xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision de62046d68083a9a39ab29194adb6258a7ac76a9)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
30 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstPrinter.h"
33 #include "llvm/MC/MCInstrAnalysis.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCObjectFileInfo.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/MC/MCSubtargetInfo.h"
38 #include "llvm/Object/Archive.h"
39 #include "llvm/Object/COFF.h"
40 #include "llvm/Object/COFFImportFile.h"
41 #include "llvm/Object/ELFObjectFile.h"
42 #include "llvm/Object/MachO.h"
43 #include "llvm/Object/ObjectFile.h"
44 #include "llvm/Object/Wasm.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/Errc.h"
49 #include "llvm/Support/FileSystem.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/GraphWriter.h"
52 #include "llvm/Support/Host.h"
53 #include "llvm/Support/ManagedStatic.h"
54 #include "llvm/Support/MemoryBuffer.h"
55 #include "llvm/Support/PrettyStackTrace.h"
56 #include "llvm/Support/Signals.h"
57 #include "llvm/Support/SourceMgr.h"
58 #include "llvm/Support/TargetRegistry.h"
59 #include "llvm/Support/TargetSelect.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cctype>
63 #include <cstring>
64 #include <system_error>
65 #include <unordered_map>
66 #include <utility>
67 
68 using namespace llvm;
69 using namespace object;
70 
71 static cl::list<std::string>
72 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
73 
74 cl::opt<bool>
75 llvm::Disassemble("disassemble",
76   cl::desc("Display assembler mnemonics for the machine instructions"));
77 static cl::alias
78 Disassembled("d", cl::desc("Alias for --disassemble"),
79              cl::aliasopt(Disassemble));
80 
81 cl::opt<bool>
82 llvm::DisassembleAll("disassemble-all",
83   cl::desc("Display assembler mnemonics for the machine instructions"));
84 static cl::alias
85 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
86              cl::aliasopt(DisassembleAll));
87 
88 cl::opt<bool>
89 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
90 
91 cl::opt<bool>
92 llvm::SectionContents("s", cl::desc("Display the content of each section"));
93 
94 cl::opt<bool>
95 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
96 
97 cl::opt<bool>
98 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
99 
100 cl::opt<bool>
101 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
102 
103 cl::opt<bool>
104 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
105 
106 cl::opt<bool>
107 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
108 
109 cl::opt<bool>
110 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
111 
112 cl::opt<bool>
113 llvm::RawClangAST("raw-clang-ast",
114     cl::desc("Dump the raw binary contents of the clang AST section"));
115 
116 static cl::opt<bool>
117 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
118 static cl::alias
119 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
120 
121 cl::opt<std::string>
122 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
123                                     "see -version for available targets"));
124 
125 cl::opt<std::string>
126 llvm::MCPU("mcpu",
127      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
128      cl::value_desc("cpu-name"),
129      cl::init(""));
130 
131 cl::opt<std::string>
132 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
133                                 "see -version for available targets"));
134 
135 cl::opt<bool>
136 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
137                                                  "headers for each section."));
138 static cl::alias
139 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
140                     cl::aliasopt(SectionHeaders));
141 static cl::alias
142 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
143                       cl::aliasopt(SectionHeaders));
144 
145 cl::list<std::string>
146 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
147                                          "With -macho dump segment,section"));
148 cl::alias
149 static FilterSectionsj("j", cl::desc("Alias for --section"),
150                  cl::aliasopt(llvm::FilterSections));
151 
152 cl::list<std::string>
153 llvm::MAttrs("mattr",
154   cl::CommaSeparated,
155   cl::desc("Target specific attributes"),
156   cl::value_desc("a1,+a2,-a3,..."));
157 
158 cl::opt<bool>
159 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
160                                                  "instructions, do not print "
161                                                  "the instruction bytes."));
162 cl::opt<bool>
163 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
164 
165 cl::opt<bool>
166 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
167 
168 static cl::alias
169 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
170                 cl::aliasopt(UnwindInfo));
171 
172 cl::opt<bool>
173 llvm::PrivateHeaders("private-headers",
174                      cl::desc("Display format specific file headers"));
175 
176 cl::opt<bool>
177 llvm::FirstPrivateHeader("private-header",
178                          cl::desc("Display only the first format specific file "
179                                   "header"));
180 
181 static cl::alias
182 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
183                     cl::aliasopt(PrivateHeaders));
184 
185 cl::opt<bool>
186     llvm::PrintImmHex("print-imm-hex",
187                       cl::desc("Use hex format for immediate values"));
188 
189 cl::opt<bool> PrintFaultMaps("fault-map-section",
190                              cl::desc("Display contents of faultmap section"));
191 
192 cl::opt<DIDumpType> llvm::DwarfDumpType(
193     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
194     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
195 
196 cl::opt<bool> PrintSource(
197     "source",
198     cl::desc(
199         "Display source inlined with disassembly. Implies disassmble object"));
200 
201 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
202                            cl::aliasopt(PrintSource));
203 
204 cl::opt<bool> PrintLines("line-numbers",
205                          cl::desc("Display source line numbers with "
206                                   "disassembly. Implies disassemble object"));
207 
208 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
209                           cl::aliasopt(PrintLines));
210 
211 cl::opt<unsigned long long>
212     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
213                  cl::value_desc("address"), cl::init(0));
214 cl::opt<unsigned long long>
215     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
216                 cl::value_desc("address"), cl::init(UINT64_MAX));
217 static StringRef ToolName;
218 
219 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
220 
221 namespace {
222 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
223 
224 class SectionFilterIterator {
225 public:
226   SectionFilterIterator(FilterPredicate P,
227                         llvm::object::section_iterator const &I,
228                         llvm::object::section_iterator const &E)
229       : Predicate(std::move(P)), Iterator(I), End(E) {
230     ScanPredicate();
231   }
232   const llvm::object::SectionRef &operator*() const { return *Iterator; }
233   SectionFilterIterator &operator++() {
234     ++Iterator;
235     ScanPredicate();
236     return *this;
237   }
238   bool operator!=(SectionFilterIterator const &Other) const {
239     return Iterator != Other.Iterator;
240   }
241 
242 private:
243   void ScanPredicate() {
244     while (Iterator != End && !Predicate(*Iterator)) {
245       ++Iterator;
246     }
247   }
248   FilterPredicate Predicate;
249   llvm::object::section_iterator Iterator;
250   llvm::object::section_iterator End;
251 };
252 
253 class SectionFilter {
254 public:
255   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
256       : Predicate(std::move(P)), Object(O) {}
257   SectionFilterIterator begin() {
258     return SectionFilterIterator(Predicate, Object.section_begin(),
259                                  Object.section_end());
260   }
261   SectionFilterIterator end() {
262     return SectionFilterIterator(Predicate, Object.section_end(),
263                                  Object.section_end());
264   }
265 
266 private:
267   FilterPredicate Predicate;
268   llvm::object::ObjectFile const &Object;
269 };
270 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
271   return SectionFilter(
272       [](llvm::object::SectionRef const &S) {
273         if (FilterSections.empty())
274           return true;
275         llvm::StringRef String;
276         std::error_code error = S.getName(String);
277         if (error)
278           return false;
279         return is_contained(FilterSections, String);
280       },
281       O);
282 }
283 }
284 
285 void llvm::error(std::error_code EC) {
286   if (!EC)
287     return;
288 
289   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
290   errs().flush();
291   exit(1);
292 }
293 
294 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
295   errs() << ToolName << ": " << Message << ".\n";
296   errs().flush();
297   exit(1);
298 }
299 
300 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
301                                                 Twine Message) {
302   errs() << ToolName << ": '" << File << "': " << Message << ".\n";
303   exit(1);
304 }
305 
306 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
307                                                 std::error_code EC) {
308   assert(EC);
309   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
310   exit(1);
311 }
312 
313 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
314                                                 llvm::Error E) {
315   assert(E);
316   std::string Buf;
317   raw_string_ostream OS(Buf);
318   logAllUnhandledErrors(std::move(E), OS, "");
319   OS.flush();
320   errs() << ToolName << ": '" << File << "': " << Buf;
321   exit(1);
322 }
323 
324 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
325                                                 StringRef FileName,
326                                                 llvm::Error E,
327                                                 StringRef ArchitectureName) {
328   assert(E);
329   errs() << ToolName << ": ";
330   if (ArchiveName != "")
331     errs() << ArchiveName << "(" << FileName << ")";
332   else
333     errs() << "'" << FileName << "'";
334   if (!ArchitectureName.empty())
335     errs() << " (for architecture " << ArchitectureName << ")";
336   std::string Buf;
337   raw_string_ostream OS(Buf);
338   logAllUnhandledErrors(std::move(E), OS, "");
339   OS.flush();
340   errs() << ": " << Buf;
341   exit(1);
342 }
343 
344 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
345                                                 const object::Archive::Child &C,
346                                                 llvm::Error E,
347                                                 StringRef ArchitectureName) {
348   Expected<StringRef> NameOrErr = C.getName();
349   // TODO: if we have a error getting the name then it would be nice to print
350   // the index of which archive member this is and or its offset in the
351   // archive instead of "???" as the name.
352   if (!NameOrErr) {
353     consumeError(NameOrErr.takeError());
354     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
355   } else
356     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
357                        ArchitectureName);
358 }
359 
360 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
361   // Figure out the target triple.
362   llvm::Triple TheTriple("unknown-unknown-unknown");
363   if (TripleName.empty()) {
364     if (Obj) {
365       TheTriple = Obj->makeTriple();
366     }
367   } else {
368     TheTriple.setTriple(Triple::normalize(TripleName));
369 
370     // Use the triple, but also try to combine with ARM build attributes.
371     if (Obj) {
372       auto Arch = Obj->getArch();
373       if (Arch == Triple::arm || Arch == Triple::armeb) {
374         Obj->setARMSubArch(TheTriple);
375       }
376     }
377   }
378 
379   // Get the target specific parser.
380   std::string Error;
381   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
382                                                          Error);
383   if (!TheTarget) {
384     if (Obj)
385       report_error(Obj->getFileName(), "can't find target: " + Error);
386     else
387       error("can't find target: " + Error);
388   }
389 
390   // Update the triple name and return the found target.
391   TripleName = TheTriple.getTriple();
392   return TheTarget;
393 }
394 
395 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
396   return a.getOffset() < b.getOffset();
397 }
398 
399 namespace {
400 class SourcePrinter {
401 protected:
402   DILineInfo OldLineInfo;
403   const ObjectFile *Obj = nullptr;
404   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
405   // File name to file contents of source
406   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
407   // Mark the line endings of the cached source
408   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
409 
410 private:
411   bool cacheSource(const std::string& File);
412 
413 public:
414   SourcePrinter() = default;
415   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
416     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
417         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
418         DefaultArch);
419     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
420   }
421   virtual ~SourcePrinter() = default;
422   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
423                                StringRef Delimiter = "; ");
424 };
425 
426 bool SourcePrinter::cacheSource(const std::string& File) {
427   auto BufferOrError = MemoryBuffer::getFile(File);
428   if (!BufferOrError)
429     return false;
430   // Chomp the file to get lines
431   size_t BufferSize = (*BufferOrError)->getBufferSize();
432   const char *BufferStart = (*BufferOrError)->getBufferStart();
433   for (const char *Start = BufferStart, *End = BufferStart;
434        End < BufferStart + BufferSize; End++)
435     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
436         (*End == '\r' && *(End + 1) == '\n')) {
437       LineCache[File].push_back(StringRef(Start, End - Start));
438       if (*End == '\r')
439         End++;
440       Start = End + 1;
441     }
442   SourceCache[File] = std::move(*BufferOrError);
443   return true;
444 }
445 
446 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
447                                     StringRef Delimiter) {
448   if (!Symbolizer)
449     return;
450   DILineInfo LineInfo = DILineInfo();
451   auto ExpectecLineInfo =
452       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
453   if (!ExpectecLineInfo)
454     consumeError(ExpectecLineInfo.takeError());
455   else
456     LineInfo = *ExpectecLineInfo;
457 
458   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
459       LineInfo.Line == 0)
460     return;
461 
462   if (PrintLines)
463     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
464   if (PrintSource) {
465     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
466       if (!cacheSource(LineInfo.FileName))
467         return;
468     auto FileBuffer = SourceCache.find(LineInfo.FileName);
469     if (FileBuffer != SourceCache.end()) {
470       auto LineBuffer = LineCache.find(LineInfo.FileName);
471       if (LineBuffer != LineCache.end()) {
472         if (LineInfo.Line > LineBuffer->second.size())
473           return;
474         // Vector begins at 0, line numbers are non-zero
475         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
476            << "\n";
477       }
478     }
479   }
480   OldLineInfo = LineInfo;
481 }
482 
483 static bool isArmElf(const ObjectFile *Obj) {
484   return (Obj->isELF() &&
485           (Obj->getArch() == Triple::aarch64 ||
486            Obj->getArch() == Triple::aarch64_be ||
487            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
488            Obj->getArch() == Triple::thumb ||
489            Obj->getArch() == Triple::thumbeb));
490 }
491 
492 class PrettyPrinter {
493 public:
494   virtual ~PrettyPrinter() = default;
495   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
496                          ArrayRef<uint8_t> Bytes, uint64_t Address,
497                          raw_ostream &OS, StringRef Annot,
498                          MCSubtargetInfo const &STI, SourcePrinter *SP) {
499     if (SP && (PrintSource || PrintLines))
500       SP->printSourceLine(OS, Address);
501     if (!NoLeadingAddr)
502       OS << format("%8" PRIx64 ":", Address);
503     if (!NoShowRawInsn) {
504       OS << "\t";
505       dumpBytes(Bytes, OS);
506     }
507     if (MI)
508       IP.printInst(MI, OS, "", STI);
509     else
510       OS << " <unknown>";
511   }
512 };
513 PrettyPrinter PrettyPrinterInst;
514 class HexagonPrettyPrinter : public PrettyPrinter {
515 public:
516   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
517                  raw_ostream &OS) {
518     uint32_t opcode =
519       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
520     if (!NoLeadingAddr)
521       OS << format("%8" PRIx64 ":", Address);
522     if (!NoShowRawInsn) {
523       OS << "\t";
524       dumpBytes(Bytes.slice(0, 4), OS);
525       OS << format("%08" PRIx32, opcode);
526     }
527   }
528   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
529                  uint64_t Address, raw_ostream &OS, StringRef Annot,
530                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
531     if (SP && (PrintSource || PrintLines))
532       SP->printSourceLine(OS, Address, "");
533     if (!MI) {
534       printLead(Bytes, Address, OS);
535       OS << " <unknown>";
536       return;
537     }
538     std::string Buffer;
539     {
540       raw_string_ostream TempStream(Buffer);
541       IP.printInst(MI, TempStream, "", STI);
542     }
543     StringRef Contents(Buffer);
544     // Split off bundle attributes
545     auto PacketBundle = Contents.rsplit('\n');
546     // Split off first instruction from the rest
547     auto HeadTail = PacketBundle.first.split('\n');
548     auto Preamble = " { ";
549     auto Separator = "";
550     while(!HeadTail.first.empty()) {
551       OS << Separator;
552       Separator = "\n";
553       if (SP && (PrintSource || PrintLines))
554         SP->printSourceLine(OS, Address, "");
555       printLead(Bytes, Address, OS);
556       OS << Preamble;
557       Preamble = "   ";
558       StringRef Inst;
559       auto Duplex = HeadTail.first.split('\v');
560       if(!Duplex.second.empty()){
561         OS << Duplex.first;
562         OS << "; ";
563         Inst = Duplex.second;
564       }
565       else
566         Inst = HeadTail.first;
567       OS << Inst;
568       Bytes = Bytes.slice(4);
569       Address += 4;
570       HeadTail = HeadTail.second.split('\n');
571     }
572     OS << " } " << PacketBundle.second;
573   }
574 };
575 HexagonPrettyPrinter HexagonPrettyPrinterInst;
576 
577 class AMDGCNPrettyPrinter : public PrettyPrinter {
578 public:
579   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
580                  uint64_t Address, raw_ostream &OS, StringRef Annot,
581                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
582     if (SP && (PrintSource || PrintLines))
583       SP->printSourceLine(OS, Address);
584 
585     if (!MI) {
586       OS << " <unknown>";
587       return;
588     }
589 
590     SmallString<40> InstStr;
591     raw_svector_ostream IS(InstStr);
592 
593     IP.printInst(MI, IS, "", STI);
594 
595     OS << left_justify(IS.str(), 60) << format("// %012" PRIX64 ": ", Address);
596     typedef support::ulittle32_t U32;
597     for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
598                                Bytes.size() / sizeof(U32)))
599       // D should be explicitly casted to uint32_t here as it is passed
600       // by format to snprintf as vararg.
601       OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
602 
603     if (!Annot.empty())
604       OS << "// " << Annot;
605   }
606 };
607 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
608 
609 class BPFPrettyPrinter : public PrettyPrinter {
610 public:
611   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
612                  uint64_t Address, raw_ostream &OS, StringRef Annot,
613                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
614     if (SP && (PrintSource || PrintLines))
615       SP->printSourceLine(OS, Address);
616     if (!NoLeadingAddr)
617       OS << format("%8" PRId64 ":", Address / 8);
618     if (!NoShowRawInsn) {
619       OS << "\t";
620       dumpBytes(Bytes, OS);
621     }
622     if (MI)
623       IP.printInst(MI, OS, "", STI);
624     else
625       OS << " <unknown>";
626   }
627 };
628 BPFPrettyPrinter BPFPrettyPrinterInst;
629 
630 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
631   switch(Triple.getArch()) {
632   default:
633     return PrettyPrinterInst;
634   case Triple::hexagon:
635     return HexagonPrettyPrinterInst;
636   case Triple::amdgcn:
637     return AMDGCNPrettyPrinterInst;
638   case Triple::bpfel:
639   case Triple::bpfeb:
640     return BPFPrettyPrinterInst;
641   }
642 }
643 }
644 
645 template <class ELFT>
646 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
647                                                 const RelocationRef &RelRef,
648                                                 SmallVectorImpl<char> &Result) {
649   DataRefImpl Rel = RelRef.getRawDataRefImpl();
650 
651   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
652   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
653   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
654 
655   const ELFFile<ELFT> &EF = *Obj->getELFFile();
656 
657   auto SecOrErr = EF.getSection(Rel.d.a);
658   if (!SecOrErr)
659     return errorToErrorCode(SecOrErr.takeError());
660   const Elf_Shdr *Sec = *SecOrErr;
661   auto SymTabOrErr = EF.getSection(Sec->sh_link);
662   if (!SymTabOrErr)
663     return errorToErrorCode(SymTabOrErr.takeError());
664   const Elf_Shdr *SymTab = *SymTabOrErr;
665   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
666          SymTab->sh_type == ELF::SHT_DYNSYM);
667   auto StrTabSec = EF.getSection(SymTab->sh_link);
668   if (!StrTabSec)
669     return errorToErrorCode(StrTabSec.takeError());
670   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
671   if (!StrTabOrErr)
672     return errorToErrorCode(StrTabOrErr.takeError());
673   StringRef StrTab = *StrTabOrErr;
674   uint8_t type = RelRef.getType();
675   StringRef res;
676   int64_t addend = 0;
677   switch (Sec->sh_type) {
678   default:
679     return object_error::parse_failed;
680   case ELF::SHT_REL: {
681     // TODO: Read implicit addend from section data.
682     break;
683   }
684   case ELF::SHT_RELA: {
685     const Elf_Rela *ERela = Obj->getRela(Rel);
686     addend = ERela->r_addend;
687     break;
688   }
689   }
690   symbol_iterator SI = RelRef.getSymbol();
691   const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
692   StringRef Target;
693   if (symb->getType() == ELF::STT_SECTION) {
694     Expected<section_iterator> SymSI = SI->getSection();
695     if (!SymSI)
696       return errorToErrorCode(SymSI.takeError());
697     const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
698     auto SecName = EF.getSectionName(SymSec);
699     if (!SecName)
700       return errorToErrorCode(SecName.takeError());
701     Target = *SecName;
702   } else {
703     Expected<StringRef> SymName = symb->getName(StrTab);
704     if (!SymName)
705       return errorToErrorCode(SymName.takeError());
706     Target = *SymName;
707   }
708   switch (EF.getHeader()->e_machine) {
709   case ELF::EM_X86_64:
710     switch (type) {
711     case ELF::R_X86_64_PC8:
712     case ELF::R_X86_64_PC16:
713     case ELF::R_X86_64_PC32: {
714       std::string fmtbuf;
715       raw_string_ostream fmt(fmtbuf);
716       fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
717       fmt.flush();
718       Result.append(fmtbuf.begin(), fmtbuf.end());
719     } break;
720     case ELF::R_X86_64_8:
721     case ELF::R_X86_64_16:
722     case ELF::R_X86_64_32:
723     case ELF::R_X86_64_32S:
724     case ELF::R_X86_64_64: {
725       std::string fmtbuf;
726       raw_string_ostream fmt(fmtbuf);
727       fmt << Target << (addend < 0 ? "" : "+") << addend;
728       fmt.flush();
729       Result.append(fmtbuf.begin(), fmtbuf.end());
730     } break;
731     default:
732       res = "Unknown";
733     }
734     break;
735   case ELF::EM_LANAI:
736   case ELF::EM_AVR:
737   case ELF::EM_AARCH64: {
738     std::string fmtbuf;
739     raw_string_ostream fmt(fmtbuf);
740     fmt << Target;
741     if (addend != 0)
742       fmt << (addend < 0 ? "" : "+") << addend;
743     fmt.flush();
744     Result.append(fmtbuf.begin(), fmtbuf.end());
745     break;
746   }
747   case ELF::EM_386:
748   case ELF::EM_IAMCU:
749   case ELF::EM_ARM:
750   case ELF::EM_HEXAGON:
751   case ELF::EM_MIPS:
752   case ELF::EM_BPF:
753   case ELF::EM_RISCV:
754     res = Target;
755     break;
756   case ELF::EM_WEBASSEMBLY:
757     switch (type) {
758     case ELF::R_WEBASSEMBLY_DATA: {
759       std::string fmtbuf;
760       raw_string_ostream fmt(fmtbuf);
761       fmt << Target << (addend < 0 ? "" : "+") << addend;
762       fmt.flush();
763       Result.append(fmtbuf.begin(), fmtbuf.end());
764       break;
765     }
766     case ELF::R_WEBASSEMBLY_FUNCTION:
767       res = Target;
768       break;
769     default:
770       res = "Unknown";
771     }
772     break;
773   default:
774     res = "Unknown";
775   }
776   if (Result.empty())
777     Result.append(res.begin(), res.end());
778   return std::error_code();
779 }
780 
781 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
782                                                 const RelocationRef &Rel,
783                                                 SmallVectorImpl<char> &Result) {
784   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
785     return getRelocationValueString(ELF32LE, Rel, Result);
786   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
787     return getRelocationValueString(ELF64LE, Rel, Result);
788   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
789     return getRelocationValueString(ELF32BE, Rel, Result);
790   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
791   return getRelocationValueString(ELF64BE, Rel, Result);
792 }
793 
794 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
795                                                 const RelocationRef &Rel,
796                                                 SmallVectorImpl<char> &Result) {
797   symbol_iterator SymI = Rel.getSymbol();
798   Expected<StringRef> SymNameOrErr = SymI->getName();
799   if (!SymNameOrErr)
800     return errorToErrorCode(SymNameOrErr.takeError());
801   StringRef SymName = *SymNameOrErr;
802   Result.append(SymName.begin(), SymName.end());
803   return std::error_code();
804 }
805 
806 static void printRelocationTargetName(const MachOObjectFile *O,
807                                       const MachO::any_relocation_info &RE,
808                                       raw_string_ostream &fmt) {
809   bool IsScattered = O->isRelocationScattered(RE);
810 
811   // Target of a scattered relocation is an address.  In the interest of
812   // generating pretty output, scan through the symbol table looking for a
813   // symbol that aligns with that address.  If we find one, print it.
814   // Otherwise, we just print the hex address of the target.
815   if (IsScattered) {
816     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
817 
818     for (const SymbolRef &Symbol : O->symbols()) {
819       std::error_code ec;
820       Expected<uint64_t> Addr = Symbol.getAddress();
821       if (!Addr)
822         report_error(O->getFileName(), Addr.takeError());
823       if (*Addr != Val)
824         continue;
825       Expected<StringRef> Name = Symbol.getName();
826       if (!Name)
827         report_error(O->getFileName(), Name.takeError());
828       fmt << *Name;
829       return;
830     }
831 
832     // If we couldn't find a symbol that this relocation refers to, try
833     // to find a section beginning instead.
834     for (const SectionRef &Section : ToolSectionFilter(*O)) {
835       std::error_code ec;
836 
837       StringRef Name;
838       uint64_t Addr = Section.getAddress();
839       if (Addr != Val)
840         continue;
841       if ((ec = Section.getName(Name)))
842         report_error(O->getFileName(), ec);
843       fmt << Name;
844       return;
845     }
846 
847     fmt << format("0x%x", Val);
848     return;
849   }
850 
851   StringRef S;
852   bool isExtern = O->getPlainRelocationExternal(RE);
853   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
854 
855   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
856     fmt << format("0x%0" PRIx64, Val);
857     return;
858   } else if (isExtern) {
859     symbol_iterator SI = O->symbol_begin();
860     advance(SI, Val);
861     Expected<StringRef> SOrErr = SI->getName();
862     if (!SOrErr)
863       report_error(O->getFileName(), SOrErr.takeError());
864     S = *SOrErr;
865   } else {
866     section_iterator SI = O->section_begin();
867     // Adjust for the fact that sections are 1-indexed.
868     advance(SI, Val - 1);
869     SI->getName(S);
870   }
871 
872   fmt << S;
873 }
874 
875 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
876                                                 const RelocationRef &RelRef,
877                                                 SmallVectorImpl<char> &Result) {
878   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
879   std::string fmtbuf;
880   raw_string_ostream fmt(fmtbuf);
881   fmt << Rel.Index << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
882   fmt.flush();
883   Result.append(fmtbuf.begin(), fmtbuf.end());
884   return std::error_code();
885 }
886 
887 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
888                                                 const RelocationRef &RelRef,
889                                                 SmallVectorImpl<char> &Result) {
890   DataRefImpl Rel = RelRef.getRawDataRefImpl();
891   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
892 
893   unsigned Arch = Obj->getArch();
894 
895   std::string fmtbuf;
896   raw_string_ostream fmt(fmtbuf);
897   unsigned Type = Obj->getAnyRelocationType(RE);
898   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
899 
900   // Determine any addends that should be displayed with the relocation.
901   // These require decoding the relocation type, which is triple-specific.
902 
903   // X86_64 has entirely custom relocation types.
904   if (Arch == Triple::x86_64) {
905     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
906 
907     switch (Type) {
908     case MachO::X86_64_RELOC_GOT_LOAD:
909     case MachO::X86_64_RELOC_GOT: {
910       printRelocationTargetName(Obj, RE, fmt);
911       fmt << "@GOT";
912       if (isPCRel)
913         fmt << "PCREL";
914       break;
915     }
916     case MachO::X86_64_RELOC_SUBTRACTOR: {
917       DataRefImpl RelNext = Rel;
918       Obj->moveRelocationNext(RelNext);
919       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
920 
921       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
922       // X86_64_RELOC_UNSIGNED.
923       // NOTE: Scattered relocations don't exist on x86_64.
924       unsigned RType = Obj->getAnyRelocationType(RENext);
925       if (RType != MachO::X86_64_RELOC_UNSIGNED)
926         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
927                      "X86_64_RELOC_SUBTRACTOR.");
928 
929       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
930       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
931       printRelocationTargetName(Obj, RENext, fmt);
932       fmt << "-";
933       printRelocationTargetName(Obj, RE, fmt);
934       break;
935     }
936     case MachO::X86_64_RELOC_TLV:
937       printRelocationTargetName(Obj, RE, fmt);
938       fmt << "@TLV";
939       if (isPCRel)
940         fmt << "P";
941       break;
942     case MachO::X86_64_RELOC_SIGNED_1:
943       printRelocationTargetName(Obj, RE, fmt);
944       fmt << "-1";
945       break;
946     case MachO::X86_64_RELOC_SIGNED_2:
947       printRelocationTargetName(Obj, RE, fmt);
948       fmt << "-2";
949       break;
950     case MachO::X86_64_RELOC_SIGNED_4:
951       printRelocationTargetName(Obj, RE, fmt);
952       fmt << "-4";
953       break;
954     default:
955       printRelocationTargetName(Obj, RE, fmt);
956       break;
957     }
958     // X86 and ARM share some relocation types in common.
959   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
960              Arch == Triple::ppc) {
961     // Generic relocation types...
962     switch (Type) {
963     case MachO::GENERIC_RELOC_PAIR: // prints no info
964       return std::error_code();
965     case MachO::GENERIC_RELOC_SECTDIFF: {
966       DataRefImpl RelNext = Rel;
967       Obj->moveRelocationNext(RelNext);
968       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
969 
970       // X86 sect diff's must be followed by a relocation of type
971       // GENERIC_RELOC_PAIR.
972       unsigned RType = Obj->getAnyRelocationType(RENext);
973 
974       if (RType != MachO::GENERIC_RELOC_PAIR)
975         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
976                      "GENERIC_RELOC_SECTDIFF.");
977 
978       printRelocationTargetName(Obj, RE, fmt);
979       fmt << "-";
980       printRelocationTargetName(Obj, RENext, fmt);
981       break;
982     }
983     }
984 
985     if (Arch == Triple::x86 || Arch == Triple::ppc) {
986       switch (Type) {
987       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
988         DataRefImpl RelNext = Rel;
989         Obj->moveRelocationNext(RelNext);
990         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
991 
992         // X86 sect diff's must be followed by a relocation of type
993         // GENERIC_RELOC_PAIR.
994         unsigned RType = Obj->getAnyRelocationType(RENext);
995         if (RType != MachO::GENERIC_RELOC_PAIR)
996           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
997                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
998 
999         printRelocationTargetName(Obj, RE, fmt);
1000         fmt << "-";
1001         printRelocationTargetName(Obj, RENext, fmt);
1002         break;
1003       }
1004       case MachO::GENERIC_RELOC_TLV: {
1005         printRelocationTargetName(Obj, RE, fmt);
1006         fmt << "@TLV";
1007         if (IsPCRel)
1008           fmt << "P";
1009         break;
1010       }
1011       default:
1012         printRelocationTargetName(Obj, RE, fmt);
1013       }
1014     } else { // ARM-specific relocations
1015       switch (Type) {
1016       case MachO::ARM_RELOC_HALF:
1017       case MachO::ARM_RELOC_HALF_SECTDIFF: {
1018         // Half relocations steal a bit from the length field to encode
1019         // whether this is an upper16 or a lower16 relocation.
1020         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
1021 
1022         if (isUpper)
1023           fmt << ":upper16:(";
1024         else
1025           fmt << ":lower16:(";
1026         printRelocationTargetName(Obj, RE, fmt);
1027 
1028         DataRefImpl RelNext = Rel;
1029         Obj->moveRelocationNext(RelNext);
1030         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1031 
1032         // ARM half relocs must be followed by a relocation of type
1033         // ARM_RELOC_PAIR.
1034         unsigned RType = Obj->getAnyRelocationType(RENext);
1035         if (RType != MachO::ARM_RELOC_PAIR)
1036           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
1037                        "ARM_RELOC_HALF");
1038 
1039         // NOTE: The half of the target virtual address is stashed in the
1040         // address field of the secondary relocation, but we can't reverse
1041         // engineer the constant offset from it without decoding the movw/movt
1042         // instruction to find the other half in its immediate field.
1043 
1044         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
1045         // symbol/section pointer of the follow-on relocation.
1046         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1047           fmt << "-";
1048           printRelocationTargetName(Obj, RENext, fmt);
1049         }
1050 
1051         fmt << ")";
1052         break;
1053       }
1054       default: { printRelocationTargetName(Obj, RE, fmt); }
1055       }
1056     }
1057   } else
1058     printRelocationTargetName(Obj, RE, fmt);
1059 
1060   fmt.flush();
1061   Result.append(fmtbuf.begin(), fmtbuf.end());
1062   return std::error_code();
1063 }
1064 
1065 static std::error_code getRelocationValueString(const RelocationRef &Rel,
1066                                                 SmallVectorImpl<char> &Result) {
1067   const ObjectFile *Obj = Rel.getObject();
1068   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
1069     return getRelocationValueString(ELF, Rel, Result);
1070   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
1071     return getRelocationValueString(COFF, Rel, Result);
1072   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
1073     return getRelocationValueString(Wasm, Rel, Result);
1074   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
1075     return getRelocationValueString(MachO, Rel, Result);
1076   llvm_unreachable("unknown object file format");
1077 }
1078 
1079 /// @brief Indicates whether this relocation should hidden when listing
1080 /// relocations, usually because it is the trailing part of a multipart
1081 /// relocation that will be printed as part of the leading relocation.
1082 static bool getHidden(RelocationRef RelRef) {
1083   const ObjectFile *Obj = RelRef.getObject();
1084   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
1085   if (!MachO)
1086     return false;
1087 
1088   unsigned Arch = MachO->getArch();
1089   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1090   uint64_t Type = MachO->getRelocationType(Rel);
1091 
1092   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
1093   // is always hidden.
1094   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
1095     if (Type == MachO::GENERIC_RELOC_PAIR)
1096       return true;
1097   } else if (Arch == Triple::x86_64) {
1098     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
1099     // an X86_64_RELOC_SUBTRACTOR.
1100     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
1101       DataRefImpl RelPrev = Rel;
1102       RelPrev.d.a--;
1103       uint64_t PrevType = MachO->getRelocationType(RelPrev);
1104       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
1105         return true;
1106     }
1107   }
1108 
1109   return false;
1110 }
1111 
1112 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1113   assert(Obj->isELF());
1114   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1115     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1116   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1117     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1118   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1119     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1120   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1121     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1122   llvm_unreachable("Unsupported binary format");
1123 }
1124 
1125 template <class ELFT> static void
1126 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1127                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1128   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1129     uint8_t SymbolType = Symbol.getELFType();
1130     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1131       continue;
1132 
1133     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1134     if (!AddressOrErr)
1135       report_error(Obj->getFileName(), AddressOrErr.takeError());
1136     uint64_t Address = *AddressOrErr;
1137 
1138     Expected<StringRef> Name = Symbol.getName();
1139     if (!Name)
1140       report_error(Obj->getFileName(), Name.takeError());
1141     if (Name->empty())
1142       continue;
1143 
1144     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1145     if (!SectionOrErr)
1146       report_error(Obj->getFileName(), SectionOrErr.takeError());
1147     section_iterator SecI = *SectionOrErr;
1148     if (SecI == Obj->section_end())
1149       continue;
1150 
1151     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1152   }
1153 }
1154 
1155 static void
1156 addDynamicElfSymbols(const ObjectFile *Obj,
1157                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1158   assert(Obj->isELF());
1159   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1160     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1161   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1162     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1163   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1164     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1165   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1166     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1167   else
1168     llvm_unreachable("Unsupported binary format");
1169 }
1170 
1171 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1172   if (StartAddress > StopAddress)
1173     error("Start address should be less than stop address");
1174 
1175   const Target *TheTarget = getTarget(Obj);
1176 
1177   // Package up features to be passed to target/subtarget
1178   SubtargetFeatures Features = Obj->getFeatures();
1179   if (MAttrs.size()) {
1180     for (unsigned i = 0; i != MAttrs.size(); ++i)
1181       Features.AddFeature(MAttrs[i]);
1182   }
1183 
1184   std::unique_ptr<const MCRegisterInfo> MRI(
1185       TheTarget->createMCRegInfo(TripleName));
1186   if (!MRI)
1187     report_error(Obj->getFileName(), "no register info for target " +
1188                  TripleName);
1189 
1190   // Set up disassembler.
1191   std::unique_ptr<const MCAsmInfo> AsmInfo(
1192       TheTarget->createMCAsmInfo(*MRI, TripleName));
1193   if (!AsmInfo)
1194     report_error(Obj->getFileName(), "no assembly info for target " +
1195                  TripleName);
1196   std::unique_ptr<const MCSubtargetInfo> STI(
1197       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1198   if (!STI)
1199     report_error(Obj->getFileName(), "no subtarget info for target " +
1200                  TripleName);
1201   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1202   if (!MII)
1203     report_error(Obj->getFileName(), "no instruction info for target " +
1204                  TripleName);
1205   MCObjectFileInfo MOFI;
1206   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1207   // FIXME: for now initialize MCObjectFileInfo with default values
1208   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1209 
1210   std::unique_ptr<MCDisassembler> DisAsm(
1211     TheTarget->createMCDisassembler(*STI, Ctx));
1212   if (!DisAsm)
1213     report_error(Obj->getFileName(), "no disassembler for target " +
1214                  TripleName);
1215 
1216   std::unique_ptr<const MCInstrAnalysis> MIA(
1217       TheTarget->createMCInstrAnalysis(MII.get()));
1218 
1219   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1220   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1221       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1222   if (!IP)
1223     report_error(Obj->getFileName(), "no instruction printer for target " +
1224                  TripleName);
1225   IP->setPrintImmHex(PrintImmHex);
1226   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1227 
1228   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1229                                                  "\t\t\t%08" PRIx64 ":  ";
1230 
1231   SourcePrinter SP(Obj, TheTarget->getName());
1232 
1233   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1234   // in RelocSecs contain the relocations for section S.
1235   std::error_code EC;
1236   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1237   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1238     section_iterator Sec2 = Section.getRelocatedSection();
1239     if (Sec2 != Obj->section_end())
1240       SectionRelocMap[*Sec2].push_back(Section);
1241   }
1242 
1243   // Create a mapping from virtual address to symbol name.  This is used to
1244   // pretty print the symbols while disassembling.
1245   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1246   for (const SymbolRef &Symbol : Obj->symbols()) {
1247     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1248     if (!AddressOrErr)
1249       report_error(Obj->getFileName(), AddressOrErr.takeError());
1250     uint64_t Address = *AddressOrErr;
1251 
1252     Expected<StringRef> Name = Symbol.getName();
1253     if (!Name)
1254       report_error(Obj->getFileName(), Name.takeError());
1255     if (Name->empty())
1256       continue;
1257 
1258     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1259     if (!SectionOrErr)
1260       report_error(Obj->getFileName(), SectionOrErr.takeError());
1261     section_iterator SecI = *SectionOrErr;
1262     if (SecI == Obj->section_end())
1263       continue;
1264 
1265     uint8_t SymbolType = ELF::STT_NOTYPE;
1266     if (Obj->isELF())
1267       SymbolType = getElfSymbolType(Obj, Symbol);
1268 
1269     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1270 
1271   }
1272   if (AllSymbols.empty() && Obj->isELF())
1273     addDynamicElfSymbols(Obj, AllSymbols);
1274 
1275   // Create a mapping from virtual address to section.
1276   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1277   for (SectionRef Sec : Obj->sections())
1278     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1279   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1280 
1281   // Linked executables (.exe and .dll files) typically don't include a real
1282   // symbol table but they might contain an export table.
1283   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1284     for (const auto &ExportEntry : COFFObj->export_directories()) {
1285       StringRef Name;
1286       error(ExportEntry.getSymbolName(Name));
1287       if (Name.empty())
1288         continue;
1289       uint32_t RVA;
1290       error(ExportEntry.getExportRVA(RVA));
1291 
1292       uint64_t VA = COFFObj->getImageBase() + RVA;
1293       auto Sec = std::upper_bound(
1294           SectionAddresses.begin(), SectionAddresses.end(), VA,
1295           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1296             return LHS < RHS.first;
1297           });
1298       if (Sec != SectionAddresses.begin())
1299         --Sec;
1300       else
1301         Sec = SectionAddresses.end();
1302 
1303       if (Sec != SectionAddresses.end())
1304         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1305     }
1306   }
1307 
1308   // Sort all the symbols, this allows us to use a simple binary search to find
1309   // a symbol near an address.
1310   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1311     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1312 
1313   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1314     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1315       continue;
1316 
1317     uint64_t SectionAddr = Section.getAddress();
1318     uint64_t SectSize = Section.getSize();
1319     if (!SectSize)
1320       continue;
1321 
1322     // Get the list of all the symbols in this section.
1323     SectionSymbolsTy &Symbols = AllSymbols[Section];
1324     std::vector<uint64_t> DataMappingSymsAddr;
1325     std::vector<uint64_t> TextMappingSymsAddr;
1326     if (isArmElf(Obj)) {
1327       for (const auto &Symb : Symbols) {
1328         uint64_t Address = std::get<0>(Symb);
1329         StringRef Name = std::get<1>(Symb);
1330         if (Name.startswith("$d"))
1331           DataMappingSymsAddr.push_back(Address - SectionAddr);
1332         if (Name.startswith("$x"))
1333           TextMappingSymsAddr.push_back(Address - SectionAddr);
1334         if (Name.startswith("$a"))
1335           TextMappingSymsAddr.push_back(Address - SectionAddr);
1336         if (Name.startswith("$t"))
1337           TextMappingSymsAddr.push_back(Address - SectionAddr);
1338       }
1339     }
1340 
1341     std::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1342     std::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1343 
1344     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1345       // AMDGPU disassembler uses symbolizer for printing labels
1346       std::unique_ptr<MCRelocationInfo> RelInfo(
1347         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1348       if (RelInfo) {
1349         std::unique_ptr<MCSymbolizer> Symbolizer(
1350           TheTarget->createMCSymbolizer(
1351             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1352         DisAsm->setSymbolizer(std::move(Symbolizer));
1353       }
1354     }
1355 
1356     // Make a list of all the relocations for this section.
1357     std::vector<RelocationRef> Rels;
1358     if (InlineRelocs) {
1359       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1360         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1361           Rels.push_back(Reloc);
1362         }
1363       }
1364     }
1365 
1366     // Sort relocations by address.
1367     std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1368 
1369     StringRef SegmentName = "";
1370     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1371       DataRefImpl DR = Section.getRawDataRefImpl();
1372       SegmentName = MachO->getSectionFinalSegmentName(DR);
1373     }
1374     StringRef name;
1375     error(Section.getName(name));
1376 
1377     if ((SectionAddr <= StopAddress) &&
1378         (SectionAddr + SectSize) >= StartAddress) {
1379     outs() << "Disassembly of section ";
1380     if (!SegmentName.empty())
1381       outs() << SegmentName << ",";
1382     outs() << name << ':';
1383     }
1384 
1385     // If the section has no symbol at the start, just insert a dummy one.
1386     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1387       Symbols.insert(Symbols.begin(),
1388                      std::make_tuple(SectionAddr, name, Section.isText()
1389                                                             ? ELF::STT_FUNC
1390                                                             : ELF::STT_OBJECT));
1391     }
1392 
1393     SmallString<40> Comments;
1394     raw_svector_ostream CommentStream(Comments);
1395 
1396     StringRef BytesStr;
1397     error(Section.getContents(BytesStr));
1398     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1399                             BytesStr.size());
1400 
1401     uint64_t Size;
1402     uint64_t Index;
1403 
1404     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1405     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1406     // Disassemble symbol by symbol.
1407     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1408       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1409       // The end is either the section end or the beginning of the next
1410       // symbol.
1411       uint64_t End =
1412           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1413       // Don't try to disassemble beyond the end of section contents.
1414       if (End > SectSize)
1415         End = SectSize;
1416       // If this symbol has the same address as the next symbol, then skip it.
1417       if (Start >= End)
1418         continue;
1419 
1420       // Check if we need to skip symbol
1421       // Skip if the symbol's data is not between StartAddress and StopAddress
1422       if (End + SectionAddr < StartAddress ||
1423           Start + SectionAddr > StopAddress) {
1424         continue;
1425       }
1426 
1427       // Stop disassembly at the stop address specified
1428       if (End + SectionAddr > StopAddress)
1429         End = StopAddress - SectionAddr;
1430 
1431       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1432         // make size 4 bytes folded
1433         End = Start + ((End - Start) & ~0x3ull);
1434         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1435           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1436           Start += 256;
1437         }
1438         if (si == se - 1 ||
1439             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1440           // cut trailing zeroes at the end of kernel
1441           // cut up to 256 bytes
1442           const uint64_t EndAlign = 256;
1443           const auto Limit = End - (std::min)(EndAlign, End - Start);
1444           while (End > Limit &&
1445             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1446             End -= 4;
1447         }
1448       }
1449 
1450       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1451 
1452 #ifndef NDEBUG
1453       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1454 #else
1455       raw_ostream &DebugOut = nulls();
1456 #endif
1457 
1458       for (Index = Start; Index < End; Index += Size) {
1459         MCInst Inst;
1460 
1461         if (Index + SectionAddr < StartAddress ||
1462             Index + SectionAddr > StopAddress) {
1463           // skip byte by byte till StartAddress is reached
1464           Size = 1;
1465           continue;
1466         }
1467         // AArch64 ELF binaries can interleave data and text in the
1468         // same section. We rely on the markers introduced to
1469         // understand what we need to dump. If the data marker is within a
1470         // function, it is denoted as a word/short etc
1471         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1472             !DisassembleAll) {
1473           uint64_t Stride = 0;
1474 
1475           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1476                                       DataMappingSymsAddr.end(), Index);
1477           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1478             // Switch to data.
1479             while (Index < End) {
1480               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1481               outs() << "\t";
1482               if (Index + 4 <= End) {
1483                 Stride = 4;
1484                 dumpBytes(Bytes.slice(Index, 4), outs());
1485                 outs() << "\t.word\t";
1486                 uint32_t Data = 0;
1487                 if (Obj->isLittleEndian()) {
1488                   const auto Word =
1489                       reinterpret_cast<const support::ulittle32_t *>(
1490                           Bytes.data() + Index);
1491                   Data = *Word;
1492                 } else {
1493                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1494                       Bytes.data() + Index);
1495                   Data = *Word;
1496                 }
1497                 outs() << "0x" << format("%08" PRIx32, Data);
1498               } else if (Index + 2 <= End) {
1499                 Stride = 2;
1500                 dumpBytes(Bytes.slice(Index, 2), outs());
1501                 outs() << "\t\t.short\t";
1502                 uint16_t Data = 0;
1503                 if (Obj->isLittleEndian()) {
1504                   const auto Short =
1505                       reinterpret_cast<const support::ulittle16_t *>(
1506                           Bytes.data() + Index);
1507                   Data = *Short;
1508                 } else {
1509                   const auto Short =
1510                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1511                                                                   Index);
1512                   Data = *Short;
1513                 }
1514                 outs() << "0x" << format("%04" PRIx16, Data);
1515               } else {
1516                 Stride = 1;
1517                 dumpBytes(Bytes.slice(Index, 1), outs());
1518                 outs() << "\t\t.byte\t";
1519                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1520               }
1521               Index += Stride;
1522               outs() << "\n";
1523               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1524                                           TextMappingSymsAddr.end(), Index);
1525               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1526                 break;
1527             }
1528           }
1529         }
1530 
1531         // If there is a data symbol inside an ELF text section and we are only
1532         // disassembling text (applicable all architectures),
1533         // we are in a situation where we must print the data and not
1534         // disassemble it.
1535         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1536             !DisassembleAll && Section.isText()) {
1537           // print out data up to 8 bytes at a time in hex and ascii
1538           uint8_t AsciiData[9] = {'\0'};
1539           uint8_t Byte;
1540           int NumBytes = 0;
1541 
1542           for (Index = Start; Index < End; Index += 1) {
1543             if (((SectionAddr + Index) < StartAddress) ||
1544                 ((SectionAddr + Index) > StopAddress))
1545               continue;
1546             if (NumBytes == 0) {
1547               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1548               outs() << "\t";
1549             }
1550             Byte = Bytes.slice(Index)[0];
1551             outs() << format(" %02x", Byte);
1552             AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
1553 
1554             uint8_t IndentOffset = 0;
1555             NumBytes++;
1556             if (Index == End - 1 || NumBytes > 8) {
1557               // Indent the space for less than 8 bytes data.
1558               // 2 spaces for byte and one for space between bytes
1559               IndentOffset = 3 * (8 - NumBytes);
1560               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1561                 AsciiData[Excess] = '\0';
1562               NumBytes = 8;
1563             }
1564             if (NumBytes == 8) {
1565               AsciiData[8] = '\0';
1566               outs() << std::string(IndentOffset, ' ') << "         ";
1567               outs() << reinterpret_cast<char *>(AsciiData);
1568               outs() << '\n';
1569               NumBytes = 0;
1570             }
1571           }
1572         }
1573         if (Index >= End)
1574           break;
1575 
1576         // Disassemble a real instruction or a data when disassemble all is
1577         // provided
1578         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1579                                                    SectionAddr + Index, DebugOut,
1580                                                    CommentStream);
1581         if (Size == 0)
1582           Size = 1;
1583 
1584         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1585                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1586                       *STI, &SP);
1587         outs() << CommentStream.str();
1588         Comments.clear();
1589 
1590         // Try to resolve the target of a call, tail call, etc. to a specific
1591         // symbol.
1592         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1593                     MIA->isConditionalBranch(Inst))) {
1594           uint64_t Target;
1595           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1596             // In a relocatable object, the target's section must reside in
1597             // the same section as the call instruction or it is accessed
1598             // through a relocation.
1599             //
1600             // In a non-relocatable object, the target may be in any section.
1601             //
1602             // N.B. We don't walk the relocations in the relocatable case yet.
1603             auto *TargetSectionSymbols = &Symbols;
1604             if (!Obj->isRelocatableObject()) {
1605               auto SectionAddress = std::upper_bound(
1606                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1607                   [](uint64_t LHS,
1608                       const std::pair<uint64_t, SectionRef> &RHS) {
1609                     return LHS < RHS.first;
1610                   });
1611               if (SectionAddress != SectionAddresses.begin()) {
1612                 --SectionAddress;
1613                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1614               } else {
1615                 TargetSectionSymbols = nullptr;
1616               }
1617             }
1618 
1619             // Find the first symbol in the section whose offset is less than
1620             // or equal to the target.
1621             if (TargetSectionSymbols) {
1622               auto TargetSym = std::upper_bound(
1623                   TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1624                   Target, [](uint64_t LHS,
1625                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1626                     return LHS < std::get<0>(RHS);
1627                   });
1628               if (TargetSym != TargetSectionSymbols->begin()) {
1629                 --TargetSym;
1630                 uint64_t TargetAddress = std::get<0>(*TargetSym);
1631                 StringRef TargetName = std::get<1>(*TargetSym);
1632                 outs() << " <" << TargetName;
1633                 uint64_t Disp = Target - TargetAddress;
1634                 if (Disp)
1635                   outs() << "+0x" << utohexstr(Disp);
1636                 outs() << '>';
1637               }
1638             }
1639           }
1640         }
1641         outs() << "\n";
1642 
1643         // Print relocation for instruction.
1644         while (rel_cur != rel_end) {
1645           bool hidden = getHidden(*rel_cur);
1646           uint64_t addr = rel_cur->getOffset();
1647           SmallString<16> name;
1648           SmallString<32> val;
1649 
1650           // If this relocation is hidden, skip it.
1651           if (hidden || ((SectionAddr + addr) < StartAddress)) {
1652             ++rel_cur;
1653             continue;
1654           }
1655 
1656           // Stop when rel_cur's address is past the current instruction.
1657           if (addr >= Index + Size) break;
1658           rel_cur->getTypeName(name);
1659           error(getRelocationValueString(*rel_cur, val));
1660           outs() << format(Fmt.data(), SectionAddr + addr) << name
1661                  << "\t" << val << "\n";
1662           ++rel_cur;
1663         }
1664       }
1665     }
1666   }
1667 }
1668 
1669 void llvm::PrintRelocations(const ObjectFile *Obj) {
1670   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1671                                                  "%08" PRIx64;
1672   // Regular objdump doesn't print relocations in non-relocatable object
1673   // files.
1674   if (!Obj->isRelocatableObject())
1675     return;
1676 
1677   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1678     if (Section.relocation_begin() == Section.relocation_end())
1679       continue;
1680     StringRef secname;
1681     error(Section.getName(secname));
1682     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1683     for (const RelocationRef &Reloc : Section.relocations()) {
1684       bool hidden = getHidden(Reloc);
1685       uint64_t address = Reloc.getOffset();
1686       SmallString<32> relocname;
1687       SmallString<32> valuestr;
1688       if (address < StartAddress || address > StopAddress || hidden)
1689         continue;
1690       Reloc.getTypeName(relocname);
1691       error(getRelocationValueString(Reloc, valuestr));
1692       outs() << format(Fmt.data(), address) << " " << relocname << " "
1693              << valuestr << "\n";
1694     }
1695     outs() << "\n";
1696   }
1697 }
1698 
1699 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1700   outs() << "Sections:\n"
1701             "Idx Name          Size      Address          Type\n";
1702   unsigned i = 0;
1703   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1704     StringRef Name;
1705     error(Section.getName(Name));
1706     uint64_t Address = Section.getAddress();
1707     uint64_t Size = Section.getSize();
1708     bool Text = Section.isText();
1709     bool Data = Section.isData();
1710     bool BSS = Section.isBSS();
1711     std::string Type = (std::string(Text ? "TEXT " : "") +
1712                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1713     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1714                      Name.str().c_str(), Size, Address, Type.c_str());
1715     ++i;
1716   }
1717 }
1718 
1719 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1720   std::error_code EC;
1721   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1722     StringRef Name;
1723     StringRef Contents;
1724     error(Section.getName(Name));
1725     uint64_t BaseAddr = Section.getAddress();
1726     uint64_t Size = Section.getSize();
1727     if (!Size)
1728       continue;
1729 
1730     outs() << "Contents of section " << Name << ":\n";
1731     if (Section.isBSS()) {
1732       outs() << format("<skipping contents of bss section at [%04" PRIx64
1733                        ", %04" PRIx64 ")>\n",
1734                        BaseAddr, BaseAddr + Size);
1735       continue;
1736     }
1737 
1738     error(Section.getContents(Contents));
1739 
1740     // Dump out the content as hex and printable ascii characters.
1741     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1742       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1743       // Dump line of hex.
1744       for (std::size_t i = 0; i < 16; ++i) {
1745         if (i != 0 && i % 4 == 0)
1746           outs() << ' ';
1747         if (addr + i < end)
1748           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1749                  << hexdigit(Contents[addr + i] & 0xF, true);
1750         else
1751           outs() << "  ";
1752       }
1753       // Print ascii.
1754       outs() << "  ";
1755       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1756         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1757           outs() << Contents[addr + i];
1758         else
1759           outs() << ".";
1760       }
1761       outs() << "\n";
1762     }
1763   }
1764 }
1765 
1766 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1767                             StringRef ArchitectureName) {
1768   outs() << "SYMBOL TABLE:\n";
1769 
1770   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1771     printCOFFSymbolTable(coff);
1772     return;
1773   }
1774   for (const SymbolRef &Symbol : o->symbols()) {
1775     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1776     if (!AddressOrError)
1777       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1778                    ArchitectureName);
1779     uint64_t Address = *AddressOrError;
1780     if ((Address < StartAddress) || (Address > StopAddress))
1781       continue;
1782     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1783     if (!TypeOrError)
1784       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1785                    ArchitectureName);
1786     SymbolRef::Type Type = *TypeOrError;
1787     uint32_t Flags = Symbol.getFlags();
1788     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1789     if (!SectionOrErr)
1790       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1791                    ArchitectureName);
1792     section_iterator Section = *SectionOrErr;
1793     StringRef Name;
1794     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1795       Section->getName(Name);
1796     } else {
1797       Expected<StringRef> NameOrErr = Symbol.getName();
1798       if (!NameOrErr)
1799         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1800                      ArchitectureName);
1801       Name = *NameOrErr;
1802     }
1803 
1804     bool Global = Flags & SymbolRef::SF_Global;
1805     bool Weak = Flags & SymbolRef::SF_Weak;
1806     bool Absolute = Flags & SymbolRef::SF_Absolute;
1807     bool Common = Flags & SymbolRef::SF_Common;
1808     bool Hidden = Flags & SymbolRef::SF_Hidden;
1809 
1810     char GlobLoc = ' ';
1811     if (Type != SymbolRef::ST_Unknown)
1812       GlobLoc = Global ? 'g' : 'l';
1813     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1814                  ? 'd' : ' ';
1815     char FileFunc = ' ';
1816     if (Type == SymbolRef::ST_File)
1817       FileFunc = 'f';
1818     else if (Type == SymbolRef::ST_Function)
1819       FileFunc = 'F';
1820 
1821     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1822                                                    "%08" PRIx64;
1823 
1824     outs() << format(Fmt, Address) << " "
1825            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1826            << (Weak ? 'w' : ' ') // Weak?
1827            << ' ' // Constructor. Not supported yet.
1828            << ' ' // Warning. Not supported yet.
1829            << ' ' // Indirect reference to another symbol.
1830            << Debug // Debugging (d) or dynamic (D) symbol.
1831            << FileFunc // Name of function (F), file (f) or object (O).
1832            << ' ';
1833     if (Absolute) {
1834       outs() << "*ABS*";
1835     } else if (Common) {
1836       outs() << "*COM*";
1837     } else if (Section == o->section_end()) {
1838       outs() << "*UND*";
1839     } else {
1840       if (const MachOObjectFile *MachO =
1841           dyn_cast<const MachOObjectFile>(o)) {
1842         DataRefImpl DR = Section->getRawDataRefImpl();
1843         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1844         outs() << SegmentName << ",";
1845       }
1846       StringRef SectionName;
1847       error(Section->getName(SectionName));
1848       outs() << SectionName;
1849     }
1850 
1851     outs() << '\t';
1852     if (Common || isa<ELFObjectFileBase>(o)) {
1853       uint64_t Val =
1854           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1855       outs() << format("\t %08" PRIx64 " ", Val);
1856     }
1857 
1858     if (Hidden) {
1859       outs() << ".hidden ";
1860     }
1861     outs() << Name
1862            << '\n';
1863   }
1864 }
1865 
1866 static void PrintUnwindInfo(const ObjectFile *o) {
1867   outs() << "Unwind info:\n\n";
1868 
1869   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1870     printCOFFUnwindInfo(coff);
1871   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1872     printMachOUnwindInfo(MachO);
1873   else {
1874     // TODO: Extract DWARF dump tool to objdump.
1875     errs() << "This operation is only currently supported "
1876               "for COFF and MachO object files.\n";
1877     return;
1878   }
1879 }
1880 
1881 void llvm::printExportsTrie(const ObjectFile *o) {
1882   outs() << "Exports trie:\n";
1883   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1884     printMachOExportsTrie(MachO);
1885   else {
1886     errs() << "This operation is only currently supported "
1887               "for Mach-O executable files.\n";
1888     return;
1889   }
1890 }
1891 
1892 void llvm::printRebaseTable(ObjectFile *o) {
1893   outs() << "Rebase table:\n";
1894   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1895     printMachORebaseTable(MachO);
1896   else {
1897     errs() << "This operation is only currently supported "
1898               "for Mach-O executable files.\n";
1899     return;
1900   }
1901 }
1902 
1903 void llvm::printBindTable(ObjectFile *o) {
1904   outs() << "Bind table:\n";
1905   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1906     printMachOBindTable(MachO);
1907   else {
1908     errs() << "This operation is only currently supported "
1909               "for Mach-O executable files.\n";
1910     return;
1911   }
1912 }
1913 
1914 void llvm::printLazyBindTable(ObjectFile *o) {
1915   outs() << "Lazy bind table:\n";
1916   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1917     printMachOLazyBindTable(MachO);
1918   else {
1919     errs() << "This operation is only currently supported "
1920               "for Mach-O executable files.\n";
1921     return;
1922   }
1923 }
1924 
1925 void llvm::printWeakBindTable(ObjectFile *o) {
1926   outs() << "Weak bind table:\n";
1927   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1928     printMachOWeakBindTable(MachO);
1929   else {
1930     errs() << "This operation is only currently supported "
1931               "for Mach-O executable files.\n";
1932     return;
1933   }
1934 }
1935 
1936 /// Dump the raw contents of the __clangast section so the output can be piped
1937 /// into llvm-bcanalyzer.
1938 void llvm::printRawClangAST(const ObjectFile *Obj) {
1939   if (outs().is_displayed()) {
1940     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
1941               "the clang ast section.\n"
1942               "Please redirect the output to a file or another program such as "
1943               "llvm-bcanalyzer.\n";
1944     return;
1945   }
1946 
1947   StringRef ClangASTSectionName("__clangast");
1948   if (isa<COFFObjectFile>(Obj)) {
1949     ClangASTSectionName = "clangast";
1950   }
1951 
1952   Optional<object::SectionRef> ClangASTSection;
1953   for (auto Sec : ToolSectionFilter(*Obj)) {
1954     StringRef Name;
1955     Sec.getName(Name);
1956     if (Name == ClangASTSectionName) {
1957       ClangASTSection = Sec;
1958       break;
1959     }
1960   }
1961   if (!ClangASTSection)
1962     return;
1963 
1964   StringRef ClangASTContents;
1965   error(ClangASTSection.getValue().getContents(ClangASTContents));
1966   outs().write(ClangASTContents.data(), ClangASTContents.size());
1967 }
1968 
1969 static void printFaultMaps(const ObjectFile *Obj) {
1970   const char *FaultMapSectionName = nullptr;
1971 
1972   if (isa<ELFObjectFileBase>(Obj)) {
1973     FaultMapSectionName = ".llvm_faultmaps";
1974   } else if (isa<MachOObjectFile>(Obj)) {
1975     FaultMapSectionName = "__llvm_faultmaps";
1976   } else {
1977     errs() << "This operation is only currently supported "
1978               "for ELF and Mach-O executable files.\n";
1979     return;
1980   }
1981 
1982   Optional<object::SectionRef> FaultMapSection;
1983 
1984   for (auto Sec : ToolSectionFilter(*Obj)) {
1985     StringRef Name;
1986     Sec.getName(Name);
1987     if (Name == FaultMapSectionName) {
1988       FaultMapSection = Sec;
1989       break;
1990     }
1991   }
1992 
1993   outs() << "FaultMap table:\n";
1994 
1995   if (!FaultMapSection.hasValue()) {
1996     outs() << "<not found>\n";
1997     return;
1998   }
1999 
2000   StringRef FaultMapContents;
2001   error(FaultMapSection.getValue().getContents(FaultMapContents));
2002 
2003   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2004                      FaultMapContents.bytes_end());
2005 
2006   outs() << FMP;
2007 }
2008 
2009 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2010   if (o->isELF())
2011     return printELFFileHeader(o);
2012   if (o->isCOFF())
2013     return printCOFFFileHeader(o);
2014   if (o->isWasm())
2015     return printWasmFileHeader(o);
2016   if (o->isMachO()) {
2017     printMachOFileHeader(o);
2018     if (!onlyFirst)
2019       printMachOLoadCommands(o);
2020     return;
2021   }
2022   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2023 }
2024 
2025 static void DumpObject(ObjectFile *o, const Archive *a = nullptr) {
2026   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2027   // Avoid other output when using a raw option.
2028   if (!RawClangAST) {
2029     outs() << '\n';
2030     if (a)
2031       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2032     else
2033       outs() << o->getFileName();
2034     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2035   }
2036 
2037   if (Disassemble)
2038     DisassembleObject(o, Relocations);
2039   if (Relocations && !Disassemble)
2040     PrintRelocations(o);
2041   if (SectionHeaders)
2042     PrintSectionHeaders(o);
2043   if (SectionContents)
2044     PrintSectionContents(o);
2045   if (SymbolTable)
2046     PrintSymbolTable(o, ArchiveName);
2047   if (UnwindInfo)
2048     PrintUnwindInfo(o);
2049   if (PrivateHeaders || FirstPrivateHeader)
2050     printPrivateFileHeaders(o, FirstPrivateHeader);
2051   if (ExportsTrie)
2052     printExportsTrie(o);
2053   if (Rebase)
2054     printRebaseTable(o);
2055   if (Bind)
2056     printBindTable(o);
2057   if (LazyBind)
2058     printLazyBindTable(o);
2059   if (WeakBind)
2060     printWeakBindTable(o);
2061   if (RawClangAST)
2062     printRawClangAST(o);
2063   if (PrintFaultMaps)
2064     printFaultMaps(o);
2065   if (DwarfDumpType != DIDT_Null) {
2066     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2067     // Dump the complete DWARF structure.
2068     DIDumpOptions DumpOpts;
2069     DumpOpts.DumpType = DwarfDumpType;
2070     DICtx->dump(outs(), DumpOpts);
2071   }
2072 }
2073 
2074 static void DumpObject(const COFFImportFile *I, const Archive *A) {
2075   StringRef ArchiveName = A ? A->getFileName() : "";
2076 
2077   // Avoid other output when using a raw option.
2078   if (!RawClangAST)
2079     outs() << '\n'
2080            << ArchiveName << "(" << I->getFileName() << ")"
2081            << ":\tfile format COFF-import-file"
2082            << "\n\n";
2083 
2084   if (SymbolTable)
2085     printCOFFSymbolTable(I);
2086 }
2087 
2088 /// @brief Dump each object file in \a a;
2089 static void DumpArchive(const Archive *a) {
2090   Error Err = Error::success();
2091   for (auto &C : a->children(Err)) {
2092     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2093     if (!ChildOrErr) {
2094       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2095         report_error(a->getFileName(), C, std::move(E));
2096       continue;
2097     }
2098     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2099       DumpObject(o, a);
2100     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2101       DumpObject(I, a);
2102     else
2103       report_error(a->getFileName(), object_error::invalid_file_type);
2104   }
2105   if (Err)
2106     report_error(a->getFileName(), std::move(Err));
2107 }
2108 
2109 /// @brief Open file and figure out how to dump it.
2110 static void DumpInput(StringRef file) {
2111 
2112   // If we are using the Mach-O specific object file parser, then let it parse
2113   // the file and process the command line options.  So the -arch flags can
2114   // be used to select specific slices, etc.
2115   if (MachOOpt) {
2116     ParseInputMachO(file);
2117     return;
2118   }
2119 
2120   // Attempt to open the binary.
2121   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2122   if (!BinaryOrErr)
2123     report_error(file, BinaryOrErr.takeError());
2124   Binary &Binary = *BinaryOrErr.get().getBinary();
2125 
2126   if (Archive *a = dyn_cast<Archive>(&Binary))
2127     DumpArchive(a);
2128   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2129     DumpObject(o);
2130   else
2131     report_error(file, object_error::invalid_file_type);
2132 }
2133 
2134 int main(int argc, char **argv) {
2135   // Print a stack trace if we signal out.
2136   sys::PrintStackTraceOnErrorSignal(argv[0]);
2137   PrettyStackTraceProgram X(argc, argv);
2138   llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
2139 
2140   // Initialize targets and assembly printers/parsers.
2141   llvm::InitializeAllTargetInfos();
2142   llvm::InitializeAllTargetMCs();
2143   llvm::InitializeAllDisassemblers();
2144 
2145   // Register the target printer for --version.
2146   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2147 
2148   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2149   TripleName = Triple::normalize(TripleName);
2150 
2151   ToolName = argv[0];
2152 
2153   // Defaults to a.out if no filenames specified.
2154   if (InputFilenames.size() == 0)
2155     InputFilenames.push_back("a.out");
2156 
2157   if (DisassembleAll || PrintSource || PrintLines)
2158     Disassemble = true;
2159   if (!Disassemble
2160       && !Relocations
2161       && !SectionHeaders
2162       && !SectionContents
2163       && !SymbolTable
2164       && !UnwindInfo
2165       && !PrivateHeaders
2166       && !FirstPrivateHeader
2167       && !ExportsTrie
2168       && !Rebase
2169       && !Bind
2170       && !LazyBind
2171       && !WeakBind
2172       && !RawClangAST
2173       && !(UniversalHeaders && MachOOpt)
2174       && !(ArchiveHeaders && MachOOpt)
2175       && !(IndirectSymbols && MachOOpt)
2176       && !(DataInCode && MachOOpt)
2177       && !(LinkOptHints && MachOOpt)
2178       && !(InfoPlist && MachOOpt)
2179       && !(DylibsUsed && MachOOpt)
2180       && !(DylibId && MachOOpt)
2181       && !(ObjcMetaData && MachOOpt)
2182       && !(FilterSections.size() != 0 && MachOOpt)
2183       && !PrintFaultMaps
2184       && DwarfDumpType == DIDT_Null) {
2185     cl::PrintHelpMessage();
2186     return 2;
2187   }
2188 
2189   std::for_each(InputFilenames.begin(), InputFilenames.end(),
2190                 DumpInput);
2191 
2192   return EXIT_SUCCESS;
2193 }
2194