xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision e77a0a9a3b1508c1eaddc1a5833596cbaabb6fd0)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
30 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstPrinter.h"
33 #include "llvm/MC/MCInstrAnalysis.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCObjectFileInfo.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/MC/MCSubtargetInfo.h"
38 #include "llvm/Object/Archive.h"
39 #include "llvm/Object/COFF.h"
40 #include "llvm/Object/COFFImportFile.h"
41 #include "llvm/Object/ELFObjectFile.h"
42 #include "llvm/Object/MachO.h"
43 #include "llvm/Object/ObjectFile.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/Errc.h"
48 #include "llvm/Support/FileSystem.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/GraphWriter.h"
51 #include "llvm/Support/Host.h"
52 #include "llvm/Support/ManagedStatic.h"
53 #include "llvm/Support/MemoryBuffer.h"
54 #include "llvm/Support/PrettyStackTrace.h"
55 #include "llvm/Support/Signals.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/TargetSelect.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cctype>
62 #include <cstring>
63 #include <system_error>
64 #include <utility>
65 #include <unordered_map>
66 
67 using namespace llvm;
68 using namespace object;
69 
70 static cl::list<std::string>
71 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
72 
73 cl::opt<bool>
74 llvm::Disassemble("disassemble",
75   cl::desc("Display assembler mnemonics for the machine instructions"));
76 static cl::alias
77 Disassembled("d", cl::desc("Alias for --disassemble"),
78              cl::aliasopt(Disassemble));
79 
80 cl::opt<bool>
81 llvm::DisassembleAll("disassemble-all",
82   cl::desc("Display assembler mnemonics for the machine instructions"));
83 static cl::alias
84 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
85              cl::aliasopt(DisassembleAll));
86 
87 cl::opt<bool>
88 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
89 
90 cl::opt<bool>
91 llvm::SectionContents("s", cl::desc("Display the content of each section"));
92 
93 cl::opt<bool>
94 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
95 
96 cl::opt<bool>
97 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
98 
99 cl::opt<bool>
100 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
101 
102 cl::opt<bool>
103 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
104 
105 cl::opt<bool>
106 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
107 
108 cl::opt<bool>
109 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
110 
111 cl::opt<bool>
112 llvm::RawClangAST("raw-clang-ast",
113     cl::desc("Dump the raw binary contents of the clang AST section"));
114 
115 static cl::opt<bool>
116 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
117 static cl::alias
118 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
119 
120 cl::opt<std::string>
121 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
122                                     "see -version for available targets"));
123 
124 cl::opt<std::string>
125 llvm::MCPU("mcpu",
126      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
127      cl::value_desc("cpu-name"),
128      cl::init(""));
129 
130 cl::opt<std::string>
131 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
132                                 "see -version for available targets"));
133 
134 cl::opt<bool>
135 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
136                                                  "headers for each section."));
137 static cl::alias
138 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
139                     cl::aliasopt(SectionHeaders));
140 static cl::alias
141 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
142                       cl::aliasopt(SectionHeaders));
143 
144 cl::list<std::string>
145 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
146                                          "With -macho dump segment,section"));
147 cl::alias
148 static FilterSectionsj("j", cl::desc("Alias for --section"),
149                  cl::aliasopt(llvm::FilterSections));
150 
151 cl::list<std::string>
152 llvm::MAttrs("mattr",
153   cl::CommaSeparated,
154   cl::desc("Target specific attributes"),
155   cl::value_desc("a1,+a2,-a3,..."));
156 
157 cl::opt<bool>
158 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
159                                                  "instructions, do not print "
160                                                  "the instruction bytes."));
161 
162 cl::opt<bool>
163 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
164 
165 static cl::alias
166 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
167                 cl::aliasopt(UnwindInfo));
168 
169 cl::opt<bool>
170 llvm::PrivateHeaders("private-headers",
171                      cl::desc("Display format specific file headers"));
172 
173 cl::opt<bool>
174 llvm::FirstPrivateHeader("private-header",
175                          cl::desc("Display only the first format specific file "
176                                   "header"));
177 
178 static cl::alias
179 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
180                     cl::aliasopt(PrivateHeaders));
181 
182 cl::opt<bool>
183     llvm::PrintImmHex("print-imm-hex",
184                       cl::desc("Use hex format for immediate values"));
185 
186 cl::opt<bool> PrintFaultMaps("fault-map-section",
187                              cl::desc("Display contents of faultmap section"));
188 
189 cl::opt<DIDumpType> llvm::DwarfDumpType(
190     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
191     cl::values(clEnumValN(DIDT_Frames, "frames", ".debug_frame"),
192                clEnumValEnd));
193 
194 cl::opt<bool> PrintSource(
195     "source",
196     cl::desc(
197         "Display source inlined with disassembly. Implies disassmble object"));
198 
199 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
200                            cl::aliasopt(PrintSource));
201 
202 cl::opt<bool> PrintLines("line-numbers",
203                          cl::desc("Display source line numbers with "
204                                   "disassembly. Implies disassemble object"));
205 
206 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
207                           cl::aliasopt(PrintLines));
208 static StringRef ToolName;
209 
210 namespace {
211 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
212 
213 class SectionFilterIterator {
214 public:
215   SectionFilterIterator(FilterPredicate P,
216                         llvm::object::section_iterator const &I,
217                         llvm::object::section_iterator const &E)
218       : Predicate(std::move(P)), Iterator(I), End(E) {
219     ScanPredicate();
220   }
221   const llvm::object::SectionRef &operator*() const { return *Iterator; }
222   SectionFilterIterator &operator++() {
223     ++Iterator;
224     ScanPredicate();
225     return *this;
226   }
227   bool operator!=(SectionFilterIterator const &Other) const {
228     return Iterator != Other.Iterator;
229   }
230 
231 private:
232   void ScanPredicate() {
233     while (Iterator != End && !Predicate(*Iterator)) {
234       ++Iterator;
235     }
236   }
237   FilterPredicate Predicate;
238   llvm::object::section_iterator Iterator;
239   llvm::object::section_iterator End;
240 };
241 
242 class SectionFilter {
243 public:
244   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
245       : Predicate(std::move(P)), Object(O) {}
246   SectionFilterIterator begin() {
247     return SectionFilterIterator(Predicate, Object.section_begin(),
248                                  Object.section_end());
249   }
250   SectionFilterIterator end() {
251     return SectionFilterIterator(Predicate, Object.section_end(),
252                                  Object.section_end());
253   }
254 
255 private:
256   FilterPredicate Predicate;
257   llvm::object::ObjectFile const &Object;
258 };
259 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
260   return SectionFilter(
261       [](llvm::object::SectionRef const &S) {
262         if (FilterSections.empty())
263           return true;
264         llvm::StringRef String;
265         std::error_code error = S.getName(String);
266         if (error)
267           return false;
268         return is_contained(FilterSections, String);
269       },
270       O);
271 }
272 }
273 
274 void llvm::error(std::error_code EC) {
275   if (!EC)
276     return;
277 
278   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
279   errs().flush();
280   exit(1);
281 }
282 
283 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
284   errs() << ToolName << ": " << Message << ".\n";
285   errs().flush();
286   exit(1);
287 }
288 
289 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
290                                                 std::error_code EC) {
291   assert(EC);
292   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
293   exit(1);
294 }
295 
296 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
297                                                 llvm::Error E) {
298   assert(E);
299   std::string Buf;
300   raw_string_ostream OS(Buf);
301   logAllUnhandledErrors(std::move(E), OS, "");
302   OS.flush();
303   errs() << ToolName << ": '" << File << "': " << Buf;
304   exit(1);
305 }
306 
307 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
308                                                 StringRef FileName,
309                                                 llvm::Error E,
310                                                 StringRef ArchitectureName) {
311   assert(E);
312   errs() << ToolName << ": ";
313   if (ArchiveName != "")
314     errs() << ArchiveName << "(" << FileName << ")";
315   else
316     errs() << FileName;
317   if (!ArchitectureName.empty())
318     errs() << " (for architecture " << ArchitectureName << ")";
319   std::string Buf;
320   raw_string_ostream OS(Buf);
321   logAllUnhandledErrors(std::move(E), OS, "");
322   OS.flush();
323   errs() << " " << Buf;
324   exit(1);
325 }
326 
327 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
328                                                 const object::Archive::Child &C,
329                                                 llvm::Error E,
330                                                 StringRef ArchitectureName) {
331   Expected<StringRef> NameOrErr = C.getName();
332   // TODO: if we have a error getting the name then it would be nice to print
333   // the index of which archive member this is and or its offset in the
334   // archive instead of "???" as the name.
335   if (!NameOrErr) {
336     consumeError(NameOrErr.takeError());
337     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
338   } else
339     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
340                        ArchitectureName);
341 }
342 
343 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
344   // Figure out the target triple.
345   llvm::Triple TheTriple("unknown-unknown-unknown");
346   if (TripleName.empty()) {
347     if (Obj) {
348       TheTriple.setArch(Triple::ArchType(Obj->getArch()));
349       // TheTriple defaults to ELF, and COFF doesn't have an environment:
350       // the best we can do here is indicate that it is mach-o.
351       if (Obj->isMachO())
352         TheTriple.setObjectFormat(Triple::MachO);
353 
354       if (Obj->isCOFF()) {
355         const auto COFFObj = dyn_cast<COFFObjectFile>(Obj);
356         if (COFFObj->getArch() == Triple::thumb)
357           TheTriple.setTriple("thumbv7-windows");
358       }
359     }
360   } else
361     TheTriple.setTriple(Triple::normalize(TripleName));
362 
363   // Get the target specific parser.
364   std::string Error;
365   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
366                                                          Error);
367   if (!TheTarget)
368     report_fatal_error("can't find target: " + Error);
369 
370   // Update the triple name and return the found target.
371   TripleName = TheTriple.getTriple();
372   return TheTarget;
373 }
374 
375 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
376   return a.getOffset() < b.getOffset();
377 }
378 
379 namespace {
380 class SourcePrinter {
381 protected:
382   DILineInfo OldLineInfo;
383   const ObjectFile *Obj;
384   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
385   // File name to file contents of source
386   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
387   // Mark the line endings of the cached source
388   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
389 
390 private:
391   bool cacheSource(std::string File);
392 
393 public:
394   virtual ~SourcePrinter() {}
395   SourcePrinter() : Obj(nullptr), Symbolizer(nullptr) {}
396   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
397     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
398         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
399         DefaultArch);
400     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
401   }
402   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
403                                StringRef Delimiter = "; ");
404 };
405 
406 bool SourcePrinter::cacheSource(std::string File) {
407   auto BufferOrError = MemoryBuffer::getFile(File);
408   if (!BufferOrError)
409     return false;
410   // Chomp the file to get lines
411   size_t BufferSize = (*BufferOrError)->getBufferSize();
412   const char *BufferStart = (*BufferOrError)->getBufferStart();
413   for (const char *Start = BufferStart, *End = BufferStart;
414        End < BufferStart + BufferSize; End++)
415     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
416         (*End == '\r' && *(End + 1) == '\n')) {
417       LineCache[File].push_back(StringRef(Start, End - Start));
418       if (*End == '\r')
419         End++;
420       Start = End + 1;
421     }
422   SourceCache[File] = std::move(*BufferOrError);
423   return true;
424 }
425 
426 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
427                                     StringRef Delimiter) {
428   if (!Symbolizer)
429     return;
430   DILineInfo LineInfo = DILineInfo();
431   auto ExpectecLineInfo =
432       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
433   if (!ExpectecLineInfo)
434     consumeError(ExpectecLineInfo.takeError());
435   else
436     LineInfo = *ExpectecLineInfo;
437 
438   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
439       LineInfo.Line == 0)
440     return;
441 
442   if (PrintLines)
443     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
444   if (PrintSource) {
445     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
446       if (!cacheSource(LineInfo.FileName))
447         return;
448     auto FileBuffer = SourceCache.find(LineInfo.FileName);
449     if (FileBuffer != SourceCache.end()) {
450       auto LineBuffer = LineCache.find(LineInfo.FileName);
451       if (LineBuffer != LineCache.end())
452         // Vector begins at 0, line numbers are non-zero
453         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
454            << "\n";
455     }
456   }
457   OldLineInfo = LineInfo;
458 }
459 
460 class PrettyPrinter {
461 public:
462   virtual ~PrettyPrinter(){}
463   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
464                          ArrayRef<uint8_t> Bytes, uint64_t Address,
465                          raw_ostream &OS, StringRef Annot,
466                          MCSubtargetInfo const &STI, SourcePrinter *SP) {
467     if (SP && (PrintSource || PrintLines))
468       SP->printSourceLine(OS, Address);
469     OS << format("%8" PRIx64 ":", Address);
470     if (!NoShowRawInsn) {
471       OS << "\t";
472       dumpBytes(Bytes, OS);
473     }
474     if (MI)
475       IP.printInst(MI, OS, "", STI);
476     else
477       OS << " <unknown>";
478   }
479 };
480 PrettyPrinter PrettyPrinterInst;
481 class HexagonPrettyPrinter : public PrettyPrinter {
482 public:
483   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
484                  raw_ostream &OS) {
485     uint32_t opcode =
486       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
487     OS << format("%8" PRIx64 ":", Address);
488     if (!NoShowRawInsn) {
489       OS << "\t";
490       dumpBytes(Bytes.slice(0, 4), OS);
491       OS << format("%08" PRIx32, opcode);
492     }
493   }
494   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
495                  uint64_t Address, raw_ostream &OS, StringRef Annot,
496                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
497     if (SP && (PrintSource || PrintLines))
498       SP->printSourceLine(OS, Address, "");
499     if (!MI) {
500       printLead(Bytes, Address, OS);
501       OS << " <unknown>";
502       return;
503     }
504     std::string Buffer;
505     {
506       raw_string_ostream TempStream(Buffer);
507       IP.printInst(MI, TempStream, "", STI);
508     }
509     StringRef Contents(Buffer);
510     // Split off bundle attributes
511     auto PacketBundle = Contents.rsplit('\n');
512     // Split off first instruction from the rest
513     auto HeadTail = PacketBundle.first.split('\n');
514     auto Preamble = " { ";
515     auto Separator = "";
516     while(!HeadTail.first.empty()) {
517       OS << Separator;
518       Separator = "\n";
519       if (SP && (PrintSource || PrintLines))
520         SP->printSourceLine(OS, Address, "");
521       printLead(Bytes, Address, OS);
522       OS << Preamble;
523       Preamble = "   ";
524       StringRef Inst;
525       auto Duplex = HeadTail.first.split('\v');
526       if(!Duplex.second.empty()){
527         OS << Duplex.first;
528         OS << "; ";
529         Inst = Duplex.second;
530       }
531       else
532         Inst = HeadTail.first;
533       OS << Inst;
534       Bytes = Bytes.slice(4);
535       Address += 4;
536       HeadTail = HeadTail.second.split('\n');
537     }
538     OS << " } " << PacketBundle.second;
539   }
540 };
541 HexagonPrettyPrinter HexagonPrettyPrinterInst;
542 
543 class AMDGCNPrettyPrinter : public PrettyPrinter {
544 public:
545   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
546                  uint64_t Address, raw_ostream &OS, StringRef Annot,
547                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
548     if (!MI) {
549       OS << " <unknown>";
550       return;
551     }
552 
553     SmallString<40> InstStr;
554     raw_svector_ostream IS(InstStr);
555 
556     IP.printInst(MI, IS, "", STI);
557 
558     OS << left_justify(IS.str(), 60) << format("// %012" PRIX64 ": ", Address);
559     typedef support::ulittle32_t U32;
560     for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
561                                Bytes.size() / sizeof(U32)))
562       // D should be explicitly casted to uint32_t here as it is passed
563       // by format to snprintf as vararg.
564       OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
565 
566     if (!Annot.empty())
567       OS << "// " << Annot;
568   }
569 };
570 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
571 
572 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
573   switch(Triple.getArch()) {
574   default:
575     return PrettyPrinterInst;
576   case Triple::hexagon:
577     return HexagonPrettyPrinterInst;
578   case Triple::amdgcn:
579     return AMDGCNPrettyPrinterInst;
580   }
581 }
582 }
583 
584 template <class ELFT>
585 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
586                                                 const RelocationRef &RelRef,
587                                                 SmallVectorImpl<char> &Result) {
588   DataRefImpl Rel = RelRef.getRawDataRefImpl();
589 
590   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
591   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
592   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
593 
594   const ELFFile<ELFT> &EF = *Obj->getELFFile();
595 
596   ErrorOr<const Elf_Shdr *> SecOrErr = EF.getSection(Rel.d.a);
597   if (std::error_code EC = SecOrErr.getError())
598     return EC;
599   const Elf_Shdr *Sec = *SecOrErr;
600   ErrorOr<const Elf_Shdr *> SymTabOrErr = EF.getSection(Sec->sh_link);
601   if (std::error_code EC = SymTabOrErr.getError())
602     return EC;
603   const Elf_Shdr *SymTab = *SymTabOrErr;
604   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
605          SymTab->sh_type == ELF::SHT_DYNSYM);
606   ErrorOr<const Elf_Shdr *> StrTabSec = EF.getSection(SymTab->sh_link);
607   if (std::error_code EC = StrTabSec.getError())
608     return EC;
609   ErrorOr<StringRef> StrTabOrErr = EF.getStringTable(*StrTabSec);
610   if (std::error_code EC = StrTabOrErr.getError())
611     return EC;
612   StringRef StrTab = *StrTabOrErr;
613   uint8_t type = RelRef.getType();
614   StringRef res;
615   int64_t addend = 0;
616   switch (Sec->sh_type) {
617   default:
618     return object_error::parse_failed;
619   case ELF::SHT_REL: {
620     // TODO: Read implicit addend from section data.
621     break;
622   }
623   case ELF::SHT_RELA: {
624     const Elf_Rela *ERela = Obj->getRela(Rel);
625     addend = ERela->r_addend;
626     break;
627   }
628   }
629   symbol_iterator SI = RelRef.getSymbol();
630   const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
631   StringRef Target;
632   if (symb->getType() == ELF::STT_SECTION) {
633     Expected<section_iterator> SymSI = SI->getSection();
634     if (!SymSI)
635       return errorToErrorCode(SymSI.takeError());
636     const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
637     ErrorOr<StringRef> SecName = EF.getSectionName(SymSec);
638     if (std::error_code EC = SecName.getError())
639       return EC;
640     Target = *SecName;
641   } else {
642     Expected<StringRef> SymName = symb->getName(StrTab);
643     if (!SymName)
644       return errorToErrorCode(SymName.takeError());
645     Target = *SymName;
646   }
647   switch (EF.getHeader()->e_machine) {
648   case ELF::EM_X86_64:
649     switch (type) {
650     case ELF::R_X86_64_PC8:
651     case ELF::R_X86_64_PC16:
652     case ELF::R_X86_64_PC32: {
653       std::string fmtbuf;
654       raw_string_ostream fmt(fmtbuf);
655       fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
656       fmt.flush();
657       Result.append(fmtbuf.begin(), fmtbuf.end());
658     } break;
659     case ELF::R_X86_64_8:
660     case ELF::R_X86_64_16:
661     case ELF::R_X86_64_32:
662     case ELF::R_X86_64_32S:
663     case ELF::R_X86_64_64: {
664       std::string fmtbuf;
665       raw_string_ostream fmt(fmtbuf);
666       fmt << Target << (addend < 0 ? "" : "+") << addend;
667       fmt.flush();
668       Result.append(fmtbuf.begin(), fmtbuf.end());
669     } break;
670     default:
671       res = "Unknown";
672     }
673     break;
674   case ELF::EM_LANAI:
675   case ELF::EM_AARCH64: {
676     std::string fmtbuf;
677     raw_string_ostream fmt(fmtbuf);
678     fmt << Target;
679     if (addend != 0)
680       fmt << (addend < 0 ? "" : "+") << addend;
681     fmt.flush();
682     Result.append(fmtbuf.begin(), fmtbuf.end());
683     break;
684   }
685   case ELF::EM_386:
686   case ELF::EM_IAMCU:
687   case ELF::EM_ARM:
688   case ELF::EM_HEXAGON:
689   case ELF::EM_MIPS:
690   case ELF::EM_BPF:
691     res = Target;
692     break;
693   case ELF::EM_WEBASSEMBLY:
694     switch (type) {
695     case ELF::R_WEBASSEMBLY_DATA: {
696       std::string fmtbuf;
697       raw_string_ostream fmt(fmtbuf);
698       fmt << Target << (addend < 0 ? "" : "+") << addend;
699       fmt.flush();
700       Result.append(fmtbuf.begin(), fmtbuf.end());
701       break;
702     }
703     case ELF::R_WEBASSEMBLY_FUNCTION:
704       res = Target;
705       break;
706     default:
707       res = "Unknown";
708     }
709     break;
710   default:
711     res = "Unknown";
712   }
713   if (Result.empty())
714     Result.append(res.begin(), res.end());
715   return std::error_code();
716 }
717 
718 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
719                                                 const RelocationRef &Rel,
720                                                 SmallVectorImpl<char> &Result) {
721   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
722     return getRelocationValueString(ELF32LE, Rel, Result);
723   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
724     return getRelocationValueString(ELF64LE, Rel, Result);
725   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
726     return getRelocationValueString(ELF32BE, Rel, Result);
727   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
728   return getRelocationValueString(ELF64BE, Rel, Result);
729 }
730 
731 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
732                                                 const RelocationRef &Rel,
733                                                 SmallVectorImpl<char> &Result) {
734   symbol_iterator SymI = Rel.getSymbol();
735   Expected<StringRef> SymNameOrErr = SymI->getName();
736   if (!SymNameOrErr)
737     return errorToErrorCode(SymNameOrErr.takeError());
738   StringRef SymName = *SymNameOrErr;
739   Result.append(SymName.begin(), SymName.end());
740   return std::error_code();
741 }
742 
743 static void printRelocationTargetName(const MachOObjectFile *O,
744                                       const MachO::any_relocation_info &RE,
745                                       raw_string_ostream &fmt) {
746   bool IsScattered = O->isRelocationScattered(RE);
747 
748   // Target of a scattered relocation is an address.  In the interest of
749   // generating pretty output, scan through the symbol table looking for a
750   // symbol that aligns with that address.  If we find one, print it.
751   // Otherwise, we just print the hex address of the target.
752   if (IsScattered) {
753     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
754 
755     for (const SymbolRef &Symbol : O->symbols()) {
756       std::error_code ec;
757       Expected<uint64_t> Addr = Symbol.getAddress();
758       if (!Addr) {
759         std::string Buf;
760         raw_string_ostream OS(Buf);
761         logAllUnhandledErrors(Addr.takeError(), OS, "");
762         OS.flush();
763         report_fatal_error(Buf);
764       }
765       if (*Addr != Val)
766         continue;
767       Expected<StringRef> Name = Symbol.getName();
768       if (!Name) {
769         std::string Buf;
770         raw_string_ostream OS(Buf);
771         logAllUnhandledErrors(Name.takeError(), OS, "");
772         OS.flush();
773         report_fatal_error(Buf);
774       }
775       fmt << *Name;
776       return;
777     }
778 
779     // If we couldn't find a symbol that this relocation refers to, try
780     // to find a section beginning instead.
781     for (const SectionRef &Section : ToolSectionFilter(*O)) {
782       std::error_code ec;
783 
784       StringRef Name;
785       uint64_t Addr = Section.getAddress();
786       if (Addr != Val)
787         continue;
788       if ((ec = Section.getName(Name)))
789         report_fatal_error(ec.message());
790       fmt << Name;
791       return;
792     }
793 
794     fmt << format("0x%x", Val);
795     return;
796   }
797 
798   StringRef S;
799   bool isExtern = O->getPlainRelocationExternal(RE);
800   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
801 
802   if (isExtern) {
803     symbol_iterator SI = O->symbol_begin();
804     advance(SI, Val);
805     Expected<StringRef> SOrErr = SI->getName();
806     error(errorToErrorCode(SOrErr.takeError()));
807     S = *SOrErr;
808   } else {
809     section_iterator SI = O->section_begin();
810     // Adjust for the fact that sections are 1-indexed.
811     advance(SI, Val - 1);
812     SI->getName(S);
813   }
814 
815   fmt << S;
816 }
817 
818 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
819                                                 const RelocationRef &RelRef,
820                                                 SmallVectorImpl<char> &Result) {
821   DataRefImpl Rel = RelRef.getRawDataRefImpl();
822   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
823 
824   unsigned Arch = Obj->getArch();
825 
826   std::string fmtbuf;
827   raw_string_ostream fmt(fmtbuf);
828   unsigned Type = Obj->getAnyRelocationType(RE);
829   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
830 
831   // Determine any addends that should be displayed with the relocation.
832   // These require decoding the relocation type, which is triple-specific.
833 
834   // X86_64 has entirely custom relocation types.
835   if (Arch == Triple::x86_64) {
836     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
837 
838     switch (Type) {
839     case MachO::X86_64_RELOC_GOT_LOAD:
840     case MachO::X86_64_RELOC_GOT: {
841       printRelocationTargetName(Obj, RE, fmt);
842       fmt << "@GOT";
843       if (isPCRel)
844         fmt << "PCREL";
845       break;
846     }
847     case MachO::X86_64_RELOC_SUBTRACTOR: {
848       DataRefImpl RelNext = Rel;
849       Obj->moveRelocationNext(RelNext);
850       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
851 
852       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
853       // X86_64_RELOC_UNSIGNED.
854       // NOTE: Scattered relocations don't exist on x86_64.
855       unsigned RType = Obj->getAnyRelocationType(RENext);
856       if (RType != MachO::X86_64_RELOC_UNSIGNED)
857         report_fatal_error("Expected X86_64_RELOC_UNSIGNED after "
858                            "X86_64_RELOC_SUBTRACTOR.");
859 
860       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
861       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
862       printRelocationTargetName(Obj, RENext, fmt);
863       fmt << "-";
864       printRelocationTargetName(Obj, RE, fmt);
865       break;
866     }
867     case MachO::X86_64_RELOC_TLV:
868       printRelocationTargetName(Obj, RE, fmt);
869       fmt << "@TLV";
870       if (isPCRel)
871         fmt << "P";
872       break;
873     case MachO::X86_64_RELOC_SIGNED_1:
874       printRelocationTargetName(Obj, RE, fmt);
875       fmt << "-1";
876       break;
877     case MachO::X86_64_RELOC_SIGNED_2:
878       printRelocationTargetName(Obj, RE, fmt);
879       fmt << "-2";
880       break;
881     case MachO::X86_64_RELOC_SIGNED_4:
882       printRelocationTargetName(Obj, RE, fmt);
883       fmt << "-4";
884       break;
885     default:
886       printRelocationTargetName(Obj, RE, fmt);
887       break;
888     }
889     // X86 and ARM share some relocation types in common.
890   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
891              Arch == Triple::ppc) {
892     // Generic relocation types...
893     switch (Type) {
894     case MachO::GENERIC_RELOC_PAIR: // prints no info
895       return std::error_code();
896     case MachO::GENERIC_RELOC_SECTDIFF: {
897       DataRefImpl RelNext = Rel;
898       Obj->moveRelocationNext(RelNext);
899       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
900 
901       // X86 sect diff's must be followed by a relocation of type
902       // GENERIC_RELOC_PAIR.
903       unsigned RType = Obj->getAnyRelocationType(RENext);
904 
905       if (RType != MachO::GENERIC_RELOC_PAIR)
906         report_fatal_error("Expected GENERIC_RELOC_PAIR after "
907                            "GENERIC_RELOC_SECTDIFF.");
908 
909       printRelocationTargetName(Obj, RE, fmt);
910       fmt << "-";
911       printRelocationTargetName(Obj, RENext, fmt);
912       break;
913     }
914     }
915 
916     if (Arch == Triple::x86 || Arch == Triple::ppc) {
917       switch (Type) {
918       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
919         DataRefImpl RelNext = Rel;
920         Obj->moveRelocationNext(RelNext);
921         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
922 
923         // X86 sect diff's must be followed by a relocation of type
924         // GENERIC_RELOC_PAIR.
925         unsigned RType = Obj->getAnyRelocationType(RENext);
926         if (RType != MachO::GENERIC_RELOC_PAIR)
927           report_fatal_error("Expected GENERIC_RELOC_PAIR after "
928                              "GENERIC_RELOC_LOCAL_SECTDIFF.");
929 
930         printRelocationTargetName(Obj, RE, fmt);
931         fmt << "-";
932         printRelocationTargetName(Obj, RENext, fmt);
933         break;
934       }
935       case MachO::GENERIC_RELOC_TLV: {
936         printRelocationTargetName(Obj, RE, fmt);
937         fmt << "@TLV";
938         if (IsPCRel)
939           fmt << "P";
940         break;
941       }
942       default:
943         printRelocationTargetName(Obj, RE, fmt);
944       }
945     } else { // ARM-specific relocations
946       switch (Type) {
947       case MachO::ARM_RELOC_HALF:
948       case MachO::ARM_RELOC_HALF_SECTDIFF: {
949         // Half relocations steal a bit from the length field to encode
950         // whether this is an upper16 or a lower16 relocation.
951         bool isUpper = Obj->getAnyRelocationLength(RE) >> 1;
952 
953         if (isUpper)
954           fmt << ":upper16:(";
955         else
956           fmt << ":lower16:(";
957         printRelocationTargetName(Obj, RE, fmt);
958 
959         DataRefImpl RelNext = Rel;
960         Obj->moveRelocationNext(RelNext);
961         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
962 
963         // ARM half relocs must be followed by a relocation of type
964         // ARM_RELOC_PAIR.
965         unsigned RType = Obj->getAnyRelocationType(RENext);
966         if (RType != MachO::ARM_RELOC_PAIR)
967           report_fatal_error("Expected ARM_RELOC_PAIR after "
968                              "ARM_RELOC_HALF");
969 
970         // NOTE: The half of the target virtual address is stashed in the
971         // address field of the secondary relocation, but we can't reverse
972         // engineer the constant offset from it without decoding the movw/movt
973         // instruction to find the other half in its immediate field.
974 
975         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
976         // symbol/section pointer of the follow-on relocation.
977         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
978           fmt << "-";
979           printRelocationTargetName(Obj, RENext, fmt);
980         }
981 
982         fmt << ")";
983         break;
984       }
985       default: { printRelocationTargetName(Obj, RE, fmt); }
986       }
987     }
988   } else
989     printRelocationTargetName(Obj, RE, fmt);
990 
991   fmt.flush();
992   Result.append(fmtbuf.begin(), fmtbuf.end());
993   return std::error_code();
994 }
995 
996 static std::error_code getRelocationValueString(const RelocationRef &Rel,
997                                                 SmallVectorImpl<char> &Result) {
998   const ObjectFile *Obj = Rel.getObject();
999   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
1000     return getRelocationValueString(ELF, Rel, Result);
1001   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
1002     return getRelocationValueString(COFF, Rel, Result);
1003   auto *MachO = cast<MachOObjectFile>(Obj);
1004   return getRelocationValueString(MachO, Rel, Result);
1005 }
1006 
1007 /// @brief Indicates whether this relocation should hidden when listing
1008 /// relocations, usually because it is the trailing part of a multipart
1009 /// relocation that will be printed as part of the leading relocation.
1010 static bool getHidden(RelocationRef RelRef) {
1011   const ObjectFile *Obj = RelRef.getObject();
1012   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
1013   if (!MachO)
1014     return false;
1015 
1016   unsigned Arch = MachO->getArch();
1017   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1018   uint64_t Type = MachO->getRelocationType(Rel);
1019 
1020   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
1021   // is always hidden.
1022   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
1023     if (Type == MachO::GENERIC_RELOC_PAIR)
1024       return true;
1025   } else if (Arch == Triple::x86_64) {
1026     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
1027     // an X86_64_RELOC_SUBTRACTOR.
1028     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
1029       DataRefImpl RelPrev = Rel;
1030       RelPrev.d.a--;
1031       uint64_t PrevType = MachO->getRelocationType(RelPrev);
1032       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
1033         return true;
1034     }
1035   }
1036 
1037   return false;
1038 }
1039 
1040 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1041   assert(Obj->isELF());
1042   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1043     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1044   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1045     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1046   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1047     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1048   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1049     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1050   llvm_unreachable("Unsupported binary format");
1051 }
1052 
1053 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1054   const Target *TheTarget = getTarget(Obj);
1055 
1056   // Package up features to be passed to target/subtarget
1057   SubtargetFeatures Features = Obj->getFeatures();
1058   if (MAttrs.size()) {
1059     for (unsigned i = 0; i != MAttrs.size(); ++i)
1060       Features.AddFeature(MAttrs[i]);
1061   }
1062 
1063   std::unique_ptr<const MCRegisterInfo> MRI(
1064       TheTarget->createMCRegInfo(TripleName));
1065   if (!MRI)
1066     report_fatal_error("error: no register info for target " + TripleName);
1067 
1068   // Set up disassembler.
1069   std::unique_ptr<const MCAsmInfo> AsmInfo(
1070       TheTarget->createMCAsmInfo(*MRI, TripleName));
1071   if (!AsmInfo)
1072     report_fatal_error("error: no assembly info for target " + TripleName);
1073   std::unique_ptr<const MCSubtargetInfo> STI(
1074       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1075   if (!STI)
1076     report_fatal_error("error: no subtarget info for target " + TripleName);
1077   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1078   if (!MII)
1079     report_fatal_error("error: no instruction info for target " + TripleName);
1080   std::unique_ptr<const MCObjectFileInfo> MOFI(new MCObjectFileInfo);
1081   MCContext Ctx(AsmInfo.get(), MRI.get(), MOFI.get());
1082 
1083   std::unique_ptr<MCDisassembler> DisAsm(
1084     TheTarget->createMCDisassembler(*STI, Ctx));
1085   if (!DisAsm)
1086     report_fatal_error("error: no disassembler for target " + TripleName);
1087 
1088   std::unique_ptr<const MCInstrAnalysis> MIA(
1089       TheTarget->createMCInstrAnalysis(MII.get()));
1090 
1091   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1092   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1093       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1094   if (!IP)
1095     report_fatal_error("error: no instruction printer for target " +
1096                        TripleName);
1097   IP->setPrintImmHex(PrintImmHex);
1098   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1099 
1100   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1101                                                  "\t\t\t%08" PRIx64 ":  ";
1102 
1103   SourcePrinter SP(Obj, TheTarget->getName());
1104 
1105   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1106   // in RelocSecs contain the relocations for section S.
1107   std::error_code EC;
1108   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1109   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1110     section_iterator Sec2 = Section.getRelocatedSection();
1111     if (Sec2 != Obj->section_end())
1112       SectionRelocMap[*Sec2].push_back(Section);
1113   }
1114 
1115   // Create a mapping from virtual address to symbol name.  This is used to
1116   // pretty print the symbols while disassembling.
1117   typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
1118   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1119   for (const SymbolRef &Symbol : Obj->symbols()) {
1120     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1121     error(errorToErrorCode(AddressOrErr.takeError()));
1122     uint64_t Address = *AddressOrErr;
1123 
1124     Expected<StringRef> Name = Symbol.getName();
1125     error(errorToErrorCode(Name.takeError()));
1126     if (Name->empty())
1127       continue;
1128 
1129     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1130     error(errorToErrorCode(SectionOrErr.takeError()));
1131     section_iterator SecI = *SectionOrErr;
1132     if (SecI == Obj->section_end())
1133       continue;
1134 
1135     // For AMDGPU we need to track symbol types
1136     uint8_t SymbolType = ELF::STT_NOTYPE;
1137     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1138       SymbolType = getElfSymbolType(Obj, Symbol);
1139     }
1140 
1141     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1142 
1143   }
1144 
1145   // Create a mapping from virtual address to section.
1146   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1147   for (SectionRef Sec : Obj->sections())
1148     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1149   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1150 
1151   // Linked executables (.exe and .dll files) typically don't include a real
1152   // symbol table but they might contain an export table.
1153   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1154     for (const auto &ExportEntry : COFFObj->export_directories()) {
1155       StringRef Name;
1156       error(ExportEntry.getSymbolName(Name));
1157       if (Name.empty())
1158         continue;
1159       uint32_t RVA;
1160       error(ExportEntry.getExportRVA(RVA));
1161 
1162       uint64_t VA = COFFObj->getImageBase() + RVA;
1163       auto Sec = std::upper_bound(
1164           SectionAddresses.begin(), SectionAddresses.end(), VA,
1165           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1166             return LHS < RHS.first;
1167           });
1168       if (Sec != SectionAddresses.begin())
1169         --Sec;
1170       else
1171         Sec = SectionAddresses.end();
1172 
1173       if (Sec != SectionAddresses.end())
1174         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1175     }
1176   }
1177 
1178   // Sort all the symbols, this allows us to use a simple binary search to find
1179   // a symbol near an address.
1180   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1181     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1182 
1183   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1184     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1185       continue;
1186 
1187     uint64_t SectionAddr = Section.getAddress();
1188     uint64_t SectSize = Section.getSize();
1189     if (!SectSize)
1190       continue;
1191 
1192     // Get the list of all the symbols in this section.
1193     SectionSymbolsTy &Symbols = AllSymbols[Section];
1194     std::vector<uint64_t> DataMappingSymsAddr;
1195     std::vector<uint64_t> TextMappingSymsAddr;
1196     if (Obj->isELF() && Obj->getArch() == Triple::aarch64) {
1197       for (const auto &Symb : Symbols) {
1198         uint64_t Address = std::get<0>(Symb);
1199         StringRef Name = std::get<1>(Symb);
1200         if (Name.startswith("$d"))
1201           DataMappingSymsAddr.push_back(Address - SectionAddr);
1202         if (Name.startswith("$x"))
1203           TextMappingSymsAddr.push_back(Address - SectionAddr);
1204       }
1205     }
1206 
1207     std::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1208     std::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1209 
1210     // Make a list of all the relocations for this section.
1211     std::vector<RelocationRef> Rels;
1212     if (InlineRelocs) {
1213       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1214         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1215           Rels.push_back(Reloc);
1216         }
1217       }
1218     }
1219 
1220     // Sort relocations by address.
1221     std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1222 
1223     StringRef SegmentName = "";
1224     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1225       DataRefImpl DR = Section.getRawDataRefImpl();
1226       SegmentName = MachO->getSectionFinalSegmentName(DR);
1227     }
1228     StringRef name;
1229     error(Section.getName(name));
1230     outs() << "Disassembly of section ";
1231     if (!SegmentName.empty())
1232       outs() << SegmentName << ",";
1233     outs() << name << ':';
1234 
1235     // If the section has no symbol at the start, just insert a dummy one.
1236     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1237       Symbols.insert(Symbols.begin(), std::make_tuple(SectionAddr, name, ELF::STT_NOTYPE));
1238     }
1239 
1240     SmallString<40> Comments;
1241     raw_svector_ostream CommentStream(Comments);
1242 
1243     StringRef BytesStr;
1244     error(Section.getContents(BytesStr));
1245     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1246                             BytesStr.size());
1247 
1248     uint64_t Size;
1249     uint64_t Index;
1250 
1251     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1252     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1253     // Disassemble symbol by symbol.
1254     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1255       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1256       // The end is either the section end or the beginning of the next
1257       // symbol.
1258       uint64_t End =
1259           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1260       // Don't try to disassemble beyond the end of section contents.
1261       if (End > SectSize)
1262         End = SectSize;
1263       // If this symbol has the same address as the next symbol, then skip it.
1264       if (Start >= End)
1265         continue;
1266 
1267       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1268         // make size 4 bytes folded
1269         End = Start + ((End - Start) & ~0x3ull);
1270         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1271           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1272           Start += 256;
1273         }
1274         if (si == se - 1 ||
1275             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1276           // cut trailing zeroes at the end of kernel
1277           // cut up to 256 bytes
1278           const uint64_t EndAlign = 256;
1279           const auto Limit = End - (std::min)(EndAlign, End - Start);
1280           while (End > Limit &&
1281             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1282             End -= 4;
1283         }
1284       }
1285 
1286       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1287 
1288 #ifndef NDEBUG
1289       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1290 #else
1291       raw_ostream &DebugOut = nulls();
1292 #endif
1293 
1294       for (Index = Start; Index < End; Index += Size) {
1295         MCInst Inst;
1296 
1297         // AArch64 ELF binaries can interleave data and text in the
1298         // same section. We rely on the markers introduced to
1299         // understand what we need to dump.
1300         if (Obj->isELF() && Obj->getArch() == Triple::aarch64) {
1301           uint64_t Stride = 0;
1302 
1303           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1304                                       DataMappingSymsAddr.end(), Index);
1305           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1306             // Switch to data.
1307             while (Index < End) {
1308               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1309               outs() << "\t";
1310               if (Index + 4 <= End) {
1311                 Stride = 4;
1312                 dumpBytes(Bytes.slice(Index, 4), outs());
1313                 outs() << "\t.word";
1314               } else if (Index + 2 <= End) {
1315                 Stride = 2;
1316                 dumpBytes(Bytes.slice(Index, 2), outs());
1317                 outs() << "\t.short";
1318               } else {
1319                 Stride = 1;
1320                 dumpBytes(Bytes.slice(Index, 1), outs());
1321                 outs() << "\t.byte";
1322               }
1323               Index += Stride;
1324               outs() << "\n";
1325               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1326                                           TextMappingSymsAddr.end(), Index);
1327               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1328                 break;
1329             }
1330           }
1331         }
1332 
1333         if (Index >= End)
1334           break;
1335 
1336         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1337                                                    SectionAddr + Index, DebugOut,
1338                                                    CommentStream);
1339         if (Size == 0)
1340           Size = 1;
1341 
1342         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1343                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1344                       *STI, &SP);
1345         outs() << CommentStream.str();
1346         Comments.clear();
1347 
1348         // Try to resolve the target of a call, tail call, etc. to a specific
1349         // symbol.
1350         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1351                     MIA->isConditionalBranch(Inst))) {
1352           uint64_t Target;
1353           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1354             // In a relocatable object, the target's section must reside in
1355             // the same section as the call instruction or it is accessed
1356             // through a relocation.
1357             //
1358             // In a non-relocatable object, the target may be in any section.
1359             //
1360             // N.B. We don't walk the relocations in the relocatable case yet.
1361             auto *TargetSectionSymbols = &Symbols;
1362             if (!Obj->isRelocatableObject()) {
1363               auto SectionAddress = std::upper_bound(
1364                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1365                   [](uint64_t LHS,
1366                       const std::pair<uint64_t, SectionRef> &RHS) {
1367                     return LHS < RHS.first;
1368                   });
1369               if (SectionAddress != SectionAddresses.begin()) {
1370                 --SectionAddress;
1371                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1372               } else {
1373                 TargetSectionSymbols = nullptr;
1374               }
1375             }
1376 
1377             // Find the first symbol in the section whose offset is less than
1378             // or equal to the target.
1379             if (TargetSectionSymbols) {
1380               auto TargetSym = std::upper_bound(
1381                   TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1382                   Target, [](uint64_t LHS,
1383                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1384                     return LHS < std::get<0>(RHS);
1385                   });
1386               if (TargetSym != TargetSectionSymbols->begin()) {
1387                 --TargetSym;
1388                 uint64_t TargetAddress = std::get<0>(*TargetSym);
1389                 StringRef TargetName = std::get<1>(*TargetSym);
1390                 outs() << " <" << TargetName;
1391                 uint64_t Disp = Target - TargetAddress;
1392                 if (Disp)
1393                   outs() << "+0x" << utohexstr(Disp);
1394                 outs() << '>';
1395               }
1396             }
1397           }
1398         }
1399         outs() << "\n";
1400 
1401         // Print relocation for instruction.
1402         while (rel_cur != rel_end) {
1403           bool hidden = getHidden(*rel_cur);
1404           uint64_t addr = rel_cur->getOffset();
1405           SmallString<16> name;
1406           SmallString<32> val;
1407 
1408           // If this relocation is hidden, skip it.
1409           if (hidden) goto skip_print_rel;
1410 
1411           // Stop when rel_cur's address is past the current instruction.
1412           if (addr >= Index + Size) break;
1413           rel_cur->getTypeName(name);
1414           error(getRelocationValueString(*rel_cur, val));
1415           outs() << format(Fmt.data(), SectionAddr + addr) << name
1416                  << "\t" << val << "\n";
1417 
1418         skip_print_rel:
1419           ++rel_cur;
1420         }
1421       }
1422     }
1423   }
1424 }
1425 
1426 void llvm::PrintRelocations(const ObjectFile *Obj) {
1427   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1428                                                  "%08" PRIx64;
1429   // Regular objdump doesn't print relocations in non-relocatable object
1430   // files.
1431   if (!Obj->isRelocatableObject())
1432     return;
1433 
1434   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1435     if (Section.relocation_begin() == Section.relocation_end())
1436       continue;
1437     StringRef secname;
1438     error(Section.getName(secname));
1439     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1440     for (const RelocationRef &Reloc : Section.relocations()) {
1441       bool hidden = getHidden(Reloc);
1442       uint64_t address = Reloc.getOffset();
1443       SmallString<32> relocname;
1444       SmallString<32> valuestr;
1445       if (hidden)
1446         continue;
1447       Reloc.getTypeName(relocname);
1448       error(getRelocationValueString(Reloc, valuestr));
1449       outs() << format(Fmt.data(), address) << " " << relocname << " "
1450              << valuestr << "\n";
1451     }
1452     outs() << "\n";
1453   }
1454 }
1455 
1456 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1457   outs() << "Sections:\n"
1458             "Idx Name          Size      Address          Type\n";
1459   unsigned i = 0;
1460   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1461     StringRef Name;
1462     error(Section.getName(Name));
1463     uint64_t Address = Section.getAddress();
1464     uint64_t Size = Section.getSize();
1465     bool Text = Section.isText();
1466     bool Data = Section.isData();
1467     bool BSS = Section.isBSS();
1468     std::string Type = (std::string(Text ? "TEXT " : "") +
1469                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1470     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1471                      Name.str().c_str(), Size, Address, Type.c_str());
1472     ++i;
1473   }
1474 }
1475 
1476 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1477   std::error_code EC;
1478   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1479     StringRef Name;
1480     StringRef Contents;
1481     error(Section.getName(Name));
1482     uint64_t BaseAddr = Section.getAddress();
1483     uint64_t Size = Section.getSize();
1484     if (!Size)
1485       continue;
1486 
1487     outs() << "Contents of section " << Name << ":\n";
1488     if (Section.isBSS()) {
1489       outs() << format("<skipping contents of bss section at [%04" PRIx64
1490                        ", %04" PRIx64 ")>\n",
1491                        BaseAddr, BaseAddr + Size);
1492       continue;
1493     }
1494 
1495     error(Section.getContents(Contents));
1496 
1497     // Dump out the content as hex and printable ascii characters.
1498     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1499       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1500       // Dump line of hex.
1501       for (std::size_t i = 0; i < 16; ++i) {
1502         if (i != 0 && i % 4 == 0)
1503           outs() << ' ';
1504         if (addr + i < end)
1505           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1506                  << hexdigit(Contents[addr + i] & 0xF, true);
1507         else
1508           outs() << "  ";
1509       }
1510       // Print ascii.
1511       outs() << "  ";
1512       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1513         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1514           outs() << Contents[addr + i];
1515         else
1516           outs() << ".";
1517       }
1518       outs() << "\n";
1519     }
1520   }
1521 }
1522 
1523 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1524                             StringRef ArchitectureName) {
1525   outs() << "SYMBOL TABLE:\n";
1526 
1527   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1528     printCOFFSymbolTable(coff);
1529     return;
1530   }
1531   for (const SymbolRef &Symbol : o->symbols()) {
1532     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1533     if (!AddressOrError)
1534       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError());
1535     uint64_t Address = *AddressOrError;
1536     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1537     if (!TypeOrError)
1538       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError());
1539     SymbolRef::Type Type = *TypeOrError;
1540     uint32_t Flags = Symbol.getFlags();
1541     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1542     error(errorToErrorCode(SectionOrErr.takeError()));
1543     section_iterator Section = *SectionOrErr;
1544     StringRef Name;
1545     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1546       Section->getName(Name);
1547     } else {
1548       Expected<StringRef> NameOrErr = Symbol.getName();
1549       if (!NameOrErr)
1550         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1551                      ArchitectureName);
1552       Name = *NameOrErr;
1553     }
1554 
1555     bool Global = Flags & SymbolRef::SF_Global;
1556     bool Weak = Flags & SymbolRef::SF_Weak;
1557     bool Absolute = Flags & SymbolRef::SF_Absolute;
1558     bool Common = Flags & SymbolRef::SF_Common;
1559     bool Hidden = Flags & SymbolRef::SF_Hidden;
1560 
1561     char GlobLoc = ' ';
1562     if (Type != SymbolRef::ST_Unknown)
1563       GlobLoc = Global ? 'g' : 'l';
1564     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1565                  ? 'd' : ' ';
1566     char FileFunc = ' ';
1567     if (Type == SymbolRef::ST_File)
1568       FileFunc = 'f';
1569     else if (Type == SymbolRef::ST_Function)
1570       FileFunc = 'F';
1571 
1572     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1573                                                    "%08" PRIx64;
1574 
1575     outs() << format(Fmt, Address) << " "
1576            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1577            << (Weak ? 'w' : ' ') // Weak?
1578            << ' ' // Constructor. Not supported yet.
1579            << ' ' // Warning. Not supported yet.
1580            << ' ' // Indirect reference to another symbol.
1581            << Debug // Debugging (d) or dynamic (D) symbol.
1582            << FileFunc // Name of function (F), file (f) or object (O).
1583            << ' ';
1584     if (Absolute) {
1585       outs() << "*ABS*";
1586     } else if (Common) {
1587       outs() << "*COM*";
1588     } else if (Section == o->section_end()) {
1589       outs() << "*UND*";
1590     } else {
1591       if (const MachOObjectFile *MachO =
1592           dyn_cast<const MachOObjectFile>(o)) {
1593         DataRefImpl DR = Section->getRawDataRefImpl();
1594         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1595         outs() << SegmentName << ",";
1596       }
1597       StringRef SectionName;
1598       error(Section->getName(SectionName));
1599       outs() << SectionName;
1600     }
1601 
1602     outs() << '\t';
1603     if (Common || isa<ELFObjectFileBase>(o)) {
1604       uint64_t Val =
1605           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1606       outs() << format("\t %08" PRIx64 " ", Val);
1607     }
1608 
1609     if (Hidden) {
1610       outs() << ".hidden ";
1611     }
1612     outs() << Name
1613            << '\n';
1614   }
1615 }
1616 
1617 static void PrintUnwindInfo(const ObjectFile *o) {
1618   outs() << "Unwind info:\n\n";
1619 
1620   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1621     printCOFFUnwindInfo(coff);
1622   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1623     printMachOUnwindInfo(MachO);
1624   else {
1625     // TODO: Extract DWARF dump tool to objdump.
1626     errs() << "This operation is only currently supported "
1627               "for COFF and MachO object files.\n";
1628     return;
1629   }
1630 }
1631 
1632 void llvm::printExportsTrie(const ObjectFile *o) {
1633   outs() << "Exports trie:\n";
1634   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1635     printMachOExportsTrie(MachO);
1636   else {
1637     errs() << "This operation is only currently supported "
1638               "for Mach-O executable files.\n";
1639     return;
1640   }
1641 }
1642 
1643 void llvm::printRebaseTable(const ObjectFile *o) {
1644   outs() << "Rebase table:\n";
1645   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1646     printMachORebaseTable(MachO);
1647   else {
1648     errs() << "This operation is only currently supported "
1649               "for Mach-O executable files.\n";
1650     return;
1651   }
1652 }
1653 
1654 void llvm::printBindTable(const ObjectFile *o) {
1655   outs() << "Bind table:\n";
1656   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1657     printMachOBindTable(MachO);
1658   else {
1659     errs() << "This operation is only currently supported "
1660               "for Mach-O executable files.\n";
1661     return;
1662   }
1663 }
1664 
1665 void llvm::printLazyBindTable(const ObjectFile *o) {
1666   outs() << "Lazy bind table:\n";
1667   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1668     printMachOLazyBindTable(MachO);
1669   else {
1670     errs() << "This operation is only currently supported "
1671               "for Mach-O executable files.\n";
1672     return;
1673   }
1674 }
1675 
1676 void llvm::printWeakBindTable(const ObjectFile *o) {
1677   outs() << "Weak bind table:\n";
1678   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1679     printMachOWeakBindTable(MachO);
1680   else {
1681     errs() << "This operation is only currently supported "
1682               "for Mach-O executable files.\n";
1683     return;
1684   }
1685 }
1686 
1687 /// Dump the raw contents of the __clangast section so the output can be piped
1688 /// into llvm-bcanalyzer.
1689 void llvm::printRawClangAST(const ObjectFile *Obj) {
1690   if (outs().is_displayed()) {
1691     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
1692               "the clang ast section.\n"
1693               "Please redirect the output to a file or another program such as "
1694               "llvm-bcanalyzer.\n";
1695     return;
1696   }
1697 
1698   StringRef ClangASTSectionName("__clangast");
1699   if (isa<COFFObjectFile>(Obj)) {
1700     ClangASTSectionName = "clangast";
1701   }
1702 
1703   Optional<object::SectionRef> ClangASTSection;
1704   for (auto Sec : ToolSectionFilter(*Obj)) {
1705     StringRef Name;
1706     Sec.getName(Name);
1707     if (Name == ClangASTSectionName) {
1708       ClangASTSection = Sec;
1709       break;
1710     }
1711   }
1712   if (!ClangASTSection)
1713     return;
1714 
1715   StringRef ClangASTContents;
1716   error(ClangASTSection.getValue().getContents(ClangASTContents));
1717   outs().write(ClangASTContents.data(), ClangASTContents.size());
1718 }
1719 
1720 static void printFaultMaps(const ObjectFile *Obj) {
1721   const char *FaultMapSectionName = nullptr;
1722 
1723   if (isa<ELFObjectFileBase>(Obj)) {
1724     FaultMapSectionName = ".llvm_faultmaps";
1725   } else if (isa<MachOObjectFile>(Obj)) {
1726     FaultMapSectionName = "__llvm_faultmaps";
1727   } else {
1728     errs() << "This operation is only currently supported "
1729               "for ELF and Mach-O executable files.\n";
1730     return;
1731   }
1732 
1733   Optional<object::SectionRef> FaultMapSection;
1734 
1735   for (auto Sec : ToolSectionFilter(*Obj)) {
1736     StringRef Name;
1737     Sec.getName(Name);
1738     if (Name == FaultMapSectionName) {
1739       FaultMapSection = Sec;
1740       break;
1741     }
1742   }
1743 
1744   outs() << "FaultMap table:\n";
1745 
1746   if (!FaultMapSection.hasValue()) {
1747     outs() << "<not found>\n";
1748     return;
1749   }
1750 
1751   StringRef FaultMapContents;
1752   error(FaultMapSection.getValue().getContents(FaultMapContents));
1753 
1754   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1755                      FaultMapContents.bytes_end());
1756 
1757   outs() << FMP;
1758 }
1759 
1760 static void printPrivateFileHeaders(const ObjectFile *o) {
1761   if (o->isELF())
1762     printELFFileHeader(o);
1763   else if (o->isCOFF())
1764     printCOFFFileHeader(o);
1765   else if (o->isMachO()) {
1766     printMachOFileHeader(o);
1767     printMachOLoadCommands(o);
1768   } else
1769     report_fatal_error("Invalid/Unsupported object file format");
1770 }
1771 
1772 static void printFirstPrivateFileHeader(const ObjectFile *o) {
1773   if (o->isELF())
1774     printELFFileHeader(o);
1775   else if (o->isCOFF())
1776     printCOFFFileHeader(o);
1777   else if (o->isMachO())
1778     printMachOFileHeader(o);
1779   else
1780     report_fatal_error("Invalid/Unsupported object file format");
1781 }
1782 
1783 static void DumpObject(const ObjectFile *o, const Archive *a = nullptr) {
1784   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
1785   // Avoid other output when using a raw option.
1786   if (!RawClangAST) {
1787     outs() << '\n';
1788     if (a)
1789       outs() << a->getFileName() << "(" << o->getFileName() << ")";
1790     else
1791       outs() << o->getFileName();
1792     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
1793   }
1794 
1795   if (Disassemble)
1796     DisassembleObject(o, Relocations);
1797   if (Relocations && !Disassemble)
1798     PrintRelocations(o);
1799   if (SectionHeaders)
1800     PrintSectionHeaders(o);
1801   if (SectionContents)
1802     PrintSectionContents(o);
1803   if (SymbolTable)
1804     PrintSymbolTable(o, ArchiveName);
1805   if (UnwindInfo)
1806     PrintUnwindInfo(o);
1807   if (PrivateHeaders)
1808     printPrivateFileHeaders(o);
1809   if (FirstPrivateHeader)
1810     printFirstPrivateFileHeader(o);
1811   if (ExportsTrie)
1812     printExportsTrie(o);
1813   if (Rebase)
1814     printRebaseTable(o);
1815   if (Bind)
1816     printBindTable(o);
1817   if (LazyBind)
1818     printLazyBindTable(o);
1819   if (WeakBind)
1820     printWeakBindTable(o);
1821   if (RawClangAST)
1822     printRawClangAST(o);
1823   if (PrintFaultMaps)
1824     printFaultMaps(o);
1825   if (DwarfDumpType != DIDT_Null) {
1826     std::unique_ptr<DIContext> DICtx(new DWARFContextInMemory(*o));
1827     // Dump the complete DWARF structure.
1828     DICtx->dump(outs(), DwarfDumpType, true /* DumpEH */);
1829   }
1830 }
1831 
1832 static void DumpObject(const COFFImportFile *I, const Archive *A) {
1833   StringRef ArchiveName = A ? A->getFileName() : "";
1834 
1835   // Avoid other output when using a raw option.
1836   if (!RawClangAST)
1837     outs() << '\n'
1838            << ArchiveName << "(" << I->getFileName() << ")"
1839            << ":\tfile format COFF-import-file"
1840            << "\n\n";
1841 
1842   if (SymbolTable)
1843     printCOFFSymbolTable(I);
1844 }
1845 
1846 /// @brief Dump each object file in \a a;
1847 static void DumpArchive(const Archive *a) {
1848   Error Err;
1849   for (auto &C : a->children(Err)) {
1850     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1851     if (!ChildOrErr) {
1852       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1853         report_error(a->getFileName(), C, std::move(E));
1854       continue;
1855     }
1856     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
1857       DumpObject(o, a);
1858     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
1859       DumpObject(I, a);
1860     else
1861       report_error(a->getFileName(), object_error::invalid_file_type);
1862   }
1863   if (Err)
1864     report_error(a->getFileName(), std::move(Err));
1865 }
1866 
1867 /// @brief Open file and figure out how to dump it.
1868 static void DumpInput(StringRef file) {
1869 
1870   // If we are using the Mach-O specific object file parser, then let it parse
1871   // the file and process the command line options.  So the -arch flags can
1872   // be used to select specific slices, etc.
1873   if (MachOOpt) {
1874     ParseInputMachO(file);
1875     return;
1876   }
1877 
1878   // Attempt to open the binary.
1879   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
1880   if (!BinaryOrErr)
1881     report_error(file, BinaryOrErr.takeError());
1882   Binary &Binary = *BinaryOrErr.get().getBinary();
1883 
1884   if (Archive *a = dyn_cast<Archive>(&Binary))
1885     DumpArchive(a);
1886   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
1887     DumpObject(o);
1888   else
1889     report_error(file, object_error::invalid_file_type);
1890 }
1891 
1892 int main(int argc, char **argv) {
1893   // Print a stack trace if we signal out.
1894   sys::PrintStackTraceOnErrorSignal(argv[0]);
1895   PrettyStackTraceProgram X(argc, argv);
1896   llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
1897 
1898   // Initialize targets and assembly printers/parsers.
1899   llvm::InitializeAllTargetInfos();
1900   llvm::InitializeAllTargetMCs();
1901   llvm::InitializeAllDisassemblers();
1902 
1903   // Register the target printer for --version.
1904   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
1905 
1906   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
1907   TripleName = Triple::normalize(TripleName);
1908 
1909   ToolName = argv[0];
1910 
1911   // Defaults to a.out if no filenames specified.
1912   if (InputFilenames.size() == 0)
1913     InputFilenames.push_back("a.out");
1914 
1915   if (DisassembleAll || PrintSource || PrintLines)
1916     Disassemble = true;
1917   if (!Disassemble
1918       && !Relocations
1919       && !SectionHeaders
1920       && !SectionContents
1921       && !SymbolTable
1922       && !UnwindInfo
1923       && !PrivateHeaders
1924       && !FirstPrivateHeader
1925       && !ExportsTrie
1926       && !Rebase
1927       && !Bind
1928       && !LazyBind
1929       && !WeakBind
1930       && !RawClangAST
1931       && !(UniversalHeaders && MachOOpt)
1932       && !(ArchiveHeaders && MachOOpt)
1933       && !(IndirectSymbols && MachOOpt)
1934       && !(DataInCode && MachOOpt)
1935       && !(LinkOptHints && MachOOpt)
1936       && !(InfoPlist && MachOOpt)
1937       && !(DylibsUsed && MachOOpt)
1938       && !(DylibId && MachOOpt)
1939       && !(ObjcMetaData && MachOOpt)
1940       && !(FilterSections.size() != 0 && MachOOpt)
1941       && !PrintFaultMaps
1942       && DwarfDumpType == DIDT_Null) {
1943     cl::PrintHelpMessage();
1944     return 2;
1945   }
1946 
1947   std::for_each(InputFilenames.begin(), InputFilenames.end(),
1948                 DumpInput);
1949 
1950   return EXIT_SUCCESS;
1951 }
1952