(Obj); 1665 if (HasLMAColumn) 1666 outs() << "Sections:\n" 1667 "Idx Name Size VMA LMA " 1668 "Type\n"; 1669 else 1670 outs() << "Sections:\n" 1671 "Idx Name Size VMA Type\n"; 1672 1673 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1674 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1675 uint64_t VMA = Section.getAddress(); 1676 if (shouldAdjustVA(Section)) 1677 VMA += AdjustVMA; 1678 1679 uint64_t Size = Section.getSize(); 1680 bool Text = Section.isText(); 1681 bool Data = Section.isData(); 1682 bool BSS = Section.isBSS(); 1683 std::string Type = (std::string(Text ? "TEXT " : "") + 1684 (Data ? "DATA " : "") + (BSS ? "BSS" : "")); 1685 1686 if (HasLMAColumn) 1687 outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %016" PRIx64 1688 " %s\n", 1689 (unsigned)Section.getIndex(), Name.str().c_str(), Size, 1690 VMA, getELFSectionLMA(Section), Type.c_str()); 1691 else 1692 outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", 1693 (unsigned)Section.getIndex(), Name.str().c_str(), Size, 1694 VMA, Type.c_str()); 1695 } 1696 outs() << "\n"; 1697 } 1698 1699 void printSectionContents(const ObjectFile *Obj) { 1700 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1701 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1702 uint64_t BaseAddr = Section.getAddress(); 1703 uint64_t Size = Section.getSize(); 1704 if (!Size) 1705 continue; 1706 1707 outs() << "Contents of section " << Name << ":\n"; 1708 if (Section.isBSS()) { 1709 outs() << format("<skipping contents of bss section at [%04" PRIx64 1710 ", %04" PRIx64 ")>\n", 1711 BaseAddr, BaseAddr + Size); 1712 continue; 1713 } 1714 1715 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 1716 1717 // Dump out the content as hex and printable ascii characters. 1718 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 1719 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 1720 // Dump line of hex. 1721 for (std::size_t I = 0; I < 16; ++I) { 1722 if (I != 0 && I % 4 == 0) 1723 outs() << ' '; 1724 if (Addr + I < End) 1725 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 1726 << hexdigit(Contents[Addr + I] & 0xF, true); 1727 else 1728 outs() << " "; 1729 } 1730 // Print ascii. 1731 outs() << " "; 1732 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 1733 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 1734 outs() << Contents[Addr + I]; 1735 else 1736 outs() << "."; 1737 } 1738 outs() << "\n"; 1739 } 1740 } 1741 } 1742 1743 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName, 1744 StringRef ArchitectureName) { 1745 outs() << "SYMBOL TABLE:\n"; 1746 1747 if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) { 1748 printCOFFSymbolTable(Coff); 1749 return; 1750 } 1751 1752 const StringRef FileName = O->getFileName(); 1753 for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) { 1754 const SymbolRef &Symbol = *I; 1755 uint64_t Address = unwrapOrError(Symbol.getAddress(), ArchiveName, FileName, 1756 ArchitectureName); 1757 if ((Address < StartAddress) || (Address > StopAddress)) 1758 continue; 1759 SymbolRef::Type Type = unwrapOrError(Symbol.getType(), ArchiveName, 1760 FileName, ArchitectureName); 1761 uint32_t Flags = Symbol.getFlags(); 1762 section_iterator Section = unwrapOrError(Symbol.getSection(), ArchiveName, 1763 FileName, ArchitectureName); 1764 StringRef Name; 1765 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { 1766 if (Expected<StringRef> NameOrErr = Section->getName()) 1767 Name = *NameOrErr; 1768 else 1769 consumeError(NameOrErr.takeError()); 1770 1771 } else { 1772 Name = unwrapOrError(Symbol.getName(), ArchiveName, FileName, 1773 ArchitectureName); 1774 } 1775 1776 bool Global = Flags & SymbolRef::SF_Global; 1777 bool Weak = Flags & SymbolRef::SF_Weak; 1778 bool Absolute = Flags & SymbolRef::SF_Absolute; 1779 bool Common = Flags & SymbolRef::SF_Common; 1780 bool Hidden = Flags & SymbolRef::SF_Hidden; 1781 1782 char GlobLoc = ' '; 1783 if (Type != SymbolRef::ST_Unknown) 1784 GlobLoc = Global ? 'g' : 'l'; 1785 char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 1786 ? 'd' : ' '; 1787 char FileFunc = ' '; 1788 if (Type == SymbolRef::ST_File) 1789 FileFunc = 'f'; 1790 else if (Type == SymbolRef::ST_Function) 1791 FileFunc = 'F'; 1792 else if (Type == SymbolRef::ST_Data) 1793 FileFunc = 'O'; 1794 1795 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : 1796 "%08" PRIx64; 1797 1798 outs() << format(Fmt, Address) << " " 1799 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 1800 << (Weak ? 'w' : ' ') // Weak? 1801 << ' ' // Constructor. Not supported yet. 1802 << ' ' // Warning. Not supported yet. 1803 << ' ' // Indirect reference to another symbol. 1804 << Debug // Debugging (d) or dynamic (D) symbol. 1805 << FileFunc // Name of function (F), file (f) or object (O). 1806 << ' '; 1807 if (Absolute) { 1808 outs() << "*ABS*"; 1809 } else if (Common) { 1810 outs() << "*COM*"; 1811 } else if (Section == O->section_end()) { 1812 outs() << "*UND*"; 1813 } else { 1814 if (const MachOObjectFile *MachO = 1815 dyn_cast<const MachOObjectFile>(O)) { 1816 DataRefImpl DR = Section->getRawDataRefImpl(); 1817 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1818 outs() << SegmentName << ","; 1819 } 1820 StringRef SectionName = 1821 unwrapOrError(Section->getName(), O->getFileName()); 1822 outs() << SectionName; 1823 } 1824 1825 if (Common || isa<ELFObjectFileBase>(O)) { 1826 uint64_t Val = 1827 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); 1828 outs() << format("\t%08" PRIx64, Val); 1829 } 1830 1831 if (isa<ELFObjectFileBase>(O)) { 1832 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 1833 switch (Other) { 1834 case ELF::STV_DEFAULT: 1835 break; 1836 case ELF::STV_INTERNAL: 1837 outs() << " .internal"; 1838 break; 1839 case ELF::STV_HIDDEN: 1840 outs() << " .hidden"; 1841 break; 1842 case ELF::STV_PROTECTED: 1843 outs() << " .protected"; 1844 break; 1845 default: 1846 outs() << format(" 0x%02x", Other); 1847 break; 1848 } 1849 } else if (Hidden) { 1850 outs() << " .hidden"; 1851 } 1852 1853 if (Demangle) 1854 outs() << ' ' << demangle(Name) << '\n'; 1855 else 1856 outs() << ' ' << Name << '\n'; 1857 } 1858 } 1859 1860 static void printUnwindInfo(const ObjectFile *O) { 1861 outs() << "Unwind info:\n\n"; 1862 1863 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 1864 printCOFFUnwindInfo(Coff); 1865 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 1866 printMachOUnwindInfo(MachO); 1867 else 1868 // TODO: Extract DWARF dump tool to objdump. 1869 WithColor::error(errs(), ToolName) 1870 << "This operation is only currently supported " 1871 "for COFF and MachO object files.\n"; 1872 } 1873 1874 /// Dump the raw contents of the __clangast section so the output can be piped 1875 /// into llvm-bcanalyzer. 1876 void printRawClangAST(const ObjectFile *Obj) { 1877 if (outs().is_displayed()) { 1878 WithColor::error(errs(), ToolName) 1879 << "The -raw-clang-ast option will dump the raw binary contents of " 1880 "the clang ast section.\n" 1881 "Please redirect the output to a file or another program such as " 1882 "llvm-bcanalyzer.\n"; 1883 return; 1884 } 1885 1886 StringRef ClangASTSectionName("__clangast"); 1887 if (isa<COFFObjectFile>(Obj)) { 1888 ClangASTSectionName = "clangast"; 1889 } 1890 1891 Optional<object::SectionRef> ClangASTSection; 1892 for (auto Sec : ToolSectionFilter(*Obj)) { 1893 StringRef Name; 1894 if (Expected<StringRef> NameOrErr = Sec.getName()) 1895 Name = *NameOrErr; 1896 else 1897 consumeError(NameOrErr.takeError()); 1898 1899 if (Name == ClangASTSectionName) { 1900 ClangASTSection = Sec; 1901 break; 1902 } 1903 } 1904 if (!ClangASTSection) 1905 return; 1906 1907 StringRef ClangASTContents = unwrapOrError( 1908 ClangASTSection.getValue().getContents(), Obj->getFileName()); 1909 outs().write(ClangASTContents.data(), ClangASTContents.size()); 1910 } 1911 1912 static void printFaultMaps(const ObjectFile *Obj) { 1913 StringRef FaultMapSectionName; 1914 1915 if (isa<ELFObjectFileBase>(Obj)) { 1916 FaultMapSectionName = ".llvm_faultmaps"; 1917 } else if (isa<MachOObjectFile>(Obj)) { 1918 FaultMapSectionName = "__llvm_faultmaps"; 1919 } else { 1920 WithColor::error(errs(), ToolName) 1921 << "This operation is only currently supported " 1922 "for ELF and Mach-O executable files.\n"; 1923 return; 1924 } 1925 1926 Optional<object::SectionRef> FaultMapSection; 1927 1928 for (auto Sec : ToolSectionFilter(*Obj)) { 1929 StringRef Name; 1930 if (Expected<StringRef> NameOrErr = Sec.getName()) 1931 Name = *NameOrErr; 1932 else 1933 consumeError(NameOrErr.takeError()); 1934 1935 if (Name == FaultMapSectionName) { 1936 FaultMapSection = Sec; 1937 break; 1938 } 1939 } 1940 1941 outs() << "FaultMap table:\n"; 1942 1943 if (!FaultMapSection.hasValue()) { 1944 outs() << "<not found>\n"; 1945 return; 1946 } 1947 1948 StringRef FaultMapContents = 1949 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName()); 1950 FaultMapParser FMP(FaultMapContents.bytes_begin(), 1951 FaultMapContents.bytes_end()); 1952 1953 outs() << FMP; 1954 } 1955 1956 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 1957 if (O->isELF()) { 1958 printELFFileHeader(O); 1959 printELFDynamicSection(O); 1960 printELFSymbolVersionInfo(O); 1961 return; 1962 } 1963 if (O->isCOFF()) 1964 return printCOFFFileHeader(O); 1965 if (O->isWasm()) 1966 return printWasmFileHeader(O); 1967 if (O->isMachO()) { 1968 printMachOFileHeader(O); 1969 if (!OnlyFirst) 1970 printMachOLoadCommands(O); 1971 return; 1972 } 1973 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 1974 } 1975 1976 static void printFileHeaders(const ObjectFile *O) { 1977 if (!O->isELF() && !O->isCOFF()) 1978 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 1979 1980 Triple::ArchType AT = O->getArch(); 1981 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 1982 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 1983 1984 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1985 outs() << "start address: " 1986 << "0x" << format(Fmt.data(), Address) << "\n\n"; 1987 } 1988 1989 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 1990 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 1991 if (!ModeOrErr) { 1992 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 1993 consumeError(ModeOrErr.takeError()); 1994 return; 1995 } 1996 sys::fs::perms Mode = ModeOrErr.get(); 1997 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 1998 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 1999 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2000 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2001 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2002 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2003 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2004 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2005 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2006 2007 outs() << " "; 2008 2009 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2010 unwrapOrError(C.getGID(), Filename), 2011 unwrapOrError(C.getRawSize(), Filename)); 2012 2013 StringRef RawLastModified = C.getRawLastModified(); 2014 unsigned Seconds; 2015 if (RawLastModified.getAsInteger(10, Seconds)) 2016 outs() << "(date: \"" << RawLastModified 2017 << "\" contains non-decimal chars) "; 2018 else { 2019 // Since ctime(3) returns a 26 character string of the form: 2020 // "Sun Sep 16 01:03:52 1973\n\0" 2021 // just print 24 characters. 2022 time_t t = Seconds; 2023 outs() << format("%.24s ", ctime(&t)); 2024 } 2025 2026 StringRef Name = ""; 2027 Expected<StringRef> NameOrErr = C.getName(); 2028 if (!NameOrErr) { 2029 consumeError(NameOrErr.takeError()); 2030 Name = unwrapOrError(C.getRawName(), Filename); 2031 } else { 2032 Name = NameOrErr.get(); 2033 } 2034 outs() << Name << "\n"; 2035 } 2036 2037 // For ELF only now. 2038 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2039 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2040 if (Elf->getEType() != ELF::ET_REL) 2041 return true; 2042 } 2043 return false; 2044 } 2045 2046 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2047 uint64_t Start, uint64_t Stop) { 2048 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2049 return; 2050 2051 for (const SectionRef &Section : Obj->sections()) 2052 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2053 uint64_t BaseAddr = Section.getAddress(); 2054 uint64_t Size = Section.getSize(); 2055 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2056 return; 2057 } 2058 2059 if (StartAddress.getNumOccurrences() == 0) 2060 reportWarning("no section has address less than 0x" + 2061 Twine::utohexstr(Stop) + " specified by --stop-address", 2062 Obj->getFileName()); 2063 else if (StopAddress.getNumOccurrences() == 0) 2064 reportWarning("no section has address greater than or equal to 0x" + 2065 Twine::utohexstr(Start) + " specified by --start-address", 2066 Obj->getFileName()); 2067 else 2068 reportWarning("no section overlaps the range [0x" + 2069 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2070 ") specified by --start-address/--stop-address", 2071 Obj->getFileName()); 2072 } 2073 2074 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2075 const Archive::Child *C = nullptr) { 2076 // Avoid other output when using a raw option. 2077 if (!RawClangAST) { 2078 outs() << '\n'; 2079 if (A) 2080 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2081 else 2082 outs() << O->getFileName(); 2083 outs() << ":\tfile format " << O->getFileFormatName() << "\n\n"; 2084 } 2085 2086 if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences()) 2087 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2088 2089 StringRef ArchiveName = A ? A->getFileName() : ""; 2090 if (FileHeaders) 2091 printFileHeaders(O); 2092 if (ArchiveHeaders && !MachOOpt && C) 2093 printArchiveChild(ArchiveName, *C); 2094 if (Disassemble) 2095 disassembleObject(O, Relocations); 2096 if (Relocations && !Disassemble) 2097 printRelocations(O); 2098 if (DynamicRelocations) 2099 printDynamicRelocations(O); 2100 if (SectionHeaders) 2101 printSectionHeaders(O); 2102 if (SectionContents) 2103 printSectionContents(O); 2104 if (SymbolTable) 2105 printSymbolTable(O, ArchiveName); 2106 if (UnwindInfo) 2107 printUnwindInfo(O); 2108 if (PrivateHeaders || FirstPrivateHeader) 2109 printPrivateFileHeaders(O, FirstPrivateHeader); 2110 if (ExportsTrie) 2111 printExportsTrie(O); 2112 if (Rebase) 2113 printRebaseTable(O); 2114 if (Bind) 2115 printBindTable(O); 2116 if (LazyBind) 2117 printLazyBindTable(O); 2118 if (WeakBind) 2119 printWeakBindTable(O); 2120 if (RawClangAST) 2121 printRawClangAST(O); 2122 if (FaultMapSection) 2123 printFaultMaps(O); 2124 if (DwarfDumpType != DIDT_Null) { 2125 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2126 // Dump the complete DWARF structure. 2127 DIDumpOptions DumpOpts; 2128 DumpOpts.DumpType = DwarfDumpType; 2129 DICtx->dump(outs(), DumpOpts); 2130 } 2131 } 2132 2133 static void dumpObject(const COFFImportFile *I, const Archive *A, 2134 const Archive::Child *C = nullptr) { 2135 StringRef ArchiveName = A ? A->getFileName() : ""; 2136 2137 // Avoid other output when using a raw option. 2138 if (!RawClangAST) 2139 outs() << '\n' 2140 << ArchiveName << "(" << I->getFileName() << ")" 2141 << ":\tfile format COFF-import-file" 2142 << "\n\n"; 2143 2144 if (ArchiveHeaders && !MachOOpt && C) 2145 printArchiveChild(ArchiveName, *C); 2146 if (SymbolTable) 2147 printCOFFSymbolTable(I); 2148 } 2149 2150 /// Dump each object file in \a a; 2151 static void dumpArchive(const Archive *A) { 2152 Error Err = Error::success(); 2153 unsigned I = -1; 2154 for (auto &C : A->children(Err)) { 2155 ++I; 2156 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2157 if (!ChildOrErr) { 2158 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2159 reportError(std::move(E), A->getFileName(), getFileNameForError(C, I)); 2160 continue; 2161 } 2162 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2163 dumpObject(O, A, &C); 2164 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2165 dumpObject(I, A, &C); 2166 else 2167 reportError(errorCodeToError(object_error::invalid_file_type), 2168 A->getFileName()); 2169 } 2170 if (Err) 2171 reportError(std::move(Err), A->getFileName()); 2172 } 2173 2174 /// Open file and figure out how to dump it. 2175 static void dumpInput(StringRef file) { 2176 // If we are using the Mach-O specific object file parser, then let it parse 2177 // the file and process the command line options. So the -arch flags can 2178 // be used to select specific slices, etc. 2179 if (MachOOpt) { 2180 parseInputMachO(file); 2181 return; 2182 } 2183 2184 // Attempt to open the binary. 2185 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2186 Binary &Binary = *OBinary.getBinary(); 2187 2188 if (Archive *A = dyn_cast<Archive>(&Binary)) 2189 dumpArchive(A); 2190 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2191 dumpObject(O); 2192 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2193 parseInputMachO(UB); 2194 else 2195 reportError(errorCodeToError(object_error::invalid_file_type), file); 2196 } 2197 } // namespace llvm 2198 2199 int main(int argc, char **argv) { 2200 using namespace llvm; 2201 InitLLVM X(argc, argv); 2202 const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat}; 2203 cl::HideUnrelatedOptions(OptionFilters); 2204 2205 // Initialize targets and assembly printers/parsers. 2206 InitializeAllTargetInfos(); 2207 InitializeAllTargetMCs(); 2208 InitializeAllDisassemblers(); 2209 2210 // Register the target printer for --version. 2211 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); 2212 2213 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); 2214 2215 if (StartAddress >= StopAddress) 2216 reportCmdLineError("start address should be less than stop address"); 2217 2218 ToolName = argv[0]; 2219 2220 // Defaults to a.out if no filenames specified. 2221 if (InputFilenames.empty()) 2222 InputFilenames.push_back("a.out"); 2223 2224 if (AllHeaders) 2225 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 2226 SectionHeaders = SymbolTable = true; 2227 2228 if (DisassembleAll || PrintSource || PrintLines || 2229 (!DisassembleFunctions.empty())) 2230 Disassemble = true; 2231 2232 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 2233 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 2234 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 2235 !UnwindInfo && !FaultMapSection && 2236 !(MachOOpt && 2237 (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie || 2238 FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind || 2239 LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders || 2240 WeakBind || !FilterSections.empty()))) { 2241 cl::PrintHelpMessage(); 2242 return 2; 2243 } 2244 2245 DisasmFuncsSet.insert(DisassembleFunctions.begin(), 2246 DisassembleFunctions.end()); 2247 2248 llvm::for_each(InputFilenames, dumpInput); 2249 2250 warnOnNoMatchForSections(); 2251 2252 return EXIT_SUCCESS; 2253 } 2254