xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision e09a1b51ab04b0d6d1d4ba5425f75a04d6b3a13d)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Debuginfod/BuildIDFetcher.h"
38 #include "llvm/Debuginfod/Debuginfod.h"
39 #include "llvm/Debuginfod/HTTPClient.h"
40 #include "llvm/Demangle/Demangle.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/MCContext.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
45 #include "llvm/MC/MCInst.h"
46 #include "llvm/MC/MCInstPrinter.h"
47 #include "llvm/MC/MCInstrAnalysis.h"
48 #include "llvm/MC/MCInstrInfo.h"
49 #include "llvm/MC/MCObjectFileInfo.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/BuildID.h"
55 #include "llvm/Object/COFF.h"
56 #include "llvm/Object/COFFImportFile.h"
57 #include "llvm/Object/ELFObjectFile.h"
58 #include "llvm/Object/ELFTypes.h"
59 #include "llvm/Object/FaultMapParser.h"
60 #include "llvm/Object/MachO.h"
61 #include "llvm/Object/MachOUniversal.h"
62 #include "llvm/Object/ObjectFile.h"
63 #include "llvm/Object/OffloadBinary.h"
64 #include "llvm/Object/Wasm.h"
65 #include "llvm/Option/Arg.h"
66 #include "llvm/Option/ArgList.h"
67 #include "llvm/Option/Option.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Errc.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/Format.h"
73 #include "llvm/Support/FormatVariadic.h"
74 #include "llvm/Support/GraphWriter.h"
75 #include "llvm/Support/InitLLVM.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/TargetParser/Host.h"
83 #include "llvm/TargetParser/Triple.h"
84 #include <algorithm>
85 #include <cctype>
86 #include <cstring>
87 #include <optional>
88 #include <system_error>
89 #include <unordered_map>
90 #include <utility>
91 
92 using namespace llvm;
93 using namespace llvm::object;
94 using namespace llvm::objdump;
95 using namespace llvm::opt;
96 
97 namespace {
98 
99 class CommonOptTable : public opt::GenericOptTable {
100 public:
101   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
102                  const char *Description)
103       : opt::GenericOptTable(OptionInfos), Usage(Usage),
104         Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
111                                     Description, ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 namespace objdump_opt {
123 #define PREFIX(NAME, VALUE)                                                    \
124   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
125   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
126                                                 std::size(NAME##_init) - 1);
127 #include "ObjdumpOpts.inc"
128 #undef PREFIX
129 
130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
131 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
132                HELPTEXT, METAVAR, VALUES)                                      \
133   {PREFIX,          NAME,         HELPTEXT,                                    \
134    METAVAR,         OBJDUMP_##ID, opt::Option::KIND##Class,                    \
135    PARAM,           FLAGS,        OBJDUMP_##GROUP,                             \
136    OBJDUMP_##ALIAS, ALIASARGS,    VALUES},
137 #include "ObjdumpOpts.inc"
138 #undef OPTION
139 };
140 } // namespace objdump_opt
141 
142 class ObjdumpOptTable : public CommonOptTable {
143 public:
144   ObjdumpOptTable()
145       : CommonOptTable(objdump_opt::ObjdumpInfoTable,
146                        " [options] <input object files>",
147                        "llvm object file dumper") {}
148 };
149 
150 enum OtoolOptID {
151   OTOOL_INVALID = 0, // This is not an option ID.
152 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
153                HELPTEXT, METAVAR, VALUES)                                      \
154   OTOOL_##ID,
155 #include "OtoolOpts.inc"
156 #undef OPTION
157 };
158 
159 namespace otool {
160 #define PREFIX(NAME, VALUE)                                                    \
161   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
162   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
163                                                 std::size(NAME##_init) - 1);
164 #include "OtoolOpts.inc"
165 #undef PREFIX
166 
167 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
168 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
169                HELPTEXT, METAVAR, VALUES)                                      \
170   {PREFIX,        NAME,       HELPTEXT,                                        \
171    METAVAR,       OTOOL_##ID, opt::Option::KIND##Class,                        \
172    PARAM,         FLAGS,      OTOOL_##GROUP,                                   \
173    OTOOL_##ALIAS, ALIASARGS,  VALUES},
174 #include "OtoolOpts.inc"
175 #undef OPTION
176 };
177 } // namespace otool
178 
179 class OtoolOptTable : public CommonOptTable {
180 public:
181   OtoolOptTable()
182       : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
183                        "Mach-O object file displaying tool") {}
184 };
185 
186 } // namespace
187 
188 #define DEBUG_TYPE "objdump"
189 
190 static uint64_t AdjustVMA;
191 static bool AllHeaders;
192 static std::string ArchName;
193 bool objdump::ArchiveHeaders;
194 bool objdump::Demangle;
195 bool objdump::Disassemble;
196 bool objdump::DisassembleAll;
197 bool objdump::SymbolDescription;
198 bool objdump::TracebackTable;
199 static std::vector<std::string> DisassembleSymbols;
200 static bool DisassembleZeroes;
201 static std::vector<std::string> DisassemblerOptions;
202 DIDumpType objdump::DwarfDumpType;
203 static bool DynamicRelocations;
204 static bool FaultMapSection;
205 static bool FileHeaders;
206 bool objdump::SectionContents;
207 static std::vector<std::string> InputFilenames;
208 bool objdump::PrintLines;
209 static bool MachOOpt;
210 std::string objdump::MCPU;
211 std::vector<std::string> objdump::MAttrs;
212 bool objdump::ShowRawInsn;
213 bool objdump::LeadingAddr;
214 static bool Offloading;
215 static bool RawClangAST;
216 bool objdump::Relocations;
217 bool objdump::PrintImmHex;
218 bool objdump::PrivateHeaders;
219 std::vector<std::string> objdump::FilterSections;
220 bool objdump::SectionHeaders;
221 static bool ShowAllSymbols;
222 static bool ShowLMA;
223 bool objdump::PrintSource;
224 
225 static uint64_t StartAddress;
226 static bool HasStartAddressFlag;
227 static uint64_t StopAddress = UINT64_MAX;
228 static bool HasStopAddressFlag;
229 
230 bool objdump::SymbolTable;
231 static bool SymbolizeOperands;
232 static bool DynamicSymbolTable;
233 std::string objdump::TripleName;
234 bool objdump::UnwindInfo;
235 static bool Wide;
236 std::string objdump::Prefix;
237 uint32_t objdump::PrefixStrip;
238 
239 DebugVarsFormat objdump::DbgVariables = DVDisabled;
240 
241 int objdump::DbgIndent = 52;
242 
243 static StringSet<> DisasmSymbolSet;
244 StringSet<> objdump::FoundSectionSet;
245 static StringRef ToolName;
246 
247 std::unique_ptr<BuildIDFetcher> BIDFetcher;
248 ExitOnError ExitOnErr;
249 
250 void Dumper::reportUniqueWarning(Error Err) {
251   reportUniqueWarning(toString(std::move(Err)));
252 }
253 
254 void Dumper::reportUniqueWarning(const Twine &Msg) {
255   if (Warnings.insert(StringRef(Msg.str())).second)
256     reportWarning(Msg, O.getFileName());
257 }
258 
259 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) {
260   if (const auto *O = dyn_cast<COFFObjectFile>(&Obj))
261     return createCOFFDumper(*O);
262   if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj))
263     return createELFDumper(*O);
264   if (const auto *O = dyn_cast<MachOObjectFile>(&Obj))
265     return createMachODumper(*O);
266   if (const auto *O = dyn_cast<WasmObjectFile>(&Obj))
267     return createWasmDumper(*O);
268   if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj))
269     return createXCOFFDumper(*O);
270 
271   return createStringError(errc::invalid_argument,
272                            "unsupported object file format");
273 }
274 
275 namespace {
276 struct FilterResult {
277   // True if the section should not be skipped.
278   bool Keep;
279 
280   // True if the index counter should be incremented, even if the section should
281   // be skipped. For example, sections may be skipped if they are not included
282   // in the --section flag, but we still want those to count toward the section
283   // count.
284   bool IncrementIndex;
285 };
286 } // namespace
287 
288 static FilterResult checkSectionFilter(object::SectionRef S) {
289   if (FilterSections.empty())
290     return {/*Keep=*/true, /*IncrementIndex=*/true};
291 
292   Expected<StringRef> SecNameOrErr = S.getName();
293   if (!SecNameOrErr) {
294     consumeError(SecNameOrErr.takeError());
295     return {/*Keep=*/false, /*IncrementIndex=*/false};
296   }
297   StringRef SecName = *SecNameOrErr;
298 
299   // StringSet does not allow empty key so avoid adding sections with
300   // no name (such as the section with index 0) here.
301   if (!SecName.empty())
302     FoundSectionSet.insert(SecName);
303 
304   // Only show the section if it's in the FilterSections list, but always
305   // increment so the indexing is stable.
306   return {/*Keep=*/is_contained(FilterSections, SecName),
307           /*IncrementIndex=*/true};
308 }
309 
310 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
311                                          uint64_t *Idx) {
312   // Start at UINT64_MAX so that the first index returned after an increment is
313   // zero (after the unsigned wrap).
314   if (Idx)
315     *Idx = UINT64_MAX;
316   return SectionFilter(
317       [Idx](object::SectionRef S) {
318         FilterResult Result = checkSectionFilter(S);
319         if (Idx != nullptr && Result.IncrementIndex)
320           *Idx += 1;
321         return Result.Keep;
322       },
323       O);
324 }
325 
326 std::string objdump::getFileNameForError(const object::Archive::Child &C,
327                                          unsigned Index) {
328   Expected<StringRef> NameOrErr = C.getName();
329   if (NameOrErr)
330     return std::string(NameOrErr.get());
331   // If we have an error getting the name then we print the index of the archive
332   // member. Since we are already in an error state, we just ignore this error.
333   consumeError(NameOrErr.takeError());
334   return "<file index: " + std::to_string(Index) + ">";
335 }
336 
337 void objdump::reportWarning(const Twine &Message, StringRef File) {
338   // Output order between errs() and outs() matters especially for archive
339   // files where the output is per member object.
340   outs().flush();
341   WithColor::warning(errs(), ToolName)
342       << "'" << File << "': " << Message << "\n";
343 }
344 
345 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
346   outs().flush();
347   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
348   exit(1);
349 }
350 
351 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
352                                        StringRef ArchiveName,
353                                        StringRef ArchitectureName) {
354   assert(E);
355   outs().flush();
356   WithColor::error(errs(), ToolName);
357   if (ArchiveName != "")
358     errs() << ArchiveName << "(" << FileName << ")";
359   else
360     errs() << "'" << FileName << "'";
361   if (!ArchitectureName.empty())
362     errs() << " (for architecture " << ArchitectureName << ")";
363   errs() << ": ";
364   logAllUnhandledErrors(std::move(E), errs());
365   exit(1);
366 }
367 
368 static void reportCmdLineWarning(const Twine &Message) {
369   WithColor::warning(errs(), ToolName) << Message << "\n";
370 }
371 
372 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
373   WithColor::error(errs(), ToolName) << Message << "\n";
374   exit(1);
375 }
376 
377 static void warnOnNoMatchForSections() {
378   SetVector<StringRef> MissingSections;
379   for (StringRef S : FilterSections) {
380     if (FoundSectionSet.count(S))
381       return;
382     // User may specify a unnamed section. Don't warn for it.
383     if (!S.empty())
384       MissingSections.insert(S);
385   }
386 
387   // Warn only if no section in FilterSections is matched.
388   for (StringRef S : MissingSections)
389     reportCmdLineWarning("section '" + S +
390                          "' mentioned in a -j/--section option, but not "
391                          "found in any input file");
392 }
393 
394 static const Target *getTarget(const ObjectFile *Obj) {
395   // Figure out the target triple.
396   Triple TheTriple("unknown-unknown-unknown");
397   if (TripleName.empty()) {
398     TheTriple = Obj->makeTriple();
399   } else {
400     TheTriple.setTriple(Triple::normalize(TripleName));
401     auto Arch = Obj->getArch();
402     if (Arch == Triple::arm || Arch == Triple::armeb)
403       Obj->setARMSubArch(TheTriple);
404   }
405 
406   // Get the target specific parser.
407   std::string Error;
408   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
409                                                          Error);
410   if (!TheTarget)
411     reportError(Obj->getFileName(), "can't find target: " + Error);
412 
413   // Update the triple name and return the found target.
414   TripleName = TheTriple.getTriple();
415   return TheTarget;
416 }
417 
418 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
419   return A.getOffset() < B.getOffset();
420 }
421 
422 static Error getRelocationValueString(const RelocationRef &Rel,
423                                       SmallVectorImpl<char> &Result) {
424   const ObjectFile *Obj = Rel.getObject();
425   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
426     return getELFRelocationValueString(ELF, Rel, Result);
427   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
428     return getCOFFRelocationValueString(COFF, Rel, Result);
429   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
430     return getWasmRelocationValueString(Wasm, Rel, Result);
431   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
432     return getMachORelocationValueString(MachO, Rel, Result);
433   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
434     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
435   llvm_unreachable("unknown object file format");
436 }
437 
438 /// Indicates whether this relocation should hidden when listing
439 /// relocations, usually because it is the trailing part of a multipart
440 /// relocation that will be printed as part of the leading relocation.
441 static bool getHidden(RelocationRef RelRef) {
442   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
443   if (!MachO)
444     return false;
445 
446   unsigned Arch = MachO->getArch();
447   DataRefImpl Rel = RelRef.getRawDataRefImpl();
448   uint64_t Type = MachO->getRelocationType(Rel);
449 
450   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
451   // is always hidden.
452   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
453     return Type == MachO::GENERIC_RELOC_PAIR;
454 
455   if (Arch == Triple::x86_64) {
456     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
457     // an X86_64_RELOC_SUBTRACTOR.
458     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
459       DataRefImpl RelPrev = Rel;
460       RelPrev.d.a--;
461       uint64_t PrevType = MachO->getRelocationType(RelPrev);
462       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
463         return true;
464     }
465   }
466 
467   return false;
468 }
469 
470 /// Get the column at which we want to start printing the instruction
471 /// disassembly, taking into account anything which appears to the left of it.
472 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
473   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
474 }
475 
476 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
477                                    raw_ostream &OS) {
478   // The output of printInst starts with a tab. Print some spaces so that
479   // the tab has 1 column and advances to the target tab stop.
480   unsigned TabStop = getInstStartColumn(STI);
481   unsigned Column = OS.tell() - Start;
482   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
483 }
484 
485 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
486                            formatted_raw_ostream &OS,
487                            MCSubtargetInfo const &STI) {
488   size_t Start = OS.tell();
489   if (LeadingAddr)
490     OS << format("%8" PRIx64 ":", Address);
491   if (ShowRawInsn) {
492     OS << ' ';
493     dumpBytes(Bytes, OS);
494   }
495   AlignToInstStartColumn(Start, STI, OS);
496 }
497 
498 namespace {
499 
500 static bool isAArch64Elf(const ObjectFile &Obj) {
501   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
502   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
503 }
504 
505 static bool isArmElf(const ObjectFile &Obj) {
506   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
507   return Elf && Elf->getEMachine() == ELF::EM_ARM;
508 }
509 
510 static bool isCSKYElf(const ObjectFile &Obj) {
511   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
512   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
513 }
514 
515 static bool hasMappingSymbols(const ObjectFile &Obj) {
516   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
517 }
518 
519 static bool isMappingSymbol(const SymbolInfoTy &Sym) {
520   return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") ||
521          Sym.Name.startswith("$a") || Sym.Name.startswith("$t");
522 }
523 
524 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
525                             const RelocationRef &Rel, uint64_t Address,
526                             bool Is64Bits) {
527   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
528   SmallString<16> Name;
529   SmallString<32> Val;
530   Rel.getTypeName(Name);
531   if (Error E = getRelocationValueString(Rel, Val))
532     reportError(std::move(E), FileName);
533   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
534   if (LeadingAddr)
535     OS << format(Fmt.data(), Address);
536   OS << Name << "\t" << Val;
537 }
538 
539 class PrettyPrinter {
540 public:
541   virtual ~PrettyPrinter() = default;
542   virtual void
543   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
544             object::SectionedAddress Address, formatted_raw_ostream &OS,
545             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
546             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
547             LiveVariablePrinter &LVP) {
548     if (SP && (PrintSource || PrintLines))
549       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
550     LVP.printBetweenInsts(OS, false);
551 
552     printRawData(Bytes, Address.Address, OS, STI);
553 
554     if (MI) {
555       // See MCInstPrinter::printInst. On targets where a PC relative immediate
556       // is relative to the next instruction and the length of a MCInst is
557       // difficult to measure (x86), this is the address of the next
558       // instruction.
559       uint64_t Addr =
560           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
561       IP.printInst(MI, Addr, "", STI, OS);
562     } else
563       OS << "\t<unknown>";
564   }
565 };
566 PrettyPrinter PrettyPrinterInst;
567 
568 class HexagonPrettyPrinter : public PrettyPrinter {
569 public:
570   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
571                  formatted_raw_ostream &OS) {
572     uint32_t opcode =
573       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
574     if (LeadingAddr)
575       OS << format("%8" PRIx64 ":", Address);
576     if (ShowRawInsn) {
577       OS << "\t";
578       dumpBytes(Bytes.slice(0, 4), OS);
579       OS << format("\t%08" PRIx32, opcode);
580     }
581   }
582   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
583                  object::SectionedAddress Address, formatted_raw_ostream &OS,
584                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
585                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
586                  LiveVariablePrinter &LVP) override {
587     if (SP && (PrintSource || PrintLines))
588       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
589     if (!MI) {
590       printLead(Bytes, Address.Address, OS);
591       OS << " <unknown>";
592       return;
593     }
594     std::string Buffer;
595     {
596       raw_string_ostream TempStream(Buffer);
597       IP.printInst(MI, Address.Address, "", STI, TempStream);
598     }
599     StringRef Contents(Buffer);
600     // Split off bundle attributes
601     auto PacketBundle = Contents.rsplit('\n');
602     // Split off first instruction from the rest
603     auto HeadTail = PacketBundle.first.split('\n');
604     auto Preamble = " { ";
605     auto Separator = "";
606 
607     // Hexagon's packets require relocations to be inline rather than
608     // clustered at the end of the packet.
609     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
610     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
611     auto PrintReloc = [&]() -> void {
612       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
613         if (RelCur->getOffset() == Address.Address) {
614           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
615           return;
616         }
617         ++RelCur;
618       }
619     };
620 
621     while (!HeadTail.first.empty()) {
622       OS << Separator;
623       Separator = "\n";
624       if (SP && (PrintSource || PrintLines))
625         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
626       printLead(Bytes, Address.Address, OS);
627       OS << Preamble;
628       Preamble = "   ";
629       StringRef Inst;
630       auto Duplex = HeadTail.first.split('\v');
631       if (!Duplex.second.empty()) {
632         OS << Duplex.first;
633         OS << "; ";
634         Inst = Duplex.second;
635       }
636       else
637         Inst = HeadTail.first;
638       OS << Inst;
639       HeadTail = HeadTail.second.split('\n');
640       if (HeadTail.first.empty())
641         OS << " } " << PacketBundle.second;
642       PrintReloc();
643       Bytes = Bytes.slice(4);
644       Address.Address += 4;
645     }
646   }
647 };
648 HexagonPrettyPrinter HexagonPrettyPrinterInst;
649 
650 class AMDGCNPrettyPrinter : public PrettyPrinter {
651 public:
652   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
653                  object::SectionedAddress Address, formatted_raw_ostream &OS,
654                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
655                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
656                  LiveVariablePrinter &LVP) override {
657     if (SP && (PrintSource || PrintLines))
658       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
659 
660     if (MI) {
661       SmallString<40> InstStr;
662       raw_svector_ostream IS(InstStr);
663 
664       IP.printInst(MI, Address.Address, "", STI, IS);
665 
666       OS << left_justify(IS.str(), 60);
667     } else {
668       // an unrecognized encoding - this is probably data so represent it
669       // using the .long directive, or .byte directive if fewer than 4 bytes
670       // remaining
671       if (Bytes.size() >= 4) {
672         OS << format("\t.long 0x%08" PRIx32 " ",
673                      support::endian::read32<support::little>(Bytes.data()));
674         OS.indent(42);
675       } else {
676           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
677           for (unsigned int i = 1; i < Bytes.size(); i++)
678             OS << format(", 0x%02" PRIx8, Bytes[i]);
679           OS.indent(55 - (6 * Bytes.size()));
680       }
681     }
682 
683     OS << format("// %012" PRIX64 ":", Address.Address);
684     if (Bytes.size() >= 4) {
685       // D should be casted to uint32_t here as it is passed by format to
686       // snprintf as vararg.
687       for (uint32_t D :
688            ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
689                     Bytes.size() / 4))
690           OS << format(" %08" PRIX32, D);
691     } else {
692       for (unsigned char B : Bytes)
693         OS << format(" %02" PRIX8, B);
694     }
695 
696     if (!Annot.empty())
697       OS << " // " << Annot;
698   }
699 };
700 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
701 
702 class BPFPrettyPrinter : public PrettyPrinter {
703 public:
704   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
705                  object::SectionedAddress Address, formatted_raw_ostream &OS,
706                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
707                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
708                  LiveVariablePrinter &LVP) override {
709     if (SP && (PrintSource || PrintLines))
710       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
711     if (LeadingAddr)
712       OS << format("%8" PRId64 ":", Address.Address / 8);
713     if (ShowRawInsn) {
714       OS << "\t";
715       dumpBytes(Bytes, OS);
716     }
717     if (MI)
718       IP.printInst(MI, Address.Address, "", STI, OS);
719     else
720       OS << "\t<unknown>";
721   }
722 };
723 BPFPrettyPrinter BPFPrettyPrinterInst;
724 
725 class ARMPrettyPrinter : public PrettyPrinter {
726 public:
727   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
728                  object::SectionedAddress Address, formatted_raw_ostream &OS,
729                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
730                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
731                  LiveVariablePrinter &LVP) override {
732     if (SP && (PrintSource || PrintLines))
733       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
734     LVP.printBetweenInsts(OS, false);
735 
736     size_t Start = OS.tell();
737     if (LeadingAddr)
738       OS << format("%8" PRIx64 ":", Address.Address);
739     if (ShowRawInsn) {
740       size_t Pos = 0, End = Bytes.size();
741       if (STI.checkFeatures("+thumb-mode")) {
742         for (; Pos + 2 <= End; Pos += 2)
743           OS << ' '
744              << format_hex_no_prefix(
745                     llvm::support::endian::read<uint16_t>(
746                         Bytes.data() + Pos, InstructionEndianness),
747                     4);
748       } else {
749         for (; Pos + 4 <= End; Pos += 4)
750           OS << ' '
751              << format_hex_no_prefix(
752                     llvm::support::endian::read<uint32_t>(
753                         Bytes.data() + Pos, InstructionEndianness),
754                     8);
755       }
756       if (Pos < End) {
757         OS << ' ';
758         dumpBytes(Bytes.slice(Pos), OS);
759       }
760     }
761 
762     AlignToInstStartColumn(Start, STI, OS);
763 
764     if (MI) {
765       IP.printInst(MI, Address.Address, "", STI, OS);
766     } else
767       OS << "\t<unknown>";
768   }
769 
770   void setInstructionEndianness(llvm::support::endianness Endianness) {
771     InstructionEndianness = Endianness;
772   }
773 
774 private:
775   llvm::support::endianness InstructionEndianness = llvm::support::little;
776 };
777 ARMPrettyPrinter ARMPrettyPrinterInst;
778 
779 class AArch64PrettyPrinter : public PrettyPrinter {
780 public:
781   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
782                  object::SectionedAddress Address, formatted_raw_ostream &OS,
783                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
784                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
785                  LiveVariablePrinter &LVP) override {
786     if (SP && (PrintSource || PrintLines))
787       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
788     LVP.printBetweenInsts(OS, false);
789 
790     size_t Start = OS.tell();
791     if (LeadingAddr)
792       OS << format("%8" PRIx64 ":", Address.Address);
793     if (ShowRawInsn) {
794       size_t Pos = 0, End = Bytes.size();
795       for (; Pos + 4 <= End; Pos += 4)
796         OS << ' '
797            << format_hex_no_prefix(
798                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
799                                                         llvm::support::little),
800                   8);
801       if (Pos < End) {
802         OS << ' ';
803         dumpBytes(Bytes.slice(Pos), OS);
804       }
805     }
806 
807     AlignToInstStartColumn(Start, STI, OS);
808 
809     if (MI) {
810       IP.printInst(MI, Address.Address, "", STI, OS);
811     } else
812       OS << "\t<unknown>";
813   }
814 };
815 AArch64PrettyPrinter AArch64PrettyPrinterInst;
816 
817 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
818   switch(Triple.getArch()) {
819   default:
820     return PrettyPrinterInst;
821   case Triple::hexagon:
822     return HexagonPrettyPrinterInst;
823   case Triple::amdgcn:
824     return AMDGCNPrettyPrinterInst;
825   case Triple::bpfel:
826   case Triple::bpfeb:
827     return BPFPrettyPrinterInst;
828   case Triple::arm:
829   case Triple::armeb:
830   case Triple::thumb:
831   case Triple::thumbeb:
832     return ARMPrettyPrinterInst;
833   case Triple::aarch64:
834   case Triple::aarch64_be:
835   case Triple::aarch64_32:
836     return AArch64PrettyPrinterInst;
837   }
838 }
839 
840 class DisassemblerTarget {
841 public:
842   const Target *TheTarget;
843   std::unique_ptr<const MCSubtargetInfo> SubtargetInfo;
844   std::shared_ptr<MCContext> Context;
845   std::unique_ptr<MCDisassembler> DisAsm;
846   std::shared_ptr<const MCInstrAnalysis> InstrAnalysis;
847   std::shared_ptr<MCInstPrinter> InstPrinter;
848   PrettyPrinter *Printer;
849 
850   DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
851                      StringRef TripleName, StringRef MCPU,
852                      SubtargetFeatures &Features);
853   DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features);
854 
855 private:
856   MCTargetOptions Options;
857   std::shared_ptr<const MCRegisterInfo> RegisterInfo;
858   std::shared_ptr<const MCAsmInfo> AsmInfo;
859   std::shared_ptr<const MCInstrInfo> InstrInfo;
860   std::shared_ptr<MCObjectFileInfo> ObjectFileInfo;
861 };
862 
863 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
864                                        StringRef TripleName, StringRef MCPU,
865                                        SubtargetFeatures &Features)
866     : TheTarget(TheTarget),
867       Printer(&selectPrettyPrinter(Triple(TripleName))),
868       RegisterInfo(TheTarget->createMCRegInfo(TripleName)) {
869   if (!RegisterInfo)
870     reportError(Obj.getFileName(), "no register info for target " + TripleName);
871 
872   // Set up disassembler.
873   AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options));
874   if (!AsmInfo)
875     reportError(Obj.getFileName(), "no assembly info for target " + TripleName);
876 
877   SubtargetInfo.reset(
878       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
879   if (!SubtargetInfo)
880     reportError(Obj.getFileName(),
881                 "no subtarget info for target " + TripleName);
882   InstrInfo.reset(TheTarget->createMCInstrInfo());
883   if (!InstrInfo)
884     reportError(Obj.getFileName(),
885                 "no instruction info for target " + TripleName);
886   Context =
887       std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(),
888                                   RegisterInfo.get(), SubtargetInfo.get());
889 
890   // FIXME: for now initialize MCObjectFileInfo with default values
891   ObjectFileInfo.reset(
892       TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false));
893   Context->setObjectFileInfo(ObjectFileInfo.get());
894 
895   DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context));
896   if (!DisAsm)
897     reportError(Obj.getFileName(), "no disassembler for target " + TripleName);
898 
899   InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
900 
901   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
902   InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName),
903                                                    AsmPrinterVariant, *AsmInfo,
904                                                    *InstrInfo, *RegisterInfo));
905   if (!InstPrinter)
906     reportError(Obj.getFileName(),
907                 "no instruction printer for target " + TripleName);
908   InstPrinter->setPrintImmHex(PrintImmHex);
909   InstPrinter->setPrintBranchImmAsAddress(true);
910   InstPrinter->setSymbolizeOperands(SymbolizeOperands);
911   InstPrinter->setMCInstrAnalysis(InstrAnalysis.get());
912 }
913 
914 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other,
915                                        SubtargetFeatures &Features)
916     : TheTarget(Other.TheTarget),
917       SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
918                                                      Features.getString())),
919       Context(Other.Context),
920       DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)),
921       InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter),
922       Printer(Other.Printer), RegisterInfo(Other.RegisterInfo),
923       AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo),
924       ObjectFileInfo(Other.ObjectFileInfo) {}
925 } // namespace
926 
927 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
928   assert(Obj.isELF());
929   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
930     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
931                          Obj.getFileName())
932         ->getType();
933   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
934     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
935                          Obj.getFileName())
936         ->getType();
937   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
938     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
939                          Obj.getFileName())
940         ->getType();
941   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
942     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
943                          Obj.getFileName())
944         ->getType();
945   llvm_unreachable("Unsupported binary format");
946 }
947 
948 template <class ELFT>
949 static void
950 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
951                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
952   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
953     uint8_t SymbolType = Symbol.getELFType();
954     if (SymbolType == ELF::STT_SECTION)
955       continue;
956 
957     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
958     // ELFSymbolRef::getAddress() returns size instead of value for common
959     // symbols which is not desirable for disassembly output. Overriding.
960     if (SymbolType == ELF::STT_COMMON)
961       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
962                               Obj.getFileName())
963                     ->st_value;
964 
965     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
966     if (Name.empty())
967       continue;
968 
969     section_iterator SecI =
970         unwrapOrError(Symbol.getSection(), Obj.getFileName());
971     if (SecI == Obj.section_end())
972       continue;
973 
974     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
975   }
976 }
977 
978 static void
979 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
980                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
981   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
982     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
983   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
984     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
985   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
986     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
987   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
988     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
989   else
990     llvm_unreachable("Unsupported binary format");
991 }
992 
993 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
994   for (auto SecI : Obj.sections()) {
995     const WasmSection &Section = Obj.getWasmSection(SecI);
996     if (Section.Type == wasm::WASM_SEC_CODE)
997       return SecI;
998   }
999   return std::nullopt;
1000 }
1001 
1002 static void
1003 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
1004                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1005   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
1006   if (!Section)
1007     return;
1008   SectionSymbolsTy &Symbols = AllSymbols[*Section];
1009 
1010   std::set<uint64_t> SymbolAddresses;
1011   for (const auto &Sym : Symbols)
1012     SymbolAddresses.insert(Sym.Addr);
1013 
1014   for (const wasm::WasmFunction &Function : Obj.functions()) {
1015     uint64_t Address = Function.CodeSectionOffset;
1016     // Only add fallback symbols for functions not already present in the symbol
1017     // table.
1018     if (SymbolAddresses.count(Address))
1019       continue;
1020     // This function has no symbol, so it should have no SymbolName.
1021     assert(Function.SymbolName.empty());
1022     // We use DebugName for the name, though it may be empty if there is no
1023     // "name" custom section, or that section is missing a name for this
1024     // function.
1025     StringRef Name = Function.DebugName;
1026     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
1027   }
1028 }
1029 
1030 static void addPltEntries(const ObjectFile &Obj,
1031                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1032                           StringSaver &Saver) {
1033   auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
1034   if (!ElfObj)
1035     return;
1036   DenseMap<StringRef, SectionRef> Sections;
1037   for (SectionRef Section : Obj.sections()) {
1038     Expected<StringRef> SecNameOrErr = Section.getName();
1039     if (!SecNameOrErr) {
1040       consumeError(SecNameOrErr.takeError());
1041       continue;
1042     }
1043     Sections[*SecNameOrErr] = Section;
1044   }
1045   for (auto Plt : ElfObj->getPltEntries()) {
1046     if (Plt.Symbol) {
1047       SymbolRef Symbol(*Plt.Symbol, ElfObj);
1048       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1049       if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1050         if (!NameOrErr->empty())
1051           AllSymbols[Sections[Plt.Section]].emplace_back(
1052               Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
1053         continue;
1054       } else {
1055         // The warning has been reported in disassembleObject().
1056         consumeError(NameOrErr.takeError());
1057       }
1058     }
1059     reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
1060                       " references an invalid symbol",
1061                   Obj.getFileName());
1062   }
1063 }
1064 
1065 // Normally the disassembly output will skip blocks of zeroes. This function
1066 // returns the number of zero bytes that can be skipped when dumping the
1067 // disassembly of the instructions in Buf.
1068 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1069   // Find the number of leading zeroes.
1070   size_t N = 0;
1071   while (N < Buf.size() && !Buf[N])
1072     ++N;
1073 
1074   // We may want to skip blocks of zero bytes, but unless we see
1075   // at least 8 of them in a row.
1076   if (N < 8)
1077     return 0;
1078 
1079   // We skip zeroes in multiples of 4 because do not want to truncate an
1080   // instruction if it starts with a zero byte.
1081   return N & ~0x3;
1082 }
1083 
1084 // Returns a map from sections to their relocations.
1085 static std::map<SectionRef, std::vector<RelocationRef>>
1086 getRelocsMap(object::ObjectFile const &Obj) {
1087   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1088   uint64_t I = (uint64_t)-1;
1089   for (SectionRef Sec : Obj.sections()) {
1090     ++I;
1091     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1092     if (!RelocatedOrErr)
1093       reportError(Obj.getFileName(),
1094                   "section (" + Twine(I) +
1095                       "): failed to get a relocated section: " +
1096                       toString(RelocatedOrErr.takeError()));
1097 
1098     section_iterator Relocated = *RelocatedOrErr;
1099     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1100       continue;
1101     std::vector<RelocationRef> &V = Ret[*Relocated];
1102     append_range(V, Sec.relocations());
1103     // Sort relocations by address.
1104     llvm::stable_sort(V, isRelocAddressLess);
1105   }
1106   return Ret;
1107 }
1108 
1109 // Used for --adjust-vma to check if address should be adjusted by the
1110 // specified value for a given section.
1111 // For ELF we do not adjust non-allocatable sections like debug ones,
1112 // because they are not loadable.
1113 // TODO: implement for other file formats.
1114 static bool shouldAdjustVA(const SectionRef &Section) {
1115   const ObjectFile *Obj = Section.getObject();
1116   if (Obj->isELF())
1117     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1118   return false;
1119 }
1120 
1121 
1122 typedef std::pair<uint64_t, char> MappingSymbolPair;
1123 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1124                                  uint64_t Address) {
1125   auto It =
1126       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1127         return Val.first <= Address;
1128       });
1129   // Return zero for any address before the first mapping symbol; this means
1130   // we should use the default disassembly mode, depending on the target.
1131   if (It == MappingSymbols.begin())
1132     return '\x00';
1133   return (It - 1)->second;
1134 }
1135 
1136 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1137                                uint64_t End, const ObjectFile &Obj,
1138                                ArrayRef<uint8_t> Bytes,
1139                                ArrayRef<MappingSymbolPair> MappingSymbols,
1140                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1141   support::endianness Endian =
1142       Obj.isLittleEndian() ? support::little : support::big;
1143   size_t Start = OS.tell();
1144   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1145   if (Index + 4 <= End) {
1146     dumpBytes(Bytes.slice(Index, 4), OS);
1147     AlignToInstStartColumn(Start, STI, OS);
1148     OS << "\t.word\t"
1149            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1150                          10);
1151     return 4;
1152   }
1153   if (Index + 2 <= End) {
1154     dumpBytes(Bytes.slice(Index, 2), OS);
1155     AlignToInstStartColumn(Start, STI, OS);
1156     OS << "\t.short\t"
1157        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1158     return 2;
1159   }
1160   dumpBytes(Bytes.slice(Index, 1), OS);
1161   AlignToInstStartColumn(Start, STI, OS);
1162   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1163   return 1;
1164 }
1165 
1166 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1167                         ArrayRef<uint8_t> Bytes) {
1168   // print out data up to 8 bytes at a time in hex and ascii
1169   uint8_t AsciiData[9] = {'\0'};
1170   uint8_t Byte;
1171   int NumBytes = 0;
1172 
1173   for (; Index < End; ++Index) {
1174     if (NumBytes == 0)
1175       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1176     Byte = Bytes.slice(Index)[0];
1177     outs() << format(" %02x", Byte);
1178     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1179 
1180     uint8_t IndentOffset = 0;
1181     NumBytes++;
1182     if (Index == End - 1 || NumBytes > 8) {
1183       // Indent the space for less than 8 bytes data.
1184       // 2 spaces for byte and one for space between bytes
1185       IndentOffset = 3 * (8 - NumBytes);
1186       for (int Excess = NumBytes; Excess < 8; Excess++)
1187         AsciiData[Excess] = '\0';
1188       NumBytes = 8;
1189     }
1190     if (NumBytes == 8) {
1191       AsciiData[8] = '\0';
1192       outs() << std::string(IndentOffset, ' ') << "         ";
1193       outs() << reinterpret_cast<char *>(AsciiData);
1194       outs() << '\n';
1195       NumBytes = 0;
1196     }
1197   }
1198 }
1199 
1200 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1201                                        const SymbolRef &Symbol) {
1202   const StringRef FileName = Obj.getFileName();
1203   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1204   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1205 
1206   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1207     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1208     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1209 
1210     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1211     std::optional<XCOFF::StorageMappingClass> Smc =
1212         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1213     return SymbolInfoTy(Smc, Addr, Name, SymbolIndex,
1214                         isLabel(XCOFFObj, Symbol));
1215   } else if (Obj.isXCOFF()) {
1216     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1217     return SymbolInfoTy(Addr, Name, SymType, true);
1218   } else
1219     return SymbolInfoTy(Addr, Name,
1220                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1221                                     : (uint8_t)ELF::STT_NOTYPE);
1222 }
1223 
1224 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1225                                           const uint64_t Addr, StringRef &Name,
1226                                           uint8_t Type) {
1227   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1228     return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false);
1229   else
1230     return SymbolInfoTy(Addr, Name, Type);
1231 }
1232 
1233 static void
1234 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1235                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1236                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1237   if (AddrToBBAddrMap.empty())
1238     return;
1239   Labels.clear();
1240   uint64_t StartAddress = SectionAddr + Start;
1241   uint64_t EndAddress = SectionAddr + End;
1242   auto Iter = AddrToBBAddrMap.find(StartAddress);
1243   if (Iter == AddrToBBAddrMap.end())
1244     return;
1245   for (const BBAddrMap::BBEntry &BBEntry : Iter->second.BBEntries) {
1246     uint64_t BBAddress = BBEntry.Offset + Iter->second.Addr;
1247     if (BBAddress >= EndAddress)
1248       continue;
1249     Labels[BBAddress].push_back(("BB" + Twine(BBEntry.ID)).str());
1250   }
1251 }
1252 
1253 static void collectLocalBranchTargets(
1254     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1255     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1256     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1257   // So far only supports PowerPC and X86.
1258   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1259     return;
1260 
1261   Labels.clear();
1262   unsigned LabelCount = 0;
1263   Start += SectionAddr;
1264   End += SectionAddr;
1265   uint64_t Index = Start;
1266   while (Index < End) {
1267     // Disassemble a real instruction and record function-local branch labels.
1268     MCInst Inst;
1269     uint64_t Size;
1270     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1271     bool Disassembled =
1272         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1273     if (Size == 0)
1274       Size = std::min<uint64_t>(ThisBytes.size(),
1275                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1276 
1277     if (Disassembled && MIA) {
1278       uint64_t Target;
1279       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1280       // On PowerPC, if the address of a branch is the same as the target, it
1281       // means that it's a function call. Do not mark the label for this case.
1282       if (TargetKnown && (Target >= Start && Target < End) &&
1283           !Labels.count(Target) &&
1284           !(STI->getTargetTriple().isPPC() && Target == Index))
1285         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1286     }
1287     Index += Size;
1288   }
1289 }
1290 
1291 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1292 // This is currently only used on AMDGPU, and assumes the format of the
1293 // void * argument passed to AMDGPU's createMCSymbolizer.
1294 static void addSymbolizer(
1295     MCContext &Ctx, const Target *Target, StringRef TripleName,
1296     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1297     SectionSymbolsTy &Symbols,
1298     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1299 
1300   std::unique_ptr<MCRelocationInfo> RelInfo(
1301       Target->createMCRelocationInfo(TripleName, Ctx));
1302   if (!RelInfo)
1303     return;
1304   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1305       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1306   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1307   DisAsm->setSymbolizer(std::move(Symbolizer));
1308 
1309   if (!SymbolizeOperands)
1310     return;
1311 
1312   // Synthesize labels referenced by branch instructions by
1313   // disassembling, discarding the output, and collecting the referenced
1314   // addresses from the symbolizer.
1315   for (size_t Index = 0; Index != Bytes.size();) {
1316     MCInst Inst;
1317     uint64_t Size;
1318     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1319     const uint64_t ThisAddr = SectionAddr + Index;
1320     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1321     if (Size == 0)
1322       Size = std::min<uint64_t>(ThisBytes.size(),
1323                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1324     Index += Size;
1325   }
1326   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1327   // Copy and sort to remove duplicates.
1328   std::vector<uint64_t> LabelAddrs;
1329   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1330                     LabelAddrsRef.end());
1331   llvm::sort(LabelAddrs);
1332   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1333                     LabelAddrs.begin());
1334   // Add the labels.
1335   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1336     auto Name = std::make_unique<std::string>();
1337     *Name = (Twine("L") + Twine(LabelNum)).str();
1338     SynthesizedLabelNames.push_back(std::move(Name));
1339     Symbols.push_back(SymbolInfoTy(
1340         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1341   }
1342   llvm::stable_sort(Symbols);
1343   // Recreate the symbolizer with the new symbols list.
1344   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1345   Symbolizer.reset(Target->createMCSymbolizer(
1346       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1347   DisAsm->setSymbolizer(std::move(Symbolizer));
1348 }
1349 
1350 static StringRef getSegmentName(const MachOObjectFile *MachO,
1351                                 const SectionRef &Section) {
1352   if (MachO) {
1353     DataRefImpl DR = Section.getRawDataRefImpl();
1354     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1355     return SegmentName;
1356   }
1357   return "";
1358 }
1359 
1360 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1361                                     const MCAsmInfo &MAI,
1362                                     const MCSubtargetInfo &STI,
1363                                     StringRef Comments,
1364                                     LiveVariablePrinter &LVP) {
1365   do {
1366     if (!Comments.empty()) {
1367       // Emit a line of comments.
1368       StringRef Comment;
1369       std::tie(Comment, Comments) = Comments.split('\n');
1370       // MAI.getCommentColumn() assumes that instructions are printed at the
1371       // position of 8, while getInstStartColumn() returns the actual position.
1372       unsigned CommentColumn =
1373           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1374       FOS.PadToColumn(CommentColumn);
1375       FOS << MAI.getCommentString() << ' ' << Comment;
1376     }
1377     LVP.printAfterInst(FOS);
1378     FOS << '\n';
1379   } while (!Comments.empty());
1380   FOS.flush();
1381 }
1382 
1383 static void createFakeELFSections(ObjectFile &Obj) {
1384   assert(Obj.isELF());
1385   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1386     Elf32LEObj->createFakeSections();
1387   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1388     Elf64LEObj->createFakeSections();
1389   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1390     Elf32BEObj->createFakeSections();
1391   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1392     Elf64BEObj->createFakeSections();
1393   else
1394     llvm_unreachable("Unsupported binary format");
1395 }
1396 
1397 // Tries to fetch a more complete version of the given object file using its
1398 // Build ID. Returns std::nullopt if nothing was found.
1399 static std::optional<OwningBinary<Binary>>
1400 fetchBinaryByBuildID(const ObjectFile &Obj) {
1401   object::BuildIDRef BuildID = getBuildID(&Obj);
1402   if (BuildID.empty())
1403     return std::nullopt;
1404   std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1405   if (!Path)
1406     return std::nullopt;
1407   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1408   if (!DebugBinary) {
1409     reportWarning(toString(DebugBinary.takeError()), *Path);
1410     return std::nullopt;
1411   }
1412   return std::move(*DebugBinary);
1413 }
1414 
1415 static void
1416 disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1417                   const ObjectFile &DbgObj, MCContext &Ctx,
1418                   MCDisassembler *PrimaryDisAsm,
1419                   std::optional<DisassemblerTarget> &SecondaryTarget,
1420                   const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1421                   const MCSubtargetInfo *PrimarySTI, PrettyPrinter &PIP,
1422                   SourcePrinter &SP, bool InlineRelocs) {
1423   const MCSubtargetInfo *STI = PrimarySTI;
1424   MCDisassembler *DisAsm = PrimaryDisAsm;
1425   bool PrimaryIsThumb = false;
1426   if (isArmElf(Obj))
1427     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1428 
1429   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1430   if (InlineRelocs)
1431     RelocMap = getRelocsMap(Obj);
1432   bool Is64Bits = Obj.getBytesInAddress() > 4;
1433 
1434   // Create a mapping from virtual address to symbol name.  This is used to
1435   // pretty print the symbols while disassembling.
1436   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1437   SectionSymbolsTy AbsoluteSymbols;
1438   const StringRef FileName = Obj.getFileName();
1439   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1440   for (const SymbolRef &Symbol : Obj.symbols()) {
1441     Expected<StringRef> NameOrErr = Symbol.getName();
1442     if (!NameOrErr) {
1443       reportWarning(toString(NameOrErr.takeError()), FileName);
1444       continue;
1445     }
1446     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1447       continue;
1448 
1449     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1450       continue;
1451 
1452     if (MachO) {
1453       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1454       // symbols that support MachO header introspection. They do not bind to
1455       // code locations and are irrelevant for disassembly.
1456       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1457         continue;
1458       // Don't ask a Mach-O STAB symbol for its section unless you know that
1459       // STAB symbol's section field refers to a valid section index. Otherwise
1460       // the symbol may error trying to load a section that does not exist.
1461       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1462       uint8_t NType = (MachO->is64Bit() ?
1463                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1464                        MachO->getSymbolTableEntry(SymDRI).n_type);
1465       if (NType & MachO::N_STAB)
1466         continue;
1467     }
1468 
1469     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1470     if (SecI != Obj.section_end())
1471       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1472     else
1473       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1474   }
1475 
1476   if (AllSymbols.empty() && Obj.isELF())
1477     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1478 
1479   if (Obj.isWasm())
1480     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1481 
1482   if (Obj.isELF() && Obj.sections().empty())
1483     createFakeELFSections(Obj);
1484 
1485   BumpPtrAllocator A;
1486   StringSaver Saver(A);
1487   addPltEntries(Obj, AllSymbols, Saver);
1488 
1489   // Create a mapping from virtual address to section. An empty section can
1490   // cause more than one section at the same address. Sort such sections to be
1491   // before same-addressed non-empty sections so that symbol lookups prefer the
1492   // non-empty section.
1493   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1494   for (SectionRef Sec : Obj.sections())
1495     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1496   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1497     if (LHS.first != RHS.first)
1498       return LHS.first < RHS.first;
1499     return LHS.second.getSize() < RHS.second.getSize();
1500   });
1501 
1502   // Linked executables (.exe and .dll files) typically don't include a real
1503   // symbol table but they might contain an export table.
1504   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1505     for (const auto &ExportEntry : COFFObj->export_directories()) {
1506       StringRef Name;
1507       if (Error E = ExportEntry.getSymbolName(Name))
1508         reportError(std::move(E), Obj.getFileName());
1509       if (Name.empty())
1510         continue;
1511 
1512       uint32_t RVA;
1513       if (Error E = ExportEntry.getExportRVA(RVA))
1514         reportError(std::move(E), Obj.getFileName());
1515 
1516       uint64_t VA = COFFObj->getImageBase() + RVA;
1517       auto Sec = partition_point(
1518           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1519             return O.first <= VA;
1520           });
1521       if (Sec != SectionAddresses.begin()) {
1522         --Sec;
1523         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1524       } else
1525         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1526     }
1527   }
1528 
1529   // Sort all the symbols, this allows us to use a simple binary search to find
1530   // Multiple symbols can have the same address. Use a stable sort to stabilize
1531   // the output.
1532   StringSet<> FoundDisasmSymbolSet;
1533   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1534     llvm::stable_sort(SecSyms.second);
1535   llvm::stable_sort(AbsoluteSymbols);
1536 
1537   std::unique_ptr<DWARFContext> DICtx;
1538   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1539 
1540   if (DbgVariables != DVDisabled) {
1541     DICtx = DWARFContext::create(DbgObj);
1542     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1543       LVP.addCompileUnit(CU->getUnitDIE(false));
1544   }
1545 
1546   LLVM_DEBUG(LVP.dump());
1547 
1548   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1549   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1550                                std::nullopt) {
1551     AddrToBBAddrMap.clear();
1552     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1553       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1554       if (!BBAddrMapsOrErr) {
1555         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1556         return;
1557       }
1558       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1559         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1560                                 std::move(FunctionBBAddrMap));
1561     }
1562   };
1563 
1564   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1565   // single mapping, since they don't have any conflicts.
1566   if (SymbolizeOperands && !Obj.isRelocatableObject())
1567     ReadBBAddrMap();
1568 
1569   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1570     if (FilterSections.empty() && !DisassembleAll &&
1571         (!Section.isText() || Section.isVirtual()))
1572       continue;
1573 
1574     uint64_t SectionAddr = Section.getAddress();
1575     uint64_t SectSize = Section.getSize();
1576     if (!SectSize)
1577       continue;
1578 
1579     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1580     // corresponding to this section, if present.
1581     if (SymbolizeOperands && Obj.isRelocatableObject())
1582       ReadBBAddrMap(Section.getIndex());
1583 
1584     // Get the list of all the symbols in this section.
1585     SectionSymbolsTy &Symbols = AllSymbols[Section];
1586     std::vector<MappingSymbolPair> MappingSymbols;
1587     if (hasMappingSymbols(Obj)) {
1588       for (const auto &Symb : Symbols) {
1589         uint64_t Address = Symb.Addr;
1590         StringRef Name = Symb.Name;
1591         if (Name.startswith("$d"))
1592           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1593         if (Name.startswith("$x"))
1594           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1595         if (Name.startswith("$a"))
1596           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1597         if (Name.startswith("$t"))
1598           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1599       }
1600     }
1601 
1602     llvm::sort(MappingSymbols);
1603 
1604     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1605         unwrapOrError(Section.getContents(), Obj.getFileName()));
1606 
1607     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1608     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1609       // AMDGPU disassembler uses symbolizer for printing labels
1610       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1611                     Symbols, SynthesizedLabelNames);
1612     }
1613 
1614     StringRef SegmentName = getSegmentName(MachO, Section);
1615     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1616     // If the section has no symbol at the start, just insert a dummy one.
1617     if (Symbols.empty() || Symbols[0].Addr != 0) {
1618       Symbols.insert(Symbols.begin(),
1619                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1620                                            Section.isText() ? ELF::STT_FUNC
1621                                                             : ELF::STT_OBJECT));
1622     }
1623 
1624     SmallString<40> Comments;
1625     raw_svector_ostream CommentStream(Comments);
1626 
1627     uint64_t VMAAdjustment = 0;
1628     if (shouldAdjustVA(Section))
1629       VMAAdjustment = AdjustVMA;
1630 
1631     // In executable and shared objects, r_offset holds a virtual address.
1632     // Subtract SectionAddr from the r_offset field of a relocation to get
1633     // the section offset.
1634     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1635     uint64_t Size;
1636     uint64_t Index;
1637     bool PrintedSection = false;
1638     std::vector<RelocationRef> Rels = RelocMap[Section];
1639     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1640     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1641 
1642     // Loop over each chunk of code between two points where at least
1643     // one symbol is defined.
1644     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1645       // Advance SI past all the symbols starting at the same address,
1646       // and make an ArrayRef of them.
1647       unsigned FirstSI = SI;
1648       uint64_t Start = Symbols[SI].Addr;
1649       ArrayRef<SymbolInfoTy> SymbolsHere;
1650       while (SI != SE && Symbols[SI].Addr == Start)
1651         ++SI;
1652       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1653 
1654       // Get the demangled names of all those symbols. We end up with a vector
1655       // of StringRef that holds the names we're going to use, and a vector of
1656       // std::string that stores the new strings returned by demangle(), if
1657       // any. If we don't call demangle() then that vector can stay empty.
1658       std::vector<StringRef> SymNamesHere;
1659       std::vector<std::string> DemangledSymNamesHere;
1660       if (Demangle) {
1661         // Fetch the demangled names and store them locally.
1662         for (const SymbolInfoTy &Symbol : SymbolsHere)
1663           DemangledSymNamesHere.push_back(demangle(Symbol.Name));
1664         // Now we've finished modifying that vector, it's safe to make
1665         // a vector of StringRefs pointing into it.
1666         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1667                             DemangledSymNamesHere.end());
1668       } else {
1669         for (const SymbolInfoTy &Symbol : SymbolsHere)
1670           SymNamesHere.push_back(Symbol.Name);
1671       }
1672 
1673       // Distinguish ELF data from code symbols, which will be used later on to
1674       // decide whether to 'disassemble' this chunk as a data declaration via
1675       // dumpELFData(), or whether to treat it as code.
1676       //
1677       // If data _and_ code symbols are defined at the same address, the code
1678       // takes priority, on the grounds that disassembling code is our main
1679       // purpose here, and it would be a worse failure to _not_ interpret
1680       // something that _was_ meaningful as code than vice versa.
1681       //
1682       // Any ELF symbol type that is not clearly data will be regarded as code.
1683       // In particular, one of the uses of STT_NOTYPE is for branch targets
1684       // inside functions, for which STT_FUNC would be inaccurate.
1685       //
1686       // So here, we spot whether there's any non-data symbol present at all,
1687       // and only set the DisassembleAsData flag if there isn't. Also, we use
1688       // this distinction to inform the decision of which symbol to print at
1689       // the head of the section, so that if we're printing code, we print a
1690       // code-related symbol name to go with it.
1691       bool DisassembleAsData = false;
1692       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1693       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1694         DisassembleAsData = true; // unless we find a code symbol below
1695 
1696         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1697           uint8_t SymTy = SymbolsHere[i].Type;
1698           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1699             DisassembleAsData = false;
1700             DisplaySymIndex = i;
1701           }
1702         }
1703       }
1704 
1705       // Decide which symbol(s) from this collection we're going to print.
1706       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1707       // If the user has given the --disassemble-symbols option, then we must
1708       // display every symbol in that set, and no others.
1709       if (!DisasmSymbolSet.empty()) {
1710         bool FoundAny = false;
1711         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1712           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1713             SymsToPrint[i] = true;
1714             FoundAny = true;
1715           }
1716         }
1717 
1718         // And if none of the symbols here is one that the user asked for, skip
1719         // disassembling this entire chunk of code.
1720         if (!FoundAny)
1721           continue;
1722       } else {
1723         // Otherwise, print whichever symbol at this location is last in the
1724         // Symbols array, because that array is pre-sorted in a way intended to
1725         // correlate with priority of which symbol to display.
1726         SymsToPrint[DisplaySymIndex] = true;
1727       }
1728 
1729       // Now that we know we're disassembling this section, override the choice
1730       // of which symbols to display by printing _all_ of them at this address
1731       // if the user asked for all symbols.
1732       //
1733       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1734       // only the chunk of code headed by 'foo', but also show any other
1735       // symbols defined at that address, such as aliases for 'foo', or the ARM
1736       // mapping symbol preceding its code.
1737       if (ShowAllSymbols) {
1738         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1739           SymsToPrint[i] = true;
1740       }
1741 
1742       if (Start < SectionAddr || StopAddress <= Start)
1743         continue;
1744 
1745       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1746         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1747 
1748       // The end is the section end, the beginning of the next symbol, or
1749       // --stop-address.
1750       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1751       if (SI < SE)
1752         End = std::min(End, Symbols[SI].Addr);
1753       if (Start >= End || End <= StartAddress)
1754         continue;
1755       Start -= SectionAddr;
1756       End -= SectionAddr;
1757 
1758       if (!PrintedSection) {
1759         PrintedSection = true;
1760         outs() << "\nDisassembly of section ";
1761         if (!SegmentName.empty())
1762           outs() << SegmentName << ",";
1763         outs() << SectionName << ":\n";
1764       }
1765 
1766       outs() << '\n';
1767 
1768       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1769         if (!SymsToPrint[i])
1770           continue;
1771 
1772         const SymbolInfoTy &Symbol = SymbolsHere[i];
1773         const StringRef SymbolName = SymNamesHere[i];
1774 
1775         if (LeadingAddr)
1776           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1777                            SectionAddr + Start + VMAAdjustment);
1778         if (Obj.isXCOFF() && SymbolDescription) {
1779           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1780         } else
1781           outs() << '<' << SymbolName << ">:\n";
1782       }
1783 
1784       // Don't print raw contents of a virtual section. A virtual section
1785       // doesn't have any contents in the file.
1786       if (Section.isVirtual()) {
1787         outs() << "...\n";
1788         continue;
1789       }
1790 
1791       // See if any of the symbols defined at this location triggers target-
1792       // specific disassembly behavior, e.g. of special descriptors or function
1793       // prelude information.
1794       //
1795       // We stop this loop at the first symbol that triggers some kind of
1796       // interesting behavior (if any), on the assumption that if two symbols
1797       // defined at the same address trigger two conflicting symbol handlers,
1798       // the object file is probably confused anyway, and it would make even
1799       // less sense to present the output of _both_ handlers, because that
1800       // would describe the same data twice.
1801       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1802         SymbolInfoTy Symbol = SymbolsHere[SHI];
1803 
1804         auto Status =
1805             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1806                                   SectionAddr + Start, CommentStream);
1807 
1808         if (!Status) {
1809           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1810           // any interesting handling for this symbol. Try the other symbols
1811           // defined at this address.
1812           continue;
1813         }
1814 
1815         if (*Status == MCDisassembler::Fail) {
1816           // If onSymbolStart returns Fail, that means it identified some kind
1817           // of special data at this address, but wasn't able to disassemble it
1818           // meaningfully. So we fall back to disassembling the failed region
1819           // as bytes, assuming that the target detected the failure before
1820           // printing anything.
1821           //
1822           // Return values Success or SoftFail (i.e no 'real' failure) are
1823           // expected to mean that the target has emitted its own output.
1824           //
1825           // Either way, 'Size' will have been set to the amount of data
1826           // covered by whatever prologue the target identified. So we advance
1827           // our own position to beyond that. Sometimes that will be the entire
1828           // distance to the next symbol, and sometimes it will be just a
1829           // prologue and we should start disassembling instructions from where
1830           // it left off.
1831           outs() << Ctx.getAsmInfo()->getCommentString()
1832                  << " error in decoding " << SymNamesHere[SHI]
1833                  << " : decoding failed region as bytes.\n";
1834           for (uint64_t I = 0; I < Size; ++I) {
1835             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1836                    << "\n";
1837           }
1838         }
1839         Start += Size;
1840         break;
1841       }
1842 
1843       Index = Start;
1844       if (SectionAddr < StartAddress)
1845         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1846 
1847       if (DisassembleAsData) {
1848         dumpELFData(SectionAddr, Index, End, Bytes);
1849         Index = End;
1850         continue;
1851       }
1852 
1853       bool DumpARMELFData = false;
1854       bool DumpTracebackTableForXCOFFFunction =
1855           Obj.isXCOFF() && Section.isText() && TracebackTable &&
1856           Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
1857           (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
1858 
1859       formatted_raw_ostream FOS(outs());
1860 
1861       std::unordered_map<uint64_t, std::string> AllLabels;
1862       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1863       if (SymbolizeOperands) {
1864         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1865                                   SectionAddr, Index, End, AllLabels);
1866         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1867                                BBAddrMapLabels);
1868       }
1869 
1870       while (Index < End) {
1871         // ARM and AArch64 ELF binaries can interleave data and text in the
1872         // same section. We rely on the markers introduced to understand what
1873         // we need to dump. If the data marker is within a function, it is
1874         // denoted as a word/short etc.
1875         if (!MappingSymbols.empty()) {
1876           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1877           DumpARMELFData = Kind == 'd';
1878           if (SecondaryTarget) {
1879             if (Kind == 'a') {
1880               STI = PrimaryIsThumb ? SecondaryTarget->SubtargetInfo.get()
1881                                    : PrimarySTI;
1882               DisAsm = PrimaryIsThumb ? SecondaryTarget->DisAsm.get()
1883                                       : PrimaryDisAsm;
1884             } else if (Kind == 't') {
1885               STI = PrimaryIsThumb ? PrimarySTI
1886                                    : SecondaryTarget->SubtargetInfo.get();
1887               DisAsm = PrimaryIsThumb ? PrimaryDisAsm
1888                                       : SecondaryTarget->DisAsm.get();
1889             }
1890           }
1891         }
1892 
1893         if (DumpARMELFData) {
1894           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1895                                 MappingSymbols, *STI, FOS);
1896         } else {
1897           // When -z or --disassemble-zeroes are given we always dissasemble
1898           // them. Otherwise we might want to skip zero bytes we see.
1899           if (!DisassembleZeroes) {
1900             uint64_t MaxOffset = End - Index;
1901             // For --reloc: print zero blocks patched by relocations, so that
1902             // relocations can be shown in the dump.
1903             if (RelCur != RelEnd)
1904               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1905                                    MaxOffset);
1906 
1907             if (size_t N =
1908                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1909               FOS << "\t\t..." << '\n';
1910               Index += N;
1911               continue;
1912             }
1913           }
1914 
1915           if (DumpTracebackTableForXCOFFFunction &&
1916               doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
1917             dumpTracebackTable(Bytes.slice(Index),
1918                                SectionAddr + Index + VMAAdjustment, FOS,
1919                                SectionAddr + End + VMAAdjustment, *STI,
1920                                cast<XCOFFObjectFile>(&Obj));
1921             Index = End;
1922             continue;
1923           }
1924 
1925           // Print local label if there's any.
1926           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1927           if (Iter1 != BBAddrMapLabels.end()) {
1928             for (StringRef Label : Iter1->second)
1929               FOS << "<" << Label << ">:\n";
1930           } else {
1931             auto Iter2 = AllLabels.find(SectionAddr + Index);
1932             if (Iter2 != AllLabels.end())
1933               FOS << "<" << Iter2->second << ">:\n";
1934           }
1935 
1936           // Disassemble a real instruction or a data when disassemble all is
1937           // provided
1938           MCInst Inst;
1939           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1940           uint64_t ThisAddr = SectionAddr + Index;
1941           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1942                                                      ThisAddr, CommentStream);
1943           if (Size == 0)
1944             Size = std::min<uint64_t>(
1945                 ThisBytes.size(),
1946                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1947 
1948           LVP.update({Index, Section.getIndex()},
1949                      {Index + Size, Section.getIndex()}, Index + Size != End);
1950 
1951           IP->setCommentStream(CommentStream);
1952 
1953           PIP.printInst(
1954               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1955               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1956               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1957 
1958           IP->setCommentStream(llvm::nulls());
1959 
1960           // If disassembly has failed, avoid analysing invalid/incomplete
1961           // instruction information. Otherwise, try to resolve the target
1962           // address (jump target or memory operand address) and print it on the
1963           // right of the instruction.
1964           if (Disassembled && MIA) {
1965             // Branch targets are printed just after the instructions.
1966             llvm::raw_ostream *TargetOS = &FOS;
1967             uint64_t Target;
1968             bool PrintTarget =
1969                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1970             if (!PrintTarget)
1971               if (std::optional<uint64_t> MaybeTarget =
1972                       MIA->evaluateMemoryOperandAddress(
1973                           Inst, STI, SectionAddr + Index, Size)) {
1974                 Target = *MaybeTarget;
1975                 PrintTarget = true;
1976                 // Do not print real address when symbolizing.
1977                 if (!SymbolizeOperands) {
1978                   // Memory operand addresses are printed as comments.
1979                   TargetOS = &CommentStream;
1980                   *TargetOS << "0x" << Twine::utohexstr(Target);
1981                 }
1982               }
1983             if (PrintTarget) {
1984               // In a relocatable object, the target's section must reside in
1985               // the same section as the call instruction or it is accessed
1986               // through a relocation.
1987               //
1988               // In a non-relocatable object, the target may be in any section.
1989               // In that case, locate the section(s) containing the target
1990               // address and find the symbol in one of those, if possible.
1991               //
1992               // N.B. We don't walk the relocations in the relocatable case yet.
1993               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1994               if (!Obj.isRelocatableObject()) {
1995                 auto It = llvm::partition_point(
1996                     SectionAddresses,
1997                     [=](const std::pair<uint64_t, SectionRef> &O) {
1998                       return O.first <= Target;
1999                     });
2000                 uint64_t TargetSecAddr = 0;
2001                 while (It != SectionAddresses.begin()) {
2002                   --It;
2003                   if (TargetSecAddr == 0)
2004                     TargetSecAddr = It->first;
2005                   if (It->first != TargetSecAddr)
2006                     break;
2007                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2008                 }
2009               } else {
2010                 TargetSectionSymbols.push_back(&Symbols);
2011               }
2012               TargetSectionSymbols.push_back(&AbsoluteSymbols);
2013 
2014               // Find the last symbol in the first candidate section whose
2015               // offset is less than or equal to the target. If there are no
2016               // such symbols, try in the next section and so on, before finally
2017               // using the nearest preceding absolute symbol (if any), if there
2018               // are no other valid symbols.
2019               const SymbolInfoTy *TargetSym = nullptr;
2020               for (const SectionSymbolsTy *TargetSymbols :
2021                    TargetSectionSymbols) {
2022                 auto It = llvm::partition_point(
2023                     *TargetSymbols,
2024                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2025                 while (It != TargetSymbols->begin()) {
2026                   --It;
2027                   // Skip mapping symbols to avoid possible ambiguity as they
2028                   // do not allow uniquely identifying the target address.
2029                   if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) {
2030                     TargetSym = &*It;
2031                     break;
2032                   }
2033                 }
2034                 if (TargetSym)
2035                   break;
2036               }
2037 
2038               // Print the labels corresponding to the target if there's any.
2039               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
2040               bool LabelAvailable = AllLabels.count(Target);
2041               if (TargetSym != nullptr) {
2042                 uint64_t TargetAddress = TargetSym->Addr;
2043                 uint64_t Disp = Target - TargetAddress;
2044                 std::string TargetName = Demangle ? demangle(TargetSym->Name)
2045                                                   : TargetSym->Name.str();
2046 
2047                 *TargetOS << " <";
2048                 if (!Disp) {
2049                   // Always Print the binary symbol precisely corresponding to
2050                   // the target address.
2051                   *TargetOS << TargetName;
2052                 } else if (BBAddrMapLabelAvailable) {
2053                   *TargetOS << BBAddrMapLabels[Target].front();
2054                 } else if (LabelAvailable) {
2055                   *TargetOS << AllLabels[Target];
2056                 } else {
2057                   // Always Print the binary symbol plus an offset if there's no
2058                   // local label corresponding to the target address.
2059                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2060                 }
2061                 *TargetOS << ">";
2062               } else if (BBAddrMapLabelAvailable) {
2063                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
2064               } else if (LabelAvailable) {
2065                 *TargetOS << " <" << AllLabels[Target] << ">";
2066               }
2067               // By convention, each record in the comment stream should be
2068               // terminated.
2069               if (TargetOS == &CommentStream)
2070                 *TargetOS << "\n";
2071             }
2072           }
2073         }
2074 
2075         assert(Ctx.getAsmInfo());
2076         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
2077                                 CommentStream.str(), LVP);
2078         Comments.clear();
2079 
2080         // Hexagon does this in pretty printer
2081         if (Obj.getArch() != Triple::hexagon) {
2082           // Print relocation for instruction and data.
2083           while (RelCur != RelEnd) {
2084             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
2085             // If this relocation is hidden, skip it.
2086             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
2087               ++RelCur;
2088               continue;
2089             }
2090 
2091             // Stop when RelCur's offset is past the disassembled
2092             // instruction/data. Note that it's possible the disassembled data
2093             // is not the complete data: we might see the relocation printed in
2094             // the middle of the data, but this matches the binutils objdump
2095             // output.
2096             if (Offset >= Index + Size)
2097               break;
2098 
2099             // When --adjust-vma is used, update the address printed.
2100             if (RelCur->getSymbol() != Obj.symbol_end()) {
2101               Expected<section_iterator> SymSI =
2102                   RelCur->getSymbol()->getSection();
2103               if (SymSI && *SymSI != Obj.section_end() &&
2104                   shouldAdjustVA(**SymSI))
2105                 Offset += AdjustVMA;
2106             }
2107 
2108             printRelocation(FOS, Obj.getFileName(), *RelCur,
2109                             SectionAddr + Offset, Is64Bits);
2110             LVP.printAfterOtherLine(FOS, true);
2111             ++RelCur;
2112           }
2113         }
2114 
2115         Index += Size;
2116       }
2117     }
2118   }
2119   StringSet<> MissingDisasmSymbolSet =
2120       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2121   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2122     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2123 }
2124 
2125 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2126   // If information useful for showing the disassembly is missing, try to find a
2127   // more complete binary and disassemble that instead.
2128   OwningBinary<Binary> FetchedBinary;
2129   if (Obj->symbols().empty()) {
2130     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2131             fetchBinaryByBuildID(*Obj)) {
2132       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2133         if (!O->symbols().empty() ||
2134             (!O->sections().empty() && Obj->sections().empty())) {
2135           FetchedBinary = std::move(*FetchedBinaryOpt);
2136           Obj = O;
2137         }
2138       }
2139     }
2140   }
2141 
2142   const Target *TheTarget = getTarget(Obj);
2143 
2144   // Package up features to be passed to target/subtarget
2145   Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2146   if (!FeaturesValue)
2147     reportError(FeaturesValue.takeError(), Obj->getFileName());
2148   SubtargetFeatures Features = *FeaturesValue;
2149   if (!MAttrs.empty()) {
2150     for (unsigned I = 0; I != MAttrs.size(); ++I)
2151       Features.AddFeature(MAttrs[I]);
2152   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2153     Features.AddFeature("+all");
2154   }
2155 
2156   if (MCPU.empty())
2157     MCPU = Obj->tryGetCPUName().value_or("").str();
2158 
2159   if (isArmElf(*Obj)) {
2160     // When disassembling big-endian Arm ELF, the instruction endianness is
2161     // determined in a complex way. In relocatable objects, AAELF32 mandates
2162     // that instruction endianness matches the ELF file endianness; in
2163     // executable images, that's true unless the file header has the EF_ARM_BE8
2164     // flag, in which case instructions are little-endian regardless of data
2165     // endianness.
2166     //
2167     // We must set the big-endian-instructions SubtargetFeature to make the
2168     // disassembler read the instructions the right way round, and also tell
2169     // our own prettyprinter to retrieve the encodings the same way to print in
2170     // hex.
2171     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2172 
2173     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2174                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2175       Features.AddFeature("+big-endian-instructions");
2176       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2177     } else {
2178       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2179     }
2180   }
2181 
2182   DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features);
2183 
2184   // If we have an ARM object file, we need a second disassembler, because
2185   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2186   // We use mapping symbols to switch between the two assemblers, where
2187   // appropriate.
2188   std::optional<DisassemblerTarget> SecondaryTarget;
2189 
2190   if (isArmElf(*Obj)) {
2191     if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) {
2192       if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"))
2193         Features.AddFeature("-thumb-mode");
2194       else
2195         Features.AddFeature("+thumb-mode");
2196       SecondaryTarget.emplace(PrimaryTarget, Features);
2197     }
2198   }
2199 
2200   const ObjectFile *DbgObj = Obj;
2201   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2202     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2203             fetchBinaryByBuildID(*Obj)) {
2204       if (auto *FetchedObj =
2205               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2206         if (FetchedObj->hasDebugInfo()) {
2207           FetchedBinary = std::move(*DebugBinaryOpt);
2208           DbgObj = FetchedObj;
2209         }
2210       }
2211     }
2212   }
2213 
2214   std::unique_ptr<object::Binary> DSYMBinary;
2215   std::unique_ptr<MemoryBuffer> DSYMBuf;
2216   if (!DbgObj->hasDebugInfo()) {
2217     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2218       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2219                                            DSYMBinary, DSYMBuf);
2220       if (!DbgObj)
2221         return;
2222     }
2223   }
2224 
2225   SourcePrinter SP(DbgObj, TheTarget->getName());
2226 
2227   for (StringRef Opt : DisassemblerOptions)
2228     if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt))
2229       reportError(Obj->getFileName(),
2230                   "Unrecognized disassembler option: " + Opt);
2231 
2232   disassembleObject(TheTarget, *Obj, *DbgObj, *PrimaryTarget.Context.get(),
2233                     PrimaryTarget.DisAsm.get(), SecondaryTarget,
2234                     PrimaryTarget.InstrAnalysis.get(),
2235                     PrimaryTarget.InstPrinter.get(),
2236                     PrimaryTarget.SubtargetInfo.get(),
2237                     *PrimaryTarget.Printer, SP, InlineRelocs);
2238 }
2239 
2240 void Dumper::printRelocations() {
2241   StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2242 
2243   // Build a mapping from relocation target to a vector of relocation
2244   // sections. Usually, there is an only one relocation section for
2245   // each relocated section.
2246   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2247   uint64_t Ndx;
2248   for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) {
2249     if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2250       continue;
2251     if (Section.relocation_begin() == Section.relocation_end())
2252       continue;
2253     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2254     if (!SecOrErr)
2255       reportError(O.getFileName(),
2256                   "section (" + Twine(Ndx) +
2257                       "): unable to get a relocation target: " +
2258                       toString(SecOrErr.takeError()));
2259     SecToRelSec[**SecOrErr].push_back(Section);
2260   }
2261 
2262   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2263     StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName());
2264     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2265     uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
2266     uint32_t TypePadding = 24;
2267     outs() << left_justify("OFFSET", OffsetPadding) << " "
2268            << left_justify("TYPE", TypePadding) << " "
2269            << "VALUE\n";
2270 
2271     for (SectionRef Section : P.second) {
2272       for (const RelocationRef &Reloc : Section.relocations()) {
2273         uint64_t Address = Reloc.getOffset();
2274         SmallString<32> RelocName;
2275         SmallString<32> ValueStr;
2276         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2277           continue;
2278         Reloc.getTypeName(RelocName);
2279         if (Error E = getRelocationValueString(Reloc, ValueStr))
2280           reportUniqueWarning(std::move(E));
2281 
2282         outs() << format(Fmt.data(), Address) << " "
2283                << left_justify(RelocName, TypePadding) << " " << ValueStr
2284                << "\n";
2285       }
2286     }
2287   }
2288 }
2289 
2290 // Returns true if we need to show LMA column when dumping section headers. We
2291 // show it only when the platform is ELF and either we have at least one section
2292 // whose VMA and LMA are different and/or when --show-lma flag is used.
2293 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2294   if (!Obj.isELF())
2295     return false;
2296   for (const SectionRef &S : ToolSectionFilter(Obj))
2297     if (S.getAddress() != getELFSectionLMA(S))
2298       return true;
2299   return ShowLMA;
2300 }
2301 
2302 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2303   // Default column width for names is 13 even if no names are that long.
2304   size_t MaxWidth = 13;
2305   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2306     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2307     MaxWidth = std::max(MaxWidth, Name.size());
2308   }
2309   return MaxWidth;
2310 }
2311 
2312 void objdump::printSectionHeaders(ObjectFile &Obj) {
2313   if (Obj.isELF() && Obj.sections().empty())
2314     createFakeELFSections(Obj);
2315 
2316   size_t NameWidth = getMaxSectionNameWidth(Obj);
2317   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2318   bool HasLMAColumn = shouldDisplayLMA(Obj);
2319   outs() << "\nSections:\n";
2320   if (HasLMAColumn)
2321     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2322            << left_justify("VMA", AddressWidth) << " "
2323            << left_justify("LMA", AddressWidth) << " Type\n";
2324   else
2325     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2326            << left_justify("VMA", AddressWidth) << " Type\n";
2327 
2328   uint64_t Idx;
2329   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2330     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2331     uint64_t VMA = Section.getAddress();
2332     if (shouldAdjustVA(Section))
2333       VMA += AdjustVMA;
2334 
2335     uint64_t Size = Section.getSize();
2336 
2337     std::string Type = Section.isText() ? "TEXT" : "";
2338     if (Section.isData())
2339       Type += Type.empty() ? "DATA" : ", DATA";
2340     if (Section.isBSS())
2341       Type += Type.empty() ? "BSS" : ", BSS";
2342     if (Section.isDebugSection())
2343       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2344 
2345     if (HasLMAColumn)
2346       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2347                        Name.str().c_str(), Size)
2348              << format_hex_no_prefix(VMA, AddressWidth) << " "
2349              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2350              << " " << Type << "\n";
2351     else
2352       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2353                        Name.str().c_str(), Size)
2354              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2355   }
2356 }
2357 
2358 void objdump::printSectionContents(const ObjectFile *Obj) {
2359   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2360 
2361   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2362     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2363     uint64_t BaseAddr = Section.getAddress();
2364     uint64_t Size = Section.getSize();
2365     if (!Size)
2366       continue;
2367 
2368     outs() << "Contents of section ";
2369     StringRef SegmentName = getSegmentName(MachO, Section);
2370     if (!SegmentName.empty())
2371       outs() << SegmentName << ",";
2372     outs() << Name << ":\n";
2373     if (Section.isBSS()) {
2374       outs() << format("<skipping contents of bss section at [%04" PRIx64
2375                        ", %04" PRIx64 ")>\n",
2376                        BaseAddr, BaseAddr + Size);
2377       continue;
2378     }
2379 
2380     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2381 
2382     // Dump out the content as hex and printable ascii characters.
2383     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2384       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2385       // Dump line of hex.
2386       for (std::size_t I = 0; I < 16; ++I) {
2387         if (I != 0 && I % 4 == 0)
2388           outs() << ' ';
2389         if (Addr + I < End)
2390           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2391                  << hexdigit(Contents[Addr + I] & 0xF, true);
2392         else
2393           outs() << "  ";
2394       }
2395       // Print ascii.
2396       outs() << "  ";
2397       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2398         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2399           outs() << Contents[Addr + I];
2400         else
2401           outs() << ".";
2402       }
2403       outs() << "\n";
2404     }
2405   }
2406 }
2407 
2408 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
2409                               bool DumpDynamic) {
2410   if (O.isCOFF() && !DumpDynamic) {
2411     outs() << "\nSYMBOL TABLE:\n";
2412     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2413     return;
2414   }
2415 
2416   const StringRef FileName = O.getFileName();
2417 
2418   if (!DumpDynamic) {
2419     outs() << "\nSYMBOL TABLE:\n";
2420     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2421       printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2422     return;
2423   }
2424 
2425   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2426   if (!O.isELF()) {
2427     reportWarning(
2428         "this operation is not currently supported for this file format",
2429         FileName);
2430     return;
2431   }
2432 
2433   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2434   auto Symbols = ELF->getDynamicSymbolIterators();
2435   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2436       ELF->readDynsymVersions();
2437   if (!SymbolVersionsOrErr) {
2438     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2439     SymbolVersionsOrErr = std::vector<VersionEntry>();
2440     (void)!SymbolVersionsOrErr;
2441   }
2442   for (auto &Sym : Symbols)
2443     printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2444                 ArchitectureName, DumpDynamic);
2445 }
2446 
2447 void Dumper::printSymbol(const SymbolRef &Symbol,
2448                          ArrayRef<VersionEntry> SymbolVersions,
2449                          StringRef FileName, StringRef ArchiveName,
2450                          StringRef ArchitectureName, bool DumpDynamic) {
2451   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2452   Expected<uint64_t> AddrOrErr = Symbol.getAddress();
2453   if (!AddrOrErr) {
2454     reportUniqueWarning(AddrOrErr.takeError());
2455     return;
2456   }
2457   uint64_t Address = *AddrOrErr;
2458   if ((Address < StartAddress) || (Address > StopAddress))
2459     return;
2460   SymbolRef::Type Type =
2461       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2462   uint32_t Flags =
2463       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2464 
2465   // Don't ask a Mach-O STAB symbol for its section unless you know that
2466   // STAB symbol's section field refers to a valid section index. Otherwise
2467   // the symbol may error trying to load a section that does not exist.
2468   bool IsSTAB = false;
2469   if (MachO) {
2470     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2471     uint8_t NType =
2472         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2473                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2474     if (NType & MachO::N_STAB)
2475       IsSTAB = true;
2476   }
2477   section_iterator Section = IsSTAB
2478                                  ? O.section_end()
2479                                  : unwrapOrError(Symbol.getSection(), FileName,
2480                                                  ArchiveName, ArchitectureName);
2481 
2482   StringRef Name;
2483   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2484     if (Expected<StringRef> NameOrErr = Section->getName())
2485       Name = *NameOrErr;
2486     else
2487       consumeError(NameOrErr.takeError());
2488 
2489   } else {
2490     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2491                          ArchitectureName);
2492   }
2493 
2494   bool Global = Flags & SymbolRef::SF_Global;
2495   bool Weak = Flags & SymbolRef::SF_Weak;
2496   bool Absolute = Flags & SymbolRef::SF_Absolute;
2497   bool Common = Flags & SymbolRef::SF_Common;
2498   bool Hidden = Flags & SymbolRef::SF_Hidden;
2499 
2500   char GlobLoc = ' ';
2501   if ((Section != O.section_end() || Absolute) && !Weak)
2502     GlobLoc = Global ? 'g' : 'l';
2503   char IFunc = ' ';
2504   if (O.isELF()) {
2505     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2506       IFunc = 'i';
2507     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2508       GlobLoc = 'u';
2509   }
2510 
2511   char Debug = ' ';
2512   if (DumpDynamic)
2513     Debug = 'D';
2514   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2515     Debug = 'd';
2516 
2517   char FileFunc = ' ';
2518   if (Type == SymbolRef::ST_File)
2519     FileFunc = 'f';
2520   else if (Type == SymbolRef::ST_Function)
2521     FileFunc = 'F';
2522   else if (Type == SymbolRef::ST_Data)
2523     FileFunc = 'O';
2524 
2525   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2526 
2527   outs() << format(Fmt, Address) << " "
2528          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2529          << (Weak ? 'w' : ' ') // Weak?
2530          << ' '                // Constructor. Not supported yet.
2531          << ' '                // Warning. Not supported yet.
2532          << IFunc              // Indirect reference to another symbol.
2533          << Debug              // Debugging (d) or dynamic (D) symbol.
2534          << FileFunc           // Name of function (F), file (f) or object (O).
2535          << ' ';
2536   if (Absolute) {
2537     outs() << "*ABS*";
2538   } else if (Common) {
2539     outs() << "*COM*";
2540   } else if (Section == O.section_end()) {
2541     if (O.isXCOFF()) {
2542       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2543           Symbol.getRawDataRefImpl());
2544       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2545         outs() << "*DEBUG*";
2546       else
2547         outs() << "*UND*";
2548     } else
2549       outs() << "*UND*";
2550   } else {
2551     StringRef SegmentName = getSegmentName(MachO, *Section);
2552     if (!SegmentName.empty())
2553       outs() << SegmentName << ",";
2554     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2555     outs() << SectionName;
2556     if (O.isXCOFF()) {
2557       std::optional<SymbolRef> SymRef =
2558           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2559       if (SymRef) {
2560 
2561         Expected<StringRef> NameOrErr = SymRef->getName();
2562 
2563         if (NameOrErr) {
2564           outs() << " (csect:";
2565           std::string SymName =
2566               Demangle ? demangle(*NameOrErr) : NameOrErr->str();
2567 
2568           if (SymbolDescription)
2569             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2570                                                 SymName);
2571 
2572           outs() << ' ' << SymName;
2573           outs() << ") ";
2574         } else
2575           reportWarning(toString(NameOrErr.takeError()), FileName);
2576       }
2577     }
2578   }
2579 
2580   if (Common)
2581     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2582   else if (O.isXCOFF())
2583     outs() << '\t'
2584            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2585                               Symbol.getRawDataRefImpl()));
2586   else if (O.isELF())
2587     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2588 
2589   if (O.isELF()) {
2590     if (!SymbolVersions.empty()) {
2591       const VersionEntry &Ver =
2592           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2593       std::string Str;
2594       if (!Ver.Name.empty())
2595         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2596       outs() << ' ' << left_justify(Str, 12);
2597     }
2598 
2599     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2600     switch (Other) {
2601     case ELF::STV_DEFAULT:
2602       break;
2603     case ELF::STV_INTERNAL:
2604       outs() << " .internal";
2605       break;
2606     case ELF::STV_HIDDEN:
2607       outs() << " .hidden";
2608       break;
2609     case ELF::STV_PROTECTED:
2610       outs() << " .protected";
2611       break;
2612     default:
2613       outs() << format(" 0x%02x", Other);
2614       break;
2615     }
2616   } else if (Hidden) {
2617     outs() << " .hidden";
2618   }
2619 
2620   std::string SymName = Demangle ? demangle(Name) : Name.str();
2621   if (O.isXCOFF() && SymbolDescription)
2622     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2623 
2624   outs() << ' ' << SymName << '\n';
2625 }
2626 
2627 static void printUnwindInfo(const ObjectFile *O) {
2628   outs() << "Unwind info:\n\n";
2629 
2630   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2631     printCOFFUnwindInfo(Coff);
2632   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2633     printMachOUnwindInfo(MachO);
2634   else
2635     // TODO: Extract DWARF dump tool to objdump.
2636     WithColor::error(errs(), ToolName)
2637         << "This operation is only currently supported "
2638            "for COFF and MachO object files.\n";
2639 }
2640 
2641 /// Dump the raw contents of the __clangast section so the output can be piped
2642 /// into llvm-bcanalyzer.
2643 static void printRawClangAST(const ObjectFile *Obj) {
2644   if (outs().is_displayed()) {
2645     WithColor::error(errs(), ToolName)
2646         << "The -raw-clang-ast option will dump the raw binary contents of "
2647            "the clang ast section.\n"
2648            "Please redirect the output to a file or another program such as "
2649            "llvm-bcanalyzer.\n";
2650     return;
2651   }
2652 
2653   StringRef ClangASTSectionName("__clangast");
2654   if (Obj->isCOFF()) {
2655     ClangASTSectionName = "clangast";
2656   }
2657 
2658   std::optional<object::SectionRef> ClangASTSection;
2659   for (auto Sec : ToolSectionFilter(*Obj)) {
2660     StringRef Name;
2661     if (Expected<StringRef> NameOrErr = Sec.getName())
2662       Name = *NameOrErr;
2663     else
2664       consumeError(NameOrErr.takeError());
2665 
2666     if (Name == ClangASTSectionName) {
2667       ClangASTSection = Sec;
2668       break;
2669     }
2670   }
2671   if (!ClangASTSection)
2672     return;
2673 
2674   StringRef ClangASTContents =
2675       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2676   outs().write(ClangASTContents.data(), ClangASTContents.size());
2677 }
2678 
2679 static void printFaultMaps(const ObjectFile *Obj) {
2680   StringRef FaultMapSectionName;
2681 
2682   if (Obj->isELF()) {
2683     FaultMapSectionName = ".llvm_faultmaps";
2684   } else if (Obj->isMachO()) {
2685     FaultMapSectionName = "__llvm_faultmaps";
2686   } else {
2687     WithColor::error(errs(), ToolName)
2688         << "This operation is only currently supported "
2689            "for ELF and Mach-O executable files.\n";
2690     return;
2691   }
2692 
2693   std::optional<object::SectionRef> FaultMapSection;
2694 
2695   for (auto Sec : ToolSectionFilter(*Obj)) {
2696     StringRef Name;
2697     if (Expected<StringRef> NameOrErr = Sec.getName())
2698       Name = *NameOrErr;
2699     else
2700       consumeError(NameOrErr.takeError());
2701 
2702     if (Name == FaultMapSectionName) {
2703       FaultMapSection = Sec;
2704       break;
2705     }
2706   }
2707 
2708   outs() << "FaultMap table:\n";
2709 
2710   if (!FaultMapSection) {
2711     outs() << "<not found>\n";
2712     return;
2713   }
2714 
2715   StringRef FaultMapContents =
2716       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2717   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2718                      FaultMapContents.bytes_end());
2719 
2720   outs() << FMP;
2721 }
2722 
2723 void Dumper::printPrivateHeaders() {
2724   reportError(O.getFileName(), "Invalid/Unsupported object file format");
2725 }
2726 
2727 static void printFileHeaders(const ObjectFile *O) {
2728   if (!O->isELF() && !O->isCOFF())
2729     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2730 
2731   Triple::ArchType AT = O->getArch();
2732   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2733   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2734 
2735   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2736   outs() << "start address: "
2737          << "0x" << format(Fmt.data(), Address) << "\n";
2738 }
2739 
2740 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2741   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2742   if (!ModeOrErr) {
2743     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2744     consumeError(ModeOrErr.takeError());
2745     return;
2746   }
2747   sys::fs::perms Mode = ModeOrErr.get();
2748   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2749   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2750   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2751   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2752   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2753   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2754   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2755   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2756   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2757 
2758   outs() << " ";
2759 
2760   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2761                    unwrapOrError(C.getGID(), Filename),
2762                    unwrapOrError(C.getRawSize(), Filename));
2763 
2764   StringRef RawLastModified = C.getRawLastModified();
2765   unsigned Seconds;
2766   if (RawLastModified.getAsInteger(10, Seconds))
2767     outs() << "(date: \"" << RawLastModified
2768            << "\" contains non-decimal chars) ";
2769   else {
2770     // Since ctime(3) returns a 26 character string of the form:
2771     // "Sun Sep 16 01:03:52 1973\n\0"
2772     // just print 24 characters.
2773     time_t t = Seconds;
2774     outs() << format("%.24s ", ctime(&t));
2775   }
2776 
2777   StringRef Name = "";
2778   Expected<StringRef> NameOrErr = C.getName();
2779   if (!NameOrErr) {
2780     consumeError(NameOrErr.takeError());
2781     Name = unwrapOrError(C.getRawName(), Filename);
2782   } else {
2783     Name = NameOrErr.get();
2784   }
2785   outs() << Name << "\n";
2786 }
2787 
2788 // For ELF only now.
2789 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2790   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2791     if (Elf->getEType() != ELF::ET_REL)
2792       return true;
2793   }
2794   return false;
2795 }
2796 
2797 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2798                                             uint64_t Start, uint64_t Stop) {
2799   if (!shouldWarnForInvalidStartStopAddress(Obj))
2800     return;
2801 
2802   for (const SectionRef &Section : Obj->sections())
2803     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2804       uint64_t BaseAddr = Section.getAddress();
2805       uint64_t Size = Section.getSize();
2806       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2807         return;
2808     }
2809 
2810   if (!HasStartAddressFlag)
2811     reportWarning("no section has address less than 0x" +
2812                       Twine::utohexstr(Stop) + " specified by --stop-address",
2813                   Obj->getFileName());
2814   else if (!HasStopAddressFlag)
2815     reportWarning("no section has address greater than or equal to 0x" +
2816                       Twine::utohexstr(Start) + " specified by --start-address",
2817                   Obj->getFileName());
2818   else
2819     reportWarning("no section overlaps the range [0x" +
2820                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2821                       ") specified by --start-address/--stop-address",
2822                   Obj->getFileName());
2823 }
2824 
2825 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2826                        const Archive::Child *C = nullptr) {
2827   Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O);
2828   if (!DumperOrErr) {
2829     reportError(DumperOrErr.takeError(), O->getFileName(),
2830                 A ? A->getFileName() : "");
2831     return;
2832   }
2833   Dumper &D = **DumperOrErr;
2834 
2835   // Avoid other output when using a raw option.
2836   if (!RawClangAST) {
2837     outs() << '\n';
2838     if (A)
2839       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2840     else
2841       outs() << O->getFileName();
2842     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2843   }
2844 
2845   if (HasStartAddressFlag || HasStopAddressFlag)
2846     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2847 
2848   // TODO: Change print* free functions to Dumper member functions to utilitize
2849   // stateful functions like reportUniqueWarning.
2850 
2851   // Note: the order here matches GNU objdump for compatability.
2852   StringRef ArchiveName = A ? A->getFileName() : "";
2853   if (ArchiveHeaders && !MachOOpt && C)
2854     printArchiveChild(ArchiveName, *C);
2855   if (FileHeaders)
2856     printFileHeaders(O);
2857   if (PrivateHeaders || FirstPrivateHeader)
2858     D.printPrivateHeaders();
2859   if (SectionHeaders)
2860     printSectionHeaders(*O);
2861   if (SymbolTable)
2862     D.printSymbolTable(ArchiveName);
2863   if (DynamicSymbolTable)
2864     D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
2865                        /*DumpDynamic=*/true);
2866   if (DwarfDumpType != DIDT_Null) {
2867     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2868     // Dump the complete DWARF structure.
2869     DIDumpOptions DumpOpts;
2870     DumpOpts.DumpType = DwarfDumpType;
2871     DICtx->dump(outs(), DumpOpts);
2872   }
2873   if (Relocations && !Disassemble)
2874     D.printRelocations();
2875   if (DynamicRelocations)
2876     D.printDynamicRelocations();
2877   if (SectionContents)
2878     printSectionContents(O);
2879   if (Disassemble)
2880     disassembleObject(O, Relocations);
2881   if (UnwindInfo)
2882     printUnwindInfo(O);
2883 
2884   // Mach-O specific options:
2885   if (ExportsTrie)
2886     printExportsTrie(O);
2887   if (Rebase)
2888     printRebaseTable(O);
2889   if (Bind)
2890     printBindTable(O);
2891   if (LazyBind)
2892     printLazyBindTable(O);
2893   if (WeakBind)
2894     printWeakBindTable(O);
2895 
2896   // Other special sections:
2897   if (RawClangAST)
2898     printRawClangAST(O);
2899   if (FaultMapSection)
2900     printFaultMaps(O);
2901   if (Offloading)
2902     dumpOffloadBinary(*O);
2903 }
2904 
2905 static void dumpObject(const COFFImportFile *I, const Archive *A,
2906                        const Archive::Child *C = nullptr) {
2907   StringRef ArchiveName = A ? A->getFileName() : "";
2908 
2909   // Avoid other output when using a raw option.
2910   if (!RawClangAST)
2911     outs() << '\n'
2912            << ArchiveName << "(" << I->getFileName() << ")"
2913            << ":\tfile format COFF-import-file"
2914            << "\n\n";
2915 
2916   if (ArchiveHeaders && !MachOOpt && C)
2917     printArchiveChild(ArchiveName, *C);
2918   if (SymbolTable)
2919     printCOFFSymbolTable(*I);
2920 }
2921 
2922 /// Dump each object file in \a a;
2923 static void dumpArchive(const Archive *A) {
2924   Error Err = Error::success();
2925   unsigned I = -1;
2926   for (auto &C : A->children(Err)) {
2927     ++I;
2928     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2929     if (!ChildOrErr) {
2930       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2931         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2932       continue;
2933     }
2934     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2935       dumpObject(O, A, &C);
2936     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2937       dumpObject(I, A, &C);
2938     else
2939       reportError(errorCodeToError(object_error::invalid_file_type),
2940                   A->getFileName());
2941   }
2942   if (Err)
2943     reportError(std::move(Err), A->getFileName());
2944 }
2945 
2946 /// Open file and figure out how to dump it.
2947 static void dumpInput(StringRef file) {
2948   // If we are using the Mach-O specific object file parser, then let it parse
2949   // the file and process the command line options.  So the -arch flags can
2950   // be used to select specific slices, etc.
2951   if (MachOOpt) {
2952     parseInputMachO(file);
2953     return;
2954   }
2955 
2956   // Attempt to open the binary.
2957   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2958   Binary &Binary = *OBinary.getBinary();
2959 
2960   if (Archive *A = dyn_cast<Archive>(&Binary))
2961     dumpArchive(A);
2962   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2963     dumpObject(O);
2964   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2965     parseInputMachO(UB);
2966   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2967     dumpOffloadSections(*OB);
2968   else
2969     reportError(errorCodeToError(object_error::invalid_file_type), file);
2970 }
2971 
2972 template <typename T>
2973 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2974                         T &Value) {
2975   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2976     StringRef V(A->getValue());
2977     if (!llvm::to_integer(V, Value, 0)) {
2978       reportCmdLineError(A->getSpelling() +
2979                          ": expected a non-negative integer, but got '" + V +
2980                          "'");
2981     }
2982   }
2983 }
2984 
2985 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
2986   StringRef V(A->getValue());
2987   object::BuildID BID = parseBuildID(V);
2988   if (BID.empty())
2989     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
2990                        V + "'");
2991   return BID;
2992 }
2993 
2994 void objdump::invalidArgValue(const opt::Arg *A) {
2995   reportCmdLineError("'" + StringRef(A->getValue()) +
2996                      "' is not a valid value for '" + A->getSpelling() + "'");
2997 }
2998 
2999 static std::vector<std::string>
3000 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
3001   std::vector<std::string> Values;
3002   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
3003     llvm::SmallVector<StringRef, 2> SplitValues;
3004     llvm::SplitString(Value, SplitValues, ",");
3005     for (StringRef SplitValue : SplitValues)
3006       Values.push_back(SplitValue.str());
3007   }
3008   return Values;
3009 }
3010 
3011 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
3012   MachOOpt = true;
3013   FullLeadingAddr = true;
3014   PrintImmHex = true;
3015 
3016   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
3017   LinkOptHints = InputArgs.hasArg(OTOOL_C);
3018   if (InputArgs.hasArg(OTOOL_d))
3019     FilterSections.push_back("__DATA,__data");
3020   DylibId = InputArgs.hasArg(OTOOL_D);
3021   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
3022   DataInCode = InputArgs.hasArg(OTOOL_G);
3023   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
3024   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
3025   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
3026   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
3027   DylibsUsed = InputArgs.hasArg(OTOOL_L);
3028   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
3029   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3030   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
3031   InfoPlist = InputArgs.hasArg(OTOOL_P);
3032   Relocations = InputArgs.hasArg(OTOOL_r);
3033   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3034     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
3035     FilterSections.push_back(Filter);
3036   }
3037   if (InputArgs.hasArg(OTOOL_t))
3038     FilterSections.push_back("__TEXT,__text");
3039   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3040             InputArgs.hasArg(OTOOL_o);
3041   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3042   if (InputArgs.hasArg(OTOOL_x))
3043     FilterSections.push_back(",__text");
3044   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3045 
3046   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3047   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3048 
3049   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3050   if (InputFilenames.empty())
3051     reportCmdLineError("no input file");
3052 
3053   for (const Arg *A : InputArgs) {
3054     const Option &O = A->getOption();
3055     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3056       reportCmdLineWarning(O.getPrefixedName() +
3057                            " is obsolete and not implemented");
3058     }
3059   }
3060 }
3061 
3062 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3063   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3064   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3065   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3066   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3067   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3068   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3069   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3070   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3071   TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3072   DisassembleSymbols =
3073       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3074   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3075   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3076     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3077                         .Case("frames", DIDT_DebugFrame)
3078                         .Default(DIDT_Null);
3079     if (DwarfDumpType == DIDT_Null)
3080       invalidArgValue(A);
3081   }
3082   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3083   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3084   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3085   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3086   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3087   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3088   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3089   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3090   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3091   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3092   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3093   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3094   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3095   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3096   PrintImmHex =
3097       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3098   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3099   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3100   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3101   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3102   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3103   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3104   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3105   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3106   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3107   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3108   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3109   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3110   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3111   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3112   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3113   Wide = InputArgs.hasArg(OBJDUMP_wide);
3114   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3115   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3116   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3117     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3118                        .Case("ascii", DVASCII)
3119                        .Case("unicode", DVUnicode)
3120                        .Default(DVInvalid);
3121     if (DbgVariables == DVInvalid)
3122       invalidArgValue(A);
3123   }
3124   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3125 
3126   parseMachOOptions(InputArgs);
3127 
3128   // Parse -M (--disassembler-options) and deprecated
3129   // --x86-asm-syntax={att,intel}.
3130   //
3131   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3132   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3133   // called too late. For now we have to use the internal cl::opt option.
3134   const char *AsmSyntax = nullptr;
3135   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3136                                           OBJDUMP_x86_asm_syntax_att,
3137                                           OBJDUMP_x86_asm_syntax_intel)) {
3138     switch (A->getOption().getID()) {
3139     case OBJDUMP_x86_asm_syntax_att:
3140       AsmSyntax = "--x86-asm-syntax=att";
3141       continue;
3142     case OBJDUMP_x86_asm_syntax_intel:
3143       AsmSyntax = "--x86-asm-syntax=intel";
3144       continue;
3145     }
3146 
3147     SmallVector<StringRef, 2> Values;
3148     llvm::SplitString(A->getValue(), Values, ",");
3149     for (StringRef V : Values) {
3150       if (V == "att")
3151         AsmSyntax = "--x86-asm-syntax=att";
3152       else if (V == "intel")
3153         AsmSyntax = "--x86-asm-syntax=intel";
3154       else
3155         DisassemblerOptions.push_back(V.str());
3156     }
3157   }
3158   if (AsmSyntax) {
3159     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3160     llvm::cl::ParseCommandLineOptions(2, Argv);
3161   }
3162 
3163   // Look up any provided build IDs, then append them to the input filenames.
3164   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3165     object::BuildID BuildID = parseBuildIDArg(A);
3166     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3167     if (!Path) {
3168       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3169                          A->getValue() + "'");
3170     }
3171     InputFilenames.push_back(std::move(*Path));
3172   }
3173 
3174   // objdump defaults to a.out if no filenames specified.
3175   if (InputFilenames.empty())
3176     InputFilenames.push_back("a.out");
3177 }
3178 
3179 int main(int argc, char **argv) {
3180   using namespace llvm;
3181   InitLLVM X(argc, argv);
3182 
3183   ToolName = argv[0];
3184   std::unique_ptr<CommonOptTable> T;
3185   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3186 
3187   StringRef Stem = sys::path::stem(ToolName);
3188   auto Is = [=](StringRef Tool) {
3189     // We need to recognize the following filenames:
3190     //
3191     // llvm-objdump -> objdump
3192     // llvm-otool-10.exe -> otool
3193     // powerpc64-unknown-freebsd13-objdump -> objdump
3194     auto I = Stem.rfind_insensitive(Tool);
3195     return I != StringRef::npos &&
3196            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3197   };
3198   if (Is("otool")) {
3199     T = std::make_unique<OtoolOptTable>();
3200     Unknown = OTOOL_UNKNOWN;
3201     HelpFlag = OTOOL_help;
3202     HelpHiddenFlag = OTOOL_help_hidden;
3203     VersionFlag = OTOOL_version;
3204   } else {
3205     T = std::make_unique<ObjdumpOptTable>();
3206     Unknown = OBJDUMP_UNKNOWN;
3207     HelpFlag = OBJDUMP_help;
3208     HelpHiddenFlag = OBJDUMP_help_hidden;
3209     VersionFlag = OBJDUMP_version;
3210   }
3211 
3212   BumpPtrAllocator A;
3213   StringSaver Saver(A);
3214   opt::InputArgList InputArgs =
3215       T->parseArgs(argc, argv, Unknown, Saver,
3216                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3217 
3218   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3219     T->printHelp(ToolName);
3220     return 0;
3221   }
3222   if (InputArgs.hasArg(HelpHiddenFlag)) {
3223     T->printHelp(ToolName, /*ShowHidden=*/true);
3224     return 0;
3225   }
3226 
3227   // Initialize targets and assembly printers/parsers.
3228   InitializeAllTargetInfos();
3229   InitializeAllTargetMCs();
3230   InitializeAllDisassemblers();
3231 
3232   if (InputArgs.hasArg(VersionFlag)) {
3233     cl::PrintVersionMessage();
3234     if (!Is("otool")) {
3235       outs() << '\n';
3236       TargetRegistry::printRegisteredTargetsForVersion(outs());
3237     }
3238     return 0;
3239   }
3240 
3241   // Initialize debuginfod.
3242   const bool ShouldUseDebuginfodByDefault =
3243       InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3244   std::vector<std::string> DebugFileDirectories =
3245       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3246   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3247                         ShouldUseDebuginfodByDefault)) {
3248     HTTPClient::initialize();
3249     BIDFetcher =
3250         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3251   } else {
3252     BIDFetcher =
3253         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3254   }
3255 
3256   if (Is("otool"))
3257     parseOtoolOptions(InputArgs);
3258   else
3259     parseObjdumpOptions(InputArgs);
3260 
3261   if (StartAddress >= StopAddress)
3262     reportCmdLineError("start address should be less than stop address");
3263 
3264   // Removes trailing separators from prefix.
3265   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3266     Prefix.pop_back();
3267 
3268   if (AllHeaders)
3269     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3270         SectionHeaders = SymbolTable = true;
3271 
3272   if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3273       !DisassembleSymbols.empty())
3274     Disassemble = true;
3275 
3276   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3277       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3278       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3279       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3280       !(MachOOpt &&
3281         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3282          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3283          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3284          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3285          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3286     T->printHelp(ToolName);
3287     return 2;
3288   }
3289 
3290   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3291 
3292   llvm::for_each(InputFilenames, dumpInput);
3293 
3294   warnOnNoMatchForSections();
3295 
3296   return EXIT_SUCCESS;
3297 }
3298