xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision eb501b1fc17783f548e7d337521161cbd9ff7ddd)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/FormatVariadic.h"
55 #include "llvm/Support/GraphWriter.h"
56 #include "llvm/Support/Host.h"
57 #include "llvm/Support/InitLLVM.h"
58 #include "llvm/Support/MemoryBuffer.h"
59 #include "llvm/Support/SourceMgr.h"
60 #include "llvm/Support/StringSaver.h"
61 #include "llvm/Support/TargetRegistry.h"
62 #include "llvm/Support/TargetSelect.h"
63 #include "llvm/Support/WithColor.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cctype>
67 #include <cstring>
68 #include <system_error>
69 #include <unordered_map>
70 #include <utility>
71 
72 using namespace llvm::object;
73 
74 namespace llvm {
75 
76 cl::OptionCategory ObjdumpCat("llvm-objdump Options");
77 
78 // MachO specific
79 extern cl::OptionCategory MachOCat;
80 extern cl::opt<bool> Bind;
81 extern cl::opt<bool> DataInCode;
82 extern cl::opt<bool> DylibsUsed;
83 extern cl::opt<bool> DylibId;
84 extern cl::opt<bool> ExportsTrie;
85 extern cl::opt<bool> FirstPrivateHeader;
86 extern cl::opt<bool> IndirectSymbols;
87 extern cl::opt<bool> InfoPlist;
88 extern cl::opt<bool> LazyBind;
89 extern cl::opt<bool> LinkOptHints;
90 extern cl::opt<bool> ObjcMetaData;
91 extern cl::opt<bool> Rebase;
92 extern cl::opt<bool> UniversalHeaders;
93 extern cl::opt<bool> WeakBind;
94 
95 static cl::opt<uint64_t> AdjustVMA(
96     "adjust-vma",
97     cl::desc("Increase the displayed address by the specified offset"),
98     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
99 
100 static cl::opt<bool>
101     AllHeaders("all-headers",
102                cl::desc("Display all available header information"),
103                cl::cat(ObjdumpCat));
104 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
105                                  cl::NotHidden, cl::Grouping,
106                                  cl::aliasopt(AllHeaders));
107 
108 static cl::opt<std::string>
109     ArchName("arch-name",
110              cl::desc("Target arch to disassemble for, "
111                       "see -version for available targets"),
112              cl::cat(ObjdumpCat));
113 
114 cl::opt<bool> ArchiveHeaders("archive-headers",
115                              cl::desc("Display archive header information"),
116                              cl::cat(ObjdumpCat));
117 static cl::alias ArchiveHeadersShort("a",
118                                      cl::desc("Alias for --archive-headers"),
119                                      cl::NotHidden, cl::Grouping,
120                                      cl::aliasopt(ArchiveHeaders));
121 
122 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
123                        cl::init(false), cl::cat(ObjdumpCat));
124 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
125                                cl::NotHidden, cl::Grouping,
126                                cl::aliasopt(Demangle));
127 
128 cl::opt<bool> Disassemble(
129     "disassemble",
130     cl::desc("Display assembler mnemonics for the machine instructions"),
131     cl::cat(ObjdumpCat));
132 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
133                                   cl::NotHidden, cl::Grouping,
134                                   cl::aliasopt(Disassemble));
135 
136 cl::opt<bool> DisassembleAll(
137     "disassemble-all",
138     cl::desc("Display assembler mnemonics for the machine instructions"),
139     cl::cat(ObjdumpCat));
140 static cl::alias DisassembleAllShort("D",
141                                      cl::desc("Alias for --disassemble-all"),
142                                      cl::NotHidden, cl::Grouping,
143                                      cl::aliasopt(DisassembleAll));
144 
145 static cl::list<std::string>
146     DisassembleFunctions("disassemble-functions", cl::CommaSeparated,
147                          cl::desc("List of functions to disassemble. "
148                                   "Accept demangled names when --demangle is "
149                                   "specified, otherwise accept mangled names"),
150                          cl::cat(ObjdumpCat));
151 
152 static cl::opt<bool> DisassembleZeroes(
153     "disassemble-zeroes",
154     cl::desc("Do not skip blocks of zeroes when disassembling"),
155     cl::cat(ObjdumpCat));
156 static cl::alias
157     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
158                            cl::NotHidden, cl::Grouping,
159                            cl::aliasopt(DisassembleZeroes));
160 
161 static cl::list<std::string>
162     DisassemblerOptions("disassembler-options",
163                         cl::desc("Pass target specific disassembler options"),
164                         cl::value_desc("options"), cl::CommaSeparated,
165                         cl::cat(ObjdumpCat));
166 static cl::alias
167     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
168                              cl::NotHidden, cl::Grouping, cl::Prefix,
169                              cl::CommaSeparated,
170                              cl::aliasopt(DisassemblerOptions));
171 
172 cl::opt<DIDumpType> DwarfDumpType(
173     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
174     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
175     cl::cat(ObjdumpCat));
176 
177 static cl::opt<bool> DynamicRelocations(
178     "dynamic-reloc",
179     cl::desc("Display the dynamic relocation entries in the file"),
180     cl::cat(ObjdumpCat));
181 static cl::alias DynamicRelocationShort("R",
182                                         cl::desc("Alias for --dynamic-reloc"),
183                                         cl::NotHidden, cl::Grouping,
184                                         cl::aliasopt(DynamicRelocations));
185 
186 static cl::opt<bool>
187     FaultMapSection("fault-map-section",
188                     cl::desc("Display contents of faultmap section"),
189                     cl::cat(ObjdumpCat));
190 
191 static cl::opt<bool>
192     FileHeaders("file-headers",
193                 cl::desc("Display the contents of the overall file header"),
194                 cl::cat(ObjdumpCat));
195 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
196                                   cl::NotHidden, cl::Grouping,
197                                   cl::aliasopt(FileHeaders));
198 
199 cl::opt<bool> SectionContents("full-contents",
200                               cl::desc("Display the content of each section"),
201                               cl::cat(ObjdumpCat));
202 static cl::alias SectionContentsShort("s",
203                                       cl::desc("Alias for --full-contents"),
204                                       cl::NotHidden, cl::Grouping,
205                                       cl::aliasopt(SectionContents));
206 
207 static cl::list<std::string> InputFilenames(cl::Positional,
208                                             cl::desc("<input object files>"),
209                                             cl::ZeroOrMore,
210                                             cl::cat(ObjdumpCat));
211 
212 static cl::opt<bool>
213     PrintLines("line-numbers",
214                cl::desc("Display source line numbers with "
215                         "disassembly. Implies disassemble object"),
216                cl::cat(ObjdumpCat));
217 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
218                                  cl::NotHidden, cl::Grouping,
219                                  cl::aliasopt(PrintLines));
220 
221 static cl::opt<bool> MachOOpt("macho",
222                               cl::desc("Use MachO specific object file parser"),
223                               cl::cat(ObjdumpCat));
224 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
225                         cl::Grouping, cl::aliasopt(MachOOpt));
226 
227 cl::opt<std::string>
228     MCPU("mcpu",
229          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
230          cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
231 
232 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
233                              cl::desc("Target specific attributes"),
234                              cl::value_desc("a1,+a2,-a3,..."),
235                              cl::cat(ObjdumpCat));
236 
237 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
238                             cl::desc("When disassembling "
239                                      "instructions, do not print "
240                                      "the instruction bytes."),
241                             cl::cat(ObjdumpCat));
242 cl::opt<bool> NoLeadingAddr("no-leading-addr",
243                             cl::desc("Print no leading address"),
244                             cl::cat(ObjdumpCat));
245 
246 static cl::opt<bool> RawClangAST(
247     "raw-clang-ast",
248     cl::desc("Dump the raw binary contents of the clang AST section"),
249     cl::cat(ObjdumpCat));
250 
251 cl::opt<bool>
252     Relocations("reloc", cl::desc("Display the relocation entries in the file"),
253                 cl::cat(ObjdumpCat));
254 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
255                                   cl::NotHidden, cl::Grouping,
256                                   cl::aliasopt(Relocations));
257 
258 cl::opt<bool> PrintImmHex("print-imm-hex",
259                           cl::desc("Use hex format for immediate values"),
260                           cl::cat(ObjdumpCat));
261 
262 cl::opt<bool> PrivateHeaders("private-headers",
263                              cl::desc("Display format specific file headers"),
264                              cl::cat(ObjdumpCat));
265 static cl::alias PrivateHeadersShort("p",
266                                      cl::desc("Alias for --private-headers"),
267                                      cl::NotHidden, cl::Grouping,
268                                      cl::aliasopt(PrivateHeaders));
269 
270 cl::list<std::string>
271     FilterSections("section",
272                    cl::desc("Operate on the specified sections only. "
273                             "With -macho dump segment,section"),
274                    cl::cat(ObjdumpCat));
275 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
276                                  cl::NotHidden, cl::Grouping, cl::Prefix,
277                                  cl::aliasopt(FilterSections));
278 
279 cl::opt<bool> SectionHeaders("section-headers",
280                              cl::desc("Display summaries of the "
281                                       "headers for each section."),
282                              cl::cat(ObjdumpCat));
283 static cl::alias SectionHeadersShort("headers",
284                                      cl::desc("Alias for --section-headers"),
285                                      cl::NotHidden,
286                                      cl::aliasopt(SectionHeaders));
287 static cl::alias SectionHeadersShorter("h",
288                                        cl::desc("Alias for --section-headers"),
289                                        cl::NotHidden, cl::Grouping,
290                                        cl::aliasopt(SectionHeaders));
291 
292 static cl::opt<bool>
293     ShowLMA("show-lma",
294             cl::desc("Display LMA column when dumping ELF section headers"),
295             cl::cat(ObjdumpCat));
296 
297 static cl::opt<bool> PrintSource(
298     "source",
299     cl::desc(
300         "Display source inlined with disassembly. Implies disassemble object"),
301     cl::cat(ObjdumpCat));
302 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
303                                   cl::NotHidden, cl::Grouping,
304                                   cl::aliasopt(PrintSource));
305 
306 static cl::opt<uint64_t>
307     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
308                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
309 static cl::opt<uint64_t> StopAddress("stop-address",
310                                      cl::desc("Stop disassembly at address"),
311                                      cl::value_desc("address"),
312                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
313 
314 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"),
315                           cl::cat(ObjdumpCat));
316 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
317                                   cl::NotHidden, cl::Grouping,
318                                   cl::aliasopt(SymbolTable));
319 
320 cl::opt<std::string> TripleName("triple",
321                                 cl::desc("Target triple to disassemble for, "
322                                          "see -version for available targets"),
323                                 cl::cat(ObjdumpCat));
324 
325 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"),
326                          cl::cat(ObjdumpCat));
327 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
328                                  cl::NotHidden, cl::Grouping,
329                                  cl::aliasopt(UnwindInfo));
330 
331 static cl::opt<bool>
332     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
333          cl::cat(ObjdumpCat));
334 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
335 
336 static cl::extrahelp
337     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
338 
339 static StringSet<> DisasmFuncsSet;
340 static StringSet<> FoundSectionSet;
341 static StringRef ToolName;
342 
343 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
344 
345 namespace {
346 struct FilterResult {
347   // True if the section should not be skipped.
348   bool Keep;
349 
350   // True if the index counter should be incremented, even if the section should
351   // be skipped. For example, sections may be skipped if they are not included
352   // in the --section flag, but we still want those to count toward the section
353   // count.
354   bool IncrementIndex;
355 };
356 } // namespace
357 
358 static FilterResult checkSectionFilter(object::SectionRef S) {
359   if (FilterSections.empty())
360     return {/*Keep=*/true, /*IncrementIndex=*/true};
361 
362   Expected<StringRef> SecNameOrErr = S.getName();
363   if (!SecNameOrErr) {
364     consumeError(SecNameOrErr.takeError());
365     return {/*Keep=*/false, /*IncrementIndex=*/false};
366   }
367   StringRef SecName = *SecNameOrErr;
368 
369   // StringSet does not allow empty key so avoid adding sections with
370   // no name (such as the section with index 0) here.
371   if (!SecName.empty())
372     FoundSectionSet.insert(SecName);
373 
374   // Only show the section if it's in the FilterSections list, but always
375   // increment so the indexing is stable.
376   return {/*Keep=*/is_contained(FilterSections, SecName),
377           /*IncrementIndex=*/true};
378 }
379 
380 SectionFilter ToolSectionFilter(object::ObjectFile const &O, uint64_t *Idx) {
381   // Start at UINT64_MAX so that the first index returned after an increment is
382   // zero (after the unsigned wrap).
383   if (Idx)
384     *Idx = UINT64_MAX;
385   return SectionFilter(
386       [Idx](object::SectionRef S) {
387         FilterResult Result = checkSectionFilter(S);
388         if (Idx != nullptr && Result.IncrementIndex)
389           *Idx += 1;
390         return Result.Keep;
391       },
392       O);
393 }
394 
395 std::string getFileNameForError(const object::Archive::Child &C,
396                                 unsigned Index) {
397   Expected<StringRef> NameOrErr = C.getName();
398   if (NameOrErr)
399     return NameOrErr.get();
400   // If we have an error getting the name then we print the index of the archive
401   // member. Since we are already in an error state, we just ignore this error.
402   consumeError(NameOrErr.takeError());
403   return "<file index: " + std::to_string(Index) + ">";
404 }
405 
406 void reportWarning(Twine Message, StringRef File) {
407   // Output order between errs() and outs() matters especially for archive
408   // files where the output is per member object.
409   outs().flush();
410   WithColor::warning(errs(), ToolName)
411       << "'" << File << "': " << Message << "\n";
412   errs().flush();
413 }
414 
415 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) {
416   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
417   exit(1);
418 }
419 
420 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName,
421                                          StringRef ArchiveName,
422                                          StringRef ArchitectureName) {
423   assert(E);
424   WithColor::error(errs(), ToolName);
425   if (ArchiveName != "")
426     errs() << ArchiveName << "(" << FileName << ")";
427   else
428     errs() << "'" << FileName << "'";
429   if (!ArchitectureName.empty())
430     errs() << " (for architecture " << ArchitectureName << ")";
431   std::string Buf;
432   raw_string_ostream OS(Buf);
433   logAllUnhandledErrors(std::move(E), OS);
434   OS.flush();
435   errs() << ": " << Buf;
436   exit(1);
437 }
438 
439 static void reportCmdLineWarning(Twine Message) {
440   WithColor::warning(errs(), ToolName) << Message << "\n";
441 }
442 
443 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) {
444   WithColor::error(errs(), ToolName) << Message << "\n";
445   exit(1);
446 }
447 
448 static void warnOnNoMatchForSections() {
449   SetVector<StringRef> MissingSections;
450   for (StringRef S : FilterSections) {
451     if (FoundSectionSet.count(S))
452       return;
453     // User may specify a unnamed section. Don't warn for it.
454     if (!S.empty())
455       MissingSections.insert(S);
456   }
457 
458   // Warn only if no section in FilterSections is matched.
459   for (StringRef S : MissingSections)
460     reportCmdLineWarning("section '" + S +
461                          "' mentioned in a -j/--section option, but not "
462                          "found in any input file");
463 }
464 
465 static const Target *getTarget(const ObjectFile *Obj) {
466   // Figure out the target triple.
467   Triple TheTriple("unknown-unknown-unknown");
468   if (TripleName.empty()) {
469     TheTriple = Obj->makeTriple();
470   } else {
471     TheTriple.setTriple(Triple::normalize(TripleName));
472     auto Arch = Obj->getArch();
473     if (Arch == Triple::arm || Arch == Triple::armeb)
474       Obj->setARMSubArch(TheTriple);
475   }
476 
477   // Get the target specific parser.
478   std::string Error;
479   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
480                                                          Error);
481   if (!TheTarget)
482     reportError(Obj->getFileName(), "can't find target: " + Error);
483 
484   // Update the triple name and return the found target.
485   TripleName = TheTriple.getTriple();
486   return TheTarget;
487 }
488 
489 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
490   return A.getOffset() < B.getOffset();
491 }
492 
493 static Error getRelocationValueString(const RelocationRef &Rel,
494                                       SmallVectorImpl<char> &Result) {
495   const ObjectFile *Obj = Rel.getObject();
496   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
497     return getELFRelocationValueString(ELF, Rel, Result);
498   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
499     return getCOFFRelocationValueString(COFF, Rel, Result);
500   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
501     return getWasmRelocationValueString(Wasm, Rel, Result);
502   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
503     return getMachORelocationValueString(MachO, Rel, Result);
504   llvm_unreachable("unknown object file format");
505 }
506 
507 /// Indicates whether this relocation should hidden when listing
508 /// relocations, usually because it is the trailing part of a multipart
509 /// relocation that will be printed as part of the leading relocation.
510 static bool getHidden(RelocationRef RelRef) {
511   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
512   if (!MachO)
513     return false;
514 
515   unsigned Arch = MachO->getArch();
516   DataRefImpl Rel = RelRef.getRawDataRefImpl();
517   uint64_t Type = MachO->getRelocationType(Rel);
518 
519   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
520   // is always hidden.
521   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
522     return Type == MachO::GENERIC_RELOC_PAIR;
523 
524   if (Arch == Triple::x86_64) {
525     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
526     // an X86_64_RELOC_SUBTRACTOR.
527     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
528       DataRefImpl RelPrev = Rel;
529       RelPrev.d.a--;
530       uint64_t PrevType = MachO->getRelocationType(RelPrev);
531       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
532         return true;
533     }
534   }
535 
536   return false;
537 }
538 
539 namespace {
540 class SourcePrinter {
541 protected:
542   DILineInfo OldLineInfo;
543   const ObjectFile *Obj = nullptr;
544   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
545   // File name to file contents of source.
546   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
547   // Mark the line endings of the cached source.
548   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
549   // Keep track of missing sources.
550   StringSet<> MissingSources;
551   // Only emit 'no debug info' warning once.
552   bool WarnedNoDebugInfo;
553 
554 private:
555   bool cacheSource(const DILineInfo& LineInfoFile);
556 
557 public:
558   SourcePrinter() = default;
559   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch)
560       : Obj(Obj), WarnedNoDebugInfo(false) {
561     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
562     SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None;
563     SymbolizerOpts.Demangle = false;
564     SymbolizerOpts.DefaultArch = DefaultArch;
565     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
566   }
567   virtual ~SourcePrinter() = default;
568   virtual void printSourceLine(raw_ostream &OS,
569                                object::SectionedAddress Address,
570                                StringRef ObjectFilename,
571                                StringRef Delimiter = "; ");
572 };
573 
574 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
575   std::unique_ptr<MemoryBuffer> Buffer;
576   if (LineInfo.Source) {
577     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
578   } else {
579     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
580     if (!BufferOrError) {
581       if (MissingSources.insert(LineInfo.FileName).second)
582         reportWarning("failed to find source " + LineInfo.FileName,
583                       Obj->getFileName());
584       return false;
585     }
586     Buffer = std::move(*BufferOrError);
587   }
588   // Chomp the file to get lines
589   const char *BufferStart = Buffer->getBufferStart(),
590              *BufferEnd = Buffer->getBufferEnd();
591   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
592   const char *Start = BufferStart;
593   for (const char *I = BufferStart; I != BufferEnd; ++I)
594     if (*I == '\n') {
595       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
596       Start = I + 1;
597     }
598   if (Start < BufferEnd)
599     Lines.emplace_back(Start, BufferEnd - Start);
600   SourceCache[LineInfo.FileName] = std::move(Buffer);
601   return true;
602 }
603 
604 void SourcePrinter::printSourceLine(raw_ostream &OS,
605                                     object::SectionedAddress Address,
606                                     StringRef ObjectFilename,
607                                     StringRef Delimiter) {
608   if (!Symbolizer)
609     return;
610 
611   DILineInfo LineInfo = DILineInfo();
612   auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
613   std::string ErrorMessage;
614   if (!ExpectedLineInfo)
615     ErrorMessage = toString(ExpectedLineInfo.takeError());
616   else
617     LineInfo = *ExpectedLineInfo;
618 
619   if (LineInfo.FileName == DILineInfo::BadString) {
620     if (!WarnedNoDebugInfo) {
621       std::string Warning =
622           "failed to parse debug information for " + ObjectFilename.str();
623       if (!ErrorMessage.empty())
624         Warning += ": " + ErrorMessage;
625       reportWarning(Warning, ObjectFilename);
626       WarnedNoDebugInfo = true;
627     }
628     return;
629   }
630 
631   if (LineInfo.Line == 0 || ((OldLineInfo.Line == LineInfo.Line) &&
632                              (OldLineInfo.FileName == LineInfo.FileName)))
633     return;
634 
635   if (PrintLines)
636     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
637   if (PrintSource) {
638     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
639       if (!cacheSource(LineInfo))
640         return;
641     auto LineBuffer = LineCache.find(LineInfo.FileName);
642     if (LineBuffer != LineCache.end()) {
643       if (LineInfo.Line > LineBuffer->second.size()) {
644         reportWarning(
645             formatv(
646                 "debug info line number {0} exceeds the number of lines in {1}",
647                 LineInfo.Line, LineInfo.FileName),
648             ObjectFilename);
649         return;
650       }
651       // Vector begins at 0, line numbers are non-zero
652       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
653     }
654   }
655   OldLineInfo = LineInfo;
656 }
657 
658 static bool isAArch64Elf(const ObjectFile *Obj) {
659   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
660   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
661 }
662 
663 static bool isArmElf(const ObjectFile *Obj) {
664   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
665   return Elf && Elf->getEMachine() == ELF::EM_ARM;
666 }
667 
668 static bool hasMappingSymbols(const ObjectFile *Obj) {
669   return isArmElf(Obj) || isAArch64Elf(Obj);
670 }
671 
672 static void printRelocation(StringRef FileName, const RelocationRef &Rel,
673                             uint64_t Address, bool Is64Bits) {
674   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
675   SmallString<16> Name;
676   SmallString<32> Val;
677   Rel.getTypeName(Name);
678   if (Error E = getRelocationValueString(Rel, Val))
679     reportError(std::move(E), FileName);
680   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
681 }
682 
683 class PrettyPrinter {
684 public:
685   virtual ~PrettyPrinter() = default;
686   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
687                          ArrayRef<uint8_t> Bytes,
688                          object::SectionedAddress Address, raw_ostream &OS,
689                          StringRef Annot, MCSubtargetInfo const &STI,
690                          SourcePrinter *SP, StringRef ObjectFilename,
691                          std::vector<RelocationRef> *Rels = nullptr) {
692     if (SP && (PrintSource || PrintLines))
693       SP->printSourceLine(OS, Address, ObjectFilename);
694 
695     size_t Start = OS.tell();
696     if (!NoLeadingAddr)
697       OS << format("%8" PRIx64 ":", Address.Address);
698     if (!NoShowRawInsn) {
699       OS << ' ';
700       dumpBytes(Bytes, OS);
701     }
702 
703     // The output of printInst starts with a tab. Print some spaces so that
704     // the tab has 1 column and advances to the target tab stop.
705     unsigned TabStop = NoShowRawInsn ? 16 : 40;
706     unsigned Column = OS.tell() - Start;
707     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
708 
709     if (MI)
710       IP.printInst(MI, OS, "", STI);
711     else
712       OS << "\t<unknown>";
713   }
714 };
715 PrettyPrinter PrettyPrinterInst;
716 
717 class HexagonPrettyPrinter : public PrettyPrinter {
718 public:
719   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
720                  raw_ostream &OS) {
721     uint32_t opcode =
722       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
723     if (!NoLeadingAddr)
724       OS << format("%8" PRIx64 ":", Address);
725     if (!NoShowRawInsn) {
726       OS << "\t";
727       dumpBytes(Bytes.slice(0, 4), OS);
728       OS << format("\t%08" PRIx32, opcode);
729     }
730   }
731   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
732                  object::SectionedAddress Address, raw_ostream &OS,
733                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
734                  StringRef ObjectFilename,
735                  std::vector<RelocationRef> *Rels) override {
736     if (SP && (PrintSource || PrintLines))
737       SP->printSourceLine(OS, Address, ObjectFilename, "");
738     if (!MI) {
739       printLead(Bytes, Address.Address, OS);
740       OS << " <unknown>";
741       return;
742     }
743     std::string Buffer;
744     {
745       raw_string_ostream TempStream(Buffer);
746       IP.printInst(MI, TempStream, "", STI);
747     }
748     StringRef Contents(Buffer);
749     // Split off bundle attributes
750     auto PacketBundle = Contents.rsplit('\n');
751     // Split off first instruction from the rest
752     auto HeadTail = PacketBundle.first.split('\n');
753     auto Preamble = " { ";
754     auto Separator = "";
755 
756     // Hexagon's packets require relocations to be inline rather than
757     // clustered at the end of the packet.
758     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
759     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
760     auto PrintReloc = [&]() -> void {
761       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
762         if (RelCur->getOffset() == Address.Address) {
763           printRelocation(ObjectFilename, *RelCur, Address.Address, false);
764           return;
765         }
766         ++RelCur;
767       }
768     };
769 
770     while (!HeadTail.first.empty()) {
771       OS << Separator;
772       Separator = "\n";
773       if (SP && (PrintSource || PrintLines))
774         SP->printSourceLine(OS, Address, ObjectFilename, "");
775       printLead(Bytes, Address.Address, OS);
776       OS << Preamble;
777       Preamble = "   ";
778       StringRef Inst;
779       auto Duplex = HeadTail.first.split('\v');
780       if (!Duplex.second.empty()) {
781         OS << Duplex.first;
782         OS << "; ";
783         Inst = Duplex.second;
784       }
785       else
786         Inst = HeadTail.first;
787       OS << Inst;
788       HeadTail = HeadTail.second.split('\n');
789       if (HeadTail.first.empty())
790         OS << " } " << PacketBundle.second;
791       PrintReloc();
792       Bytes = Bytes.slice(4);
793       Address.Address += 4;
794     }
795   }
796 };
797 HexagonPrettyPrinter HexagonPrettyPrinterInst;
798 
799 class AMDGCNPrettyPrinter : public PrettyPrinter {
800 public:
801   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
802                  object::SectionedAddress Address, raw_ostream &OS,
803                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
804                  StringRef ObjectFilename,
805                  std::vector<RelocationRef> *Rels) override {
806     if (SP && (PrintSource || PrintLines))
807       SP->printSourceLine(OS, Address, ObjectFilename);
808 
809     if (MI) {
810       SmallString<40> InstStr;
811       raw_svector_ostream IS(InstStr);
812 
813       IP.printInst(MI, IS, "", STI);
814 
815       OS << left_justify(IS.str(), 60);
816     } else {
817       // an unrecognized encoding - this is probably data so represent it
818       // using the .long directive, or .byte directive if fewer than 4 bytes
819       // remaining
820       if (Bytes.size() >= 4) {
821         OS << format("\t.long 0x%08" PRIx32 " ",
822                      support::endian::read32<support::little>(Bytes.data()));
823         OS.indent(42);
824       } else {
825           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
826           for (unsigned int i = 1; i < Bytes.size(); i++)
827             OS << format(", 0x%02" PRIx8, Bytes[i]);
828           OS.indent(55 - (6 * Bytes.size()));
829       }
830     }
831 
832     OS << format("// %012" PRIX64 ":", Address.Address);
833     if (Bytes.size() >= 4) {
834       // D should be casted to uint32_t here as it is passed by format to
835       // snprintf as vararg.
836       for (uint32_t D : makeArrayRef(
837                reinterpret_cast<const support::little32_t *>(Bytes.data()),
838                Bytes.size() / 4))
839         OS << format(" %08" PRIX32, D);
840     } else {
841       for (unsigned char B : Bytes)
842         OS << format(" %02" PRIX8, B);
843     }
844 
845     if (!Annot.empty())
846       OS << " // " << Annot;
847   }
848 };
849 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
850 
851 class BPFPrettyPrinter : public PrettyPrinter {
852 public:
853   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
854                  object::SectionedAddress Address, raw_ostream &OS,
855                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
856                  StringRef ObjectFilename,
857                  std::vector<RelocationRef> *Rels) override {
858     if (SP && (PrintSource || PrintLines))
859       SP->printSourceLine(OS, Address, ObjectFilename);
860     if (!NoLeadingAddr)
861       OS << format("%8" PRId64 ":", Address.Address / 8);
862     if (!NoShowRawInsn) {
863       OS << "\t";
864       dumpBytes(Bytes, OS);
865     }
866     if (MI)
867       IP.printInst(MI, OS, "", STI);
868     else
869       OS << "\t<unknown>";
870   }
871 };
872 BPFPrettyPrinter BPFPrettyPrinterInst;
873 
874 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
875   switch(Triple.getArch()) {
876   default:
877     return PrettyPrinterInst;
878   case Triple::hexagon:
879     return HexagonPrettyPrinterInst;
880   case Triple::amdgcn:
881     return AMDGCNPrettyPrinterInst;
882   case Triple::bpfel:
883   case Triple::bpfeb:
884     return BPFPrettyPrinterInst;
885   }
886 }
887 }
888 
889 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
890   assert(Obj->isELF());
891   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
892     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
893   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
894     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
895   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
896     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
897   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
898     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
899   llvm_unreachable("Unsupported binary format");
900 }
901 
902 template <class ELFT> static void
903 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
904                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
905   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
906     uint8_t SymbolType = Symbol.getELFType();
907     if (SymbolType == ELF::STT_SECTION)
908       continue;
909 
910     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
911     // ELFSymbolRef::getAddress() returns size instead of value for common
912     // symbols which is not desirable for disassembly output. Overriding.
913     if (SymbolType == ELF::STT_COMMON)
914       Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
915 
916     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
917     if (Name.empty())
918       continue;
919 
920     section_iterator SecI =
921         unwrapOrError(Symbol.getSection(), Obj->getFileName());
922     if (SecI == Obj->section_end())
923       continue;
924 
925     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
926   }
927 }
928 
929 static void
930 addDynamicElfSymbols(const ObjectFile *Obj,
931                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
932   assert(Obj->isELF());
933   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
934     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
935   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
936     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
937   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
938     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
939   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
940     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
941   else
942     llvm_unreachable("Unsupported binary format");
943 }
944 
945 static void addPltEntries(const ObjectFile *Obj,
946                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
947                           StringSaver &Saver) {
948   Optional<SectionRef> Plt = None;
949   for (const SectionRef &Section : Obj->sections()) {
950     Expected<StringRef> SecNameOrErr = Section.getName();
951     if (!SecNameOrErr) {
952       consumeError(SecNameOrErr.takeError());
953       continue;
954     }
955     if (*SecNameOrErr == ".plt")
956       Plt = Section;
957   }
958   if (!Plt)
959     return;
960   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
961     for (auto PltEntry : ElfObj->getPltAddresses()) {
962       SymbolRef Symbol(PltEntry.first, ElfObj);
963       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
964 
965       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
966       if (!Name.empty())
967         AllSymbols[*Plt].emplace_back(
968             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
969     }
970   }
971 }
972 
973 // Normally the disassembly output will skip blocks of zeroes. This function
974 // returns the number of zero bytes that can be skipped when dumping the
975 // disassembly of the instructions in Buf.
976 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
977   // Find the number of leading zeroes.
978   size_t N = 0;
979   while (N < Buf.size() && !Buf[N])
980     ++N;
981 
982   // We may want to skip blocks of zero bytes, but unless we see
983   // at least 8 of them in a row.
984   if (N < 8)
985     return 0;
986 
987   // We skip zeroes in multiples of 4 because do not want to truncate an
988   // instruction if it starts with a zero byte.
989   return N & ~0x3;
990 }
991 
992 // Returns a map from sections to their relocations.
993 static std::map<SectionRef, std::vector<RelocationRef>>
994 getRelocsMap(object::ObjectFile const &Obj) {
995   std::map<SectionRef, std::vector<RelocationRef>> Ret;
996   for (SectionRef Sec : Obj.sections()) {
997     section_iterator Relocated = Sec.getRelocatedSection();
998     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
999       continue;
1000     std::vector<RelocationRef> &V = Ret[*Relocated];
1001     for (const RelocationRef &R : Sec.relocations())
1002       V.push_back(R);
1003     // Sort relocations by address.
1004     llvm::stable_sort(V, isRelocAddressLess);
1005   }
1006   return Ret;
1007 }
1008 
1009 // Used for --adjust-vma to check if address should be adjusted by the
1010 // specified value for a given section.
1011 // For ELF we do not adjust non-allocatable sections like debug ones,
1012 // because they are not loadable.
1013 // TODO: implement for other file formats.
1014 static bool shouldAdjustVA(const SectionRef &Section) {
1015   const ObjectFile *Obj = Section.getObject();
1016   if (isa<object::ELFObjectFileBase>(Obj))
1017     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1018   return false;
1019 }
1020 
1021 
1022 typedef std::pair<uint64_t, char> MappingSymbolPair;
1023 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1024                                  uint64_t Address) {
1025   auto It =
1026       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1027         return Val.first <= Address;
1028       });
1029   // Return zero for any address before the first mapping symbol; this means
1030   // we should use the default disassembly mode, depending on the target.
1031   if (It == MappingSymbols.begin())
1032     return '\x00';
1033   return (It - 1)->second;
1034 }
1035 
1036 static uint64_t
1037 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1038                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
1039                ArrayRef<MappingSymbolPair> MappingSymbols) {
1040   support::endianness Endian =
1041       Obj->isLittleEndian() ? support::little : support::big;
1042   while (Index < End) {
1043     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1044     outs() << "\t";
1045     if (Index + 4 <= End) {
1046       dumpBytes(Bytes.slice(Index, 4), outs());
1047       outs() << "\t.word\t"
1048              << format_hex(
1049                     support::endian::read32(Bytes.data() + Index, Endian), 10);
1050       Index += 4;
1051     } else if (Index + 2 <= End) {
1052       dumpBytes(Bytes.slice(Index, 2), outs());
1053       outs() << "\t\t.short\t"
1054              << format_hex(
1055                     support::endian::read16(Bytes.data() + Index, Endian), 6);
1056       Index += 2;
1057     } else {
1058       dumpBytes(Bytes.slice(Index, 1), outs());
1059       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1060       ++Index;
1061     }
1062     outs() << "\n";
1063     if (getMappingSymbolKind(MappingSymbols, Index) != 'd')
1064       break;
1065   }
1066   return Index;
1067 }
1068 
1069 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1070                         ArrayRef<uint8_t> Bytes) {
1071   // print out data up to 8 bytes at a time in hex and ascii
1072   uint8_t AsciiData[9] = {'\0'};
1073   uint8_t Byte;
1074   int NumBytes = 0;
1075 
1076   for (; Index < End; ++Index) {
1077     if (NumBytes == 0)
1078       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1079     Byte = Bytes.slice(Index)[0];
1080     outs() << format(" %02x", Byte);
1081     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1082 
1083     uint8_t IndentOffset = 0;
1084     NumBytes++;
1085     if (Index == End - 1 || NumBytes > 8) {
1086       // Indent the space for less than 8 bytes data.
1087       // 2 spaces for byte and one for space between bytes
1088       IndentOffset = 3 * (8 - NumBytes);
1089       for (int Excess = NumBytes; Excess < 8; Excess++)
1090         AsciiData[Excess] = '\0';
1091       NumBytes = 8;
1092     }
1093     if (NumBytes == 8) {
1094       AsciiData[8] = '\0';
1095       outs() << std::string(IndentOffset, ' ') << "         ";
1096       outs() << reinterpret_cast<char *>(AsciiData);
1097       outs() << '\n';
1098       NumBytes = 0;
1099     }
1100   }
1101 }
1102 
1103 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1104                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1105                               MCDisassembler *SecondaryDisAsm,
1106                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1107                               const MCSubtargetInfo *PrimarySTI,
1108                               const MCSubtargetInfo *SecondarySTI,
1109                               PrettyPrinter &PIP,
1110                               SourcePrinter &SP, bool InlineRelocs) {
1111   const MCSubtargetInfo *STI = PrimarySTI;
1112   MCDisassembler *DisAsm = PrimaryDisAsm;
1113   bool PrimaryIsThumb = false;
1114   if (isArmElf(Obj))
1115     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1116 
1117   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1118   if (InlineRelocs)
1119     RelocMap = getRelocsMap(*Obj);
1120   bool Is64Bits = Obj->getBytesInAddress() > 4;
1121 
1122   // Create a mapping from virtual address to symbol name.  This is used to
1123   // pretty print the symbols while disassembling.
1124   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1125   SectionSymbolsTy AbsoluteSymbols;
1126   const StringRef FileName = Obj->getFileName();
1127   for (const SymbolRef &Symbol : Obj->symbols()) {
1128     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1129 
1130     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1131     if (Name.empty())
1132       continue;
1133 
1134     uint8_t SymbolType = ELF::STT_NOTYPE;
1135     if (Obj->isELF()) {
1136       SymbolType = getElfSymbolType(Obj, Symbol);
1137       if (SymbolType == ELF::STT_SECTION)
1138         continue;
1139     }
1140 
1141     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1142     if (SecI != Obj->section_end())
1143       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1144     else
1145       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1146   }
1147   if (AllSymbols.empty() && Obj->isELF())
1148     addDynamicElfSymbols(Obj, AllSymbols);
1149 
1150   BumpPtrAllocator A;
1151   StringSaver Saver(A);
1152   addPltEntries(Obj, AllSymbols, Saver);
1153 
1154   // Create a mapping from virtual address to section.
1155   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1156   for (SectionRef Sec : Obj->sections())
1157     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1158   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1159 
1160   // Linked executables (.exe and .dll files) typically don't include a real
1161   // symbol table but they might contain an export table.
1162   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1163     for (const auto &ExportEntry : COFFObj->export_directories()) {
1164       StringRef Name;
1165       if (std::error_code EC = ExportEntry.getSymbolName(Name))
1166         reportError(errorCodeToError(EC), Obj->getFileName());
1167       if (Name.empty())
1168         continue;
1169 
1170       uint32_t RVA;
1171       if (std::error_code EC = ExportEntry.getExportRVA(RVA))
1172         reportError(errorCodeToError(EC), Obj->getFileName());
1173 
1174       uint64_t VA = COFFObj->getImageBase() + RVA;
1175       auto Sec = partition_point(
1176           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1177             return O.first <= VA;
1178           });
1179       if (Sec != SectionAddresses.begin()) {
1180         --Sec;
1181         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1182       } else
1183         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1184     }
1185   }
1186 
1187   // Sort all the symbols, this allows us to use a simple binary search to find
1188   // a symbol near an address.
1189   StringSet<> FoundDisasmFuncsSet;
1190   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1191     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1192   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1193 
1194   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1195     if (FilterSections.empty() && !DisassembleAll &&
1196         (!Section.isText() || Section.isVirtual()))
1197       continue;
1198 
1199     uint64_t SectionAddr = Section.getAddress();
1200     uint64_t SectSize = Section.getSize();
1201     if (!SectSize)
1202       continue;
1203 
1204     // Get the list of all the symbols in this section.
1205     SectionSymbolsTy &Symbols = AllSymbols[Section];
1206     std::vector<MappingSymbolPair> MappingSymbols;
1207     if (hasMappingSymbols(Obj)) {
1208       for (const auto &Symb : Symbols) {
1209         uint64_t Address = std::get<0>(Symb);
1210         StringRef Name = std::get<1>(Symb);
1211         if (Name.startswith("$d"))
1212           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1213         if (Name.startswith("$x"))
1214           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1215         if (Name.startswith("$a"))
1216           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1217         if (Name.startswith("$t"))
1218           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1219       }
1220     }
1221 
1222     llvm::sort(MappingSymbols);
1223 
1224     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1225       // AMDGPU disassembler uses symbolizer for printing labels
1226       std::unique_ptr<MCRelocationInfo> RelInfo(
1227         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1228       if (RelInfo) {
1229         std::unique_ptr<MCSymbolizer> Symbolizer(
1230           TheTarget->createMCSymbolizer(
1231             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1232         DisAsm->setSymbolizer(std::move(Symbolizer));
1233       }
1234     }
1235 
1236     StringRef SegmentName = "";
1237     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1238       DataRefImpl DR = Section.getRawDataRefImpl();
1239       SegmentName = MachO->getSectionFinalSegmentName(DR);
1240     }
1241 
1242     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1243     // If the section has no symbol at the start, just insert a dummy one.
1244     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1245       Symbols.insert(
1246           Symbols.begin(),
1247           std::make_tuple(SectionAddr, SectionName,
1248                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1249     }
1250 
1251     SmallString<40> Comments;
1252     raw_svector_ostream CommentStream(Comments);
1253 
1254     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1255         unwrapOrError(Section.getContents(), Obj->getFileName()));
1256 
1257     uint64_t VMAAdjustment = 0;
1258     if (shouldAdjustVA(Section))
1259       VMAAdjustment = AdjustVMA;
1260 
1261     uint64_t Size;
1262     uint64_t Index;
1263     bool PrintedSection = false;
1264     std::vector<RelocationRef> Rels = RelocMap[Section];
1265     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1266     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1267     // Disassemble symbol by symbol.
1268     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1269       std::string SymbolName = std::get<1>(Symbols[SI]).str();
1270       if (Demangle)
1271         SymbolName = demangle(SymbolName);
1272 
1273       // Skip if --disassemble-functions is not empty and the symbol is not in
1274       // the list.
1275       if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName))
1276         continue;
1277 
1278       uint64_t Start = std::get<0>(Symbols[SI]);
1279       if (Start < SectionAddr || StopAddress <= Start)
1280         continue;
1281       else
1282         FoundDisasmFuncsSet.insert(SymbolName);
1283 
1284       // The end is the section end, the beginning of the next symbol, or
1285       // --stop-address.
1286       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1287       if (SI + 1 < SE)
1288         End = std::min(End, std::get<0>(Symbols[SI + 1]));
1289       if (Start >= End || End <= StartAddress)
1290         continue;
1291       Start -= SectionAddr;
1292       End -= SectionAddr;
1293 
1294       if (!PrintedSection) {
1295         PrintedSection = true;
1296         outs() << "\nDisassembly of section ";
1297         if (!SegmentName.empty())
1298           outs() << SegmentName << ",";
1299         outs() << SectionName << ":\n";
1300       }
1301 
1302       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1303         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1304           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1305           Start += 256;
1306         }
1307         if (SI == SE - 1 ||
1308             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1309           // cut trailing zeroes at the end of kernel
1310           // cut up to 256 bytes
1311           const uint64_t EndAlign = 256;
1312           const auto Limit = End - (std::min)(EndAlign, End - Start);
1313           while (End > Limit &&
1314             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1315             End -= 4;
1316         }
1317       }
1318 
1319       outs() << '\n';
1320       if (!NoLeadingAddr)
1321         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1322                          SectionAddr + Start + VMAAdjustment);
1323 
1324       outs() << SymbolName << ":\n";
1325 
1326       // Don't print raw contents of a virtual section. A virtual section
1327       // doesn't have any contents in the file.
1328       if (Section.isVirtual()) {
1329         outs() << "...\n";
1330         continue;
1331       }
1332 
1333 #ifndef NDEBUG
1334       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1335 #else
1336       raw_ostream &DebugOut = nulls();
1337 #endif
1338 
1339       // Some targets (like WebAssembly) have a special prelude at the start
1340       // of each symbol.
1341       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1342                             SectionAddr + Start, DebugOut, CommentStream);
1343       Start += Size;
1344 
1345       Index = Start;
1346       if (SectionAddr < StartAddress)
1347         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1348 
1349       // If there is a data/common symbol inside an ELF text section and we are
1350       // only disassembling text (applicable all architectures), we are in a
1351       // situation where we must print the data and not disassemble it.
1352       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1353         uint8_t SymTy = std::get<2>(Symbols[SI]);
1354         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1355           dumpELFData(SectionAddr, Index, End, Bytes);
1356           Index = End;
1357         }
1358       }
1359 
1360       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1361                              std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1362                              !DisassembleAll;
1363       while (Index < End) {
1364         // ARM and AArch64 ELF binaries can interleave data and text in the
1365         // same section. We rely on the markers introduced to understand what
1366         // we need to dump. If the data marker is within a function, it is
1367         // denoted as a word/short etc.
1368         if (CheckARMELFData &&
1369             getMappingSymbolKind(MappingSymbols, Index) == 'd') {
1370           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1371                                  MappingSymbols);
1372           continue;
1373         }
1374 
1375         // When -z or --disassemble-zeroes are given we always dissasemble
1376         // them. Otherwise we might want to skip zero bytes we see.
1377         if (!DisassembleZeroes) {
1378           uint64_t MaxOffset = End - Index;
1379           // For -reloc: print zero blocks patched by relocations, so that
1380           // relocations can be shown in the dump.
1381           if (RelCur != RelEnd)
1382             MaxOffset = RelCur->getOffset() - Index;
1383 
1384           if (size_t N =
1385                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1386             outs() << "\t\t..." << '\n';
1387             Index += N;
1388             continue;
1389           }
1390         }
1391 
1392         if (SecondarySTI) {
1393           if (getMappingSymbolKind(MappingSymbols, Index) == 'a') {
1394             STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1395             DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1396           } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') {
1397             STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1398             DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1399           }
1400         }
1401 
1402         // Disassemble a real instruction or a data when disassemble all is
1403         // provided
1404         MCInst Inst;
1405         bool Disassembled = DisAsm->getInstruction(
1406             Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut,
1407             CommentStream);
1408         if (Size == 0)
1409           Size = 1;
1410 
1411         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1412                       Bytes.slice(Index, Size),
1413                       {SectionAddr + Index + VMAAdjustment, Section.getIndex()},
1414                       outs(), "", *STI, &SP, Obj->getFileName(), &Rels);
1415         outs() << CommentStream.str();
1416         Comments.clear();
1417 
1418         // Try to resolve the target of a call, tail call, etc. to a specific
1419         // symbol.
1420         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1421                     MIA->isConditionalBranch(Inst))) {
1422           uint64_t Target;
1423           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1424             // In a relocatable object, the target's section must reside in
1425             // the same section as the call instruction or it is accessed
1426             // through a relocation.
1427             //
1428             // In a non-relocatable object, the target may be in any section.
1429             //
1430             // N.B. We don't walk the relocations in the relocatable case yet.
1431             auto *TargetSectionSymbols = &Symbols;
1432             if (!Obj->isRelocatableObject()) {
1433               auto It = partition_point(
1434                   SectionAddresses,
1435                   [=](const std::pair<uint64_t, SectionRef> &O) {
1436                     return O.first <= Target;
1437                   });
1438               if (It != SectionAddresses.begin()) {
1439                 --It;
1440                 TargetSectionSymbols = &AllSymbols[It->second];
1441               } else {
1442                 TargetSectionSymbols = &AbsoluteSymbols;
1443               }
1444             }
1445 
1446             // Find the last symbol in the section whose offset is less than
1447             // or equal to the target. If there isn't a section that contains
1448             // the target, find the nearest preceding absolute symbol.
1449             auto TargetSym = partition_point(
1450                 *TargetSectionSymbols,
1451                 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1452                   return std::get<0>(O) <= Target;
1453                 });
1454             if (TargetSym == TargetSectionSymbols->begin()) {
1455               TargetSectionSymbols = &AbsoluteSymbols;
1456               TargetSym = partition_point(
1457                   AbsoluteSymbols,
1458                   [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1459                     return std::get<0>(O) <= Target;
1460                   });
1461             }
1462             if (TargetSym != TargetSectionSymbols->begin()) {
1463               --TargetSym;
1464               uint64_t TargetAddress = std::get<0>(*TargetSym);
1465               StringRef TargetName = std::get<1>(*TargetSym);
1466               outs() << " <" << TargetName;
1467               uint64_t Disp = Target - TargetAddress;
1468               if (Disp)
1469                 outs() << "+0x" << Twine::utohexstr(Disp);
1470               outs() << '>';
1471             }
1472           }
1473         }
1474         outs() << "\n";
1475 
1476         // Hexagon does this in pretty printer
1477         if (Obj->getArch() != Triple::hexagon) {
1478           // Print relocation for instruction.
1479           while (RelCur != RelEnd) {
1480             uint64_t Offset = RelCur->getOffset();
1481             // If this relocation is hidden, skip it.
1482             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1483               ++RelCur;
1484               continue;
1485             }
1486 
1487             // Stop when RelCur's offset is past the current instruction.
1488             if (Offset >= Index + Size)
1489               break;
1490 
1491             // When --adjust-vma is used, update the address printed.
1492             if (RelCur->getSymbol() != Obj->symbol_end()) {
1493               Expected<section_iterator> SymSI =
1494                   RelCur->getSymbol()->getSection();
1495               if (SymSI && *SymSI != Obj->section_end() &&
1496                   shouldAdjustVA(**SymSI))
1497                 Offset += AdjustVMA;
1498             }
1499 
1500             printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset,
1501                             Is64Bits);
1502             ++RelCur;
1503           }
1504         }
1505 
1506         Index += Size;
1507       }
1508     }
1509   }
1510   StringSet<> MissingDisasmFuncsSet =
1511       set_difference(DisasmFuncsSet, FoundDisasmFuncsSet);
1512   for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys())
1513     reportWarning("failed to disassemble missing function " + MissingDisasmFunc,
1514                   FileName);
1515 }
1516 
1517 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1518   const Target *TheTarget = getTarget(Obj);
1519 
1520   // Package up features to be passed to target/subtarget
1521   SubtargetFeatures Features = Obj->getFeatures();
1522   if (!MAttrs.empty())
1523     for (unsigned I = 0; I != MAttrs.size(); ++I)
1524       Features.AddFeature(MAttrs[I]);
1525 
1526   std::unique_ptr<const MCRegisterInfo> MRI(
1527       TheTarget->createMCRegInfo(TripleName));
1528   if (!MRI)
1529     reportError(Obj->getFileName(),
1530                 "no register info for target " + TripleName);
1531 
1532   // Set up disassembler.
1533   std::unique_ptr<const MCAsmInfo> AsmInfo(
1534       TheTarget->createMCAsmInfo(*MRI, TripleName));
1535   if (!AsmInfo)
1536     reportError(Obj->getFileName(),
1537                 "no assembly info for target " + TripleName);
1538   std::unique_ptr<const MCSubtargetInfo> STI(
1539       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1540   if (!STI)
1541     reportError(Obj->getFileName(),
1542                 "no subtarget info for target " + TripleName);
1543   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1544   if (!MII)
1545     reportError(Obj->getFileName(),
1546                 "no instruction info for target " + TripleName);
1547   MCObjectFileInfo MOFI;
1548   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1549   // FIXME: for now initialize MCObjectFileInfo with default values
1550   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1551 
1552   std::unique_ptr<MCDisassembler> DisAsm(
1553       TheTarget->createMCDisassembler(*STI, Ctx));
1554   if (!DisAsm)
1555     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1556 
1557   // If we have an ARM object file, we need a second disassembler, because
1558   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1559   // We use mapping symbols to switch between the two assemblers, where
1560   // appropriate.
1561   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1562   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1563   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1564     if (STI->checkFeatures("+thumb-mode"))
1565       Features.AddFeature("-thumb-mode");
1566     else
1567       Features.AddFeature("+thumb-mode");
1568     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1569                                                         Features.getString()));
1570     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1571   }
1572 
1573   std::unique_ptr<const MCInstrAnalysis> MIA(
1574       TheTarget->createMCInstrAnalysis(MII.get()));
1575 
1576   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1577   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1578       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1579   if (!IP)
1580     reportError(Obj->getFileName(),
1581                 "no instruction printer for target " + TripleName);
1582   IP->setPrintImmHex(PrintImmHex);
1583 
1584   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1585   SourcePrinter SP(Obj, TheTarget->getName());
1586 
1587   for (StringRef Opt : DisassemblerOptions)
1588     if (!IP->applyTargetSpecificCLOption(Opt))
1589       reportError(Obj->getFileName(),
1590                   "Unrecognized disassembler option: " + Opt);
1591 
1592   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1593                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1594                     SP, InlineRelocs);
1595 }
1596 
1597 void printRelocations(const ObjectFile *Obj) {
1598   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1599                                                  "%08" PRIx64;
1600   // Regular objdump doesn't print relocations in non-relocatable object
1601   // files.
1602   if (!Obj->isRelocatableObject())
1603     return;
1604 
1605   // Build a mapping from relocation target to a vector of relocation
1606   // sections. Usually, there is an only one relocation section for
1607   // each relocated section.
1608   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1609   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1610     if (Section.relocation_begin() == Section.relocation_end())
1611       continue;
1612     const SectionRef TargetSec = *Section.getRelocatedSection();
1613     SecToRelSec[TargetSec].push_back(Section);
1614   }
1615 
1616   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1617     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1618     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1619 
1620     for (SectionRef Section : P.second) {
1621       for (const RelocationRef &Reloc : Section.relocations()) {
1622         uint64_t Address = Reloc.getOffset();
1623         SmallString<32> RelocName;
1624         SmallString<32> ValueStr;
1625         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1626           continue;
1627         Reloc.getTypeName(RelocName);
1628         if (Error E = getRelocationValueString(Reloc, ValueStr))
1629           reportError(std::move(E), Obj->getFileName());
1630 
1631         outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1632                << ValueStr << "\n";
1633       }
1634     }
1635     outs() << "\n";
1636   }
1637 }
1638 
1639 void printDynamicRelocations(const ObjectFile *Obj) {
1640   // For the moment, this option is for ELF only
1641   if (!Obj->isELF())
1642     return;
1643 
1644   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1645   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1646     reportError(Obj->getFileName(), "not a dynamic object");
1647     return;
1648   }
1649 
1650   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1651   if (DynRelSec.empty())
1652     return;
1653 
1654   outs() << "DYNAMIC RELOCATION RECORDS\n";
1655   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1656   for (const SectionRef &Section : DynRelSec)
1657     for (const RelocationRef &Reloc : Section.relocations()) {
1658       uint64_t Address = Reloc.getOffset();
1659       SmallString<32> RelocName;
1660       SmallString<32> ValueStr;
1661       Reloc.getTypeName(RelocName);
1662       if (Error E = getRelocationValueString(Reloc, ValueStr))
1663         reportError(std::move(E), Obj->getFileName());
1664       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1665              << ValueStr << "\n";
1666     }
1667 }
1668 
1669 // Returns true if we need to show LMA column when dumping section headers. We
1670 // show it only when the platform is ELF and either we have at least one section
1671 // whose VMA and LMA are different and/or when --show-lma flag is used.
1672 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1673   if (!Obj->isELF())
1674     return false;
1675   for (const SectionRef &S : ToolSectionFilter(*Obj))
1676     if (S.getAddress() != getELFSectionLMA(S))
1677       return true;
1678   return ShowLMA;
1679 }
1680 
1681 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1682   // Default column width for names is 13 even if no names are that long.
1683   size_t MaxWidth = 13;
1684   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1685     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1686     MaxWidth = std::max(MaxWidth, Name.size());
1687   }
1688   return MaxWidth;
1689 }
1690 
1691 void printSectionHeaders(const ObjectFile *Obj) {
1692   size_t NameWidth = getMaxSectionNameWidth(Obj);
1693   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1694   bool HasLMAColumn = shouldDisplayLMA(Obj);
1695   if (HasLMAColumn)
1696     outs() << "Sections:\n"
1697               "Idx "
1698            << left_justify("Name", NameWidth) << " Size     "
1699            << left_justify("VMA", AddressWidth) << " "
1700            << left_justify("LMA", AddressWidth) << " Type\n";
1701   else
1702     outs() << "Sections:\n"
1703               "Idx "
1704            << left_justify("Name", NameWidth) << " Size     "
1705            << left_justify("VMA", AddressWidth) << " Type\n";
1706 
1707   uint64_t Idx;
1708   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1709     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1710     uint64_t VMA = Section.getAddress();
1711     if (shouldAdjustVA(Section))
1712       VMA += AdjustVMA;
1713 
1714     uint64_t Size = Section.getSize();
1715 
1716     std::string Type = Section.isText() ? "TEXT" : "";
1717     if (Section.isData())
1718       Type += Type.empty() ? "DATA" : " DATA";
1719     if (Section.isBSS())
1720       Type += Type.empty() ? "BSS" : " BSS";
1721 
1722     if (HasLMAColumn)
1723       outs() << format("%3d %-*s %08" PRIx64 " ", Idx, NameWidth,
1724                        Name.str().c_str(), Size)
1725              << format_hex_no_prefix(VMA, AddressWidth) << " "
1726              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1727              << " " << Type << "\n";
1728     else
1729       outs() << format("%3d %-*s %08" PRIx64 " ", Idx, NameWidth,
1730                        Name.str().c_str(), Size)
1731              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1732   }
1733   outs() << "\n";
1734 }
1735 
1736 void printSectionContents(const ObjectFile *Obj) {
1737   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1738     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1739     uint64_t BaseAddr = Section.getAddress();
1740     uint64_t Size = Section.getSize();
1741     if (!Size)
1742       continue;
1743 
1744     outs() << "Contents of section " << Name << ":\n";
1745     if (Section.isBSS()) {
1746       outs() << format("<skipping contents of bss section at [%04" PRIx64
1747                        ", %04" PRIx64 ")>\n",
1748                        BaseAddr, BaseAddr + Size);
1749       continue;
1750     }
1751 
1752     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1753 
1754     // Dump out the content as hex and printable ascii characters.
1755     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1756       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1757       // Dump line of hex.
1758       for (std::size_t I = 0; I < 16; ++I) {
1759         if (I != 0 && I % 4 == 0)
1760           outs() << ' ';
1761         if (Addr + I < End)
1762           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1763                  << hexdigit(Contents[Addr + I] & 0xF, true);
1764         else
1765           outs() << "  ";
1766       }
1767       // Print ascii.
1768       outs() << "  ";
1769       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1770         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1771           outs() << Contents[Addr + I];
1772         else
1773           outs() << ".";
1774       }
1775       outs() << "\n";
1776     }
1777   }
1778 }
1779 
1780 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1781                       StringRef ArchitectureName) {
1782   outs() << "SYMBOL TABLE:\n";
1783 
1784   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1785     printCOFFSymbolTable(Coff);
1786     return;
1787   }
1788 
1789   const StringRef FileName = O->getFileName();
1790   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1791     const SymbolRef &Symbol = *I;
1792     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1793                                      ArchitectureName);
1794     if ((Address < StartAddress) || (Address > StopAddress))
1795       continue;
1796     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName,
1797                                          ArchiveName, ArchitectureName);
1798     uint32_t Flags = Symbol.getFlags();
1799     section_iterator Section = unwrapOrError(Symbol.getSection(), FileName,
1800                                              ArchiveName, ArchitectureName);
1801     StringRef Name;
1802     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1803       if (Expected<StringRef> NameOrErr = Section->getName())
1804         Name = *NameOrErr;
1805       else
1806         consumeError(NameOrErr.takeError());
1807 
1808     } else {
1809       Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
1810                            ArchitectureName);
1811     }
1812 
1813     bool Global = Flags & SymbolRef::SF_Global;
1814     bool Weak = Flags & SymbolRef::SF_Weak;
1815     bool Absolute = Flags & SymbolRef::SF_Absolute;
1816     bool Common = Flags & SymbolRef::SF_Common;
1817     bool Hidden = Flags & SymbolRef::SF_Hidden;
1818 
1819     char GlobLoc = ' ';
1820     if (Type != SymbolRef::ST_Unknown)
1821       GlobLoc = Global ? 'g' : 'l';
1822     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1823                  ? 'd' : ' ';
1824     char FileFunc = ' ';
1825     if (Type == SymbolRef::ST_File)
1826       FileFunc = 'f';
1827     else if (Type == SymbolRef::ST_Function)
1828       FileFunc = 'F';
1829     else if (Type == SymbolRef::ST_Data)
1830       FileFunc = 'O';
1831 
1832     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1833                                                    "%08" PRIx64;
1834 
1835     outs() << format(Fmt, Address) << " "
1836            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1837            << (Weak ? 'w' : ' ') // Weak?
1838            << ' ' // Constructor. Not supported yet.
1839            << ' ' // Warning. Not supported yet.
1840            << ' ' // Indirect reference to another symbol.
1841            << Debug // Debugging (d) or dynamic (D) symbol.
1842            << FileFunc // Name of function (F), file (f) or object (O).
1843            << ' ';
1844     if (Absolute) {
1845       outs() << "*ABS*";
1846     } else if (Common) {
1847       outs() << "*COM*";
1848     } else if (Section == O->section_end()) {
1849       outs() << "*UND*";
1850     } else {
1851       if (const MachOObjectFile *MachO =
1852           dyn_cast<const MachOObjectFile>(O)) {
1853         DataRefImpl DR = Section->getRawDataRefImpl();
1854         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1855         outs() << SegmentName << ",";
1856       }
1857       StringRef SectionName =
1858           unwrapOrError(Section->getName(), O->getFileName());
1859       outs() << SectionName;
1860     }
1861 
1862     if (Common || isa<ELFObjectFileBase>(O)) {
1863       uint64_t Val =
1864           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1865       outs() << format("\t%08" PRIx64, Val);
1866     }
1867 
1868     if (isa<ELFObjectFileBase>(O)) {
1869       uint8_t Other = ELFSymbolRef(Symbol).getOther();
1870       switch (Other) {
1871       case ELF::STV_DEFAULT:
1872         break;
1873       case ELF::STV_INTERNAL:
1874         outs() << " .internal";
1875         break;
1876       case ELF::STV_HIDDEN:
1877         outs() << " .hidden";
1878         break;
1879       case ELF::STV_PROTECTED:
1880         outs() << " .protected";
1881         break;
1882       default:
1883         outs() << format(" 0x%02x", Other);
1884         break;
1885       }
1886     } else if (Hidden) {
1887       outs() << " .hidden";
1888     }
1889 
1890     if (Demangle)
1891       outs() << ' ' << demangle(Name) << '\n';
1892     else
1893       outs() << ' ' << Name << '\n';
1894   }
1895 }
1896 
1897 static void printUnwindInfo(const ObjectFile *O) {
1898   outs() << "Unwind info:\n\n";
1899 
1900   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1901     printCOFFUnwindInfo(Coff);
1902   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1903     printMachOUnwindInfo(MachO);
1904   else
1905     // TODO: Extract DWARF dump tool to objdump.
1906     WithColor::error(errs(), ToolName)
1907         << "This operation is only currently supported "
1908            "for COFF and MachO object files.\n";
1909 }
1910 
1911 /// Dump the raw contents of the __clangast section so the output can be piped
1912 /// into llvm-bcanalyzer.
1913 void printRawClangAST(const ObjectFile *Obj) {
1914   if (outs().is_displayed()) {
1915     WithColor::error(errs(), ToolName)
1916         << "The -raw-clang-ast option will dump the raw binary contents of "
1917            "the clang ast section.\n"
1918            "Please redirect the output to a file or another program such as "
1919            "llvm-bcanalyzer.\n";
1920     return;
1921   }
1922 
1923   StringRef ClangASTSectionName("__clangast");
1924   if (isa<COFFObjectFile>(Obj)) {
1925     ClangASTSectionName = "clangast";
1926   }
1927 
1928   Optional<object::SectionRef> ClangASTSection;
1929   for (auto Sec : ToolSectionFilter(*Obj)) {
1930     StringRef Name;
1931     if (Expected<StringRef> NameOrErr = Sec.getName())
1932       Name = *NameOrErr;
1933     else
1934       consumeError(NameOrErr.takeError());
1935 
1936     if (Name == ClangASTSectionName) {
1937       ClangASTSection = Sec;
1938       break;
1939     }
1940   }
1941   if (!ClangASTSection)
1942     return;
1943 
1944   StringRef ClangASTContents = unwrapOrError(
1945       ClangASTSection.getValue().getContents(), Obj->getFileName());
1946   outs().write(ClangASTContents.data(), ClangASTContents.size());
1947 }
1948 
1949 static void printFaultMaps(const ObjectFile *Obj) {
1950   StringRef FaultMapSectionName;
1951 
1952   if (isa<ELFObjectFileBase>(Obj)) {
1953     FaultMapSectionName = ".llvm_faultmaps";
1954   } else if (isa<MachOObjectFile>(Obj)) {
1955     FaultMapSectionName = "__llvm_faultmaps";
1956   } else {
1957     WithColor::error(errs(), ToolName)
1958         << "This operation is only currently supported "
1959            "for ELF and Mach-O executable files.\n";
1960     return;
1961   }
1962 
1963   Optional<object::SectionRef> FaultMapSection;
1964 
1965   for (auto Sec : ToolSectionFilter(*Obj)) {
1966     StringRef Name;
1967     if (Expected<StringRef> NameOrErr = Sec.getName())
1968       Name = *NameOrErr;
1969     else
1970       consumeError(NameOrErr.takeError());
1971 
1972     if (Name == FaultMapSectionName) {
1973       FaultMapSection = Sec;
1974       break;
1975     }
1976   }
1977 
1978   outs() << "FaultMap table:\n";
1979 
1980   if (!FaultMapSection.hasValue()) {
1981     outs() << "<not found>\n";
1982     return;
1983   }
1984 
1985   StringRef FaultMapContents =
1986       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
1987   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1988                      FaultMapContents.bytes_end());
1989 
1990   outs() << FMP;
1991 }
1992 
1993 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1994   if (O->isELF()) {
1995     printELFFileHeader(O);
1996     printELFDynamicSection(O);
1997     printELFSymbolVersionInfo(O);
1998     return;
1999   }
2000   if (O->isCOFF())
2001     return printCOFFFileHeader(O);
2002   if (O->isWasm())
2003     return printWasmFileHeader(O);
2004   if (O->isMachO()) {
2005     printMachOFileHeader(O);
2006     if (!OnlyFirst)
2007       printMachOLoadCommands(O);
2008     return;
2009   }
2010   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2011 }
2012 
2013 static void printFileHeaders(const ObjectFile *O) {
2014   if (!O->isELF() && !O->isCOFF())
2015     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2016 
2017   Triple::ArchType AT = O->getArch();
2018   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2019   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2020 
2021   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2022   outs() << "start address: "
2023          << "0x" << format(Fmt.data(), Address) << "\n\n";
2024 }
2025 
2026 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2027   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2028   if (!ModeOrErr) {
2029     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2030     consumeError(ModeOrErr.takeError());
2031     return;
2032   }
2033   sys::fs::perms Mode = ModeOrErr.get();
2034   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2035   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2036   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2037   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2038   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2039   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2040   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2041   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2042   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2043 
2044   outs() << " ";
2045 
2046   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2047                    unwrapOrError(C.getGID(), Filename),
2048                    unwrapOrError(C.getRawSize(), Filename));
2049 
2050   StringRef RawLastModified = C.getRawLastModified();
2051   unsigned Seconds;
2052   if (RawLastModified.getAsInteger(10, Seconds))
2053     outs() << "(date: \"" << RawLastModified
2054            << "\" contains non-decimal chars) ";
2055   else {
2056     // Since ctime(3) returns a 26 character string of the form:
2057     // "Sun Sep 16 01:03:52 1973\n\0"
2058     // just print 24 characters.
2059     time_t t = Seconds;
2060     outs() << format("%.24s ", ctime(&t));
2061   }
2062 
2063   StringRef Name = "";
2064   Expected<StringRef> NameOrErr = C.getName();
2065   if (!NameOrErr) {
2066     consumeError(NameOrErr.takeError());
2067     Name = unwrapOrError(C.getRawName(), Filename);
2068   } else {
2069     Name = NameOrErr.get();
2070   }
2071   outs() << Name << "\n";
2072 }
2073 
2074 // For ELF only now.
2075 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2076   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2077     if (Elf->getEType() != ELF::ET_REL)
2078       return true;
2079   }
2080   return false;
2081 }
2082 
2083 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2084                                             uint64_t Start, uint64_t Stop) {
2085   if (!shouldWarnForInvalidStartStopAddress(Obj))
2086     return;
2087 
2088   for (const SectionRef &Section : Obj->sections())
2089     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2090       uint64_t BaseAddr = Section.getAddress();
2091       uint64_t Size = Section.getSize();
2092       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2093         return;
2094     }
2095 
2096   if (StartAddress.getNumOccurrences() == 0)
2097     reportWarning("no section has address less than 0x" +
2098                       Twine::utohexstr(Stop) + " specified by --stop-address",
2099                   Obj->getFileName());
2100   else if (StopAddress.getNumOccurrences() == 0)
2101     reportWarning("no section has address greater than or equal to 0x" +
2102                       Twine::utohexstr(Start) + " specified by --start-address",
2103                   Obj->getFileName());
2104   else
2105     reportWarning("no section overlaps the range [0x" +
2106                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2107                       ") specified by --start-address/--stop-address",
2108                   Obj->getFileName());
2109 }
2110 
2111 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2112                        const Archive::Child *C = nullptr) {
2113   // Avoid other output when using a raw option.
2114   if (!RawClangAST) {
2115     outs() << '\n';
2116     if (A)
2117       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2118     else
2119       outs() << O->getFileName();
2120     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
2121   }
2122 
2123   if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
2124     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2125 
2126   // Note: the order here matches GNU objdump for compatability.
2127   StringRef ArchiveName = A ? A->getFileName() : "";
2128   if (ArchiveHeaders && !MachOOpt && C)
2129     printArchiveChild(ArchiveName, *C);
2130   if (FileHeaders)
2131     printFileHeaders(O);
2132   if (PrivateHeaders || FirstPrivateHeader)
2133     printPrivateFileHeaders(O, FirstPrivateHeader);
2134   if (SectionHeaders)
2135     printSectionHeaders(O);
2136   if (SymbolTable)
2137     printSymbolTable(O, ArchiveName);
2138   if (DwarfDumpType != DIDT_Null) {
2139     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2140     // Dump the complete DWARF structure.
2141     DIDumpOptions DumpOpts;
2142     DumpOpts.DumpType = DwarfDumpType;
2143     DICtx->dump(outs(), DumpOpts);
2144   }
2145   if (Relocations && !Disassemble)
2146     printRelocations(O);
2147   if (DynamicRelocations)
2148     printDynamicRelocations(O);
2149   if (SectionContents)
2150     printSectionContents(O);
2151   if (Disassemble)
2152     disassembleObject(O, Relocations);
2153   if (UnwindInfo)
2154     printUnwindInfo(O);
2155 
2156   // Mach-O specific options:
2157   if (ExportsTrie)
2158     printExportsTrie(O);
2159   if (Rebase)
2160     printRebaseTable(O);
2161   if (Bind)
2162     printBindTable(O);
2163   if (LazyBind)
2164     printLazyBindTable(O);
2165   if (WeakBind)
2166     printWeakBindTable(O);
2167 
2168   // Other special sections:
2169   if (RawClangAST)
2170     printRawClangAST(O);
2171   if (FaultMapSection)
2172     printFaultMaps(O);
2173 }
2174 
2175 static void dumpObject(const COFFImportFile *I, const Archive *A,
2176                        const Archive::Child *C = nullptr) {
2177   StringRef ArchiveName = A ? A->getFileName() : "";
2178 
2179   // Avoid other output when using a raw option.
2180   if (!RawClangAST)
2181     outs() << '\n'
2182            << ArchiveName << "(" << I->getFileName() << ")"
2183            << ":\tfile format COFF-import-file"
2184            << "\n\n";
2185 
2186   if (ArchiveHeaders && !MachOOpt && C)
2187     printArchiveChild(ArchiveName, *C);
2188   if (SymbolTable)
2189     printCOFFSymbolTable(I);
2190 }
2191 
2192 /// Dump each object file in \a a;
2193 static void dumpArchive(const Archive *A) {
2194   Error Err = Error::success();
2195   unsigned I = -1;
2196   for (auto &C : A->children(Err)) {
2197     ++I;
2198     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2199     if (!ChildOrErr) {
2200       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2201         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2202       continue;
2203     }
2204     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2205       dumpObject(O, A, &C);
2206     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2207       dumpObject(I, A, &C);
2208     else
2209       reportError(errorCodeToError(object_error::invalid_file_type),
2210                   A->getFileName());
2211   }
2212   if (Err)
2213     reportError(std::move(Err), A->getFileName());
2214 }
2215 
2216 /// Open file and figure out how to dump it.
2217 static void dumpInput(StringRef file) {
2218   // If we are using the Mach-O specific object file parser, then let it parse
2219   // the file and process the command line options.  So the -arch flags can
2220   // be used to select specific slices, etc.
2221   if (MachOOpt) {
2222     parseInputMachO(file);
2223     return;
2224   }
2225 
2226   // Attempt to open the binary.
2227   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2228   Binary &Binary = *OBinary.getBinary();
2229 
2230   if (Archive *A = dyn_cast<Archive>(&Binary))
2231     dumpArchive(A);
2232   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2233     dumpObject(O);
2234   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2235     parseInputMachO(UB);
2236   else
2237     reportError(errorCodeToError(object_error::invalid_file_type), file);
2238 }
2239 } // namespace llvm
2240 
2241 int main(int argc, char **argv) {
2242   using namespace llvm;
2243   InitLLVM X(argc, argv);
2244   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2245   cl::HideUnrelatedOptions(OptionFilters);
2246 
2247   // Initialize targets and assembly printers/parsers.
2248   InitializeAllTargetInfos();
2249   InitializeAllTargetMCs();
2250   InitializeAllDisassemblers();
2251 
2252   // Register the target printer for --version.
2253   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2254 
2255   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2256 
2257   if (StartAddress >= StopAddress)
2258     reportCmdLineError("start address should be less than stop address");
2259 
2260   ToolName = argv[0];
2261 
2262   // Defaults to a.out if no filenames specified.
2263   if (InputFilenames.empty())
2264     InputFilenames.push_back("a.out");
2265 
2266   if (AllHeaders)
2267     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2268         SectionHeaders = SymbolTable = true;
2269 
2270   if (DisassembleAll || PrintSource || PrintLines ||
2271       (!DisassembleFunctions.empty()))
2272     Disassemble = true;
2273 
2274   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2275       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2276       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2277       !UnwindInfo && !FaultMapSection &&
2278       !(MachOOpt &&
2279         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2280          FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2281          LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2282          WeakBind || !FilterSections.empty()))) {
2283     cl::PrintHelpMessage();
2284     return 2;
2285   }
2286 
2287   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2288                         DisassembleFunctions.end());
2289 
2290   llvm::for_each(InputFilenames, dumpInput);
2291 
2292   warnOnNoMatchForSections();
2293 
2294   return EXIT_SUCCESS;
2295 }
2296