xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision eeccbe1ec8d1186ba35ee3416c043d9d69f3c367)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Debuginfod/BuildIDFetcher.h"
38 #include "llvm/Debuginfod/Debuginfod.h"
39 #include "llvm/Debuginfod/HTTPClient.h"
40 #include "llvm/Demangle/Demangle.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/MCContext.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
45 #include "llvm/MC/MCInst.h"
46 #include "llvm/MC/MCInstPrinter.h"
47 #include "llvm/MC/MCInstrAnalysis.h"
48 #include "llvm/MC/MCInstrInfo.h"
49 #include "llvm/MC/MCObjectFileInfo.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/BuildID.h"
55 #include "llvm/Object/COFF.h"
56 #include "llvm/Object/COFFImportFile.h"
57 #include "llvm/Object/ELFObjectFile.h"
58 #include "llvm/Object/ELFTypes.h"
59 #include "llvm/Object/FaultMapParser.h"
60 #include "llvm/Object/MachO.h"
61 #include "llvm/Object/MachOUniversal.h"
62 #include "llvm/Object/ObjectFile.h"
63 #include "llvm/Object/OffloadBinary.h"
64 #include "llvm/Object/Wasm.h"
65 #include "llvm/Option/Arg.h"
66 #include "llvm/Option/ArgList.h"
67 #include "llvm/Option/Option.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Errc.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/Format.h"
73 #include "llvm/Support/FormatVariadic.h"
74 #include "llvm/Support/GraphWriter.h"
75 #include "llvm/Support/InitLLVM.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/TargetParser/Host.h"
83 #include "llvm/TargetParser/Triple.h"
84 #include <algorithm>
85 #include <cctype>
86 #include <cstring>
87 #include <optional>
88 #include <system_error>
89 #include <unordered_map>
90 #include <utility>
91 
92 using namespace llvm;
93 using namespace llvm::object;
94 using namespace llvm::objdump;
95 using namespace llvm::opt;
96 
97 namespace {
98 
99 class CommonOptTable : public opt::GenericOptTable {
100 public:
101   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
102                  const char *Description)
103       : opt::GenericOptTable(OptionInfos), Usage(Usage),
104         Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
111                                     Description, ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 namespace objdump_opt {
123 #define PREFIX(NAME, VALUE)                                                    \
124   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
125   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
126                                                 std::size(NAME##_init) - 1);
127 #include "ObjdumpOpts.inc"
128 #undef PREFIX
129 
130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
131 #define OPTION(...)                                                            \
132   LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__),
133 #include "ObjdumpOpts.inc"
134 #undef OPTION
135 };
136 } // namespace objdump_opt
137 
138 class ObjdumpOptTable : public CommonOptTable {
139 public:
140   ObjdumpOptTable()
141       : CommonOptTable(objdump_opt::ObjdumpInfoTable,
142                        " [options] <input object files>",
143                        "llvm object file dumper") {}
144 };
145 
146 enum OtoolOptID {
147   OTOOL_INVALID = 0, // This is not an option ID.
148 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
149 #include "OtoolOpts.inc"
150 #undef OPTION
151 };
152 
153 namespace otool {
154 #define PREFIX(NAME, VALUE)                                                    \
155   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
156   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
157                                                 std::size(NAME##_init) - 1);
158 #include "OtoolOpts.inc"
159 #undef PREFIX
160 
161 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
162 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
163 #include "OtoolOpts.inc"
164 #undef OPTION
165 };
166 } // namespace otool
167 
168 class OtoolOptTable : public CommonOptTable {
169 public:
170   OtoolOptTable()
171       : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
172                        "Mach-O object file displaying tool") {}
173 };
174 
175 } // namespace
176 
177 #define DEBUG_TYPE "objdump"
178 
179 static uint64_t AdjustVMA;
180 static bool AllHeaders;
181 static std::string ArchName;
182 bool objdump::ArchiveHeaders;
183 bool objdump::Demangle;
184 bool objdump::Disassemble;
185 bool objdump::DisassembleAll;
186 bool objdump::SymbolDescription;
187 bool objdump::TracebackTable;
188 static std::vector<std::string> DisassembleSymbols;
189 static bool DisassembleZeroes;
190 static std::vector<std::string> DisassemblerOptions;
191 DIDumpType objdump::DwarfDumpType;
192 static bool DynamicRelocations;
193 static bool FaultMapSection;
194 static bool FileHeaders;
195 bool objdump::SectionContents;
196 static std::vector<std::string> InputFilenames;
197 bool objdump::PrintLines;
198 static bool MachOOpt;
199 std::string objdump::MCPU;
200 std::vector<std::string> objdump::MAttrs;
201 bool objdump::ShowRawInsn;
202 bool objdump::LeadingAddr;
203 static bool Offloading;
204 static bool RawClangAST;
205 bool objdump::Relocations;
206 bool objdump::PrintImmHex;
207 bool objdump::PrivateHeaders;
208 std::vector<std::string> objdump::FilterSections;
209 bool objdump::SectionHeaders;
210 static bool ShowAllSymbols;
211 static bool ShowLMA;
212 bool objdump::PrintSource;
213 
214 static uint64_t StartAddress;
215 static bool HasStartAddressFlag;
216 static uint64_t StopAddress = UINT64_MAX;
217 static bool HasStopAddressFlag;
218 
219 bool objdump::SymbolTable;
220 static bool SymbolizeOperands;
221 static bool DynamicSymbolTable;
222 std::string objdump::TripleName;
223 bool objdump::UnwindInfo;
224 static bool Wide;
225 std::string objdump::Prefix;
226 uint32_t objdump::PrefixStrip;
227 
228 DebugVarsFormat objdump::DbgVariables = DVDisabled;
229 
230 int objdump::DbgIndent = 52;
231 
232 static StringSet<> DisasmSymbolSet;
233 StringSet<> objdump::FoundSectionSet;
234 static StringRef ToolName;
235 
236 std::unique_ptr<BuildIDFetcher> BIDFetcher;
237 
238 void Dumper::reportUniqueWarning(Error Err) {
239   reportUniqueWarning(toString(std::move(Err)));
240 }
241 
242 void Dumper::reportUniqueWarning(const Twine &Msg) {
243   if (Warnings.insert(StringRef(Msg.str())).second)
244     reportWarning(Msg, O.getFileName());
245 }
246 
247 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) {
248   if (const auto *O = dyn_cast<COFFObjectFile>(&Obj))
249     return createCOFFDumper(*O);
250   if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj))
251     return createELFDumper(*O);
252   if (const auto *O = dyn_cast<MachOObjectFile>(&Obj))
253     return createMachODumper(*O);
254   if (const auto *O = dyn_cast<WasmObjectFile>(&Obj))
255     return createWasmDumper(*O);
256   if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj))
257     return createXCOFFDumper(*O);
258 
259   return createStringError(errc::invalid_argument,
260                            "unsupported object file format");
261 }
262 
263 namespace {
264 struct FilterResult {
265   // True if the section should not be skipped.
266   bool Keep;
267 
268   // True if the index counter should be incremented, even if the section should
269   // be skipped. For example, sections may be skipped if they are not included
270   // in the --section flag, but we still want those to count toward the section
271   // count.
272   bool IncrementIndex;
273 };
274 } // namespace
275 
276 static FilterResult checkSectionFilter(object::SectionRef S) {
277   if (FilterSections.empty())
278     return {/*Keep=*/true, /*IncrementIndex=*/true};
279 
280   Expected<StringRef> SecNameOrErr = S.getName();
281   if (!SecNameOrErr) {
282     consumeError(SecNameOrErr.takeError());
283     return {/*Keep=*/false, /*IncrementIndex=*/false};
284   }
285   StringRef SecName = *SecNameOrErr;
286 
287   // StringSet does not allow empty key so avoid adding sections with
288   // no name (such as the section with index 0) here.
289   if (!SecName.empty())
290     FoundSectionSet.insert(SecName);
291 
292   // Only show the section if it's in the FilterSections list, but always
293   // increment so the indexing is stable.
294   return {/*Keep=*/is_contained(FilterSections, SecName),
295           /*IncrementIndex=*/true};
296 }
297 
298 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
299                                          uint64_t *Idx) {
300   // Start at UINT64_MAX so that the first index returned after an increment is
301   // zero (after the unsigned wrap).
302   if (Idx)
303     *Idx = UINT64_MAX;
304   return SectionFilter(
305       [Idx](object::SectionRef S) {
306         FilterResult Result = checkSectionFilter(S);
307         if (Idx != nullptr && Result.IncrementIndex)
308           *Idx += 1;
309         return Result.Keep;
310       },
311       O);
312 }
313 
314 std::string objdump::getFileNameForError(const object::Archive::Child &C,
315                                          unsigned Index) {
316   Expected<StringRef> NameOrErr = C.getName();
317   if (NameOrErr)
318     return std::string(NameOrErr.get());
319   // If we have an error getting the name then we print the index of the archive
320   // member. Since we are already in an error state, we just ignore this error.
321   consumeError(NameOrErr.takeError());
322   return "<file index: " + std::to_string(Index) + ">";
323 }
324 
325 void objdump::reportWarning(const Twine &Message, StringRef File) {
326   // Output order between errs() and outs() matters especially for archive
327   // files where the output is per member object.
328   outs().flush();
329   WithColor::warning(errs(), ToolName)
330       << "'" << File << "': " << Message << "\n";
331 }
332 
333 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
334   outs().flush();
335   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
336   exit(1);
337 }
338 
339 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
340                                        StringRef ArchiveName,
341                                        StringRef ArchitectureName) {
342   assert(E);
343   outs().flush();
344   WithColor::error(errs(), ToolName);
345   if (ArchiveName != "")
346     errs() << ArchiveName << "(" << FileName << ")";
347   else
348     errs() << "'" << FileName << "'";
349   if (!ArchitectureName.empty())
350     errs() << " (for architecture " << ArchitectureName << ")";
351   errs() << ": ";
352   logAllUnhandledErrors(std::move(E), errs());
353   exit(1);
354 }
355 
356 static void reportCmdLineWarning(const Twine &Message) {
357   WithColor::warning(errs(), ToolName) << Message << "\n";
358 }
359 
360 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
361   WithColor::error(errs(), ToolName) << Message << "\n";
362   exit(1);
363 }
364 
365 static void warnOnNoMatchForSections() {
366   SetVector<StringRef> MissingSections;
367   for (StringRef S : FilterSections) {
368     if (FoundSectionSet.count(S))
369       return;
370     // User may specify a unnamed section. Don't warn for it.
371     if (!S.empty())
372       MissingSections.insert(S);
373   }
374 
375   // Warn only if no section in FilterSections is matched.
376   for (StringRef S : MissingSections)
377     reportCmdLineWarning("section '" + S +
378                          "' mentioned in a -j/--section option, but not "
379                          "found in any input file");
380 }
381 
382 static const Target *getTarget(const ObjectFile *Obj) {
383   // Figure out the target triple.
384   Triple TheTriple("unknown-unknown-unknown");
385   if (TripleName.empty()) {
386     TheTriple = Obj->makeTriple();
387   } else {
388     TheTriple.setTriple(Triple::normalize(TripleName));
389     auto Arch = Obj->getArch();
390     if (Arch == Triple::arm || Arch == Triple::armeb)
391       Obj->setARMSubArch(TheTriple);
392   }
393 
394   // Get the target specific parser.
395   std::string Error;
396   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
397                                                          Error);
398   if (!TheTarget)
399     reportError(Obj->getFileName(), "can't find target: " + Error);
400 
401   // Update the triple name and return the found target.
402   TripleName = TheTriple.getTriple();
403   return TheTarget;
404 }
405 
406 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
407   return A.getOffset() < B.getOffset();
408 }
409 
410 static Error getRelocationValueString(const RelocationRef &Rel,
411                                       SmallVectorImpl<char> &Result) {
412   const ObjectFile *Obj = Rel.getObject();
413   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
414     return getELFRelocationValueString(ELF, Rel, Result);
415   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
416     return getCOFFRelocationValueString(COFF, Rel, Result);
417   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
418     return getWasmRelocationValueString(Wasm, Rel, Result);
419   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
420     return getMachORelocationValueString(MachO, Rel, Result);
421   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
422     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
423   llvm_unreachable("unknown object file format");
424 }
425 
426 /// Indicates whether this relocation should hidden when listing
427 /// relocations, usually because it is the trailing part of a multipart
428 /// relocation that will be printed as part of the leading relocation.
429 static bool getHidden(RelocationRef RelRef) {
430   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
431   if (!MachO)
432     return false;
433 
434   unsigned Arch = MachO->getArch();
435   DataRefImpl Rel = RelRef.getRawDataRefImpl();
436   uint64_t Type = MachO->getRelocationType(Rel);
437 
438   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
439   // is always hidden.
440   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
441     return Type == MachO::GENERIC_RELOC_PAIR;
442 
443   if (Arch == Triple::x86_64) {
444     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
445     // an X86_64_RELOC_SUBTRACTOR.
446     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
447       DataRefImpl RelPrev = Rel;
448       RelPrev.d.a--;
449       uint64_t PrevType = MachO->getRelocationType(RelPrev);
450       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
451         return true;
452     }
453   }
454 
455   return false;
456 }
457 
458 /// Get the column at which we want to start printing the instruction
459 /// disassembly, taking into account anything which appears to the left of it.
460 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
461   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
462 }
463 
464 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
465                                    raw_ostream &OS) {
466   // The output of printInst starts with a tab. Print some spaces so that
467   // the tab has 1 column and advances to the target tab stop.
468   unsigned TabStop = getInstStartColumn(STI);
469   unsigned Column = OS.tell() - Start;
470   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
471 }
472 
473 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
474                            formatted_raw_ostream &OS,
475                            MCSubtargetInfo const &STI) {
476   size_t Start = OS.tell();
477   if (LeadingAddr)
478     OS << format("%8" PRIx64 ":", Address);
479   if (ShowRawInsn) {
480     OS << ' ';
481     dumpBytes(Bytes, OS);
482   }
483   AlignToInstStartColumn(Start, STI, OS);
484 }
485 
486 namespace {
487 
488 static bool isAArch64Elf(const ObjectFile &Obj) {
489   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
490   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
491 }
492 
493 static bool isArmElf(const ObjectFile &Obj) {
494   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
495   return Elf && Elf->getEMachine() == ELF::EM_ARM;
496 }
497 
498 static bool isCSKYElf(const ObjectFile &Obj) {
499   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
500   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
501 }
502 
503 static bool hasMappingSymbols(const ObjectFile &Obj) {
504   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
505 }
506 
507 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
508                             const RelocationRef &Rel, uint64_t Address,
509                             bool Is64Bits) {
510   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
511   SmallString<16> Name;
512   SmallString<32> Val;
513   Rel.getTypeName(Name);
514   if (Error E = getRelocationValueString(Rel, Val))
515     reportError(std::move(E), FileName);
516   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
517   if (LeadingAddr)
518     OS << format(Fmt.data(), Address);
519   OS << Name << "\t" << Val;
520 }
521 
522 class PrettyPrinter {
523 public:
524   virtual ~PrettyPrinter() = default;
525   virtual void
526   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
527             object::SectionedAddress Address, formatted_raw_ostream &OS,
528             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
529             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
530             LiveVariablePrinter &LVP) {
531     if (SP && (PrintSource || PrintLines))
532       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
533     LVP.printBetweenInsts(OS, false);
534 
535     printRawData(Bytes, Address.Address, OS, STI);
536 
537     if (MI) {
538       // See MCInstPrinter::printInst. On targets where a PC relative immediate
539       // is relative to the next instruction and the length of a MCInst is
540       // difficult to measure (x86), this is the address of the next
541       // instruction.
542       uint64_t Addr =
543           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
544       IP.printInst(MI, Addr, "", STI, OS);
545     } else
546       OS << "\t<unknown>";
547   }
548 };
549 PrettyPrinter PrettyPrinterInst;
550 
551 class HexagonPrettyPrinter : public PrettyPrinter {
552 public:
553   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
554                  formatted_raw_ostream &OS) {
555     uint32_t opcode =
556       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
557     if (LeadingAddr)
558       OS << format("%8" PRIx64 ":", Address);
559     if (ShowRawInsn) {
560       OS << "\t";
561       dumpBytes(Bytes.slice(0, 4), OS);
562       OS << format("\t%08" PRIx32, opcode);
563     }
564   }
565   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
566                  object::SectionedAddress Address, formatted_raw_ostream &OS,
567                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
568                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
569                  LiveVariablePrinter &LVP) override {
570     if (SP && (PrintSource || PrintLines))
571       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
572     if (!MI) {
573       printLead(Bytes, Address.Address, OS);
574       OS << " <unknown>";
575       return;
576     }
577     std::string Buffer;
578     {
579       raw_string_ostream TempStream(Buffer);
580       IP.printInst(MI, Address.Address, "", STI, TempStream);
581     }
582     StringRef Contents(Buffer);
583     // Split off bundle attributes
584     auto PacketBundle = Contents.rsplit('\n');
585     // Split off first instruction from the rest
586     auto HeadTail = PacketBundle.first.split('\n');
587     auto Preamble = " { ";
588     auto Separator = "";
589 
590     // Hexagon's packets require relocations to be inline rather than
591     // clustered at the end of the packet.
592     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
593     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
594     auto PrintReloc = [&]() -> void {
595       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
596         if (RelCur->getOffset() == Address.Address) {
597           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
598           return;
599         }
600         ++RelCur;
601       }
602     };
603 
604     while (!HeadTail.first.empty()) {
605       OS << Separator;
606       Separator = "\n";
607       if (SP && (PrintSource || PrintLines))
608         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
609       printLead(Bytes, Address.Address, OS);
610       OS << Preamble;
611       Preamble = "   ";
612       StringRef Inst;
613       auto Duplex = HeadTail.first.split('\v');
614       if (!Duplex.second.empty()) {
615         OS << Duplex.first;
616         OS << "; ";
617         Inst = Duplex.second;
618       }
619       else
620         Inst = HeadTail.first;
621       OS << Inst;
622       HeadTail = HeadTail.second.split('\n');
623       if (HeadTail.first.empty())
624         OS << " } " << PacketBundle.second;
625       PrintReloc();
626       Bytes = Bytes.slice(4);
627       Address.Address += 4;
628     }
629   }
630 };
631 HexagonPrettyPrinter HexagonPrettyPrinterInst;
632 
633 class AMDGCNPrettyPrinter : public PrettyPrinter {
634 public:
635   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
636                  object::SectionedAddress Address, formatted_raw_ostream &OS,
637                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
638                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
639                  LiveVariablePrinter &LVP) override {
640     if (SP && (PrintSource || PrintLines))
641       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
642 
643     if (MI) {
644       SmallString<40> InstStr;
645       raw_svector_ostream IS(InstStr);
646 
647       IP.printInst(MI, Address.Address, "", STI, IS);
648 
649       OS << left_justify(IS.str(), 60);
650     } else {
651       // an unrecognized encoding - this is probably data so represent it
652       // using the .long directive, or .byte directive if fewer than 4 bytes
653       // remaining
654       if (Bytes.size() >= 4) {
655         OS << format("\t.long 0x%08" PRIx32 " ",
656                      support::endian::read32<support::little>(Bytes.data()));
657         OS.indent(42);
658       } else {
659           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
660           for (unsigned int i = 1; i < Bytes.size(); i++)
661             OS << format(", 0x%02" PRIx8, Bytes[i]);
662           OS.indent(55 - (6 * Bytes.size()));
663       }
664     }
665 
666     OS << format("// %012" PRIX64 ":", Address.Address);
667     if (Bytes.size() >= 4) {
668       // D should be casted to uint32_t here as it is passed by format to
669       // snprintf as vararg.
670       for (uint32_t D :
671            ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
672                     Bytes.size() / 4))
673           OS << format(" %08" PRIX32, D);
674     } else {
675       for (unsigned char B : Bytes)
676         OS << format(" %02" PRIX8, B);
677     }
678 
679     if (!Annot.empty())
680       OS << " // " << Annot;
681   }
682 };
683 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
684 
685 class BPFPrettyPrinter : public PrettyPrinter {
686 public:
687   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
688                  object::SectionedAddress Address, formatted_raw_ostream &OS,
689                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
690                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
691                  LiveVariablePrinter &LVP) override {
692     if (SP && (PrintSource || PrintLines))
693       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
694     if (LeadingAddr)
695       OS << format("%8" PRId64 ":", Address.Address / 8);
696     if (ShowRawInsn) {
697       OS << "\t";
698       dumpBytes(Bytes, OS);
699     }
700     if (MI)
701       IP.printInst(MI, Address.Address, "", STI, OS);
702     else
703       OS << "\t<unknown>";
704   }
705 };
706 BPFPrettyPrinter BPFPrettyPrinterInst;
707 
708 class ARMPrettyPrinter : public PrettyPrinter {
709 public:
710   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
711                  object::SectionedAddress Address, formatted_raw_ostream &OS,
712                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
713                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
714                  LiveVariablePrinter &LVP) override {
715     if (SP && (PrintSource || PrintLines))
716       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
717     LVP.printBetweenInsts(OS, false);
718 
719     size_t Start = OS.tell();
720     if (LeadingAddr)
721       OS << format("%8" PRIx64 ":", Address.Address);
722     if (ShowRawInsn) {
723       size_t Pos = 0, End = Bytes.size();
724       if (STI.checkFeatures("+thumb-mode")) {
725         for (; Pos + 2 <= End; Pos += 2)
726           OS << ' '
727              << format_hex_no_prefix(
728                     llvm::support::endian::read<uint16_t>(
729                         Bytes.data() + Pos, InstructionEndianness),
730                     4);
731       } else {
732         for (; Pos + 4 <= End; Pos += 4)
733           OS << ' '
734              << format_hex_no_prefix(
735                     llvm::support::endian::read<uint32_t>(
736                         Bytes.data() + Pos, InstructionEndianness),
737                     8);
738       }
739       if (Pos < End) {
740         OS << ' ';
741         dumpBytes(Bytes.slice(Pos), OS);
742       }
743     }
744 
745     AlignToInstStartColumn(Start, STI, OS);
746 
747     if (MI) {
748       IP.printInst(MI, Address.Address, "", STI, OS);
749     } else
750       OS << "\t<unknown>";
751   }
752 
753   void setInstructionEndianness(llvm::support::endianness Endianness) {
754     InstructionEndianness = Endianness;
755   }
756 
757 private:
758   llvm::support::endianness InstructionEndianness = llvm::support::little;
759 };
760 ARMPrettyPrinter ARMPrettyPrinterInst;
761 
762 class AArch64PrettyPrinter : public PrettyPrinter {
763 public:
764   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
765                  object::SectionedAddress Address, formatted_raw_ostream &OS,
766                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
767                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
768                  LiveVariablePrinter &LVP) override {
769     if (SP && (PrintSource || PrintLines))
770       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
771     LVP.printBetweenInsts(OS, false);
772 
773     size_t Start = OS.tell();
774     if (LeadingAddr)
775       OS << format("%8" PRIx64 ":", Address.Address);
776     if (ShowRawInsn) {
777       size_t Pos = 0, End = Bytes.size();
778       for (; Pos + 4 <= End; Pos += 4)
779         OS << ' '
780            << format_hex_no_prefix(
781                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
782                                                         llvm::support::little),
783                   8);
784       if (Pos < End) {
785         OS << ' ';
786         dumpBytes(Bytes.slice(Pos), OS);
787       }
788     }
789 
790     AlignToInstStartColumn(Start, STI, OS);
791 
792     if (MI) {
793       IP.printInst(MI, Address.Address, "", STI, OS);
794     } else
795       OS << "\t<unknown>";
796   }
797 };
798 AArch64PrettyPrinter AArch64PrettyPrinterInst;
799 
800 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
801   switch(Triple.getArch()) {
802   default:
803     return PrettyPrinterInst;
804   case Triple::hexagon:
805     return HexagonPrettyPrinterInst;
806   case Triple::amdgcn:
807     return AMDGCNPrettyPrinterInst;
808   case Triple::bpfel:
809   case Triple::bpfeb:
810     return BPFPrettyPrinterInst;
811   case Triple::arm:
812   case Triple::armeb:
813   case Triple::thumb:
814   case Triple::thumbeb:
815     return ARMPrettyPrinterInst;
816   case Triple::aarch64:
817   case Triple::aarch64_be:
818   case Triple::aarch64_32:
819     return AArch64PrettyPrinterInst;
820   }
821 }
822 
823 class DisassemblerTarget {
824 public:
825   const Target *TheTarget;
826   std::unique_ptr<const MCSubtargetInfo> SubtargetInfo;
827   std::shared_ptr<MCContext> Context;
828   std::unique_ptr<MCDisassembler> DisAsm;
829   std::shared_ptr<const MCInstrAnalysis> InstrAnalysis;
830   std::shared_ptr<MCInstPrinter> InstPrinter;
831   PrettyPrinter *Printer;
832 
833   DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
834                      StringRef TripleName, StringRef MCPU,
835                      SubtargetFeatures &Features);
836   DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features);
837 
838 private:
839   MCTargetOptions Options;
840   std::shared_ptr<const MCRegisterInfo> RegisterInfo;
841   std::shared_ptr<const MCAsmInfo> AsmInfo;
842   std::shared_ptr<const MCInstrInfo> InstrInfo;
843   std::shared_ptr<MCObjectFileInfo> ObjectFileInfo;
844 };
845 
846 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
847                                        StringRef TripleName, StringRef MCPU,
848                                        SubtargetFeatures &Features)
849     : TheTarget(TheTarget),
850       Printer(&selectPrettyPrinter(Triple(TripleName))),
851       RegisterInfo(TheTarget->createMCRegInfo(TripleName)) {
852   if (!RegisterInfo)
853     reportError(Obj.getFileName(), "no register info for target " + TripleName);
854 
855   // Set up disassembler.
856   AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options));
857   if (!AsmInfo)
858     reportError(Obj.getFileName(), "no assembly info for target " + TripleName);
859 
860   SubtargetInfo.reset(
861       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
862   if (!SubtargetInfo)
863     reportError(Obj.getFileName(),
864                 "no subtarget info for target " + TripleName);
865   InstrInfo.reset(TheTarget->createMCInstrInfo());
866   if (!InstrInfo)
867     reportError(Obj.getFileName(),
868                 "no instruction info for target " + TripleName);
869   Context =
870       std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(),
871                                   RegisterInfo.get(), SubtargetInfo.get());
872 
873   // FIXME: for now initialize MCObjectFileInfo with default values
874   ObjectFileInfo.reset(
875       TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false));
876   Context->setObjectFileInfo(ObjectFileInfo.get());
877 
878   DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context));
879   if (!DisAsm)
880     reportError(Obj.getFileName(), "no disassembler for target " + TripleName);
881 
882   InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
883 
884   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
885   InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName),
886                                                    AsmPrinterVariant, *AsmInfo,
887                                                    *InstrInfo, *RegisterInfo));
888   if (!InstPrinter)
889     reportError(Obj.getFileName(),
890                 "no instruction printer for target " + TripleName);
891   InstPrinter->setPrintImmHex(PrintImmHex);
892   InstPrinter->setPrintBranchImmAsAddress(true);
893   InstPrinter->setSymbolizeOperands(SymbolizeOperands);
894   InstPrinter->setMCInstrAnalysis(InstrAnalysis.get());
895 }
896 
897 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other,
898                                        SubtargetFeatures &Features)
899     : TheTarget(Other.TheTarget),
900       SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
901                                                      Features.getString())),
902       Context(Other.Context),
903       DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)),
904       InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter),
905       Printer(Other.Printer), RegisterInfo(Other.RegisterInfo),
906       AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo),
907       ObjectFileInfo(Other.ObjectFileInfo) {}
908 } // namespace
909 
910 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
911   assert(Obj.isELF());
912   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
913     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
914                          Obj.getFileName())
915         ->getType();
916   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
917     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
918                          Obj.getFileName())
919         ->getType();
920   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
921     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
922                          Obj.getFileName())
923         ->getType();
924   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
925     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
926                          Obj.getFileName())
927         ->getType();
928   llvm_unreachable("Unsupported binary format");
929 }
930 
931 template <class ELFT>
932 static void
933 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
934                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
935   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
936     uint8_t SymbolType = Symbol.getELFType();
937     if (SymbolType == ELF::STT_SECTION)
938       continue;
939 
940     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
941     // ELFSymbolRef::getAddress() returns size instead of value for common
942     // symbols which is not desirable for disassembly output. Overriding.
943     if (SymbolType == ELF::STT_COMMON)
944       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
945                               Obj.getFileName())
946                     ->st_value;
947 
948     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
949     if (Name.empty())
950       continue;
951 
952     section_iterator SecI =
953         unwrapOrError(Symbol.getSection(), Obj.getFileName());
954     if (SecI == Obj.section_end())
955       continue;
956 
957     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
958   }
959 }
960 
961 static void
962 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
963                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
964   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
965     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
966   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
967     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
968   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
969     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
970   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
971     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
972   else
973     llvm_unreachable("Unsupported binary format");
974 }
975 
976 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
977   for (auto SecI : Obj.sections()) {
978     const WasmSection &Section = Obj.getWasmSection(SecI);
979     if (Section.Type == wasm::WASM_SEC_CODE)
980       return SecI;
981   }
982   return std::nullopt;
983 }
984 
985 static void
986 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
987                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
988   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
989   if (!Section)
990     return;
991   SectionSymbolsTy &Symbols = AllSymbols[*Section];
992 
993   std::set<uint64_t> SymbolAddresses;
994   for (const auto &Sym : Symbols)
995     SymbolAddresses.insert(Sym.Addr);
996 
997   for (const wasm::WasmFunction &Function : Obj.functions()) {
998     uint64_t Address = Function.CodeSectionOffset;
999     // Only add fallback symbols for functions not already present in the symbol
1000     // table.
1001     if (SymbolAddresses.count(Address))
1002       continue;
1003     // This function has no symbol, so it should have no SymbolName.
1004     assert(Function.SymbolName.empty());
1005     // We use DebugName for the name, though it may be empty if there is no
1006     // "name" custom section, or that section is missing a name for this
1007     // function.
1008     StringRef Name = Function.DebugName;
1009     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
1010   }
1011 }
1012 
1013 static void addPltEntries(const ObjectFile &Obj,
1014                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1015                           StringSaver &Saver) {
1016   auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
1017   if (!ElfObj)
1018     return;
1019   DenseMap<StringRef, SectionRef> Sections;
1020   for (SectionRef Section : Obj.sections()) {
1021     Expected<StringRef> SecNameOrErr = Section.getName();
1022     if (!SecNameOrErr) {
1023       consumeError(SecNameOrErr.takeError());
1024       continue;
1025     }
1026     Sections[*SecNameOrErr] = Section;
1027   }
1028   for (auto Plt : ElfObj->getPltEntries()) {
1029     if (Plt.Symbol) {
1030       SymbolRef Symbol(*Plt.Symbol, ElfObj);
1031       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1032       if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1033         if (!NameOrErr->empty())
1034           AllSymbols[Sections[Plt.Section]].emplace_back(
1035               Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
1036         continue;
1037       } else {
1038         // The warning has been reported in disassembleObject().
1039         consumeError(NameOrErr.takeError());
1040       }
1041     }
1042     reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
1043                       " references an invalid symbol",
1044                   Obj.getFileName());
1045   }
1046 }
1047 
1048 // Normally the disassembly output will skip blocks of zeroes. This function
1049 // returns the number of zero bytes that can be skipped when dumping the
1050 // disassembly of the instructions in Buf.
1051 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1052   // Find the number of leading zeroes.
1053   size_t N = 0;
1054   while (N < Buf.size() && !Buf[N])
1055     ++N;
1056 
1057   // We may want to skip blocks of zero bytes, but unless we see
1058   // at least 8 of them in a row.
1059   if (N < 8)
1060     return 0;
1061 
1062   // We skip zeroes in multiples of 4 because do not want to truncate an
1063   // instruction if it starts with a zero byte.
1064   return N & ~0x3;
1065 }
1066 
1067 // Returns a map from sections to their relocations.
1068 static std::map<SectionRef, std::vector<RelocationRef>>
1069 getRelocsMap(object::ObjectFile const &Obj) {
1070   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1071   uint64_t I = (uint64_t)-1;
1072   for (SectionRef Sec : Obj.sections()) {
1073     ++I;
1074     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1075     if (!RelocatedOrErr)
1076       reportError(Obj.getFileName(),
1077                   "section (" + Twine(I) +
1078                       "): failed to get a relocated section: " +
1079                       toString(RelocatedOrErr.takeError()));
1080 
1081     section_iterator Relocated = *RelocatedOrErr;
1082     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1083       continue;
1084     std::vector<RelocationRef> &V = Ret[*Relocated];
1085     append_range(V, Sec.relocations());
1086     // Sort relocations by address.
1087     llvm::stable_sort(V, isRelocAddressLess);
1088   }
1089   return Ret;
1090 }
1091 
1092 // Used for --adjust-vma to check if address should be adjusted by the
1093 // specified value for a given section.
1094 // For ELF we do not adjust non-allocatable sections like debug ones,
1095 // because they are not loadable.
1096 // TODO: implement for other file formats.
1097 static bool shouldAdjustVA(const SectionRef &Section) {
1098   const ObjectFile *Obj = Section.getObject();
1099   if (Obj->isELF())
1100     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1101   return false;
1102 }
1103 
1104 
1105 typedef std::pair<uint64_t, char> MappingSymbolPair;
1106 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1107                                  uint64_t Address) {
1108   auto It =
1109       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1110         return Val.first <= Address;
1111       });
1112   // Return zero for any address before the first mapping symbol; this means
1113   // we should use the default disassembly mode, depending on the target.
1114   if (It == MappingSymbols.begin())
1115     return '\x00';
1116   return (It - 1)->second;
1117 }
1118 
1119 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1120                                uint64_t End, const ObjectFile &Obj,
1121                                ArrayRef<uint8_t> Bytes,
1122                                ArrayRef<MappingSymbolPair> MappingSymbols,
1123                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1124   support::endianness Endian =
1125       Obj.isLittleEndian() ? support::little : support::big;
1126   size_t Start = OS.tell();
1127   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1128   if (Index + 4 <= End) {
1129     dumpBytes(Bytes.slice(Index, 4), OS);
1130     AlignToInstStartColumn(Start, STI, OS);
1131     OS << "\t.word\t"
1132            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1133                          10);
1134     return 4;
1135   }
1136   if (Index + 2 <= End) {
1137     dumpBytes(Bytes.slice(Index, 2), OS);
1138     AlignToInstStartColumn(Start, STI, OS);
1139     OS << "\t.short\t"
1140        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1141     return 2;
1142   }
1143   dumpBytes(Bytes.slice(Index, 1), OS);
1144   AlignToInstStartColumn(Start, STI, OS);
1145   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1146   return 1;
1147 }
1148 
1149 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1150                         ArrayRef<uint8_t> Bytes) {
1151   // print out data up to 8 bytes at a time in hex and ascii
1152   uint8_t AsciiData[9] = {'\0'};
1153   uint8_t Byte;
1154   int NumBytes = 0;
1155 
1156   for (; Index < End; ++Index) {
1157     if (NumBytes == 0)
1158       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1159     Byte = Bytes.slice(Index)[0];
1160     outs() << format(" %02x", Byte);
1161     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1162 
1163     uint8_t IndentOffset = 0;
1164     NumBytes++;
1165     if (Index == End - 1 || NumBytes > 8) {
1166       // Indent the space for less than 8 bytes data.
1167       // 2 spaces for byte and one for space between bytes
1168       IndentOffset = 3 * (8 - NumBytes);
1169       for (int Excess = NumBytes; Excess < 8; Excess++)
1170         AsciiData[Excess] = '\0';
1171       NumBytes = 8;
1172     }
1173     if (NumBytes == 8) {
1174       AsciiData[8] = '\0';
1175       outs() << std::string(IndentOffset, ' ') << "         ";
1176       outs() << reinterpret_cast<char *>(AsciiData);
1177       outs() << '\n';
1178       NumBytes = 0;
1179     }
1180   }
1181 }
1182 
1183 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1184                                        const SymbolRef &Symbol,
1185                                        bool IsMappingSymbol) {
1186   const StringRef FileName = Obj.getFileName();
1187   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1188   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1189 
1190   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1191     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1192     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1193 
1194     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1195     std::optional<XCOFF::StorageMappingClass> Smc =
1196         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1197     return SymbolInfoTy(Smc, Addr, Name, SymbolIndex,
1198                         isLabel(XCOFFObj, Symbol));
1199   } else if (Obj.isXCOFF()) {
1200     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1201     return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false,
1202                         /*IsXCOFF=*/true);
1203   } else {
1204     uint8_t Type =
1205         Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE;
1206     return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol);
1207   }
1208 }
1209 
1210 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1211                                           const uint64_t Addr, StringRef &Name,
1212                                           uint8_t Type) {
1213   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1214     return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false);
1215   else
1216     return SymbolInfoTy(Addr, Name, Type);
1217 }
1218 
1219 static void
1220 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1221                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1222                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1223   if (AddrToBBAddrMap.empty())
1224     return;
1225   Labels.clear();
1226   uint64_t StartAddress = SectionAddr + Start;
1227   uint64_t EndAddress = SectionAddr + End;
1228   auto Iter = AddrToBBAddrMap.find(StartAddress);
1229   if (Iter == AddrToBBAddrMap.end())
1230     return;
1231   for (const BBAddrMap::BBEntry &BBEntry : Iter->second.BBEntries) {
1232     uint64_t BBAddress = BBEntry.Offset + Iter->second.Addr;
1233     if (BBAddress >= EndAddress)
1234       continue;
1235     Labels[BBAddress].push_back(("BB" + Twine(BBEntry.ID)).str());
1236   }
1237 }
1238 
1239 static void collectLocalBranchTargets(
1240     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1241     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1242     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1243   // So far only supports PowerPC and X86.
1244   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1245     return;
1246 
1247   Labels.clear();
1248   unsigned LabelCount = 0;
1249   Start += SectionAddr;
1250   End += SectionAddr;
1251   uint64_t Index = Start;
1252   while (Index < End) {
1253     // Disassemble a real instruction and record function-local branch labels.
1254     MCInst Inst;
1255     uint64_t Size;
1256     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1257     bool Disassembled =
1258         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1259     if (Size == 0)
1260       Size = std::min<uint64_t>(ThisBytes.size(),
1261                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1262 
1263     if (Disassembled && MIA) {
1264       uint64_t Target;
1265       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1266       // On PowerPC, if the address of a branch is the same as the target, it
1267       // means that it's a function call. Do not mark the label for this case.
1268       if (TargetKnown && (Target >= Start && Target < End) &&
1269           !Labels.count(Target) &&
1270           !(STI->getTargetTriple().isPPC() && Target == Index))
1271         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1272     }
1273     Index += Size;
1274   }
1275 }
1276 
1277 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1278 // This is currently only used on AMDGPU, and assumes the format of the
1279 // void * argument passed to AMDGPU's createMCSymbolizer.
1280 static void addSymbolizer(
1281     MCContext &Ctx, const Target *Target, StringRef TripleName,
1282     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1283     SectionSymbolsTy &Symbols,
1284     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1285 
1286   std::unique_ptr<MCRelocationInfo> RelInfo(
1287       Target->createMCRelocationInfo(TripleName, Ctx));
1288   if (!RelInfo)
1289     return;
1290   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1291       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1292   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1293   DisAsm->setSymbolizer(std::move(Symbolizer));
1294 
1295   if (!SymbolizeOperands)
1296     return;
1297 
1298   // Synthesize labels referenced by branch instructions by
1299   // disassembling, discarding the output, and collecting the referenced
1300   // addresses from the symbolizer.
1301   for (size_t Index = 0; Index != Bytes.size();) {
1302     MCInst Inst;
1303     uint64_t Size;
1304     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1305     const uint64_t ThisAddr = SectionAddr + Index;
1306     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1307     if (Size == 0)
1308       Size = std::min<uint64_t>(ThisBytes.size(),
1309                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1310     Index += Size;
1311   }
1312   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1313   // Copy and sort to remove duplicates.
1314   std::vector<uint64_t> LabelAddrs;
1315   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1316                     LabelAddrsRef.end());
1317   llvm::sort(LabelAddrs);
1318   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1319                     LabelAddrs.begin());
1320   // Add the labels.
1321   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1322     auto Name = std::make_unique<std::string>();
1323     *Name = (Twine("L") + Twine(LabelNum)).str();
1324     SynthesizedLabelNames.push_back(std::move(Name));
1325     Symbols.push_back(SymbolInfoTy(
1326         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1327   }
1328   llvm::stable_sort(Symbols);
1329   // Recreate the symbolizer with the new symbols list.
1330   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1331   Symbolizer.reset(Target->createMCSymbolizer(
1332       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1333   DisAsm->setSymbolizer(std::move(Symbolizer));
1334 }
1335 
1336 static StringRef getSegmentName(const MachOObjectFile *MachO,
1337                                 const SectionRef &Section) {
1338   if (MachO) {
1339     DataRefImpl DR = Section.getRawDataRefImpl();
1340     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1341     return SegmentName;
1342   }
1343   return "";
1344 }
1345 
1346 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1347                                     const MCAsmInfo &MAI,
1348                                     const MCSubtargetInfo &STI,
1349                                     StringRef Comments,
1350                                     LiveVariablePrinter &LVP) {
1351   do {
1352     if (!Comments.empty()) {
1353       // Emit a line of comments.
1354       StringRef Comment;
1355       std::tie(Comment, Comments) = Comments.split('\n');
1356       // MAI.getCommentColumn() assumes that instructions are printed at the
1357       // position of 8, while getInstStartColumn() returns the actual position.
1358       unsigned CommentColumn =
1359           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1360       FOS.PadToColumn(CommentColumn);
1361       FOS << MAI.getCommentString() << ' ' << Comment;
1362     }
1363     LVP.printAfterInst(FOS);
1364     FOS << '\n';
1365   } while (!Comments.empty());
1366   FOS.flush();
1367 }
1368 
1369 static void createFakeELFSections(ObjectFile &Obj) {
1370   assert(Obj.isELF());
1371   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1372     Elf32LEObj->createFakeSections();
1373   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1374     Elf64LEObj->createFakeSections();
1375   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1376     Elf32BEObj->createFakeSections();
1377   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1378     Elf64BEObj->createFakeSections();
1379   else
1380     llvm_unreachable("Unsupported binary format");
1381 }
1382 
1383 // Tries to fetch a more complete version of the given object file using its
1384 // Build ID. Returns std::nullopt if nothing was found.
1385 static std::optional<OwningBinary<Binary>>
1386 fetchBinaryByBuildID(const ObjectFile &Obj) {
1387   object::BuildIDRef BuildID = getBuildID(&Obj);
1388   if (BuildID.empty())
1389     return std::nullopt;
1390   std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1391   if (!Path)
1392     return std::nullopt;
1393   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1394   if (!DebugBinary) {
1395     reportWarning(toString(DebugBinary.takeError()), *Path);
1396     return std::nullopt;
1397   }
1398   return std::move(*DebugBinary);
1399 }
1400 
1401 static void
1402 disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj,
1403                   DisassemblerTarget &PrimaryTarget,
1404                   std::optional<DisassemblerTarget> &SecondaryTarget,
1405                   SourcePrinter &SP, bool InlineRelocs) {
1406   DisassemblerTarget *DT = &PrimaryTarget;
1407   bool PrimaryIsThumb = false;
1408   if (isArmElf(Obj))
1409     PrimaryIsThumb = PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode");
1410 
1411   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1412   if (InlineRelocs)
1413     RelocMap = getRelocsMap(Obj);
1414   bool Is64Bits = Obj.getBytesInAddress() > 4;
1415 
1416   // Create a mapping from virtual address to symbol name.  This is used to
1417   // pretty print the symbols while disassembling.
1418   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1419   std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols;
1420   SectionSymbolsTy AbsoluteSymbols;
1421   const StringRef FileName = Obj.getFileName();
1422   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1423   for (const SymbolRef &Symbol : Obj.symbols()) {
1424     Expected<StringRef> NameOrErr = Symbol.getName();
1425     if (!NameOrErr) {
1426       reportWarning(toString(NameOrErr.takeError()), FileName);
1427       continue;
1428     }
1429     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1430       continue;
1431 
1432     if (Obj.isELF() &&
1433         (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) {
1434       // Symbol is intended not to be displayed by default (STT_FILE,
1435       // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will
1436       // synthesize a section symbol if no symbol is defined at offset 0.
1437       //
1438       // For a mapping symbol, store it within both AllSymbols and
1439       // AllMappingSymbols. If --show-all-symbols is unspecified, its label will
1440       // not be printed in disassembly listing.
1441       if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION &&
1442           hasMappingSymbols(Obj)) {
1443         section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1444         if (SecI != Obj.section_end()) {
1445           uint64_t SectionAddr = SecI->getAddress();
1446           uint64_t Address = cantFail(Symbol.getAddress());
1447           StringRef Name = *NameOrErr;
1448           if (Name.consume_front("$") && Name.size() &&
1449               strchr("adtx", Name[0])) {
1450             AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr,
1451                                                   Name[0]);
1452             AllSymbols[*SecI].push_back(
1453                 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true));
1454           }
1455         }
1456       }
1457       continue;
1458     }
1459 
1460     if (MachO) {
1461       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1462       // symbols that support MachO header introspection. They do not bind to
1463       // code locations and are irrelevant for disassembly.
1464       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1465         continue;
1466       // Don't ask a Mach-O STAB symbol for its section unless you know that
1467       // STAB symbol's section field refers to a valid section index. Otherwise
1468       // the symbol may error trying to load a section that does not exist.
1469       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1470       uint8_t NType = (MachO->is64Bit() ?
1471                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1472                        MachO->getSymbolTableEntry(SymDRI).n_type);
1473       if (NType & MachO::N_STAB)
1474         continue;
1475     }
1476 
1477     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1478     if (SecI != Obj.section_end())
1479       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1480     else
1481       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1482   }
1483 
1484   if (AllSymbols.empty() && Obj.isELF())
1485     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1486 
1487   if (Obj.isWasm())
1488     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1489 
1490   if (Obj.isELF() && Obj.sections().empty())
1491     createFakeELFSections(Obj);
1492 
1493   BumpPtrAllocator A;
1494   StringSaver Saver(A);
1495   addPltEntries(Obj, AllSymbols, Saver);
1496 
1497   // Create a mapping from virtual address to section. An empty section can
1498   // cause more than one section at the same address. Sort such sections to be
1499   // before same-addressed non-empty sections so that symbol lookups prefer the
1500   // non-empty section.
1501   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1502   for (SectionRef Sec : Obj.sections())
1503     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1504   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1505     if (LHS.first != RHS.first)
1506       return LHS.first < RHS.first;
1507     return LHS.second.getSize() < RHS.second.getSize();
1508   });
1509 
1510   // Linked executables (.exe and .dll files) typically don't include a real
1511   // symbol table but they might contain an export table.
1512   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1513     for (const auto &ExportEntry : COFFObj->export_directories()) {
1514       StringRef Name;
1515       if (Error E = ExportEntry.getSymbolName(Name))
1516         reportError(std::move(E), Obj.getFileName());
1517       if (Name.empty())
1518         continue;
1519 
1520       uint32_t RVA;
1521       if (Error E = ExportEntry.getExportRVA(RVA))
1522         reportError(std::move(E), Obj.getFileName());
1523 
1524       uint64_t VA = COFFObj->getImageBase() + RVA;
1525       auto Sec = partition_point(
1526           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1527             return O.first <= VA;
1528           });
1529       if (Sec != SectionAddresses.begin()) {
1530         --Sec;
1531         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1532       } else
1533         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1534     }
1535   }
1536 
1537   // Sort all the symbols, this allows us to use a simple binary search to find
1538   // Multiple symbols can have the same address. Use a stable sort to stabilize
1539   // the output.
1540   StringSet<> FoundDisasmSymbolSet;
1541   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1542     llvm::stable_sort(SecSyms.second);
1543   llvm::stable_sort(AbsoluteSymbols);
1544 
1545   std::unique_ptr<DWARFContext> DICtx;
1546   LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo);
1547 
1548   if (DbgVariables != DVDisabled) {
1549     DICtx = DWARFContext::create(DbgObj);
1550     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1551       LVP.addCompileUnit(CU->getUnitDIE(false));
1552   }
1553 
1554   LLVM_DEBUG(LVP.dump());
1555 
1556   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1557   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1558                                std::nullopt) {
1559     AddrToBBAddrMap.clear();
1560     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1561       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1562       if (!BBAddrMapsOrErr) {
1563         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1564         return;
1565       }
1566       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1567         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1568                                 std::move(FunctionBBAddrMap));
1569     }
1570   };
1571 
1572   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1573   // single mapping, since they don't have any conflicts.
1574   if (SymbolizeOperands && !Obj.isRelocatableObject())
1575     ReadBBAddrMap();
1576 
1577   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1578     if (FilterSections.empty() && !DisassembleAll &&
1579         (!Section.isText() || Section.isVirtual()))
1580       continue;
1581 
1582     uint64_t SectionAddr = Section.getAddress();
1583     uint64_t SectSize = Section.getSize();
1584     if (!SectSize)
1585       continue;
1586 
1587     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1588     // corresponding to this section, if present.
1589     if (SymbolizeOperands && Obj.isRelocatableObject())
1590       ReadBBAddrMap(Section.getIndex());
1591 
1592     // Get the list of all the symbols in this section.
1593     SectionSymbolsTy &Symbols = AllSymbols[Section];
1594     auto &MappingSymbols = AllMappingSymbols[Section];
1595     llvm::sort(MappingSymbols);
1596 
1597     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1598         unwrapOrError(Section.getContents(), Obj.getFileName()));
1599 
1600     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1601     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1602       // AMDGPU disassembler uses symbolizer for printing labels
1603       addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(),
1604                     SectionAddr, Bytes, Symbols, SynthesizedLabelNames);
1605     }
1606 
1607     StringRef SegmentName = getSegmentName(MachO, Section);
1608     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1609     // If the section has no symbol at the start, just insert a dummy one.
1610     // Without --show-all-symbols, also insert one if all symbols at the start
1611     // are mapping symbols.
1612     bool CreateDummy = Symbols.empty();
1613     if (!CreateDummy) {
1614       CreateDummy = true;
1615       for (auto &Sym : Symbols) {
1616         if (Sym.Addr != SectionAddr)
1617           break;
1618         if (!Sym.IsMappingSymbol || ShowAllSymbols)
1619           CreateDummy = false;
1620       }
1621     }
1622     if (CreateDummy) {
1623       SymbolInfoTy Sym = createDummySymbolInfo(
1624           Obj, SectionAddr, SectionName,
1625           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT);
1626       if (Obj.isXCOFF())
1627         Symbols.insert(Symbols.begin(), Sym);
1628       else
1629         Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym);
1630     }
1631 
1632     SmallString<40> Comments;
1633     raw_svector_ostream CommentStream(Comments);
1634 
1635     uint64_t VMAAdjustment = 0;
1636     if (shouldAdjustVA(Section))
1637       VMAAdjustment = AdjustVMA;
1638 
1639     // In executable and shared objects, r_offset holds a virtual address.
1640     // Subtract SectionAddr from the r_offset field of a relocation to get
1641     // the section offset.
1642     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1643     uint64_t Size;
1644     uint64_t Index;
1645     bool PrintedSection = false;
1646     std::vector<RelocationRef> Rels = RelocMap[Section];
1647     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1648     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1649 
1650     // Loop over each chunk of code between two points where at least
1651     // one symbol is defined.
1652     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1653       // Advance SI past all the symbols starting at the same address,
1654       // and make an ArrayRef of them.
1655       unsigned FirstSI = SI;
1656       uint64_t Start = Symbols[SI].Addr;
1657       ArrayRef<SymbolInfoTy> SymbolsHere;
1658       while (SI != SE && Symbols[SI].Addr == Start)
1659         ++SI;
1660       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1661 
1662       // Get the demangled names of all those symbols. We end up with a vector
1663       // of StringRef that holds the names we're going to use, and a vector of
1664       // std::string that stores the new strings returned by demangle(), if
1665       // any. If we don't call demangle() then that vector can stay empty.
1666       std::vector<StringRef> SymNamesHere;
1667       std::vector<std::string> DemangledSymNamesHere;
1668       if (Demangle) {
1669         // Fetch the demangled names and store them locally.
1670         for (const SymbolInfoTy &Symbol : SymbolsHere)
1671           DemangledSymNamesHere.push_back(demangle(Symbol.Name));
1672         // Now we've finished modifying that vector, it's safe to make
1673         // a vector of StringRefs pointing into it.
1674         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1675                             DemangledSymNamesHere.end());
1676       } else {
1677         for (const SymbolInfoTy &Symbol : SymbolsHere)
1678           SymNamesHere.push_back(Symbol.Name);
1679       }
1680 
1681       // Distinguish ELF data from code symbols, which will be used later on to
1682       // decide whether to 'disassemble' this chunk as a data declaration via
1683       // dumpELFData(), or whether to treat it as code.
1684       //
1685       // If data _and_ code symbols are defined at the same address, the code
1686       // takes priority, on the grounds that disassembling code is our main
1687       // purpose here, and it would be a worse failure to _not_ interpret
1688       // something that _was_ meaningful as code than vice versa.
1689       //
1690       // Any ELF symbol type that is not clearly data will be regarded as code.
1691       // In particular, one of the uses of STT_NOTYPE is for branch targets
1692       // inside functions, for which STT_FUNC would be inaccurate.
1693       //
1694       // So here, we spot whether there's any non-data symbol present at all,
1695       // and only set the DisassembleAsData flag if there isn't. Also, we use
1696       // this distinction to inform the decision of which symbol to print at
1697       // the head of the section, so that if we're printing code, we print a
1698       // code-related symbol name to go with it.
1699       bool DisassembleAsData = false;
1700       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1701       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1702         DisassembleAsData = true; // unless we find a code symbol below
1703 
1704         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1705           uint8_t SymTy = SymbolsHere[i].Type;
1706           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1707             DisassembleAsData = false;
1708             DisplaySymIndex = i;
1709           }
1710         }
1711       }
1712 
1713       // Decide which symbol(s) from this collection we're going to print.
1714       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1715       // If the user has given the --disassemble-symbols option, then we must
1716       // display every symbol in that set, and no others.
1717       if (!DisasmSymbolSet.empty()) {
1718         bool FoundAny = false;
1719         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1720           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1721             SymsToPrint[i] = true;
1722             FoundAny = true;
1723           }
1724         }
1725 
1726         // And if none of the symbols here is one that the user asked for, skip
1727         // disassembling this entire chunk of code.
1728         if (!FoundAny)
1729           continue;
1730       } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) {
1731         // Otherwise, print whichever symbol at this location is last in the
1732         // Symbols array, because that array is pre-sorted in a way intended to
1733         // correlate with priority of which symbol to display.
1734         SymsToPrint[DisplaySymIndex] = true;
1735       }
1736 
1737       // Now that we know we're disassembling this section, override the choice
1738       // of which symbols to display by printing _all_ of them at this address
1739       // if the user asked for all symbols.
1740       //
1741       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1742       // only the chunk of code headed by 'foo', but also show any other
1743       // symbols defined at that address, such as aliases for 'foo', or the ARM
1744       // mapping symbol preceding its code.
1745       if (ShowAllSymbols) {
1746         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1747           SymsToPrint[i] = true;
1748       }
1749 
1750       if (Start < SectionAddr || StopAddress <= Start)
1751         continue;
1752 
1753       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1754         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1755 
1756       // The end is the section end, the beginning of the next symbol, or
1757       // --stop-address.
1758       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1759       if (SI < SE)
1760         End = std::min(End, Symbols[SI].Addr);
1761       if (Start >= End || End <= StartAddress)
1762         continue;
1763       Start -= SectionAddr;
1764       End -= SectionAddr;
1765 
1766       if (!PrintedSection) {
1767         PrintedSection = true;
1768         outs() << "\nDisassembly of section ";
1769         if (!SegmentName.empty())
1770           outs() << SegmentName << ",";
1771         outs() << SectionName << ":\n";
1772       }
1773 
1774       bool PrintedLabel = false;
1775       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1776         if (!SymsToPrint[i])
1777           continue;
1778 
1779         const SymbolInfoTy &Symbol = SymbolsHere[i];
1780         const StringRef SymbolName = SymNamesHere[i];
1781 
1782         if (!PrintedLabel) {
1783           outs() << '\n';
1784           PrintedLabel = true;
1785         }
1786         if (LeadingAddr)
1787           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1788                            SectionAddr + Start + VMAAdjustment);
1789         if (Obj.isXCOFF() && SymbolDescription) {
1790           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1791         } else
1792           outs() << '<' << SymbolName << ">:\n";
1793       }
1794 
1795       // Don't print raw contents of a virtual section. A virtual section
1796       // doesn't have any contents in the file.
1797       if (Section.isVirtual()) {
1798         outs() << "...\n";
1799         continue;
1800       }
1801 
1802       // See if any of the symbols defined at this location triggers target-
1803       // specific disassembly behavior, e.g. of special descriptors or function
1804       // prelude information.
1805       //
1806       // We stop this loop at the first symbol that triggers some kind of
1807       // interesting behavior (if any), on the assumption that if two symbols
1808       // defined at the same address trigger two conflicting symbol handlers,
1809       // the object file is probably confused anyway, and it would make even
1810       // less sense to present the output of _both_ handlers, because that
1811       // would describe the same data twice.
1812       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1813         SymbolInfoTy Symbol = SymbolsHere[SHI];
1814 
1815         auto Status = DT->DisAsm->onSymbolStart(
1816             Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start,
1817             CommentStream);
1818 
1819         if (!Status) {
1820           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1821           // any interesting handling for this symbol. Try the other symbols
1822           // defined at this address.
1823           continue;
1824         }
1825 
1826         if (*Status == MCDisassembler::Fail) {
1827           // If onSymbolStart returns Fail, that means it identified some kind
1828           // of special data at this address, but wasn't able to disassemble it
1829           // meaningfully. So we fall back to disassembling the failed region
1830           // as bytes, assuming that the target detected the failure before
1831           // printing anything.
1832           //
1833           // Return values Success or SoftFail (i.e no 'real' failure) are
1834           // expected to mean that the target has emitted its own output.
1835           //
1836           // Either way, 'Size' will have been set to the amount of data
1837           // covered by whatever prologue the target identified. So we advance
1838           // our own position to beyond that. Sometimes that will be the entire
1839           // distance to the next symbol, and sometimes it will be just a
1840           // prologue and we should start disassembling instructions from where
1841           // it left off.
1842           outs() << DT->Context->getAsmInfo()->getCommentString()
1843                  << " error in decoding " << SymNamesHere[SHI]
1844                  << " : decoding failed region as bytes.\n";
1845           for (uint64_t I = 0; I < Size; ++I) {
1846             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1847                    << "\n";
1848           }
1849         }
1850         Start += Size;
1851         break;
1852       }
1853 
1854       Index = Start;
1855       if (SectionAddr < StartAddress)
1856         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1857 
1858       if (DisassembleAsData) {
1859         dumpELFData(SectionAddr, Index, End, Bytes);
1860         Index = End;
1861         continue;
1862       }
1863 
1864       bool DumpARMELFData = false;
1865       bool DumpTracebackTableForXCOFFFunction =
1866           Obj.isXCOFF() && Section.isText() && TracebackTable &&
1867           Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
1868           (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
1869 
1870       formatted_raw_ostream FOS(outs());
1871 
1872       std::unordered_map<uint64_t, std::string> AllLabels;
1873       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1874       if (SymbolizeOperands) {
1875         collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(),
1876                                   DT->DisAsm.get(), DT->InstPrinter.get(),
1877                                   PrimaryTarget.SubtargetInfo.get(),
1878                                   SectionAddr, Index, End, AllLabels);
1879         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1880                                BBAddrMapLabels);
1881       }
1882 
1883       while (Index < End) {
1884         // ARM and AArch64 ELF binaries can interleave data and text in the
1885         // same section. We rely on the markers introduced to understand what
1886         // we need to dump. If the data marker is within a function, it is
1887         // denoted as a word/short etc.
1888         if (!MappingSymbols.empty()) {
1889           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1890           DumpARMELFData = Kind == 'd';
1891           if (SecondaryTarget) {
1892             if (Kind == 'a') {
1893               DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget;
1894             } else if (Kind == 't') {
1895               DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget;
1896             }
1897           }
1898         }
1899 
1900         if (DumpARMELFData) {
1901           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1902                                 MappingSymbols, *DT->SubtargetInfo, FOS);
1903         } else {
1904           // When -z or --disassemble-zeroes are given we always dissasemble
1905           // them. Otherwise we might want to skip zero bytes we see.
1906           if (!DisassembleZeroes) {
1907             uint64_t MaxOffset = End - Index;
1908             // For --reloc: print zero blocks patched by relocations, so that
1909             // relocations can be shown in the dump.
1910             if (RelCur != RelEnd)
1911               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1912                                    MaxOffset);
1913 
1914             if (size_t N =
1915                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1916               FOS << "\t\t..." << '\n';
1917               Index += N;
1918               continue;
1919             }
1920           }
1921 
1922           if (DumpTracebackTableForXCOFFFunction &&
1923               doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
1924             dumpTracebackTable(Bytes.slice(Index),
1925                                SectionAddr + Index + VMAAdjustment, FOS,
1926                                SectionAddr + End + VMAAdjustment,
1927                                *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj));
1928             Index = End;
1929             continue;
1930           }
1931 
1932           // Print local label if there's any.
1933           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1934           if (Iter1 != BBAddrMapLabels.end()) {
1935             for (StringRef Label : Iter1->second)
1936               FOS << "<" << Label << ">:\n";
1937           } else {
1938             auto Iter2 = AllLabels.find(SectionAddr + Index);
1939             if (Iter2 != AllLabels.end())
1940               FOS << "<" << Iter2->second << ">:\n";
1941           }
1942 
1943           // Disassemble a real instruction or a data when disassemble all is
1944           // provided
1945           MCInst Inst;
1946           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1947           uint64_t ThisAddr = SectionAddr + Index;
1948           bool Disassembled = DT->DisAsm->getInstruction(
1949               Inst, Size, ThisBytes, ThisAddr, CommentStream);
1950           if (Size == 0)
1951             Size = std::min<uint64_t>(
1952                 ThisBytes.size(),
1953                 DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1954 
1955           LVP.update({Index, Section.getIndex()},
1956                      {Index + Size, Section.getIndex()}, Index + Size != End);
1957 
1958           DT->InstPrinter->setCommentStream(CommentStream);
1959 
1960           DT->Printer->printInst(
1961               *DT->InstPrinter, Disassembled ? &Inst : nullptr,
1962               Bytes.slice(Index, Size),
1963               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1964               "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP);
1965 
1966           DT->InstPrinter->setCommentStream(llvm::nulls());
1967 
1968           // If disassembly has failed, avoid analysing invalid/incomplete
1969           // instruction information. Otherwise, try to resolve the target
1970           // address (jump target or memory operand address) and print it on the
1971           // right of the instruction.
1972           if (Disassembled && DT->InstrAnalysis) {
1973             // Branch targets are printed just after the instructions.
1974             llvm::raw_ostream *TargetOS = &FOS;
1975             uint64_t Target;
1976             bool PrintTarget = DT->InstrAnalysis->evaluateBranch(
1977                 Inst, SectionAddr + Index, Size, Target);
1978             if (!PrintTarget)
1979               if (std::optional<uint64_t> MaybeTarget =
1980                       DT->InstrAnalysis->evaluateMemoryOperandAddress(
1981                           Inst, DT->SubtargetInfo.get(), SectionAddr + Index,
1982                           Size)) {
1983                 Target = *MaybeTarget;
1984                 PrintTarget = true;
1985                 // Do not print real address when symbolizing.
1986                 if (!SymbolizeOperands) {
1987                   // Memory operand addresses are printed as comments.
1988                   TargetOS = &CommentStream;
1989                   *TargetOS << "0x" << Twine::utohexstr(Target);
1990                 }
1991               }
1992             if (PrintTarget) {
1993               // In a relocatable object, the target's section must reside in
1994               // the same section as the call instruction or it is accessed
1995               // through a relocation.
1996               //
1997               // In a non-relocatable object, the target may be in any section.
1998               // In that case, locate the section(s) containing the target
1999               // address and find the symbol in one of those, if possible.
2000               //
2001               // N.B. We don't walk the relocations in the relocatable case yet.
2002               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2003               if (!Obj.isRelocatableObject()) {
2004                 auto It = llvm::partition_point(
2005                     SectionAddresses,
2006                     [=](const std::pair<uint64_t, SectionRef> &O) {
2007                       return O.first <= Target;
2008                     });
2009                 uint64_t TargetSecAddr = 0;
2010                 while (It != SectionAddresses.begin()) {
2011                   --It;
2012                   if (TargetSecAddr == 0)
2013                     TargetSecAddr = It->first;
2014                   if (It->first != TargetSecAddr)
2015                     break;
2016                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2017                 }
2018               } else {
2019                 TargetSectionSymbols.push_back(&Symbols);
2020               }
2021               TargetSectionSymbols.push_back(&AbsoluteSymbols);
2022 
2023               // Find the last symbol in the first candidate section whose
2024               // offset is less than or equal to the target. If there are no
2025               // such symbols, try in the next section and so on, before finally
2026               // using the nearest preceding absolute symbol (if any), if there
2027               // are no other valid symbols.
2028               const SymbolInfoTy *TargetSym = nullptr;
2029               for (const SectionSymbolsTy *TargetSymbols :
2030                    TargetSectionSymbols) {
2031                 auto It = llvm::partition_point(
2032                     *TargetSymbols,
2033                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2034                 while (It != TargetSymbols->begin()) {
2035                   --It;
2036                   // Skip mapping symbols to avoid possible ambiguity as they
2037                   // do not allow uniquely identifying the target address.
2038                   if (!It->IsMappingSymbol) {
2039                     TargetSym = &*It;
2040                     break;
2041                   }
2042                 }
2043                 if (TargetSym)
2044                   break;
2045               }
2046 
2047               // Print the labels corresponding to the target if there's any.
2048               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
2049               bool LabelAvailable = AllLabels.count(Target);
2050               if (TargetSym != nullptr) {
2051                 uint64_t TargetAddress = TargetSym->Addr;
2052                 uint64_t Disp = Target - TargetAddress;
2053                 std::string TargetName = Demangle ? demangle(TargetSym->Name)
2054                                                   : TargetSym->Name.str();
2055 
2056                 *TargetOS << " <";
2057                 if (!Disp) {
2058                   // Always Print the binary symbol precisely corresponding to
2059                   // the target address.
2060                   *TargetOS << TargetName;
2061                 } else if (BBAddrMapLabelAvailable) {
2062                   *TargetOS << BBAddrMapLabels[Target].front();
2063                 } else if (LabelAvailable) {
2064                   *TargetOS << AllLabels[Target];
2065                 } else {
2066                   // Always Print the binary symbol plus an offset if there's no
2067                   // local label corresponding to the target address.
2068                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2069                 }
2070                 *TargetOS << ">";
2071               } else if (BBAddrMapLabelAvailable) {
2072                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
2073               } else if (LabelAvailable) {
2074                 *TargetOS << " <" << AllLabels[Target] << ">";
2075               }
2076               // By convention, each record in the comment stream should be
2077               // terminated.
2078               if (TargetOS == &CommentStream)
2079                 *TargetOS << "\n";
2080             }
2081           }
2082         }
2083 
2084         assert(DT->Context->getAsmInfo());
2085         emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(),
2086                                 *DT->SubtargetInfo, CommentStream.str(), LVP);
2087         Comments.clear();
2088 
2089         // Hexagon does this in pretty printer
2090         if (Obj.getArch() != Triple::hexagon) {
2091           // Print relocation for instruction and data.
2092           while (RelCur != RelEnd) {
2093             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
2094             // If this relocation is hidden, skip it.
2095             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
2096               ++RelCur;
2097               continue;
2098             }
2099 
2100             // Stop when RelCur's offset is past the disassembled
2101             // instruction/data. Note that it's possible the disassembled data
2102             // is not the complete data: we might see the relocation printed in
2103             // the middle of the data, but this matches the binutils objdump
2104             // output.
2105             if (Offset >= Index + Size)
2106               break;
2107 
2108             // When --adjust-vma is used, update the address printed.
2109             if (RelCur->getSymbol() != Obj.symbol_end()) {
2110               Expected<section_iterator> SymSI =
2111                   RelCur->getSymbol()->getSection();
2112               if (SymSI && *SymSI != Obj.section_end() &&
2113                   shouldAdjustVA(**SymSI))
2114                 Offset += AdjustVMA;
2115             }
2116 
2117             printRelocation(FOS, Obj.getFileName(), *RelCur,
2118                             SectionAddr + Offset, Is64Bits);
2119             LVP.printAfterOtherLine(FOS, true);
2120             ++RelCur;
2121           }
2122         }
2123 
2124         Index += Size;
2125       }
2126     }
2127   }
2128   StringSet<> MissingDisasmSymbolSet =
2129       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2130   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2131     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2132 }
2133 
2134 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2135   // If information useful for showing the disassembly is missing, try to find a
2136   // more complete binary and disassemble that instead.
2137   OwningBinary<Binary> FetchedBinary;
2138   if (Obj->symbols().empty()) {
2139     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2140             fetchBinaryByBuildID(*Obj)) {
2141       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2142         if (!O->symbols().empty() ||
2143             (!O->sections().empty() && Obj->sections().empty())) {
2144           FetchedBinary = std::move(*FetchedBinaryOpt);
2145           Obj = O;
2146         }
2147       }
2148     }
2149   }
2150 
2151   const Target *TheTarget = getTarget(Obj);
2152 
2153   // Package up features to be passed to target/subtarget
2154   Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2155   if (!FeaturesValue)
2156     reportError(FeaturesValue.takeError(), Obj->getFileName());
2157   SubtargetFeatures Features = *FeaturesValue;
2158   if (!MAttrs.empty()) {
2159     for (unsigned I = 0; I != MAttrs.size(); ++I)
2160       Features.AddFeature(MAttrs[I]);
2161   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2162     Features.AddFeature("+all");
2163   }
2164 
2165   if (MCPU.empty())
2166     MCPU = Obj->tryGetCPUName().value_or("").str();
2167 
2168   if (isArmElf(*Obj)) {
2169     // When disassembling big-endian Arm ELF, the instruction endianness is
2170     // determined in a complex way. In relocatable objects, AAELF32 mandates
2171     // that instruction endianness matches the ELF file endianness; in
2172     // executable images, that's true unless the file header has the EF_ARM_BE8
2173     // flag, in which case instructions are little-endian regardless of data
2174     // endianness.
2175     //
2176     // We must set the big-endian-instructions SubtargetFeature to make the
2177     // disassembler read the instructions the right way round, and also tell
2178     // our own prettyprinter to retrieve the encodings the same way to print in
2179     // hex.
2180     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2181 
2182     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2183                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2184       Features.AddFeature("+big-endian-instructions");
2185       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2186     } else {
2187       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2188     }
2189   }
2190 
2191   DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features);
2192 
2193   // If we have an ARM object file, we need a second disassembler, because
2194   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2195   // We use mapping symbols to switch between the two assemblers, where
2196   // appropriate.
2197   std::optional<DisassemblerTarget> SecondaryTarget;
2198 
2199   if (isArmElf(*Obj)) {
2200     if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) {
2201       if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"))
2202         Features.AddFeature("-thumb-mode");
2203       else
2204         Features.AddFeature("+thumb-mode");
2205       SecondaryTarget.emplace(PrimaryTarget, Features);
2206     }
2207   }
2208 
2209   const ObjectFile *DbgObj = Obj;
2210   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2211     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2212             fetchBinaryByBuildID(*Obj)) {
2213       if (auto *FetchedObj =
2214               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2215         if (FetchedObj->hasDebugInfo()) {
2216           FetchedBinary = std::move(*DebugBinaryOpt);
2217           DbgObj = FetchedObj;
2218         }
2219       }
2220     }
2221   }
2222 
2223   std::unique_ptr<object::Binary> DSYMBinary;
2224   std::unique_ptr<MemoryBuffer> DSYMBuf;
2225   if (!DbgObj->hasDebugInfo()) {
2226     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2227       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2228                                            DSYMBinary, DSYMBuf);
2229       if (!DbgObj)
2230         return;
2231     }
2232   }
2233 
2234   SourcePrinter SP(DbgObj, TheTarget->getName());
2235 
2236   for (StringRef Opt : DisassemblerOptions)
2237     if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt))
2238       reportError(Obj->getFileName(),
2239                   "Unrecognized disassembler option: " + Opt);
2240 
2241   disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP,
2242                     InlineRelocs);
2243 }
2244 
2245 void Dumper::printRelocations() {
2246   StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2247 
2248   // Build a mapping from relocation target to a vector of relocation
2249   // sections. Usually, there is an only one relocation section for
2250   // each relocated section.
2251   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2252   uint64_t Ndx;
2253   for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) {
2254     if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2255       continue;
2256     if (Section.relocation_begin() == Section.relocation_end())
2257       continue;
2258     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2259     if (!SecOrErr)
2260       reportError(O.getFileName(),
2261                   "section (" + Twine(Ndx) +
2262                       "): unable to get a relocation target: " +
2263                       toString(SecOrErr.takeError()));
2264     SecToRelSec[**SecOrErr].push_back(Section);
2265   }
2266 
2267   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2268     StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName());
2269     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2270     uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
2271     uint32_t TypePadding = 24;
2272     outs() << left_justify("OFFSET", OffsetPadding) << " "
2273            << left_justify("TYPE", TypePadding) << " "
2274            << "VALUE\n";
2275 
2276     for (SectionRef Section : P.second) {
2277       for (const RelocationRef &Reloc : Section.relocations()) {
2278         uint64_t Address = Reloc.getOffset();
2279         SmallString<32> RelocName;
2280         SmallString<32> ValueStr;
2281         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2282           continue;
2283         Reloc.getTypeName(RelocName);
2284         if (Error E = getRelocationValueString(Reloc, ValueStr))
2285           reportUniqueWarning(std::move(E));
2286 
2287         outs() << format(Fmt.data(), Address) << " "
2288                << left_justify(RelocName, TypePadding) << " " << ValueStr
2289                << "\n";
2290       }
2291     }
2292   }
2293 }
2294 
2295 // Returns true if we need to show LMA column when dumping section headers. We
2296 // show it only when the platform is ELF and either we have at least one section
2297 // whose VMA and LMA are different and/or when --show-lma flag is used.
2298 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2299   if (!Obj.isELF())
2300     return false;
2301   for (const SectionRef &S : ToolSectionFilter(Obj))
2302     if (S.getAddress() != getELFSectionLMA(S))
2303       return true;
2304   return ShowLMA;
2305 }
2306 
2307 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2308   // Default column width for names is 13 even if no names are that long.
2309   size_t MaxWidth = 13;
2310   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2311     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2312     MaxWidth = std::max(MaxWidth, Name.size());
2313   }
2314   return MaxWidth;
2315 }
2316 
2317 void objdump::printSectionHeaders(ObjectFile &Obj) {
2318   if (Obj.isELF() && Obj.sections().empty())
2319     createFakeELFSections(Obj);
2320 
2321   size_t NameWidth = getMaxSectionNameWidth(Obj);
2322   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2323   bool HasLMAColumn = shouldDisplayLMA(Obj);
2324   outs() << "\nSections:\n";
2325   if (HasLMAColumn)
2326     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2327            << left_justify("VMA", AddressWidth) << " "
2328            << left_justify("LMA", AddressWidth) << " Type\n";
2329   else
2330     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2331            << left_justify("VMA", AddressWidth) << " Type\n";
2332 
2333   uint64_t Idx;
2334   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2335     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2336     uint64_t VMA = Section.getAddress();
2337     if (shouldAdjustVA(Section))
2338       VMA += AdjustVMA;
2339 
2340     uint64_t Size = Section.getSize();
2341 
2342     std::string Type = Section.isText() ? "TEXT" : "";
2343     if (Section.isData())
2344       Type += Type.empty() ? "DATA" : ", DATA";
2345     if (Section.isBSS())
2346       Type += Type.empty() ? "BSS" : ", BSS";
2347     if (Section.isDebugSection())
2348       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2349 
2350     if (HasLMAColumn)
2351       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2352                        Name.str().c_str(), Size)
2353              << format_hex_no_prefix(VMA, AddressWidth) << " "
2354              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2355              << " " << Type << "\n";
2356     else
2357       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2358                        Name.str().c_str(), Size)
2359              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2360   }
2361 }
2362 
2363 void objdump::printSectionContents(const ObjectFile *Obj) {
2364   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2365 
2366   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2367     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2368     uint64_t BaseAddr = Section.getAddress();
2369     uint64_t Size = Section.getSize();
2370     if (!Size)
2371       continue;
2372 
2373     outs() << "Contents of section ";
2374     StringRef SegmentName = getSegmentName(MachO, Section);
2375     if (!SegmentName.empty())
2376       outs() << SegmentName << ",";
2377     outs() << Name << ":\n";
2378     if (Section.isBSS()) {
2379       outs() << format("<skipping contents of bss section at [%04" PRIx64
2380                        ", %04" PRIx64 ")>\n",
2381                        BaseAddr, BaseAddr + Size);
2382       continue;
2383     }
2384 
2385     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2386 
2387     // Dump out the content as hex and printable ascii characters.
2388     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2389       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2390       // Dump line of hex.
2391       for (std::size_t I = 0; I < 16; ++I) {
2392         if (I != 0 && I % 4 == 0)
2393           outs() << ' ';
2394         if (Addr + I < End)
2395           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2396                  << hexdigit(Contents[Addr + I] & 0xF, true);
2397         else
2398           outs() << "  ";
2399       }
2400       // Print ascii.
2401       outs() << "  ";
2402       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2403         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2404           outs() << Contents[Addr + I];
2405         else
2406           outs() << ".";
2407       }
2408       outs() << "\n";
2409     }
2410   }
2411 }
2412 
2413 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
2414                               bool DumpDynamic) {
2415   if (O.isCOFF() && !DumpDynamic) {
2416     outs() << "\nSYMBOL TABLE:\n";
2417     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2418     return;
2419   }
2420 
2421   const StringRef FileName = O.getFileName();
2422 
2423   if (!DumpDynamic) {
2424     outs() << "\nSYMBOL TABLE:\n";
2425     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2426       printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2427     return;
2428   }
2429 
2430   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2431   if (!O.isELF()) {
2432     reportWarning(
2433         "this operation is not currently supported for this file format",
2434         FileName);
2435     return;
2436   }
2437 
2438   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2439   auto Symbols = ELF->getDynamicSymbolIterators();
2440   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2441       ELF->readDynsymVersions();
2442   if (!SymbolVersionsOrErr) {
2443     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2444     SymbolVersionsOrErr = std::vector<VersionEntry>();
2445     (void)!SymbolVersionsOrErr;
2446   }
2447   for (auto &Sym : Symbols)
2448     printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2449                 ArchitectureName, DumpDynamic);
2450 }
2451 
2452 void Dumper::printSymbol(const SymbolRef &Symbol,
2453                          ArrayRef<VersionEntry> SymbolVersions,
2454                          StringRef FileName, StringRef ArchiveName,
2455                          StringRef ArchitectureName, bool DumpDynamic) {
2456   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2457   Expected<uint64_t> AddrOrErr = Symbol.getAddress();
2458   if (!AddrOrErr) {
2459     reportUniqueWarning(AddrOrErr.takeError());
2460     return;
2461   }
2462   uint64_t Address = *AddrOrErr;
2463   if ((Address < StartAddress) || (Address > StopAddress))
2464     return;
2465   SymbolRef::Type Type =
2466       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2467   uint32_t Flags =
2468       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2469 
2470   // Don't ask a Mach-O STAB symbol for its section unless you know that
2471   // STAB symbol's section field refers to a valid section index. Otherwise
2472   // the symbol may error trying to load a section that does not exist.
2473   bool IsSTAB = false;
2474   if (MachO) {
2475     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2476     uint8_t NType =
2477         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2478                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2479     if (NType & MachO::N_STAB)
2480       IsSTAB = true;
2481   }
2482   section_iterator Section = IsSTAB
2483                                  ? O.section_end()
2484                                  : unwrapOrError(Symbol.getSection(), FileName,
2485                                                  ArchiveName, ArchitectureName);
2486 
2487   StringRef Name;
2488   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2489     if (Expected<StringRef> NameOrErr = Section->getName())
2490       Name = *NameOrErr;
2491     else
2492       consumeError(NameOrErr.takeError());
2493 
2494   } else {
2495     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2496                          ArchitectureName);
2497   }
2498 
2499   bool Global = Flags & SymbolRef::SF_Global;
2500   bool Weak = Flags & SymbolRef::SF_Weak;
2501   bool Absolute = Flags & SymbolRef::SF_Absolute;
2502   bool Common = Flags & SymbolRef::SF_Common;
2503   bool Hidden = Flags & SymbolRef::SF_Hidden;
2504 
2505   char GlobLoc = ' ';
2506   if ((Section != O.section_end() || Absolute) && !Weak)
2507     GlobLoc = Global ? 'g' : 'l';
2508   char IFunc = ' ';
2509   if (O.isELF()) {
2510     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2511       IFunc = 'i';
2512     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2513       GlobLoc = 'u';
2514   }
2515 
2516   char Debug = ' ';
2517   if (DumpDynamic)
2518     Debug = 'D';
2519   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2520     Debug = 'd';
2521 
2522   char FileFunc = ' ';
2523   if (Type == SymbolRef::ST_File)
2524     FileFunc = 'f';
2525   else if (Type == SymbolRef::ST_Function)
2526     FileFunc = 'F';
2527   else if (Type == SymbolRef::ST_Data)
2528     FileFunc = 'O';
2529 
2530   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2531 
2532   outs() << format(Fmt, Address) << " "
2533          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2534          << (Weak ? 'w' : ' ') // Weak?
2535          << ' '                // Constructor. Not supported yet.
2536          << ' '                // Warning. Not supported yet.
2537          << IFunc              // Indirect reference to another symbol.
2538          << Debug              // Debugging (d) or dynamic (D) symbol.
2539          << FileFunc           // Name of function (F), file (f) or object (O).
2540          << ' ';
2541   if (Absolute) {
2542     outs() << "*ABS*";
2543   } else if (Common) {
2544     outs() << "*COM*";
2545   } else if (Section == O.section_end()) {
2546     if (O.isXCOFF()) {
2547       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2548           Symbol.getRawDataRefImpl());
2549       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2550         outs() << "*DEBUG*";
2551       else
2552         outs() << "*UND*";
2553     } else
2554       outs() << "*UND*";
2555   } else {
2556     StringRef SegmentName = getSegmentName(MachO, *Section);
2557     if (!SegmentName.empty())
2558       outs() << SegmentName << ",";
2559     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2560     outs() << SectionName;
2561     if (O.isXCOFF()) {
2562       std::optional<SymbolRef> SymRef =
2563           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2564       if (SymRef) {
2565 
2566         Expected<StringRef> NameOrErr = SymRef->getName();
2567 
2568         if (NameOrErr) {
2569           outs() << " (csect:";
2570           std::string SymName =
2571               Demangle ? demangle(*NameOrErr) : NameOrErr->str();
2572 
2573           if (SymbolDescription)
2574             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2575                                                 SymName);
2576 
2577           outs() << ' ' << SymName;
2578           outs() << ") ";
2579         } else
2580           reportWarning(toString(NameOrErr.takeError()), FileName);
2581       }
2582     }
2583   }
2584 
2585   if (Common)
2586     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2587   else if (O.isXCOFF())
2588     outs() << '\t'
2589            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2590                               Symbol.getRawDataRefImpl()));
2591   else if (O.isELF())
2592     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2593 
2594   if (O.isELF()) {
2595     if (!SymbolVersions.empty()) {
2596       const VersionEntry &Ver =
2597           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2598       std::string Str;
2599       if (!Ver.Name.empty())
2600         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2601       outs() << ' ' << left_justify(Str, 12);
2602     }
2603 
2604     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2605     switch (Other) {
2606     case ELF::STV_DEFAULT:
2607       break;
2608     case ELF::STV_INTERNAL:
2609       outs() << " .internal";
2610       break;
2611     case ELF::STV_HIDDEN:
2612       outs() << " .hidden";
2613       break;
2614     case ELF::STV_PROTECTED:
2615       outs() << " .protected";
2616       break;
2617     default:
2618       outs() << format(" 0x%02x", Other);
2619       break;
2620     }
2621   } else if (Hidden) {
2622     outs() << " .hidden";
2623   }
2624 
2625   std::string SymName = Demangle ? demangle(Name) : Name.str();
2626   if (O.isXCOFF() && SymbolDescription)
2627     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2628 
2629   outs() << ' ' << SymName << '\n';
2630 }
2631 
2632 static void printUnwindInfo(const ObjectFile *O) {
2633   outs() << "Unwind info:\n\n";
2634 
2635   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2636     printCOFFUnwindInfo(Coff);
2637   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2638     printMachOUnwindInfo(MachO);
2639   else
2640     // TODO: Extract DWARF dump tool to objdump.
2641     WithColor::error(errs(), ToolName)
2642         << "This operation is only currently supported "
2643            "for COFF and MachO object files.\n";
2644 }
2645 
2646 /// Dump the raw contents of the __clangast section so the output can be piped
2647 /// into llvm-bcanalyzer.
2648 static void printRawClangAST(const ObjectFile *Obj) {
2649   if (outs().is_displayed()) {
2650     WithColor::error(errs(), ToolName)
2651         << "The -raw-clang-ast option will dump the raw binary contents of "
2652            "the clang ast section.\n"
2653            "Please redirect the output to a file or another program such as "
2654            "llvm-bcanalyzer.\n";
2655     return;
2656   }
2657 
2658   StringRef ClangASTSectionName("__clangast");
2659   if (Obj->isCOFF()) {
2660     ClangASTSectionName = "clangast";
2661   }
2662 
2663   std::optional<object::SectionRef> ClangASTSection;
2664   for (auto Sec : ToolSectionFilter(*Obj)) {
2665     StringRef Name;
2666     if (Expected<StringRef> NameOrErr = Sec.getName())
2667       Name = *NameOrErr;
2668     else
2669       consumeError(NameOrErr.takeError());
2670 
2671     if (Name == ClangASTSectionName) {
2672       ClangASTSection = Sec;
2673       break;
2674     }
2675   }
2676   if (!ClangASTSection)
2677     return;
2678 
2679   StringRef ClangASTContents =
2680       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2681   outs().write(ClangASTContents.data(), ClangASTContents.size());
2682 }
2683 
2684 static void printFaultMaps(const ObjectFile *Obj) {
2685   StringRef FaultMapSectionName;
2686 
2687   if (Obj->isELF()) {
2688     FaultMapSectionName = ".llvm_faultmaps";
2689   } else if (Obj->isMachO()) {
2690     FaultMapSectionName = "__llvm_faultmaps";
2691   } else {
2692     WithColor::error(errs(), ToolName)
2693         << "This operation is only currently supported "
2694            "for ELF and Mach-O executable files.\n";
2695     return;
2696   }
2697 
2698   std::optional<object::SectionRef> FaultMapSection;
2699 
2700   for (auto Sec : ToolSectionFilter(*Obj)) {
2701     StringRef Name;
2702     if (Expected<StringRef> NameOrErr = Sec.getName())
2703       Name = *NameOrErr;
2704     else
2705       consumeError(NameOrErr.takeError());
2706 
2707     if (Name == FaultMapSectionName) {
2708       FaultMapSection = Sec;
2709       break;
2710     }
2711   }
2712 
2713   outs() << "FaultMap table:\n";
2714 
2715   if (!FaultMapSection) {
2716     outs() << "<not found>\n";
2717     return;
2718   }
2719 
2720   StringRef FaultMapContents =
2721       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2722   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2723                      FaultMapContents.bytes_end());
2724 
2725   outs() << FMP;
2726 }
2727 
2728 void Dumper::printPrivateHeaders() {
2729   reportError(O.getFileName(), "Invalid/Unsupported object file format");
2730 }
2731 
2732 static void printFileHeaders(const ObjectFile *O) {
2733   if (!O->isELF() && !O->isCOFF())
2734     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2735 
2736   Triple::ArchType AT = O->getArch();
2737   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2738   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2739 
2740   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2741   outs() << "start address: "
2742          << "0x" << format(Fmt.data(), Address) << "\n";
2743 }
2744 
2745 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2746   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2747   if (!ModeOrErr) {
2748     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2749     consumeError(ModeOrErr.takeError());
2750     return;
2751   }
2752   sys::fs::perms Mode = ModeOrErr.get();
2753   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2754   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2755   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2756   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2757   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2758   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2759   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2760   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2761   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2762 
2763   outs() << " ";
2764 
2765   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2766                    unwrapOrError(C.getGID(), Filename),
2767                    unwrapOrError(C.getRawSize(), Filename));
2768 
2769   StringRef RawLastModified = C.getRawLastModified();
2770   unsigned Seconds;
2771   if (RawLastModified.getAsInteger(10, Seconds))
2772     outs() << "(date: \"" << RawLastModified
2773            << "\" contains non-decimal chars) ";
2774   else {
2775     // Since ctime(3) returns a 26 character string of the form:
2776     // "Sun Sep 16 01:03:52 1973\n\0"
2777     // just print 24 characters.
2778     time_t t = Seconds;
2779     outs() << format("%.24s ", ctime(&t));
2780   }
2781 
2782   StringRef Name = "";
2783   Expected<StringRef> NameOrErr = C.getName();
2784   if (!NameOrErr) {
2785     consumeError(NameOrErr.takeError());
2786     Name = unwrapOrError(C.getRawName(), Filename);
2787   } else {
2788     Name = NameOrErr.get();
2789   }
2790   outs() << Name << "\n";
2791 }
2792 
2793 // For ELF only now.
2794 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2795   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2796     if (Elf->getEType() != ELF::ET_REL)
2797       return true;
2798   }
2799   return false;
2800 }
2801 
2802 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2803                                             uint64_t Start, uint64_t Stop) {
2804   if (!shouldWarnForInvalidStartStopAddress(Obj))
2805     return;
2806 
2807   for (const SectionRef &Section : Obj->sections())
2808     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2809       uint64_t BaseAddr = Section.getAddress();
2810       uint64_t Size = Section.getSize();
2811       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2812         return;
2813     }
2814 
2815   if (!HasStartAddressFlag)
2816     reportWarning("no section has address less than 0x" +
2817                       Twine::utohexstr(Stop) + " specified by --stop-address",
2818                   Obj->getFileName());
2819   else if (!HasStopAddressFlag)
2820     reportWarning("no section has address greater than or equal to 0x" +
2821                       Twine::utohexstr(Start) + " specified by --start-address",
2822                   Obj->getFileName());
2823   else
2824     reportWarning("no section overlaps the range [0x" +
2825                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2826                       ") specified by --start-address/--stop-address",
2827                   Obj->getFileName());
2828 }
2829 
2830 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2831                        const Archive::Child *C = nullptr) {
2832   Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O);
2833   if (!DumperOrErr) {
2834     reportError(DumperOrErr.takeError(), O->getFileName(),
2835                 A ? A->getFileName() : "");
2836     return;
2837   }
2838   Dumper &D = **DumperOrErr;
2839 
2840   // Avoid other output when using a raw option.
2841   if (!RawClangAST) {
2842     outs() << '\n';
2843     if (A)
2844       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2845     else
2846       outs() << O->getFileName();
2847     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2848   }
2849 
2850   if (HasStartAddressFlag || HasStopAddressFlag)
2851     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2852 
2853   // TODO: Change print* free functions to Dumper member functions to utilitize
2854   // stateful functions like reportUniqueWarning.
2855 
2856   // Note: the order here matches GNU objdump for compatability.
2857   StringRef ArchiveName = A ? A->getFileName() : "";
2858   if (ArchiveHeaders && !MachOOpt && C)
2859     printArchiveChild(ArchiveName, *C);
2860   if (FileHeaders)
2861     printFileHeaders(O);
2862   if (PrivateHeaders || FirstPrivateHeader)
2863     D.printPrivateHeaders();
2864   if (SectionHeaders)
2865     printSectionHeaders(*O);
2866   if (SymbolTable)
2867     D.printSymbolTable(ArchiveName);
2868   if (DynamicSymbolTable)
2869     D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
2870                        /*DumpDynamic=*/true);
2871   if (DwarfDumpType != DIDT_Null) {
2872     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2873     // Dump the complete DWARF structure.
2874     DIDumpOptions DumpOpts;
2875     DumpOpts.DumpType = DwarfDumpType;
2876     DICtx->dump(outs(), DumpOpts);
2877   }
2878   if (Relocations && !Disassemble)
2879     D.printRelocations();
2880   if (DynamicRelocations)
2881     D.printDynamicRelocations();
2882   if (SectionContents)
2883     printSectionContents(O);
2884   if (Disassemble)
2885     disassembleObject(O, Relocations);
2886   if (UnwindInfo)
2887     printUnwindInfo(O);
2888 
2889   // Mach-O specific options:
2890   if (ExportsTrie)
2891     printExportsTrie(O);
2892   if (Rebase)
2893     printRebaseTable(O);
2894   if (Bind)
2895     printBindTable(O);
2896   if (LazyBind)
2897     printLazyBindTable(O);
2898   if (WeakBind)
2899     printWeakBindTable(O);
2900 
2901   // Other special sections:
2902   if (RawClangAST)
2903     printRawClangAST(O);
2904   if (FaultMapSection)
2905     printFaultMaps(O);
2906   if (Offloading)
2907     dumpOffloadBinary(*O);
2908 }
2909 
2910 static void dumpObject(const COFFImportFile *I, const Archive *A,
2911                        const Archive::Child *C = nullptr) {
2912   StringRef ArchiveName = A ? A->getFileName() : "";
2913 
2914   // Avoid other output when using a raw option.
2915   if (!RawClangAST)
2916     outs() << '\n'
2917            << ArchiveName << "(" << I->getFileName() << ")"
2918            << ":\tfile format COFF-import-file"
2919            << "\n\n";
2920 
2921   if (ArchiveHeaders && !MachOOpt && C)
2922     printArchiveChild(ArchiveName, *C);
2923   if (SymbolTable)
2924     printCOFFSymbolTable(*I);
2925 }
2926 
2927 /// Dump each object file in \a a;
2928 static void dumpArchive(const Archive *A) {
2929   Error Err = Error::success();
2930   unsigned I = -1;
2931   for (auto &C : A->children(Err)) {
2932     ++I;
2933     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2934     if (!ChildOrErr) {
2935       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2936         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2937       continue;
2938     }
2939     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2940       dumpObject(O, A, &C);
2941     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2942       dumpObject(I, A, &C);
2943     else
2944       reportError(errorCodeToError(object_error::invalid_file_type),
2945                   A->getFileName());
2946   }
2947   if (Err)
2948     reportError(std::move(Err), A->getFileName());
2949 }
2950 
2951 /// Open file and figure out how to dump it.
2952 static void dumpInput(StringRef file) {
2953   // If we are using the Mach-O specific object file parser, then let it parse
2954   // the file and process the command line options.  So the -arch flags can
2955   // be used to select specific slices, etc.
2956   if (MachOOpt) {
2957     parseInputMachO(file);
2958     return;
2959   }
2960 
2961   // Attempt to open the binary.
2962   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2963   Binary &Binary = *OBinary.getBinary();
2964 
2965   if (Archive *A = dyn_cast<Archive>(&Binary))
2966     dumpArchive(A);
2967   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2968     dumpObject(O);
2969   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2970     parseInputMachO(UB);
2971   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2972     dumpOffloadSections(*OB);
2973   else
2974     reportError(errorCodeToError(object_error::invalid_file_type), file);
2975 }
2976 
2977 template <typename T>
2978 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2979                         T &Value) {
2980   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2981     StringRef V(A->getValue());
2982     if (!llvm::to_integer(V, Value, 0)) {
2983       reportCmdLineError(A->getSpelling() +
2984                          ": expected a non-negative integer, but got '" + V +
2985                          "'");
2986     }
2987   }
2988 }
2989 
2990 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
2991   StringRef V(A->getValue());
2992   object::BuildID BID = parseBuildID(V);
2993   if (BID.empty())
2994     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
2995                        V + "'");
2996   return BID;
2997 }
2998 
2999 void objdump::invalidArgValue(const opt::Arg *A) {
3000   reportCmdLineError("'" + StringRef(A->getValue()) +
3001                      "' is not a valid value for '" + A->getSpelling() + "'");
3002 }
3003 
3004 static std::vector<std::string>
3005 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
3006   std::vector<std::string> Values;
3007   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
3008     llvm::SmallVector<StringRef, 2> SplitValues;
3009     llvm::SplitString(Value, SplitValues, ",");
3010     for (StringRef SplitValue : SplitValues)
3011       Values.push_back(SplitValue.str());
3012   }
3013   return Values;
3014 }
3015 
3016 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
3017   MachOOpt = true;
3018   FullLeadingAddr = true;
3019   PrintImmHex = true;
3020 
3021   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
3022   LinkOptHints = InputArgs.hasArg(OTOOL_C);
3023   if (InputArgs.hasArg(OTOOL_d))
3024     FilterSections.push_back("__DATA,__data");
3025   DylibId = InputArgs.hasArg(OTOOL_D);
3026   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
3027   DataInCode = InputArgs.hasArg(OTOOL_G);
3028   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
3029   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
3030   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
3031   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
3032   DylibsUsed = InputArgs.hasArg(OTOOL_L);
3033   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
3034   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3035   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
3036   InfoPlist = InputArgs.hasArg(OTOOL_P);
3037   Relocations = InputArgs.hasArg(OTOOL_r);
3038   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3039     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
3040     FilterSections.push_back(Filter);
3041   }
3042   if (InputArgs.hasArg(OTOOL_t))
3043     FilterSections.push_back("__TEXT,__text");
3044   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3045             InputArgs.hasArg(OTOOL_o);
3046   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3047   if (InputArgs.hasArg(OTOOL_x))
3048     FilterSections.push_back(",__text");
3049   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3050 
3051   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3052   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3053 
3054   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3055   if (InputFilenames.empty())
3056     reportCmdLineError("no input file");
3057 
3058   for (const Arg *A : InputArgs) {
3059     const Option &O = A->getOption();
3060     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3061       reportCmdLineWarning(O.getPrefixedName() +
3062                            " is obsolete and not implemented");
3063     }
3064   }
3065 }
3066 
3067 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3068   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3069   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3070   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3071   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3072   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3073   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3074   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3075   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3076   TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3077   DisassembleSymbols =
3078       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3079   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3080   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3081     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3082                         .Case("frames", DIDT_DebugFrame)
3083                         .Default(DIDT_Null);
3084     if (DwarfDumpType == DIDT_Null)
3085       invalidArgValue(A);
3086   }
3087   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3088   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3089   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3090   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3091   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3092   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3093   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3094   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3095   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3096   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3097   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3098   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3099   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3100   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3101   PrintImmHex =
3102       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3103   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3104   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3105   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3106   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3107   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3108   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3109   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3110   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3111   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3112   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3113   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3114   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3115   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3116   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3117   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3118   Wide = InputArgs.hasArg(OBJDUMP_wide);
3119   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3120   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3121   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3122     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3123                        .Case("ascii", DVASCII)
3124                        .Case("unicode", DVUnicode)
3125                        .Default(DVInvalid);
3126     if (DbgVariables == DVInvalid)
3127       invalidArgValue(A);
3128   }
3129   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3130 
3131   parseMachOOptions(InputArgs);
3132 
3133   // Parse -M (--disassembler-options) and deprecated
3134   // --x86-asm-syntax={att,intel}.
3135   //
3136   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3137   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3138   // called too late. For now we have to use the internal cl::opt option.
3139   const char *AsmSyntax = nullptr;
3140   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3141                                           OBJDUMP_x86_asm_syntax_att,
3142                                           OBJDUMP_x86_asm_syntax_intel)) {
3143     switch (A->getOption().getID()) {
3144     case OBJDUMP_x86_asm_syntax_att:
3145       AsmSyntax = "--x86-asm-syntax=att";
3146       continue;
3147     case OBJDUMP_x86_asm_syntax_intel:
3148       AsmSyntax = "--x86-asm-syntax=intel";
3149       continue;
3150     }
3151 
3152     SmallVector<StringRef, 2> Values;
3153     llvm::SplitString(A->getValue(), Values, ",");
3154     for (StringRef V : Values) {
3155       if (V == "att")
3156         AsmSyntax = "--x86-asm-syntax=att";
3157       else if (V == "intel")
3158         AsmSyntax = "--x86-asm-syntax=intel";
3159       else
3160         DisassemblerOptions.push_back(V.str());
3161     }
3162   }
3163   if (AsmSyntax) {
3164     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3165     llvm::cl::ParseCommandLineOptions(2, Argv);
3166   }
3167 
3168   // Look up any provided build IDs, then append them to the input filenames.
3169   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3170     object::BuildID BuildID = parseBuildIDArg(A);
3171     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3172     if (!Path) {
3173       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3174                          A->getValue() + "'");
3175     }
3176     InputFilenames.push_back(std::move(*Path));
3177   }
3178 
3179   // objdump defaults to a.out if no filenames specified.
3180   if (InputFilenames.empty())
3181     InputFilenames.push_back("a.out");
3182 }
3183 
3184 int main(int argc, char **argv) {
3185   using namespace llvm;
3186   InitLLVM X(argc, argv);
3187 
3188   ToolName = argv[0];
3189   std::unique_ptr<CommonOptTable> T;
3190   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3191 
3192   StringRef Stem = sys::path::stem(ToolName);
3193   auto Is = [=](StringRef Tool) {
3194     // We need to recognize the following filenames:
3195     //
3196     // llvm-objdump -> objdump
3197     // llvm-otool-10.exe -> otool
3198     // powerpc64-unknown-freebsd13-objdump -> objdump
3199     auto I = Stem.rfind_insensitive(Tool);
3200     return I != StringRef::npos &&
3201            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3202   };
3203   if (Is("otool")) {
3204     T = std::make_unique<OtoolOptTable>();
3205     Unknown = OTOOL_UNKNOWN;
3206     HelpFlag = OTOOL_help;
3207     HelpHiddenFlag = OTOOL_help_hidden;
3208     VersionFlag = OTOOL_version;
3209   } else {
3210     T = std::make_unique<ObjdumpOptTable>();
3211     Unknown = OBJDUMP_UNKNOWN;
3212     HelpFlag = OBJDUMP_help;
3213     HelpHiddenFlag = OBJDUMP_help_hidden;
3214     VersionFlag = OBJDUMP_version;
3215   }
3216 
3217   BumpPtrAllocator A;
3218   StringSaver Saver(A);
3219   opt::InputArgList InputArgs =
3220       T->parseArgs(argc, argv, Unknown, Saver,
3221                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3222 
3223   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3224     T->printHelp(ToolName);
3225     return 0;
3226   }
3227   if (InputArgs.hasArg(HelpHiddenFlag)) {
3228     T->printHelp(ToolName, /*ShowHidden=*/true);
3229     return 0;
3230   }
3231 
3232   // Initialize targets and assembly printers/parsers.
3233   InitializeAllTargetInfos();
3234   InitializeAllTargetMCs();
3235   InitializeAllDisassemblers();
3236 
3237   if (InputArgs.hasArg(VersionFlag)) {
3238     cl::PrintVersionMessage();
3239     if (!Is("otool")) {
3240       outs() << '\n';
3241       TargetRegistry::printRegisteredTargetsForVersion(outs());
3242     }
3243     return 0;
3244   }
3245 
3246   // Initialize debuginfod.
3247   const bool ShouldUseDebuginfodByDefault =
3248       InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3249   std::vector<std::string> DebugFileDirectories =
3250       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3251   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3252                         ShouldUseDebuginfodByDefault)) {
3253     HTTPClient::initialize();
3254     BIDFetcher =
3255         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3256   } else {
3257     BIDFetcher =
3258         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3259   }
3260 
3261   if (Is("otool"))
3262     parseOtoolOptions(InputArgs);
3263   else
3264     parseObjdumpOptions(InputArgs);
3265 
3266   if (StartAddress >= StopAddress)
3267     reportCmdLineError("start address should be less than stop address");
3268 
3269   // Removes trailing separators from prefix.
3270   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3271     Prefix.pop_back();
3272 
3273   if (AllHeaders)
3274     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3275         SectionHeaders = SymbolTable = true;
3276 
3277   if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3278       !DisassembleSymbols.empty())
3279     Disassemble = true;
3280 
3281   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3282       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3283       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3284       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3285       !(MachOOpt &&
3286         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3287          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3288          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3289          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3290          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3291     T->printHelp(ToolName);
3292     return 2;
3293   }
3294 
3295   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3296 
3297   llvm::for_each(InputFilenames, dumpInput);
3298 
3299   warnOnNoMatchForSections();
3300 
3301   return EXIT_SUCCESS;
3302 }
3303