xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision db29f4374daba375fbc6534988782f5f7ce0ddbc)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "SourcePrinter.h"
24 #include "WasmDump.h"
25 #include "XCOFFDump.h"
26 #include "llvm/ADT/IndexedMap.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Triple.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
36 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
37 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
38 #include "llvm/Demangle/Demangle.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCContext.h"
41 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
42 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
43 #include "llvm/MC/MCInst.h"
44 #include "llvm/MC/MCInstPrinter.h"
45 #include "llvm/MC/MCInstrAnalysis.h"
46 #include "llvm/MC/MCInstrInfo.h"
47 #include "llvm/MC/MCObjectFileInfo.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/MC/MCSubtargetInfo.h"
50 #include "llvm/MC/MCTargetOptions.h"
51 #include "llvm/MC/TargetRegistry.h"
52 #include "llvm/Object/Archive.h"
53 #include "llvm/Object/COFF.h"
54 #include "llvm/Object/COFFImportFile.h"
55 #include "llvm/Object/ELFObjectFile.h"
56 #include "llvm/Object/FaultMapParser.h"
57 #include "llvm/Object/MachO.h"
58 #include "llvm/Object/MachOUniversal.h"
59 #include "llvm/Object/ObjectFile.h"
60 #include "llvm/Object/Wasm.h"
61 #include "llvm/Option/Arg.h"
62 #include "llvm/Option/ArgList.h"
63 #include "llvm/Option/Option.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Errc.h"
67 #include "llvm/Support/FileSystem.h"
68 #include "llvm/Support/Format.h"
69 #include "llvm/Support/FormatVariadic.h"
70 #include "llvm/Support/GraphWriter.h"
71 #include "llvm/Support/Host.h"
72 #include "llvm/Support/InitLLVM.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/SourceMgr.h"
75 #include "llvm/Support/StringSaver.h"
76 #include "llvm/Support/TargetSelect.h"
77 #include "llvm/Support/WithColor.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include <algorithm>
80 #include <cctype>
81 #include <cstring>
82 #include <system_error>
83 #include <unordered_map>
84 #include <utility>
85 
86 using namespace llvm;
87 using namespace llvm::object;
88 using namespace llvm::objdump;
89 using namespace llvm::opt;
90 
91 namespace {
92 
93 class CommonOptTable : public opt::OptTable {
94 public:
95   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
96                  const char *Description)
97       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
98     setGroupedShortOptions(true);
99   }
100 
101   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
102     Argv0 = sys::path::filename(Argv0);
103     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
104                              ShowHidden, ShowHidden);
105     // TODO Replace this with OptTable API once it adds extrahelp support.
106     outs() << "\nPass @FILE as argument to read options from FILE.\n";
107   }
108 
109 private:
110   const char *Usage;
111   const char *Description;
112 };
113 
114 // ObjdumpOptID is in ObjdumpOptID.h
115 
116 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
117 #include "ObjdumpOpts.inc"
118 #undef PREFIX
119 
120 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
121 #define OBJDUMP_nullptr nullptr
122 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
123                HELPTEXT, METAVAR, VALUES)                                      \
124   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
125    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
126    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
127    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
128 #include "ObjdumpOpts.inc"
129 #undef OPTION
130 #undef OBJDUMP_nullptr
131 };
132 
133 class ObjdumpOptTable : public CommonOptTable {
134 public:
135   ObjdumpOptTable()
136       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
137                        "llvm object file dumper") {}
138 };
139 
140 enum OtoolOptID {
141   OTOOL_INVALID = 0, // This is not an option ID.
142 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
143                HELPTEXT, METAVAR, VALUES)                                      \
144   OTOOL_##ID,
145 #include "OtoolOpts.inc"
146 #undef OPTION
147 };
148 
149 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
150 #include "OtoolOpts.inc"
151 #undef PREFIX
152 
153 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
154 #define OTOOL_nullptr nullptr
155 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
156                HELPTEXT, METAVAR, VALUES)                                      \
157   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
158    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
159    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
160    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
161 #include "OtoolOpts.inc"
162 #undef OPTION
163 #undef OTOOL_nullptr
164 };
165 
166 class OtoolOptTable : public CommonOptTable {
167 public:
168   OtoolOptTable()
169       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
170                        "Mach-O object file displaying tool") {}
171 };
172 
173 } // namespace
174 
175 #define DEBUG_TYPE "objdump"
176 
177 static uint64_t AdjustVMA;
178 static bool AllHeaders;
179 static std::string ArchName;
180 bool objdump::ArchiveHeaders;
181 bool objdump::Demangle;
182 bool objdump::Disassemble;
183 bool objdump::DisassembleAll;
184 bool objdump::SymbolDescription;
185 static std::vector<std::string> DisassembleSymbols;
186 static bool DisassembleZeroes;
187 static std::vector<std::string> DisassemblerOptions;
188 DIDumpType objdump::DwarfDumpType;
189 static bool DynamicRelocations;
190 static bool FaultMapSection;
191 static bool FileHeaders;
192 bool objdump::SectionContents;
193 static std::vector<std::string> InputFilenames;
194 bool objdump::PrintLines;
195 static bool MachOOpt;
196 std::string objdump::MCPU;
197 std::vector<std::string> objdump::MAttrs;
198 bool objdump::ShowRawInsn;
199 bool objdump::LeadingAddr;
200 static bool RawClangAST;
201 bool objdump::Relocations;
202 bool objdump::PrintImmHex;
203 bool objdump::PrivateHeaders;
204 std::vector<std::string> objdump::FilterSections;
205 bool objdump::SectionHeaders;
206 static bool ShowLMA;
207 bool objdump::PrintSource;
208 
209 static uint64_t StartAddress;
210 static bool HasStartAddressFlag;
211 static uint64_t StopAddress = UINT64_MAX;
212 static bool HasStopAddressFlag;
213 
214 bool objdump::SymbolTable;
215 static bool SymbolizeOperands;
216 static bool DynamicSymbolTable;
217 std::string objdump::TripleName;
218 bool objdump::UnwindInfo;
219 static bool Wide;
220 std::string objdump::Prefix;
221 uint32_t objdump::PrefixStrip;
222 
223 DebugVarsFormat objdump::DbgVariables = DVDisabled;
224 
225 int objdump::DbgIndent = 52;
226 
227 static StringSet<> DisasmSymbolSet;
228 StringSet<> objdump::FoundSectionSet;
229 static StringRef ToolName;
230 
231 namespace {
232 struct FilterResult {
233   // True if the section should not be skipped.
234   bool Keep;
235 
236   // True if the index counter should be incremented, even if the section should
237   // be skipped. For example, sections may be skipped if they are not included
238   // in the --section flag, but we still want those to count toward the section
239   // count.
240   bool IncrementIndex;
241 };
242 } // namespace
243 
244 static FilterResult checkSectionFilter(object::SectionRef S) {
245   if (FilterSections.empty())
246     return {/*Keep=*/true, /*IncrementIndex=*/true};
247 
248   Expected<StringRef> SecNameOrErr = S.getName();
249   if (!SecNameOrErr) {
250     consumeError(SecNameOrErr.takeError());
251     return {/*Keep=*/false, /*IncrementIndex=*/false};
252   }
253   StringRef SecName = *SecNameOrErr;
254 
255   // StringSet does not allow empty key so avoid adding sections with
256   // no name (such as the section with index 0) here.
257   if (!SecName.empty())
258     FoundSectionSet.insert(SecName);
259 
260   // Only show the section if it's in the FilterSections list, but always
261   // increment so the indexing is stable.
262   return {/*Keep=*/is_contained(FilterSections, SecName),
263           /*IncrementIndex=*/true};
264 }
265 
266 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
267                                          uint64_t *Idx) {
268   // Start at UINT64_MAX so that the first index returned after an increment is
269   // zero (after the unsigned wrap).
270   if (Idx)
271     *Idx = UINT64_MAX;
272   return SectionFilter(
273       [Idx](object::SectionRef S) {
274         FilterResult Result = checkSectionFilter(S);
275         if (Idx != nullptr && Result.IncrementIndex)
276           *Idx += 1;
277         return Result.Keep;
278       },
279       O);
280 }
281 
282 std::string objdump::getFileNameForError(const object::Archive::Child &C,
283                                          unsigned Index) {
284   Expected<StringRef> NameOrErr = C.getName();
285   if (NameOrErr)
286     return std::string(NameOrErr.get());
287   // If we have an error getting the name then we print the index of the archive
288   // member. Since we are already in an error state, we just ignore this error.
289   consumeError(NameOrErr.takeError());
290   return "<file index: " + std::to_string(Index) + ">";
291 }
292 
293 void objdump::reportWarning(const Twine &Message, StringRef File) {
294   // Output order between errs() and outs() matters especially for archive
295   // files where the output is per member object.
296   outs().flush();
297   WithColor::warning(errs(), ToolName)
298       << "'" << File << "': " << Message << "\n";
299 }
300 
301 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
302   outs().flush();
303   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
304   exit(1);
305 }
306 
307 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
308                                        StringRef ArchiveName,
309                                        StringRef ArchitectureName) {
310   assert(E);
311   outs().flush();
312   WithColor::error(errs(), ToolName);
313   if (ArchiveName != "")
314     errs() << ArchiveName << "(" << FileName << ")";
315   else
316     errs() << "'" << FileName << "'";
317   if (!ArchitectureName.empty())
318     errs() << " (for architecture " << ArchitectureName << ")";
319   errs() << ": ";
320   logAllUnhandledErrors(std::move(E), errs());
321   exit(1);
322 }
323 
324 static void reportCmdLineWarning(const Twine &Message) {
325   WithColor::warning(errs(), ToolName) << Message << "\n";
326 }
327 
328 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
329   WithColor::error(errs(), ToolName) << Message << "\n";
330   exit(1);
331 }
332 
333 static void warnOnNoMatchForSections() {
334   SetVector<StringRef> MissingSections;
335   for (StringRef S : FilterSections) {
336     if (FoundSectionSet.count(S))
337       return;
338     // User may specify a unnamed section. Don't warn for it.
339     if (!S.empty())
340       MissingSections.insert(S);
341   }
342 
343   // Warn only if no section in FilterSections is matched.
344   for (StringRef S : MissingSections)
345     reportCmdLineWarning("section '" + S +
346                          "' mentioned in a -j/--section option, but not "
347                          "found in any input file");
348 }
349 
350 static const Target *getTarget(const ObjectFile *Obj) {
351   // Figure out the target triple.
352   Triple TheTriple("unknown-unknown-unknown");
353   if (TripleName.empty()) {
354     TheTriple = Obj->makeTriple();
355   } else {
356     TheTriple.setTriple(Triple::normalize(TripleName));
357     auto Arch = Obj->getArch();
358     if (Arch == Triple::arm || Arch == Triple::armeb)
359       Obj->setARMSubArch(TheTriple);
360   }
361 
362   // Get the target specific parser.
363   std::string Error;
364   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
365                                                          Error);
366   if (!TheTarget)
367     reportError(Obj->getFileName(), "can't find target: " + Error);
368 
369   // Update the triple name and return the found target.
370   TripleName = TheTriple.getTriple();
371   return TheTarget;
372 }
373 
374 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
375   return A.getOffset() < B.getOffset();
376 }
377 
378 static Error getRelocationValueString(const RelocationRef &Rel,
379                                       SmallVectorImpl<char> &Result) {
380   const ObjectFile *Obj = Rel.getObject();
381   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
382     return getELFRelocationValueString(ELF, Rel, Result);
383   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
384     return getCOFFRelocationValueString(COFF, Rel, Result);
385   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
386     return getWasmRelocationValueString(Wasm, Rel, Result);
387   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
388     return getMachORelocationValueString(MachO, Rel, Result);
389   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
390     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
391   llvm_unreachable("unknown object file format");
392 }
393 
394 /// Indicates whether this relocation should hidden when listing
395 /// relocations, usually because it is the trailing part of a multipart
396 /// relocation that will be printed as part of the leading relocation.
397 static bool getHidden(RelocationRef RelRef) {
398   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
399   if (!MachO)
400     return false;
401 
402   unsigned Arch = MachO->getArch();
403   DataRefImpl Rel = RelRef.getRawDataRefImpl();
404   uint64_t Type = MachO->getRelocationType(Rel);
405 
406   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
407   // is always hidden.
408   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
409     return Type == MachO::GENERIC_RELOC_PAIR;
410 
411   if (Arch == Triple::x86_64) {
412     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
413     // an X86_64_RELOC_SUBTRACTOR.
414     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
415       DataRefImpl RelPrev = Rel;
416       RelPrev.d.a--;
417       uint64_t PrevType = MachO->getRelocationType(RelPrev);
418       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
419         return true;
420     }
421   }
422 
423   return false;
424 }
425 
426 namespace {
427 
428 /// Get the column at which we want to start printing the instruction
429 /// disassembly, taking into account anything which appears to the left of it.
430 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
431   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
432 }
433 
434 static bool isAArch64Elf(const ObjectFile *Obj) {
435   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
436   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
437 }
438 
439 static bool isArmElf(const ObjectFile *Obj) {
440   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
441   return Elf && Elf->getEMachine() == ELF::EM_ARM;
442 }
443 
444 static bool hasMappingSymbols(const ObjectFile *Obj) {
445   return isArmElf(Obj) || isAArch64Elf(Obj);
446 }
447 
448 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
449                             const RelocationRef &Rel, uint64_t Address,
450                             bool Is64Bits) {
451   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
452   SmallString<16> Name;
453   SmallString<32> Val;
454   Rel.getTypeName(Name);
455   if (Error E = getRelocationValueString(Rel, Val))
456     reportError(std::move(E), FileName);
457   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
458 }
459 
460 class PrettyPrinter {
461 public:
462   virtual ~PrettyPrinter() = default;
463   virtual void
464   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
465             object::SectionedAddress Address, formatted_raw_ostream &OS,
466             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
467             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
468             LiveVariablePrinter &LVP) {
469     if (SP && (PrintSource || PrintLines))
470       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
471     LVP.printBetweenInsts(OS, false);
472 
473     size_t Start = OS.tell();
474     if (LeadingAddr)
475       OS << format("%8" PRIx64 ":", Address.Address);
476     if (ShowRawInsn) {
477       OS << ' ';
478       dumpBytes(Bytes, OS);
479     }
480 
481     // The output of printInst starts with a tab. Print some spaces so that
482     // the tab has 1 column and advances to the target tab stop.
483     unsigned TabStop = getInstStartColumn(STI);
484     unsigned Column = OS.tell() - Start;
485     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
486 
487     if (MI) {
488       // See MCInstPrinter::printInst. On targets where a PC relative immediate
489       // is relative to the next instruction and the length of a MCInst is
490       // difficult to measure (x86), this is the address of the next
491       // instruction.
492       uint64_t Addr =
493           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
494       IP.printInst(MI, Addr, "", STI, OS);
495     } else
496       OS << "\t<unknown>";
497   }
498 };
499 PrettyPrinter PrettyPrinterInst;
500 
501 class HexagonPrettyPrinter : public PrettyPrinter {
502 public:
503   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
504                  formatted_raw_ostream &OS) {
505     uint32_t opcode =
506       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
507     if (LeadingAddr)
508       OS << format("%8" PRIx64 ":", Address);
509     if (ShowRawInsn) {
510       OS << "\t";
511       dumpBytes(Bytes.slice(0, 4), OS);
512       OS << format("\t%08" PRIx32, opcode);
513     }
514   }
515   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
516                  object::SectionedAddress Address, formatted_raw_ostream &OS,
517                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
518                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
519                  LiveVariablePrinter &LVP) override {
520     if (SP && (PrintSource || PrintLines))
521       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
522     if (!MI) {
523       printLead(Bytes, Address.Address, OS);
524       OS << " <unknown>";
525       return;
526     }
527     std::string Buffer;
528     {
529       raw_string_ostream TempStream(Buffer);
530       IP.printInst(MI, Address.Address, "", STI, TempStream);
531     }
532     StringRef Contents(Buffer);
533     // Split off bundle attributes
534     auto PacketBundle = Contents.rsplit('\n');
535     // Split off first instruction from the rest
536     auto HeadTail = PacketBundle.first.split('\n');
537     auto Preamble = " { ";
538     auto Separator = "";
539 
540     // Hexagon's packets require relocations to be inline rather than
541     // clustered at the end of the packet.
542     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
543     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
544     auto PrintReloc = [&]() -> void {
545       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
546         if (RelCur->getOffset() == Address.Address) {
547           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
548           return;
549         }
550         ++RelCur;
551       }
552     };
553 
554     while (!HeadTail.first.empty()) {
555       OS << Separator;
556       Separator = "\n";
557       if (SP && (PrintSource || PrintLines))
558         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
559       printLead(Bytes, Address.Address, OS);
560       OS << Preamble;
561       Preamble = "   ";
562       StringRef Inst;
563       auto Duplex = HeadTail.first.split('\v');
564       if (!Duplex.second.empty()) {
565         OS << Duplex.first;
566         OS << "; ";
567         Inst = Duplex.second;
568       }
569       else
570         Inst = HeadTail.first;
571       OS << Inst;
572       HeadTail = HeadTail.second.split('\n');
573       if (HeadTail.first.empty())
574         OS << " } " << PacketBundle.second;
575       PrintReloc();
576       Bytes = Bytes.slice(4);
577       Address.Address += 4;
578     }
579   }
580 };
581 HexagonPrettyPrinter HexagonPrettyPrinterInst;
582 
583 class AMDGCNPrettyPrinter : public PrettyPrinter {
584 public:
585   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
586                  object::SectionedAddress Address, formatted_raw_ostream &OS,
587                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
588                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
589                  LiveVariablePrinter &LVP) override {
590     if (SP && (PrintSource || PrintLines))
591       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
592 
593     if (MI) {
594       SmallString<40> InstStr;
595       raw_svector_ostream IS(InstStr);
596 
597       IP.printInst(MI, Address.Address, "", STI, IS);
598 
599       OS << left_justify(IS.str(), 60);
600     } else {
601       // an unrecognized encoding - this is probably data so represent it
602       // using the .long directive, or .byte directive if fewer than 4 bytes
603       // remaining
604       if (Bytes.size() >= 4) {
605         OS << format("\t.long 0x%08" PRIx32 " ",
606                      support::endian::read32<support::little>(Bytes.data()));
607         OS.indent(42);
608       } else {
609           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
610           for (unsigned int i = 1; i < Bytes.size(); i++)
611             OS << format(", 0x%02" PRIx8, Bytes[i]);
612           OS.indent(55 - (6 * Bytes.size()));
613       }
614     }
615 
616     OS << format("// %012" PRIX64 ":", Address.Address);
617     if (Bytes.size() >= 4) {
618       // D should be casted to uint32_t here as it is passed by format to
619       // snprintf as vararg.
620       for (uint32_t D : makeArrayRef(
621                reinterpret_cast<const support::little32_t *>(Bytes.data()),
622                Bytes.size() / 4))
623         OS << format(" %08" PRIX32, D);
624     } else {
625       for (unsigned char B : Bytes)
626         OS << format(" %02" PRIX8, B);
627     }
628 
629     if (!Annot.empty())
630       OS << " // " << Annot;
631   }
632 };
633 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
634 
635 class BPFPrettyPrinter : public PrettyPrinter {
636 public:
637   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
638                  object::SectionedAddress Address, formatted_raw_ostream &OS,
639                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
640                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
641                  LiveVariablePrinter &LVP) override {
642     if (SP && (PrintSource || PrintLines))
643       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
644     if (LeadingAddr)
645       OS << format("%8" PRId64 ":", Address.Address / 8);
646     if (ShowRawInsn) {
647       OS << "\t";
648       dumpBytes(Bytes, OS);
649     }
650     if (MI)
651       IP.printInst(MI, Address.Address, "", STI, OS);
652     else
653       OS << "\t<unknown>";
654   }
655 };
656 BPFPrettyPrinter BPFPrettyPrinterInst;
657 
658 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
659   switch(Triple.getArch()) {
660   default:
661     return PrettyPrinterInst;
662   case Triple::hexagon:
663     return HexagonPrettyPrinterInst;
664   case Triple::amdgcn:
665     return AMDGCNPrettyPrinterInst;
666   case Triple::bpfel:
667   case Triple::bpfeb:
668     return BPFPrettyPrinterInst;
669   }
670 }
671 }
672 
673 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
674   assert(Obj->isELF());
675   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
676     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
677                          Obj->getFileName())
678         ->getType();
679   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
680     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
681                          Obj->getFileName())
682         ->getType();
683   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
684     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
685                          Obj->getFileName())
686         ->getType();
687   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
688     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
689                          Obj->getFileName())
690         ->getType();
691   llvm_unreachable("Unsupported binary format");
692 }
693 
694 template <class ELFT> static void
695 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
696                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
697   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
698     uint8_t SymbolType = Symbol.getELFType();
699     if (SymbolType == ELF::STT_SECTION)
700       continue;
701 
702     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
703     // ELFSymbolRef::getAddress() returns size instead of value for common
704     // symbols which is not desirable for disassembly output. Overriding.
705     if (SymbolType == ELF::STT_COMMON)
706       Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
707                               Obj->getFileName())
708                     ->st_value;
709 
710     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
711     if (Name.empty())
712       continue;
713 
714     section_iterator SecI =
715         unwrapOrError(Symbol.getSection(), Obj->getFileName());
716     if (SecI == Obj->section_end())
717       continue;
718 
719     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
720   }
721 }
722 
723 static void
724 addDynamicElfSymbols(const ObjectFile *Obj,
725                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
726   assert(Obj->isELF());
727   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
728     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
729   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
730     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
731   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
732     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
733   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
734     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
735   else
736     llvm_unreachable("Unsupported binary format");
737 }
738 
739 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile *Obj) {
740   for (auto SecI : Obj->sections()) {
741     const WasmSection &Section = Obj->getWasmSection(SecI);
742     if (Section.Type == wasm::WASM_SEC_CODE)
743       return SecI;
744   }
745   return None;
746 }
747 
748 static void
749 addMissingWasmCodeSymbols(const WasmObjectFile *Obj,
750                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
751   Optional<SectionRef> Section = getWasmCodeSection(Obj);
752   if (!Section)
753     return;
754   SectionSymbolsTy &Symbols = AllSymbols[*Section];
755 
756   std::set<uint64_t> SymbolAddresses;
757   for (const auto &Sym : Symbols)
758     SymbolAddresses.insert(Sym.Addr);
759 
760   for (const wasm::WasmFunction &Function : Obj->functions()) {
761     uint64_t Address = Function.CodeSectionOffset;
762     // Only add fallback symbols for functions not already present in the symbol
763     // table.
764     if (SymbolAddresses.count(Address))
765       continue;
766     // This function has no symbol, so it should have no SymbolName.
767     assert(Function.SymbolName.empty());
768     // We use DebugName for the name, though it may be empty if there is no
769     // "name" custom section, or that section is missing a name for this
770     // function.
771     StringRef Name = Function.DebugName;
772     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
773   }
774 }
775 
776 static void addPltEntries(const ObjectFile *Obj,
777                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
778                           StringSaver &Saver) {
779   Optional<SectionRef> Plt = None;
780   for (const SectionRef &Section : Obj->sections()) {
781     Expected<StringRef> SecNameOrErr = Section.getName();
782     if (!SecNameOrErr) {
783       consumeError(SecNameOrErr.takeError());
784       continue;
785     }
786     if (*SecNameOrErr == ".plt")
787       Plt = Section;
788   }
789   if (!Plt)
790     return;
791   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
792     for (auto PltEntry : ElfObj->getPltAddresses()) {
793       if (PltEntry.first) {
794         SymbolRef Symbol(*PltEntry.first, ElfObj);
795         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
796         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
797           if (!NameOrErr->empty())
798             AllSymbols[*Plt].emplace_back(
799                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
800                 SymbolType);
801           continue;
802         } else {
803           // The warning has been reported in disassembleObject().
804           consumeError(NameOrErr.takeError());
805         }
806       }
807       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
808                         " references an invalid symbol",
809                     Obj->getFileName());
810     }
811   }
812 }
813 
814 // Normally the disassembly output will skip blocks of zeroes. This function
815 // returns the number of zero bytes that can be skipped when dumping the
816 // disassembly of the instructions in Buf.
817 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
818   // Find the number of leading zeroes.
819   size_t N = 0;
820   while (N < Buf.size() && !Buf[N])
821     ++N;
822 
823   // We may want to skip blocks of zero bytes, but unless we see
824   // at least 8 of them in a row.
825   if (N < 8)
826     return 0;
827 
828   // We skip zeroes in multiples of 4 because do not want to truncate an
829   // instruction if it starts with a zero byte.
830   return N & ~0x3;
831 }
832 
833 // Returns a map from sections to their relocations.
834 static std::map<SectionRef, std::vector<RelocationRef>>
835 getRelocsMap(object::ObjectFile const &Obj) {
836   std::map<SectionRef, std::vector<RelocationRef>> Ret;
837   uint64_t I = (uint64_t)-1;
838   for (SectionRef Sec : Obj.sections()) {
839     ++I;
840     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
841     if (!RelocatedOrErr)
842       reportError(Obj.getFileName(),
843                   "section (" + Twine(I) +
844                       "): failed to get a relocated section: " +
845                       toString(RelocatedOrErr.takeError()));
846 
847     section_iterator Relocated = *RelocatedOrErr;
848     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
849       continue;
850     std::vector<RelocationRef> &V = Ret[*Relocated];
851     append_range(V, Sec.relocations());
852     // Sort relocations by address.
853     llvm::stable_sort(V, isRelocAddressLess);
854   }
855   return Ret;
856 }
857 
858 // Used for --adjust-vma to check if address should be adjusted by the
859 // specified value for a given section.
860 // For ELF we do not adjust non-allocatable sections like debug ones,
861 // because they are not loadable.
862 // TODO: implement for other file formats.
863 static bool shouldAdjustVA(const SectionRef &Section) {
864   const ObjectFile *Obj = Section.getObject();
865   if (Obj->isELF())
866     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
867   return false;
868 }
869 
870 
871 typedef std::pair<uint64_t, char> MappingSymbolPair;
872 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
873                                  uint64_t Address) {
874   auto It =
875       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
876         return Val.first <= Address;
877       });
878   // Return zero for any address before the first mapping symbol; this means
879   // we should use the default disassembly mode, depending on the target.
880   if (It == MappingSymbols.begin())
881     return '\x00';
882   return (It - 1)->second;
883 }
884 
885 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
886                                uint64_t End, const ObjectFile *Obj,
887                                ArrayRef<uint8_t> Bytes,
888                                ArrayRef<MappingSymbolPair> MappingSymbols,
889                                raw_ostream &OS) {
890   support::endianness Endian =
891       Obj->isLittleEndian() ? support::little : support::big;
892   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
893   if (Index + 4 <= End) {
894     dumpBytes(Bytes.slice(Index, 4), OS);
895     OS << "\t.word\t"
896            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
897                          10);
898     return 4;
899   }
900   if (Index + 2 <= End) {
901     dumpBytes(Bytes.slice(Index, 2), OS);
902     OS << "\t\t.short\t"
903            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
904                          6);
905     return 2;
906   }
907   dumpBytes(Bytes.slice(Index, 1), OS);
908   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
909   return 1;
910 }
911 
912 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
913                         ArrayRef<uint8_t> Bytes) {
914   // print out data up to 8 bytes at a time in hex and ascii
915   uint8_t AsciiData[9] = {'\0'};
916   uint8_t Byte;
917   int NumBytes = 0;
918 
919   for (; Index < End; ++Index) {
920     if (NumBytes == 0)
921       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
922     Byte = Bytes.slice(Index)[0];
923     outs() << format(" %02x", Byte);
924     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
925 
926     uint8_t IndentOffset = 0;
927     NumBytes++;
928     if (Index == End - 1 || NumBytes > 8) {
929       // Indent the space for less than 8 bytes data.
930       // 2 spaces for byte and one for space between bytes
931       IndentOffset = 3 * (8 - NumBytes);
932       for (int Excess = NumBytes; Excess < 8; Excess++)
933         AsciiData[Excess] = '\0';
934       NumBytes = 8;
935     }
936     if (NumBytes == 8) {
937       AsciiData[8] = '\0';
938       outs() << std::string(IndentOffset, ' ') << "         ";
939       outs() << reinterpret_cast<char *>(AsciiData);
940       outs() << '\n';
941       NumBytes = 0;
942     }
943   }
944 }
945 
946 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
947                                        const SymbolRef &Symbol) {
948   const StringRef FileName = Obj->getFileName();
949   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
950   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
951 
952   if (Obj->isXCOFF() && SymbolDescription) {
953     const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
954     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
955 
956     const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
957     Optional<XCOFF::StorageMappingClass> Smc =
958         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
959     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
960                         isLabel(XCOFFObj, Symbol));
961   } else if (Obj->isXCOFF()) {
962     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
963     return SymbolInfoTy(Addr, Name, SymType, true);
964   } else
965     return SymbolInfoTy(Addr, Name,
966                         Obj->isELF() ? getElfSymbolType(Obj, Symbol)
967                                      : (uint8_t)ELF::STT_NOTYPE);
968 }
969 
970 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
971                                           const uint64_t Addr, StringRef &Name,
972                                           uint8_t Type) {
973   if (Obj->isXCOFF() && SymbolDescription)
974     return SymbolInfoTy(Addr, Name, None, None, false);
975   else
976     return SymbolInfoTy(Addr, Name, Type);
977 }
978 
979 static void
980 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
981                           MCDisassembler *DisAsm, MCInstPrinter *IP,
982                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
983                           uint64_t Start, uint64_t End,
984                           std::unordered_map<uint64_t, std::string> &Labels) {
985   // So far only supports PowerPC and X86.
986   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
987     return;
988 
989   Labels.clear();
990   unsigned LabelCount = 0;
991   Start += SectionAddr;
992   End += SectionAddr;
993   uint64_t Index = Start;
994   while (Index < End) {
995     // Disassemble a real instruction and record function-local branch labels.
996     MCInst Inst;
997     uint64_t Size;
998     bool Disassembled = DisAsm->getInstruction(
999         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
1000     if (Size == 0)
1001       Size = 1;
1002 
1003     if (Disassembled && MIA) {
1004       uint64_t Target;
1005       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1006       // On PowerPC, if the address of a branch is the same as the target, it
1007       // means that it's a function call. Do not mark the label for this case.
1008       if (TargetKnown && (Target >= Start && Target < End) &&
1009           !Labels.count(Target) &&
1010           !(STI->getTargetTriple().isPPC() && Target == Index))
1011         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1012     }
1013 
1014     Index += Size;
1015   }
1016 }
1017 
1018 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1019 // This is currently only used on AMDGPU, and assumes the format of the
1020 // void * argument passed to AMDGPU's createMCSymbolizer.
1021 static void addSymbolizer(
1022     MCContext &Ctx, const Target *Target, StringRef TripleName,
1023     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1024     SectionSymbolsTy &Symbols,
1025     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1026 
1027   std::unique_ptr<MCRelocationInfo> RelInfo(
1028       Target->createMCRelocationInfo(TripleName, Ctx));
1029   if (!RelInfo)
1030     return;
1031   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1032       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1033   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1034   DisAsm->setSymbolizer(std::move(Symbolizer));
1035 
1036   if (!SymbolizeOperands)
1037     return;
1038 
1039   // Synthesize labels referenced by branch instructions by
1040   // disassembling, discarding the output, and collecting the referenced
1041   // addresses from the symbolizer.
1042   for (size_t Index = 0; Index != Bytes.size();) {
1043     MCInst Inst;
1044     uint64_t Size;
1045     DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index,
1046                            nulls());
1047     if (Size == 0)
1048       Size = 1;
1049     Index += Size;
1050   }
1051   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1052   // Copy and sort to remove duplicates.
1053   std::vector<uint64_t> LabelAddrs;
1054   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1055                     LabelAddrsRef.end());
1056   llvm::sort(LabelAddrs);
1057   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1058                     LabelAddrs.begin());
1059   // Add the labels.
1060   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1061     auto Name = std::make_unique<std::string>();
1062     *Name = (Twine("L") + Twine(LabelNum)).str();
1063     SynthesizedLabelNames.push_back(std::move(Name));
1064     Symbols.push_back(SymbolInfoTy(
1065         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1066   }
1067   llvm::stable_sort(Symbols);
1068   // Recreate the symbolizer with the new symbols list.
1069   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1070   Symbolizer.reset(Target->createMCSymbolizer(
1071       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1072   DisAsm->setSymbolizer(std::move(Symbolizer));
1073 }
1074 
1075 static StringRef getSegmentName(const MachOObjectFile *MachO,
1076                                 const SectionRef &Section) {
1077   if (MachO) {
1078     DataRefImpl DR = Section.getRawDataRefImpl();
1079     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1080     return SegmentName;
1081   }
1082   return "";
1083 }
1084 
1085 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1086                                     const MCAsmInfo &MAI,
1087                                     const MCSubtargetInfo &STI,
1088                                     StringRef Comments,
1089                                     LiveVariablePrinter &LVP) {
1090   do {
1091     if (!Comments.empty()) {
1092       // Emit a line of comments.
1093       StringRef Comment;
1094       std::tie(Comment, Comments) = Comments.split('\n');
1095       // MAI.getCommentColumn() assumes that instructions are printed at the
1096       // position of 8, while getInstStartColumn() returns the actual position.
1097       unsigned CommentColumn =
1098           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1099       FOS.PadToColumn(CommentColumn);
1100       FOS << MAI.getCommentString() << ' ' << Comment;
1101     }
1102     LVP.printAfterInst(FOS);
1103     FOS << '\n';
1104   } while (!Comments.empty());
1105   FOS.flush();
1106 }
1107 
1108 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1109                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1110                               MCDisassembler *SecondaryDisAsm,
1111                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1112                               const MCSubtargetInfo *PrimarySTI,
1113                               const MCSubtargetInfo *SecondarySTI,
1114                               PrettyPrinter &PIP,
1115                               SourcePrinter &SP, bool InlineRelocs) {
1116   const MCSubtargetInfo *STI = PrimarySTI;
1117   MCDisassembler *DisAsm = PrimaryDisAsm;
1118   bool PrimaryIsThumb = false;
1119   if (isArmElf(Obj))
1120     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1121 
1122   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1123   if (InlineRelocs)
1124     RelocMap = getRelocsMap(*Obj);
1125   bool Is64Bits = Obj->getBytesInAddress() > 4;
1126 
1127   // Create a mapping from virtual address to symbol name.  This is used to
1128   // pretty print the symbols while disassembling.
1129   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1130   SectionSymbolsTy AbsoluteSymbols;
1131   const StringRef FileName = Obj->getFileName();
1132   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1133   for (const SymbolRef &Symbol : Obj->symbols()) {
1134     Expected<StringRef> NameOrErr = Symbol.getName();
1135     if (!NameOrErr) {
1136       reportWarning(toString(NameOrErr.takeError()), FileName);
1137       continue;
1138     }
1139     if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1140       continue;
1141 
1142     if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1143       continue;
1144 
1145     if (MachO) {
1146       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1147       // symbols that support MachO header introspection. They do not bind to
1148       // code locations and are irrelevant for disassembly.
1149       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1150         continue;
1151       // Don't ask a Mach-O STAB symbol for its section unless you know that
1152       // STAB symbol's section field refers to a valid section index. Otherwise
1153       // the symbol may error trying to load a section that does not exist.
1154       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1155       uint8_t NType = (MachO->is64Bit() ?
1156                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1157                        MachO->getSymbolTableEntry(SymDRI).n_type);
1158       if (NType & MachO::N_STAB)
1159         continue;
1160     }
1161 
1162     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1163     if (SecI != Obj->section_end())
1164       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1165     else
1166       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1167   }
1168 
1169   if (AllSymbols.empty() && Obj->isELF())
1170     addDynamicElfSymbols(Obj, AllSymbols);
1171 
1172   if (Obj->isWasm())
1173     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1174 
1175   BumpPtrAllocator A;
1176   StringSaver Saver(A);
1177   addPltEntries(Obj, AllSymbols, Saver);
1178 
1179   // Create a mapping from virtual address to section. An empty section can
1180   // cause more than one section at the same address. Sort such sections to be
1181   // before same-addressed non-empty sections so that symbol lookups prefer the
1182   // non-empty section.
1183   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1184   for (SectionRef Sec : Obj->sections())
1185     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1186   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1187     if (LHS.first != RHS.first)
1188       return LHS.first < RHS.first;
1189     return LHS.second.getSize() < RHS.second.getSize();
1190   });
1191 
1192   // Linked executables (.exe and .dll files) typically don't include a real
1193   // symbol table but they might contain an export table.
1194   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1195     for (const auto &ExportEntry : COFFObj->export_directories()) {
1196       StringRef Name;
1197       if (Error E = ExportEntry.getSymbolName(Name))
1198         reportError(std::move(E), Obj->getFileName());
1199       if (Name.empty())
1200         continue;
1201 
1202       uint32_t RVA;
1203       if (Error E = ExportEntry.getExportRVA(RVA))
1204         reportError(std::move(E), Obj->getFileName());
1205 
1206       uint64_t VA = COFFObj->getImageBase() + RVA;
1207       auto Sec = partition_point(
1208           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1209             return O.first <= VA;
1210           });
1211       if (Sec != SectionAddresses.begin()) {
1212         --Sec;
1213         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1214       } else
1215         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1216     }
1217   }
1218 
1219   // Sort all the symbols, this allows us to use a simple binary search to find
1220   // Multiple symbols can have the same address. Use a stable sort to stabilize
1221   // the output.
1222   StringSet<> FoundDisasmSymbolSet;
1223   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1224     llvm::stable_sort(SecSyms.second);
1225   llvm::stable_sort(AbsoluteSymbols);
1226 
1227   std::unique_ptr<DWARFContext> DICtx;
1228   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1229 
1230   if (DbgVariables != DVDisabled) {
1231     DICtx = DWARFContext::create(*Obj);
1232     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1233       LVP.addCompileUnit(CU->getUnitDIE(false));
1234   }
1235 
1236   LLVM_DEBUG(LVP.dump());
1237 
1238   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1239     if (FilterSections.empty() && !DisassembleAll &&
1240         (!Section.isText() || Section.isVirtual()))
1241       continue;
1242 
1243     uint64_t SectionAddr = Section.getAddress();
1244     uint64_t SectSize = Section.getSize();
1245     if (!SectSize)
1246       continue;
1247 
1248     // Get the list of all the symbols in this section.
1249     SectionSymbolsTy &Symbols = AllSymbols[Section];
1250     std::vector<MappingSymbolPair> MappingSymbols;
1251     if (hasMappingSymbols(Obj)) {
1252       for (const auto &Symb : Symbols) {
1253         uint64_t Address = Symb.Addr;
1254         StringRef Name = Symb.Name;
1255         if (Name.startswith("$d"))
1256           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1257         if (Name.startswith("$x"))
1258           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1259         if (Name.startswith("$a"))
1260           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1261         if (Name.startswith("$t"))
1262           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1263       }
1264     }
1265 
1266     llvm::sort(MappingSymbols);
1267 
1268     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1269         unwrapOrError(Section.getContents(), Obj->getFileName()));
1270 
1271     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1272     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1273       // AMDGPU disassembler uses symbolizer for printing labels
1274       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1275                     Symbols, SynthesizedLabelNames);
1276     }
1277 
1278     StringRef SegmentName = getSegmentName(MachO, Section);
1279     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1280     // If the section has no symbol at the start, just insert a dummy one.
1281     if (Symbols.empty() || Symbols[0].Addr != 0) {
1282       Symbols.insert(Symbols.begin(),
1283                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1284                                            Section.isText() ? ELF::STT_FUNC
1285                                                             : ELF::STT_OBJECT));
1286     }
1287 
1288     SmallString<40> Comments;
1289     raw_svector_ostream CommentStream(Comments);
1290 
1291     uint64_t VMAAdjustment = 0;
1292     if (shouldAdjustVA(Section))
1293       VMAAdjustment = AdjustVMA;
1294 
1295     // In executable and shared objects, r_offset holds a virtual address.
1296     // Subtract SectionAddr from the r_offset field of a relocation to get
1297     // the section offset.
1298     uint64_t RelAdjustment = Obj->isRelocatableObject() ? 0 : SectionAddr;
1299     uint64_t Size;
1300     uint64_t Index;
1301     bool PrintedSection = false;
1302     std::vector<RelocationRef> Rels = RelocMap[Section];
1303     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1304     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1305     // Disassemble symbol by symbol.
1306     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1307       std::string SymbolName = Symbols[SI].Name.str();
1308       if (Demangle)
1309         SymbolName = demangle(SymbolName);
1310 
1311       // Skip if --disassemble-symbols is not empty and the symbol is not in
1312       // the list.
1313       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1314         continue;
1315 
1316       uint64_t Start = Symbols[SI].Addr;
1317       if (Start < SectionAddr || StopAddress <= Start)
1318         continue;
1319       else
1320         FoundDisasmSymbolSet.insert(SymbolName);
1321 
1322       // The end is the section end, the beginning of the next symbol, or
1323       // --stop-address.
1324       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1325       if (SI + 1 < SE)
1326         End = std::min(End, Symbols[SI + 1].Addr);
1327       if (Start >= End || End <= StartAddress)
1328         continue;
1329       Start -= SectionAddr;
1330       End -= SectionAddr;
1331 
1332       if (!PrintedSection) {
1333         PrintedSection = true;
1334         outs() << "\nDisassembly of section ";
1335         if (!SegmentName.empty())
1336           outs() << SegmentName << ",";
1337         outs() << SectionName << ":\n";
1338       }
1339 
1340       outs() << '\n';
1341       if (LeadingAddr)
1342         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1343                          SectionAddr + Start + VMAAdjustment);
1344       if (Obj->isXCOFF() && SymbolDescription) {
1345         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1346       } else
1347         outs() << '<' << SymbolName << ">:\n";
1348 
1349       // Don't print raw contents of a virtual section. A virtual section
1350       // doesn't have any contents in the file.
1351       if (Section.isVirtual()) {
1352         outs() << "...\n";
1353         continue;
1354       }
1355 
1356       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1357                                           Bytes.slice(Start, End - Start),
1358                                           SectionAddr + Start, CommentStream);
1359       // To have round trippable disassembly, we fall back to decoding the
1360       // remaining bytes as instructions.
1361       //
1362       // If there is a failure, we disassemble the failed region as bytes before
1363       // falling back. The target is expected to print nothing in this case.
1364       //
1365       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1366       // Size bytes before falling back.
1367       // So if the entire symbol is 'eaten' by the target:
1368       //   Start += Size  // Now Start = End and we will never decode as
1369       //                  // instructions
1370       //
1371       // Right now, most targets return None i.e ignore to treat a symbol
1372       // separately. But WebAssembly decodes preludes for some symbols.
1373       //
1374       if (Status.hasValue()) {
1375         if (Status.getValue() == MCDisassembler::Fail) {
1376           outs() << "// Error in decoding " << SymbolName
1377                  << " : Decoding failed region as bytes.\n";
1378           for (uint64_t I = 0; I < Size; ++I) {
1379             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1380                    << "\n";
1381           }
1382         }
1383       } else {
1384         Size = 0;
1385       }
1386 
1387       Start += Size;
1388 
1389       Index = Start;
1390       if (SectionAddr < StartAddress)
1391         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1392 
1393       // If there is a data/common symbol inside an ELF text section and we are
1394       // only disassembling text (applicable all architectures), we are in a
1395       // situation where we must print the data and not disassemble it.
1396       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1397         uint8_t SymTy = Symbols[SI].Type;
1398         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1399           dumpELFData(SectionAddr, Index, End, Bytes);
1400           Index = End;
1401         }
1402       }
1403 
1404       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1405                              Symbols[SI].Type != ELF::STT_OBJECT &&
1406                              !DisassembleAll;
1407       bool DumpARMELFData = false;
1408       formatted_raw_ostream FOS(outs());
1409 
1410       std::unordered_map<uint64_t, std::string> AllLabels;
1411       if (SymbolizeOperands)
1412         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1413                                   SectionAddr, Index, End, AllLabels);
1414 
1415       while (Index < End) {
1416         // ARM and AArch64 ELF binaries can interleave data and text in the
1417         // same section. We rely on the markers introduced to understand what
1418         // we need to dump. If the data marker is within a function, it is
1419         // denoted as a word/short etc.
1420         if (CheckARMELFData) {
1421           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1422           DumpARMELFData = Kind == 'd';
1423           if (SecondarySTI) {
1424             if (Kind == 'a') {
1425               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1426               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1427             } else if (Kind == 't') {
1428               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1429               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1430             }
1431           }
1432         }
1433 
1434         if (DumpARMELFData) {
1435           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1436                                 MappingSymbols, FOS);
1437         } else {
1438           // When -z or --disassemble-zeroes are given we always dissasemble
1439           // them. Otherwise we might want to skip zero bytes we see.
1440           if (!DisassembleZeroes) {
1441             uint64_t MaxOffset = End - Index;
1442             // For --reloc: print zero blocks patched by relocations, so that
1443             // relocations can be shown in the dump.
1444             if (RelCur != RelEnd)
1445               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1446                                    MaxOffset);
1447 
1448             if (size_t N =
1449                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1450               FOS << "\t\t..." << '\n';
1451               Index += N;
1452               continue;
1453             }
1454           }
1455 
1456           // Print local label if there's any.
1457           auto Iter = AllLabels.find(SectionAddr + Index);
1458           if (Iter != AllLabels.end())
1459             FOS << "<" << Iter->second << ">:\n";
1460 
1461           // Disassemble a real instruction or a data when disassemble all is
1462           // provided
1463           MCInst Inst;
1464           bool Disassembled =
1465               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1466                                      SectionAddr + Index, CommentStream);
1467           if (Size == 0)
1468             Size = 1;
1469 
1470           LVP.update({Index, Section.getIndex()},
1471                      {Index + Size, Section.getIndex()}, Index + Size != End);
1472 
1473           IP->setCommentStream(CommentStream);
1474 
1475           PIP.printInst(
1476               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1477               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1478               "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
1479 
1480           IP->setCommentStream(llvm::nulls());
1481 
1482           // If disassembly has failed, avoid analysing invalid/incomplete
1483           // instruction information. Otherwise, try to resolve the target
1484           // address (jump target or memory operand address) and print it on the
1485           // right of the instruction.
1486           if (Disassembled && MIA) {
1487             // Branch targets are printed just after the instructions.
1488             llvm::raw_ostream *TargetOS = &FOS;
1489             uint64_t Target;
1490             bool PrintTarget =
1491                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1492             if (!PrintTarget)
1493               if (Optional<uint64_t> MaybeTarget =
1494                       MIA->evaluateMemoryOperandAddress(
1495                           Inst, STI, SectionAddr + Index, Size)) {
1496                 Target = *MaybeTarget;
1497                 PrintTarget = true;
1498                 // Do not print real address when symbolizing.
1499                 if (!SymbolizeOperands) {
1500                   // Memory operand addresses are printed as comments.
1501                   TargetOS = &CommentStream;
1502                   *TargetOS << "0x" << Twine::utohexstr(Target);
1503                 }
1504               }
1505             if (PrintTarget) {
1506               // In a relocatable object, the target's section must reside in
1507               // the same section as the call instruction or it is accessed
1508               // through a relocation.
1509               //
1510               // In a non-relocatable object, the target may be in any section.
1511               // In that case, locate the section(s) containing the target
1512               // address and find the symbol in one of those, if possible.
1513               //
1514               // N.B. We don't walk the relocations in the relocatable case yet.
1515               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1516               if (!Obj->isRelocatableObject()) {
1517                 auto It = llvm::partition_point(
1518                     SectionAddresses,
1519                     [=](const std::pair<uint64_t, SectionRef> &O) {
1520                       return O.first <= Target;
1521                     });
1522                 uint64_t TargetSecAddr = 0;
1523                 while (It != SectionAddresses.begin()) {
1524                   --It;
1525                   if (TargetSecAddr == 0)
1526                     TargetSecAddr = It->first;
1527                   if (It->first != TargetSecAddr)
1528                     break;
1529                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1530                 }
1531               } else {
1532                 TargetSectionSymbols.push_back(&Symbols);
1533               }
1534               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1535 
1536               // Find the last symbol in the first candidate section whose
1537               // offset is less than or equal to the target. If there are no
1538               // such symbols, try in the next section and so on, before finally
1539               // using the nearest preceding absolute symbol (if any), if there
1540               // are no other valid symbols.
1541               const SymbolInfoTy *TargetSym = nullptr;
1542               for (const SectionSymbolsTy *TargetSymbols :
1543                    TargetSectionSymbols) {
1544                 auto It = llvm::partition_point(
1545                     *TargetSymbols,
1546                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1547                 if (It != TargetSymbols->begin()) {
1548                   TargetSym = &*(It - 1);
1549                   break;
1550                 }
1551               }
1552 
1553               // Print the labels corresponding to the target if there's any.
1554               bool LabelAvailable = AllLabels.count(Target);
1555               if (TargetSym != nullptr) {
1556                 uint64_t TargetAddress = TargetSym->Addr;
1557                 uint64_t Disp = Target - TargetAddress;
1558                 std::string TargetName = TargetSym->Name.str();
1559                 if (Demangle)
1560                   TargetName = demangle(TargetName);
1561 
1562                 *TargetOS << " <";
1563                 if (!Disp) {
1564                   // Always Print the binary symbol precisely corresponding to
1565                   // the target address.
1566                   *TargetOS << TargetName;
1567                 } else if (!LabelAvailable) {
1568                   // Always Print the binary symbol plus an offset if there's no
1569                   // local label corresponding to the target address.
1570                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1571                 } else {
1572                   *TargetOS << AllLabels[Target];
1573                 }
1574                 *TargetOS << ">";
1575               } else if (LabelAvailable) {
1576                 *TargetOS << " <" << AllLabels[Target] << ">";
1577               }
1578               // By convention, each record in the comment stream should be
1579               // terminated.
1580               if (TargetOS == &CommentStream)
1581                 *TargetOS << "\n";
1582             }
1583           }
1584         }
1585 
1586         assert(Ctx.getAsmInfo());
1587         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1588                                 CommentStream.str(), LVP);
1589         Comments.clear();
1590 
1591         // Hexagon does this in pretty printer
1592         if (Obj->getArch() != Triple::hexagon) {
1593           // Print relocation for instruction and data.
1594           while (RelCur != RelEnd) {
1595             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1596             // If this relocation is hidden, skip it.
1597             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1598               ++RelCur;
1599               continue;
1600             }
1601 
1602             // Stop when RelCur's offset is past the disassembled
1603             // instruction/data. Note that it's possible the disassembled data
1604             // is not the complete data: we might see the relocation printed in
1605             // the middle of the data, but this matches the binutils objdump
1606             // output.
1607             if (Offset >= Index + Size)
1608               break;
1609 
1610             // When --adjust-vma is used, update the address printed.
1611             if (RelCur->getSymbol() != Obj->symbol_end()) {
1612               Expected<section_iterator> SymSI =
1613                   RelCur->getSymbol()->getSection();
1614               if (SymSI && *SymSI != Obj->section_end() &&
1615                   shouldAdjustVA(**SymSI))
1616                 Offset += AdjustVMA;
1617             }
1618 
1619             printRelocation(FOS, Obj->getFileName(), *RelCur,
1620                             SectionAddr + Offset, Is64Bits);
1621             LVP.printAfterOtherLine(FOS, true);
1622             ++RelCur;
1623           }
1624         }
1625 
1626         Index += Size;
1627       }
1628     }
1629   }
1630   StringSet<> MissingDisasmSymbolSet =
1631       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1632   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1633     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1634 }
1635 
1636 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1637   const Target *TheTarget = getTarget(Obj);
1638 
1639   // Package up features to be passed to target/subtarget
1640   SubtargetFeatures Features = Obj->getFeatures();
1641   if (!MAttrs.empty())
1642     for (unsigned I = 0; I != MAttrs.size(); ++I)
1643       Features.AddFeature(MAttrs[I]);
1644 
1645   std::unique_ptr<const MCRegisterInfo> MRI(
1646       TheTarget->createMCRegInfo(TripleName));
1647   if (!MRI)
1648     reportError(Obj->getFileName(),
1649                 "no register info for target " + TripleName);
1650 
1651   // Set up disassembler.
1652   MCTargetOptions MCOptions;
1653   std::unique_ptr<const MCAsmInfo> AsmInfo(
1654       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1655   if (!AsmInfo)
1656     reportError(Obj->getFileName(),
1657                 "no assembly info for target " + TripleName);
1658 
1659   if (MCPU.empty())
1660     MCPU = Obj->tryGetCPUName().getValueOr("").str();
1661 
1662   std::unique_ptr<const MCSubtargetInfo> STI(
1663       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1664   if (!STI)
1665     reportError(Obj->getFileName(),
1666                 "no subtarget info for target " + TripleName);
1667   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1668   if (!MII)
1669     reportError(Obj->getFileName(),
1670                 "no instruction info for target " + TripleName);
1671   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
1672   // FIXME: for now initialize MCObjectFileInfo with default values
1673   std::unique_ptr<MCObjectFileInfo> MOFI(
1674       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
1675   Ctx.setObjectFileInfo(MOFI.get());
1676 
1677   std::unique_ptr<MCDisassembler> DisAsm(
1678       TheTarget->createMCDisassembler(*STI, Ctx));
1679   if (!DisAsm)
1680     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1681 
1682   // If we have an ARM object file, we need a second disassembler, because
1683   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1684   // We use mapping symbols to switch between the two assemblers, where
1685   // appropriate.
1686   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1687   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1688   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1689     if (STI->checkFeatures("+thumb-mode"))
1690       Features.AddFeature("-thumb-mode");
1691     else
1692       Features.AddFeature("+thumb-mode");
1693     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1694                                                         Features.getString()));
1695     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1696   }
1697 
1698   std::unique_ptr<const MCInstrAnalysis> MIA(
1699       TheTarget->createMCInstrAnalysis(MII.get()));
1700 
1701   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1702   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1703       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1704   if (!IP)
1705     reportError(Obj->getFileName(),
1706                 "no instruction printer for target " + TripleName);
1707   IP->setPrintImmHex(PrintImmHex);
1708   IP->setPrintBranchImmAsAddress(true);
1709   IP->setSymbolizeOperands(SymbolizeOperands);
1710   IP->setMCInstrAnalysis(MIA.get());
1711 
1712   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1713   SourcePrinter SP(Obj, TheTarget->getName());
1714 
1715   for (StringRef Opt : DisassemblerOptions)
1716     if (!IP->applyTargetSpecificCLOption(Opt))
1717       reportError(Obj->getFileName(),
1718                   "Unrecognized disassembler option: " + Opt);
1719 
1720   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1721                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1722                     SP, InlineRelocs);
1723 }
1724 
1725 void objdump::printRelocations(const ObjectFile *Obj) {
1726   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1727                                                  "%08" PRIx64;
1728   // Regular objdump doesn't print relocations in non-relocatable object
1729   // files.
1730   if (!Obj->isRelocatableObject())
1731     return;
1732 
1733   // Build a mapping from relocation target to a vector of relocation
1734   // sections. Usually, there is an only one relocation section for
1735   // each relocated section.
1736   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1737   uint64_t Ndx;
1738   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1739     if (Section.relocation_begin() == Section.relocation_end())
1740       continue;
1741     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1742     if (!SecOrErr)
1743       reportError(Obj->getFileName(),
1744                   "section (" + Twine(Ndx) +
1745                       "): unable to get a relocation target: " +
1746                       toString(SecOrErr.takeError()));
1747     SecToRelSec[**SecOrErr].push_back(Section);
1748   }
1749 
1750   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1751     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1752     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
1753     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1754     uint32_t TypePadding = 24;
1755     outs() << left_justify("OFFSET", OffsetPadding) << " "
1756            << left_justify("TYPE", TypePadding) << " "
1757            << "VALUE\n";
1758 
1759     for (SectionRef Section : P.second) {
1760       for (const RelocationRef &Reloc : Section.relocations()) {
1761         uint64_t Address = Reloc.getOffset();
1762         SmallString<32> RelocName;
1763         SmallString<32> ValueStr;
1764         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1765           continue;
1766         Reloc.getTypeName(RelocName);
1767         if (Error E = getRelocationValueString(Reloc, ValueStr))
1768           reportError(std::move(E), Obj->getFileName());
1769 
1770         outs() << format(Fmt.data(), Address) << " "
1771                << left_justify(RelocName, TypePadding) << " " << ValueStr
1772                << "\n";
1773       }
1774     }
1775   }
1776 }
1777 
1778 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
1779   // For the moment, this option is for ELF only
1780   if (!Obj->isELF())
1781     return;
1782 
1783   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1784   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
1785         return Sec.getType() == ELF::SHT_DYNAMIC;
1786       })) {
1787     reportError(Obj->getFileName(), "not a dynamic object");
1788     return;
1789   }
1790 
1791   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1792   if (DynRelSec.empty())
1793     return;
1794 
1795   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
1796   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1797   const uint32_t TypePadding = 24;
1798   outs() << left_justify("OFFSET", OffsetPadding) << ' '
1799          << left_justify("TYPE", TypePadding) << " VALUE\n";
1800 
1801   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1802   for (const SectionRef &Section : DynRelSec)
1803     for (const RelocationRef &Reloc : Section.relocations()) {
1804       uint64_t Address = Reloc.getOffset();
1805       SmallString<32> RelocName;
1806       SmallString<32> ValueStr;
1807       Reloc.getTypeName(RelocName);
1808       if (Error E = getRelocationValueString(Reloc, ValueStr))
1809         reportError(std::move(E), Obj->getFileName());
1810       outs() << format(Fmt.data(), Address) << ' '
1811              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
1812     }
1813 }
1814 
1815 // Returns true if we need to show LMA column when dumping section headers. We
1816 // show it only when the platform is ELF and either we have at least one section
1817 // whose VMA and LMA are different and/or when --show-lma flag is used.
1818 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1819   if (!Obj->isELF())
1820     return false;
1821   for (const SectionRef &S : ToolSectionFilter(*Obj))
1822     if (S.getAddress() != getELFSectionLMA(S))
1823       return true;
1824   return ShowLMA;
1825 }
1826 
1827 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1828   // Default column width for names is 13 even if no names are that long.
1829   size_t MaxWidth = 13;
1830   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1831     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1832     MaxWidth = std::max(MaxWidth, Name.size());
1833   }
1834   return MaxWidth;
1835 }
1836 
1837 void objdump::printSectionHeaders(const ObjectFile *Obj) {
1838   size_t NameWidth = getMaxSectionNameWidth(Obj);
1839   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1840   bool HasLMAColumn = shouldDisplayLMA(Obj);
1841   outs() << "\nSections:\n";
1842   if (HasLMAColumn)
1843     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1844            << left_justify("VMA", AddressWidth) << " "
1845            << left_justify("LMA", AddressWidth) << " Type\n";
1846   else
1847     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1848            << left_justify("VMA", AddressWidth) << " Type\n";
1849 
1850   uint64_t Idx;
1851   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1852     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1853     uint64_t VMA = Section.getAddress();
1854     if (shouldAdjustVA(Section))
1855       VMA += AdjustVMA;
1856 
1857     uint64_t Size = Section.getSize();
1858 
1859     std::string Type = Section.isText() ? "TEXT" : "";
1860     if (Section.isData())
1861       Type += Type.empty() ? "DATA" : ", DATA";
1862     if (Section.isBSS())
1863       Type += Type.empty() ? "BSS" : ", BSS";
1864     if (Section.isDebugSection())
1865       Type += Type.empty() ? "DEBUG" : ", DEBUG";
1866 
1867     if (HasLMAColumn)
1868       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1869                        Name.str().c_str(), Size)
1870              << format_hex_no_prefix(VMA, AddressWidth) << " "
1871              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1872              << " " << Type << "\n";
1873     else
1874       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1875                        Name.str().c_str(), Size)
1876              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1877   }
1878 }
1879 
1880 void objdump::printSectionContents(const ObjectFile *Obj) {
1881   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1882 
1883   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1884     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1885     uint64_t BaseAddr = Section.getAddress();
1886     uint64_t Size = Section.getSize();
1887     if (!Size)
1888       continue;
1889 
1890     outs() << "Contents of section ";
1891     StringRef SegmentName = getSegmentName(MachO, Section);
1892     if (!SegmentName.empty())
1893       outs() << SegmentName << ",";
1894     outs() << Name << ":\n";
1895     if (Section.isBSS()) {
1896       outs() << format("<skipping contents of bss section at [%04" PRIx64
1897                        ", %04" PRIx64 ")>\n",
1898                        BaseAddr, BaseAddr + Size);
1899       continue;
1900     }
1901 
1902     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1903 
1904     // Dump out the content as hex and printable ascii characters.
1905     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1906       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1907       // Dump line of hex.
1908       for (std::size_t I = 0; I < 16; ++I) {
1909         if (I != 0 && I % 4 == 0)
1910           outs() << ' ';
1911         if (Addr + I < End)
1912           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1913                  << hexdigit(Contents[Addr + I] & 0xF, true);
1914         else
1915           outs() << "  ";
1916       }
1917       // Print ascii.
1918       outs() << "  ";
1919       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1920         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1921           outs() << Contents[Addr + I];
1922         else
1923           outs() << ".";
1924       }
1925       outs() << "\n";
1926     }
1927   }
1928 }
1929 
1930 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1931                                StringRef ArchitectureName, bool DumpDynamic) {
1932   if (O->isCOFF() && !DumpDynamic) {
1933     outs() << "\nSYMBOL TABLE:\n";
1934     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
1935     return;
1936   }
1937 
1938   const StringRef FileName = O->getFileName();
1939 
1940   if (!DumpDynamic) {
1941     outs() << "\nSYMBOL TABLE:\n";
1942     for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
1943       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
1944                   DumpDynamic);
1945     return;
1946   }
1947 
1948   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
1949   if (!O->isELF()) {
1950     reportWarning(
1951         "this operation is not currently supported for this file format",
1952         FileName);
1953     return;
1954   }
1955 
1956   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
1957   auto Symbols = ELF->getDynamicSymbolIterators();
1958   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
1959       ELF->readDynsymVersions();
1960   if (!SymbolVersionsOrErr) {
1961     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
1962     SymbolVersionsOrErr = std::vector<VersionEntry>();
1963     (void)!SymbolVersionsOrErr;
1964   }
1965   for (auto &Sym : Symbols)
1966     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
1967                 ArchitectureName, DumpDynamic);
1968 }
1969 
1970 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
1971                           ArrayRef<VersionEntry> SymbolVersions,
1972                           StringRef FileName, StringRef ArchiveName,
1973                           StringRef ArchitectureName, bool DumpDynamic) {
1974   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1975   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1976                                    ArchitectureName);
1977   if ((Address < StartAddress) || (Address > StopAddress))
1978     return;
1979   SymbolRef::Type Type =
1980       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
1981   uint32_t Flags =
1982       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
1983 
1984   // Don't ask a Mach-O STAB symbol for its section unless you know that
1985   // STAB symbol's section field refers to a valid section index. Otherwise
1986   // the symbol may error trying to load a section that does not exist.
1987   bool IsSTAB = false;
1988   if (MachO) {
1989     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1990     uint8_t NType =
1991         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
1992                           : MachO->getSymbolTableEntry(SymDRI).n_type);
1993     if (NType & MachO::N_STAB)
1994       IsSTAB = true;
1995   }
1996   section_iterator Section = IsSTAB
1997                                  ? O->section_end()
1998                                  : unwrapOrError(Symbol.getSection(), FileName,
1999                                                  ArchiveName, ArchitectureName);
2000 
2001   StringRef Name;
2002   if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
2003     if (Expected<StringRef> NameOrErr = Section->getName())
2004       Name = *NameOrErr;
2005     else
2006       consumeError(NameOrErr.takeError());
2007 
2008   } else {
2009     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2010                          ArchitectureName);
2011   }
2012 
2013   bool Global = Flags & SymbolRef::SF_Global;
2014   bool Weak = Flags & SymbolRef::SF_Weak;
2015   bool Absolute = Flags & SymbolRef::SF_Absolute;
2016   bool Common = Flags & SymbolRef::SF_Common;
2017   bool Hidden = Flags & SymbolRef::SF_Hidden;
2018 
2019   char GlobLoc = ' ';
2020   if ((Section != O->section_end() || Absolute) && !Weak)
2021     GlobLoc = Global ? 'g' : 'l';
2022   char IFunc = ' ';
2023   if (O->isELF()) {
2024     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2025       IFunc = 'i';
2026     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2027       GlobLoc = 'u';
2028   }
2029 
2030   char Debug = ' ';
2031   if (DumpDynamic)
2032     Debug = 'D';
2033   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2034     Debug = 'd';
2035 
2036   char FileFunc = ' ';
2037   if (Type == SymbolRef::ST_File)
2038     FileFunc = 'f';
2039   else if (Type == SymbolRef::ST_Function)
2040     FileFunc = 'F';
2041   else if (Type == SymbolRef::ST_Data)
2042     FileFunc = 'O';
2043 
2044   const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2045 
2046   outs() << format(Fmt, Address) << " "
2047          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2048          << (Weak ? 'w' : ' ') // Weak?
2049          << ' '                // Constructor. Not supported yet.
2050          << ' '                // Warning. Not supported yet.
2051          << IFunc              // Indirect reference to another symbol.
2052          << Debug              // Debugging (d) or dynamic (D) symbol.
2053          << FileFunc           // Name of function (F), file (f) or object (O).
2054          << ' ';
2055   if (Absolute) {
2056     outs() << "*ABS*";
2057   } else if (Common) {
2058     outs() << "*COM*";
2059   } else if (Section == O->section_end()) {
2060     if (O->isXCOFF()) {
2061       XCOFFSymbolRef XCOFFSym = dyn_cast<const XCOFFObjectFile>(O)->toSymbolRef(
2062           Symbol.getRawDataRefImpl());
2063       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2064         outs() << "*DEBUG*";
2065       else
2066         outs() << "*UND*";
2067     } else
2068       outs() << "*UND*";
2069   } else {
2070     StringRef SegmentName = getSegmentName(MachO, *Section);
2071     if (!SegmentName.empty())
2072       outs() << SegmentName << ",";
2073     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2074     outs() << SectionName;
2075     if (O->isXCOFF()) {
2076       Optional<SymbolRef> SymRef = getXCOFFSymbolContainingSymbolRef(
2077           dyn_cast<const XCOFFObjectFile>(O), Symbol);
2078       if (SymRef) {
2079 
2080         Expected<StringRef> NameOrErr = SymRef.getValue().getName();
2081 
2082         if (NameOrErr) {
2083           outs() << " (csect:";
2084           std::string SymName(NameOrErr.get());
2085 
2086           if (Demangle)
2087             SymName = demangle(SymName);
2088 
2089           if (SymbolDescription)
2090             SymName = getXCOFFSymbolDescription(
2091                 createSymbolInfo(O, SymRef.getValue()), SymName);
2092 
2093           outs() << ' ' << SymName;
2094           outs() << ") ";
2095         } else
2096           reportWarning(toString(NameOrErr.takeError()), FileName);
2097       }
2098     }
2099   }
2100 
2101   if (Common)
2102     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2103   else if (O->isXCOFF())
2104     outs() << '\t'
2105            << format(Fmt, dyn_cast<const XCOFFObjectFile>(O)->getSymbolSize(
2106                               Symbol.getRawDataRefImpl()));
2107   else if (O->isELF())
2108     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2109 
2110   if (O->isELF()) {
2111     if (!SymbolVersions.empty()) {
2112       const VersionEntry &Ver =
2113           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2114       std::string Str;
2115       if (!Ver.Name.empty())
2116         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2117       outs() << ' ' << left_justify(Str, 12);
2118     }
2119 
2120     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2121     switch (Other) {
2122     case ELF::STV_DEFAULT:
2123       break;
2124     case ELF::STV_INTERNAL:
2125       outs() << " .internal";
2126       break;
2127     case ELF::STV_HIDDEN:
2128       outs() << " .hidden";
2129       break;
2130     case ELF::STV_PROTECTED:
2131       outs() << " .protected";
2132       break;
2133     default:
2134       outs() << format(" 0x%02x", Other);
2135       break;
2136     }
2137   } else if (Hidden) {
2138     outs() << " .hidden";
2139   }
2140 
2141   std::string SymName(Name);
2142   if (Demangle)
2143     SymName = demangle(SymName);
2144 
2145   if (O->isXCOFF() && SymbolDescription)
2146     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2147 
2148   outs() << ' ' << SymName << '\n';
2149 }
2150 
2151 static void printUnwindInfo(const ObjectFile *O) {
2152   outs() << "Unwind info:\n\n";
2153 
2154   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2155     printCOFFUnwindInfo(Coff);
2156   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2157     printMachOUnwindInfo(MachO);
2158   else
2159     // TODO: Extract DWARF dump tool to objdump.
2160     WithColor::error(errs(), ToolName)
2161         << "This operation is only currently supported "
2162            "for COFF and MachO object files.\n";
2163 }
2164 
2165 /// Dump the raw contents of the __clangast section so the output can be piped
2166 /// into llvm-bcanalyzer.
2167 static void printRawClangAST(const ObjectFile *Obj) {
2168   if (outs().is_displayed()) {
2169     WithColor::error(errs(), ToolName)
2170         << "The -raw-clang-ast option will dump the raw binary contents of "
2171            "the clang ast section.\n"
2172            "Please redirect the output to a file or another program such as "
2173            "llvm-bcanalyzer.\n";
2174     return;
2175   }
2176 
2177   StringRef ClangASTSectionName("__clangast");
2178   if (Obj->isCOFF()) {
2179     ClangASTSectionName = "clangast";
2180   }
2181 
2182   Optional<object::SectionRef> ClangASTSection;
2183   for (auto Sec : ToolSectionFilter(*Obj)) {
2184     StringRef Name;
2185     if (Expected<StringRef> NameOrErr = Sec.getName())
2186       Name = *NameOrErr;
2187     else
2188       consumeError(NameOrErr.takeError());
2189 
2190     if (Name == ClangASTSectionName) {
2191       ClangASTSection = Sec;
2192       break;
2193     }
2194   }
2195   if (!ClangASTSection)
2196     return;
2197 
2198   StringRef ClangASTContents = unwrapOrError(
2199       ClangASTSection.getValue().getContents(), Obj->getFileName());
2200   outs().write(ClangASTContents.data(), ClangASTContents.size());
2201 }
2202 
2203 static void printFaultMaps(const ObjectFile *Obj) {
2204   StringRef FaultMapSectionName;
2205 
2206   if (Obj->isELF()) {
2207     FaultMapSectionName = ".llvm_faultmaps";
2208   } else if (Obj->isMachO()) {
2209     FaultMapSectionName = "__llvm_faultmaps";
2210   } else {
2211     WithColor::error(errs(), ToolName)
2212         << "This operation is only currently supported "
2213            "for ELF and Mach-O executable files.\n";
2214     return;
2215   }
2216 
2217   Optional<object::SectionRef> FaultMapSection;
2218 
2219   for (auto Sec : ToolSectionFilter(*Obj)) {
2220     StringRef Name;
2221     if (Expected<StringRef> NameOrErr = Sec.getName())
2222       Name = *NameOrErr;
2223     else
2224       consumeError(NameOrErr.takeError());
2225 
2226     if (Name == FaultMapSectionName) {
2227       FaultMapSection = Sec;
2228       break;
2229     }
2230   }
2231 
2232   outs() << "FaultMap table:\n";
2233 
2234   if (!FaultMapSection.hasValue()) {
2235     outs() << "<not found>\n";
2236     return;
2237   }
2238 
2239   StringRef FaultMapContents =
2240       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2241   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2242                      FaultMapContents.bytes_end());
2243 
2244   outs() << FMP;
2245 }
2246 
2247 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2248   if (O->isELF()) {
2249     printELFFileHeader(O);
2250     printELFDynamicSection(O);
2251     printELFSymbolVersionInfo(O);
2252     return;
2253   }
2254   if (O->isCOFF())
2255     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2256   if (O->isWasm())
2257     return printWasmFileHeader(O);
2258   if (O->isMachO()) {
2259     printMachOFileHeader(O);
2260     if (!OnlyFirst)
2261       printMachOLoadCommands(O);
2262     return;
2263   }
2264   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2265 }
2266 
2267 static void printFileHeaders(const ObjectFile *O) {
2268   if (!O->isELF() && !O->isCOFF())
2269     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2270 
2271   Triple::ArchType AT = O->getArch();
2272   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2273   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2274 
2275   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2276   outs() << "start address: "
2277          << "0x" << format(Fmt.data(), Address) << "\n";
2278 }
2279 
2280 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2281   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2282   if (!ModeOrErr) {
2283     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2284     consumeError(ModeOrErr.takeError());
2285     return;
2286   }
2287   sys::fs::perms Mode = ModeOrErr.get();
2288   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2289   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2290   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2291   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2292   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2293   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2294   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2295   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2296   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2297 
2298   outs() << " ";
2299 
2300   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2301                    unwrapOrError(C.getGID(), Filename),
2302                    unwrapOrError(C.getRawSize(), Filename));
2303 
2304   StringRef RawLastModified = C.getRawLastModified();
2305   unsigned Seconds;
2306   if (RawLastModified.getAsInteger(10, Seconds))
2307     outs() << "(date: \"" << RawLastModified
2308            << "\" contains non-decimal chars) ";
2309   else {
2310     // Since ctime(3) returns a 26 character string of the form:
2311     // "Sun Sep 16 01:03:52 1973\n\0"
2312     // just print 24 characters.
2313     time_t t = Seconds;
2314     outs() << format("%.24s ", ctime(&t));
2315   }
2316 
2317   StringRef Name = "";
2318   Expected<StringRef> NameOrErr = C.getName();
2319   if (!NameOrErr) {
2320     consumeError(NameOrErr.takeError());
2321     Name = unwrapOrError(C.getRawName(), Filename);
2322   } else {
2323     Name = NameOrErr.get();
2324   }
2325   outs() << Name << "\n";
2326 }
2327 
2328 // For ELF only now.
2329 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2330   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2331     if (Elf->getEType() != ELF::ET_REL)
2332       return true;
2333   }
2334   return false;
2335 }
2336 
2337 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2338                                             uint64_t Start, uint64_t Stop) {
2339   if (!shouldWarnForInvalidStartStopAddress(Obj))
2340     return;
2341 
2342   for (const SectionRef &Section : Obj->sections())
2343     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2344       uint64_t BaseAddr = Section.getAddress();
2345       uint64_t Size = Section.getSize();
2346       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2347         return;
2348     }
2349 
2350   if (!HasStartAddressFlag)
2351     reportWarning("no section has address less than 0x" +
2352                       Twine::utohexstr(Stop) + " specified by --stop-address",
2353                   Obj->getFileName());
2354   else if (!HasStopAddressFlag)
2355     reportWarning("no section has address greater than or equal to 0x" +
2356                       Twine::utohexstr(Start) + " specified by --start-address",
2357                   Obj->getFileName());
2358   else
2359     reportWarning("no section overlaps the range [0x" +
2360                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2361                       ") specified by --start-address/--stop-address",
2362                   Obj->getFileName());
2363 }
2364 
2365 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2366                        const Archive::Child *C = nullptr) {
2367   // Avoid other output when using a raw option.
2368   if (!RawClangAST) {
2369     outs() << '\n';
2370     if (A)
2371       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2372     else
2373       outs() << O->getFileName();
2374     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2375   }
2376 
2377   if (HasStartAddressFlag || HasStopAddressFlag)
2378     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2379 
2380   // Note: the order here matches GNU objdump for compatability.
2381   StringRef ArchiveName = A ? A->getFileName() : "";
2382   if (ArchiveHeaders && !MachOOpt && C)
2383     printArchiveChild(ArchiveName, *C);
2384   if (FileHeaders)
2385     printFileHeaders(O);
2386   if (PrivateHeaders || FirstPrivateHeader)
2387     printPrivateFileHeaders(O, FirstPrivateHeader);
2388   if (SectionHeaders)
2389     printSectionHeaders(O);
2390   if (SymbolTable)
2391     printSymbolTable(O, ArchiveName);
2392   if (DynamicSymbolTable)
2393     printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2394                      /*DumpDynamic=*/true);
2395   if (DwarfDumpType != DIDT_Null) {
2396     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2397     // Dump the complete DWARF structure.
2398     DIDumpOptions DumpOpts;
2399     DumpOpts.DumpType = DwarfDumpType;
2400     DICtx->dump(outs(), DumpOpts);
2401   }
2402   if (Relocations && !Disassemble)
2403     printRelocations(O);
2404   if (DynamicRelocations)
2405     printDynamicRelocations(O);
2406   if (SectionContents)
2407     printSectionContents(O);
2408   if (Disassemble)
2409     disassembleObject(O, Relocations);
2410   if (UnwindInfo)
2411     printUnwindInfo(O);
2412 
2413   // Mach-O specific options:
2414   if (ExportsTrie)
2415     printExportsTrie(O);
2416   if (Rebase)
2417     printRebaseTable(O);
2418   if (Bind)
2419     printBindTable(O);
2420   if (LazyBind)
2421     printLazyBindTable(O);
2422   if (WeakBind)
2423     printWeakBindTable(O);
2424 
2425   // Other special sections:
2426   if (RawClangAST)
2427     printRawClangAST(O);
2428   if (FaultMapSection)
2429     printFaultMaps(O);
2430 }
2431 
2432 static void dumpObject(const COFFImportFile *I, const Archive *A,
2433                        const Archive::Child *C = nullptr) {
2434   StringRef ArchiveName = A ? A->getFileName() : "";
2435 
2436   // Avoid other output when using a raw option.
2437   if (!RawClangAST)
2438     outs() << '\n'
2439            << ArchiveName << "(" << I->getFileName() << ")"
2440            << ":\tfile format COFF-import-file"
2441            << "\n\n";
2442 
2443   if (ArchiveHeaders && !MachOOpt && C)
2444     printArchiveChild(ArchiveName, *C);
2445   if (SymbolTable)
2446     printCOFFSymbolTable(I);
2447 }
2448 
2449 /// Dump each object file in \a a;
2450 static void dumpArchive(const Archive *A) {
2451   Error Err = Error::success();
2452   unsigned I = -1;
2453   for (auto &C : A->children(Err)) {
2454     ++I;
2455     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2456     if (!ChildOrErr) {
2457       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2458         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2459       continue;
2460     }
2461     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2462       dumpObject(O, A, &C);
2463     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2464       dumpObject(I, A, &C);
2465     else
2466       reportError(errorCodeToError(object_error::invalid_file_type),
2467                   A->getFileName());
2468   }
2469   if (Err)
2470     reportError(std::move(Err), A->getFileName());
2471 }
2472 
2473 /// Open file and figure out how to dump it.
2474 static void dumpInput(StringRef file) {
2475   // If we are using the Mach-O specific object file parser, then let it parse
2476   // the file and process the command line options.  So the -arch flags can
2477   // be used to select specific slices, etc.
2478   if (MachOOpt) {
2479     parseInputMachO(file);
2480     return;
2481   }
2482 
2483   // Attempt to open the binary.
2484   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2485   Binary &Binary = *OBinary.getBinary();
2486 
2487   if (Archive *A = dyn_cast<Archive>(&Binary))
2488     dumpArchive(A);
2489   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2490     dumpObject(O);
2491   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2492     parseInputMachO(UB);
2493   else
2494     reportError(errorCodeToError(object_error::invalid_file_type), file);
2495 }
2496 
2497 template <typename T>
2498 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2499                         T &Value) {
2500   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2501     StringRef V(A->getValue());
2502     if (!llvm::to_integer(V, Value, 0)) {
2503       reportCmdLineError(A->getSpelling() +
2504                          ": expected a non-negative integer, but got '" + V +
2505                          "'");
2506     }
2507   }
2508 }
2509 
2510 static void invalidArgValue(const opt::Arg *A) {
2511   reportCmdLineError("'" + StringRef(A->getValue()) +
2512                      "' is not a valid value for '" + A->getSpelling() + "'");
2513 }
2514 
2515 static std::vector<std::string>
2516 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2517   std::vector<std::string> Values;
2518   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2519     llvm::SmallVector<StringRef, 2> SplitValues;
2520     llvm::SplitString(Value, SplitValues, ",");
2521     for (StringRef SplitValue : SplitValues)
2522       Values.push_back(SplitValue.str());
2523   }
2524   return Values;
2525 }
2526 
2527 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2528   MachOOpt = true;
2529   FullLeadingAddr = true;
2530   PrintImmHex = true;
2531 
2532   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2533   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2534   if (InputArgs.hasArg(OTOOL_d))
2535     FilterSections.push_back("__DATA,__data");
2536   DylibId = InputArgs.hasArg(OTOOL_D);
2537   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2538   DataInCode = InputArgs.hasArg(OTOOL_G);
2539   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2540   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2541   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2542   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2543   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2544   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2545   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2546   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2547   InfoPlist = InputArgs.hasArg(OTOOL_P);
2548   Relocations = InputArgs.hasArg(OTOOL_r);
2549   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2550     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2551     FilterSections.push_back(Filter);
2552   }
2553   if (InputArgs.hasArg(OTOOL_t))
2554     FilterSections.push_back("__TEXT,__text");
2555   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2556             InputArgs.hasArg(OTOOL_o);
2557   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2558   if (InputArgs.hasArg(OTOOL_x))
2559     FilterSections.push_back(",__text");
2560   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2561 
2562   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2563   if (InputFilenames.empty())
2564     reportCmdLineError("no input file");
2565 
2566   for (const Arg *A : InputArgs) {
2567     const Option &O = A->getOption();
2568     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2569       reportCmdLineWarning(O.getPrefixedName() +
2570                            " is obsolete and not implemented");
2571     }
2572   }
2573 }
2574 
2575 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2576   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2577   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2578   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2579   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2580   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2581   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2582   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2583   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2584   DisassembleSymbols =
2585       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2586   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2587   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2588     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
2589                         .Case("frames", DIDT_DebugFrame)
2590                         .Default(DIDT_Null);
2591     if (DwarfDumpType == DIDT_Null)
2592       invalidArgValue(A);
2593   }
2594   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2595   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2596   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2597   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2598   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2599   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2600   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2601   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2602   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2603   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2604   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2605   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2606   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2607   PrintImmHex =
2608       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2609   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2610   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2611   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2612   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2613   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2614   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2615   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2616   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2617   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2618   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2619   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2620   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2621   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2622   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2623   Wide = InputArgs.hasArg(OBJDUMP_wide);
2624   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2625   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2626   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2627     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2628                        .Case("ascii", DVASCII)
2629                        .Case("unicode", DVUnicode)
2630                        .Default(DVInvalid);
2631     if (DbgVariables == DVInvalid)
2632       invalidArgValue(A);
2633   }
2634   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2635 
2636   parseMachOOptions(InputArgs);
2637 
2638   // Parse -M (--disassembler-options) and deprecated
2639   // --x86-asm-syntax={att,intel}.
2640   //
2641   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2642   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2643   // called too late. For now we have to use the internal cl::opt option.
2644   const char *AsmSyntax = nullptr;
2645   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2646                                           OBJDUMP_x86_asm_syntax_att,
2647                                           OBJDUMP_x86_asm_syntax_intel)) {
2648     switch (A->getOption().getID()) {
2649     case OBJDUMP_x86_asm_syntax_att:
2650       AsmSyntax = "--x86-asm-syntax=att";
2651       continue;
2652     case OBJDUMP_x86_asm_syntax_intel:
2653       AsmSyntax = "--x86-asm-syntax=intel";
2654       continue;
2655     }
2656 
2657     SmallVector<StringRef, 2> Values;
2658     llvm::SplitString(A->getValue(), Values, ",");
2659     for (StringRef V : Values) {
2660       if (V == "att")
2661         AsmSyntax = "--x86-asm-syntax=att";
2662       else if (V == "intel")
2663         AsmSyntax = "--x86-asm-syntax=intel";
2664       else
2665         DisassemblerOptions.push_back(V.str());
2666     }
2667   }
2668   if (AsmSyntax) {
2669     const char *Argv[] = {"llvm-objdump", AsmSyntax};
2670     llvm::cl::ParseCommandLineOptions(2, Argv);
2671   }
2672 
2673   // objdump defaults to a.out if no filenames specified.
2674   if (InputFilenames.empty())
2675     InputFilenames.push_back("a.out");
2676 }
2677 
2678 int main(int argc, char **argv) {
2679   using namespace llvm;
2680   InitLLVM X(argc, argv);
2681 
2682   ToolName = argv[0];
2683   std::unique_ptr<CommonOptTable> T;
2684   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2685 
2686   StringRef Stem = sys::path::stem(ToolName);
2687   auto Is = [=](StringRef Tool) {
2688     // We need to recognize the following filenames:
2689     //
2690     // llvm-objdump -> objdump
2691     // llvm-otool-10.exe -> otool
2692     // powerpc64-unknown-freebsd13-objdump -> objdump
2693     auto I = Stem.rfind_insensitive(Tool);
2694     return I != StringRef::npos &&
2695            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
2696   };
2697   if (Is("otool")) {
2698     T = std::make_unique<OtoolOptTable>();
2699     Unknown = OTOOL_UNKNOWN;
2700     HelpFlag = OTOOL_help;
2701     HelpHiddenFlag = OTOOL_help_hidden;
2702     VersionFlag = OTOOL_version;
2703   } else {
2704     T = std::make_unique<ObjdumpOptTable>();
2705     Unknown = OBJDUMP_UNKNOWN;
2706     HelpFlag = OBJDUMP_help;
2707     HelpHiddenFlag = OBJDUMP_help_hidden;
2708     VersionFlag = OBJDUMP_version;
2709   }
2710 
2711   BumpPtrAllocator A;
2712   StringSaver Saver(A);
2713   opt::InputArgList InputArgs =
2714       T->parseArgs(argc, argv, Unknown, Saver,
2715                    [&](StringRef Msg) { reportCmdLineError(Msg); });
2716 
2717   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
2718     T->printHelp(ToolName);
2719     return 0;
2720   }
2721   if (InputArgs.hasArg(HelpHiddenFlag)) {
2722     T->printHelp(ToolName, /*ShowHidden=*/true);
2723     return 0;
2724   }
2725 
2726   // Initialize targets and assembly printers/parsers.
2727   InitializeAllTargetInfos();
2728   InitializeAllTargetMCs();
2729   InitializeAllDisassemblers();
2730 
2731   if (InputArgs.hasArg(VersionFlag)) {
2732     cl::PrintVersionMessage();
2733     if (!Is("otool")) {
2734       outs() << '\n';
2735       TargetRegistry::printRegisteredTargetsForVersion(outs());
2736     }
2737     return 0;
2738   }
2739 
2740   if (Is("otool"))
2741     parseOtoolOptions(InputArgs);
2742   else
2743     parseObjdumpOptions(InputArgs);
2744 
2745   if (StartAddress >= StopAddress)
2746     reportCmdLineError("start address should be less than stop address");
2747 
2748   // Removes trailing separators from prefix.
2749   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2750     Prefix.pop_back();
2751 
2752   if (AllHeaders)
2753     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2754         SectionHeaders = SymbolTable = true;
2755 
2756   if (DisassembleAll || PrintSource || PrintLines ||
2757       !DisassembleSymbols.empty())
2758     Disassemble = true;
2759 
2760   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2761       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2762       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2763       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
2764       !(MachOOpt && (Bind || DataInCode || DyldInfo || DylibId || DylibsUsed ||
2765                      ExportsTrie || FirstPrivateHeader || FunctionStarts ||
2766                      IndirectSymbols || InfoPlist || LazyBind || LinkOptHints ||
2767                      ObjcMetaData || Rebase || Rpaths || UniversalHeaders ||
2768                      WeakBind || !FilterSections.empty()))) {
2769     T->printHelp(ToolName);
2770     return 2;
2771   }
2772 
2773   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2774 
2775   llvm::for_each(InputFilenames, dumpInput);
2776 
2777   warnOnNoMatchForSections();
2778 
2779   return EXIT_SUCCESS;
2780 }
2781