xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision d88e28d13e66dfd9bd9dc22e21d82793161c5391)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/WithColor.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cctype>
66 #include <cstring>
67 #include <system_error>
68 #include <unordered_map>
69 #include <utility>
70 
71 using namespace llvm::object;
72 
73 namespace llvm {
74 
75 cl::OptionCategory ObjdumpCat("llvm-objdump Options");
76 
77 // MachO specific
78 extern cl::OptionCategory MachOCat;
79 extern cl::opt<bool> Bind;
80 extern cl::opt<bool> DataInCode;
81 extern cl::opt<bool> DylibsUsed;
82 extern cl::opt<bool> DylibId;
83 extern cl::opt<bool> ExportsTrie;
84 extern cl::opt<bool> FirstPrivateHeader;
85 extern cl::opt<bool> IndirectSymbols;
86 extern cl::opt<bool> InfoPlist;
87 extern cl::opt<bool> LazyBind;
88 extern cl::opt<bool> LinkOptHints;
89 extern cl::opt<bool> ObjcMetaData;
90 extern cl::opt<bool> Rebase;
91 extern cl::opt<bool> UniversalHeaders;
92 extern cl::opt<bool> WeakBind;
93 
94 static cl::opt<uint64_t> AdjustVMA(
95     "adjust-vma",
96     cl::desc("Increase the displayed address by the specified offset"),
97     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
98 
99 static cl::opt<bool>
100     AllHeaders("all-headers",
101                cl::desc("Display all available header information"),
102                cl::cat(ObjdumpCat));
103 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
104                                  cl::NotHidden, cl::Grouping,
105                                  cl::aliasopt(AllHeaders));
106 
107 static cl::opt<std::string>
108     ArchName("arch-name",
109              cl::desc("Target arch to disassemble for, "
110                       "see -version for available targets"),
111              cl::cat(ObjdumpCat));
112 
113 cl::opt<bool> ArchiveHeaders("archive-headers",
114                              cl::desc("Display archive header information"),
115                              cl::cat(ObjdumpCat));
116 static cl::alias ArchiveHeadersShort("a",
117                                      cl::desc("Alias for --archive-headers"),
118                                      cl::NotHidden, cl::Grouping,
119                                      cl::aliasopt(ArchiveHeaders));
120 
121 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
122                        cl::init(false), cl::cat(ObjdumpCat));
123 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
124                                cl::NotHidden, cl::Grouping,
125                                cl::aliasopt(Demangle));
126 
127 cl::opt<bool> Disassemble(
128     "disassemble",
129     cl::desc("Display assembler mnemonics for the machine instructions"),
130     cl::cat(ObjdumpCat));
131 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
132                                   cl::NotHidden, cl::Grouping,
133                                   cl::aliasopt(Disassemble));
134 
135 cl::opt<bool> DisassembleAll(
136     "disassemble-all",
137     cl::desc("Display assembler mnemonics for the machine instructions"),
138     cl::cat(ObjdumpCat));
139 static cl::alias DisassembleAllShort("D",
140                                      cl::desc("Alias for --disassemble-all"),
141                                      cl::NotHidden, cl::Grouping,
142                                      cl::aliasopt(DisassembleAll));
143 
144 static cl::list<std::string>
145     DisassembleFunctions("disassemble-functions", cl::CommaSeparated,
146                          cl::desc("List of functions to disassemble"),
147                          cl::cat(ObjdumpCat));
148 
149 static cl::opt<bool> DisassembleZeroes(
150     "disassemble-zeroes",
151     cl::desc("Do not skip blocks of zeroes when disassembling"),
152     cl::cat(ObjdumpCat));
153 static cl::alias
154     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
155                            cl::NotHidden, cl::Grouping,
156                            cl::aliasopt(DisassembleZeroes));
157 
158 static cl::list<std::string>
159     DisassemblerOptions("disassembler-options",
160                         cl::desc("Pass target specific disassembler options"),
161                         cl::value_desc("options"), cl::CommaSeparated,
162                         cl::cat(ObjdumpCat));
163 static cl::alias
164     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
165                              cl::NotHidden, cl::Grouping, cl::Prefix,
166                              cl::CommaSeparated,
167                              cl::aliasopt(DisassemblerOptions));
168 
169 cl::opt<DIDumpType> DwarfDumpType(
170     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
171     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
172     cl::cat(ObjdumpCat));
173 
174 static cl::opt<bool> DynamicRelocations(
175     "dynamic-reloc",
176     cl::desc("Display the dynamic relocation entries in the file"),
177     cl::cat(ObjdumpCat));
178 static cl::alias DynamicRelocationShort("R",
179                                         cl::desc("Alias for --dynamic-reloc"),
180                                         cl::NotHidden, cl::Grouping,
181                                         cl::aliasopt(DynamicRelocations));
182 
183 static cl::opt<bool>
184     FaultMapSection("fault-map-section",
185                     cl::desc("Display contents of faultmap section"),
186                     cl::cat(ObjdumpCat));
187 
188 static cl::opt<bool>
189     FileHeaders("file-headers",
190                 cl::desc("Display the contents of the overall file header"),
191                 cl::cat(ObjdumpCat));
192 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
193                                   cl::NotHidden, cl::Grouping,
194                                   cl::aliasopt(FileHeaders));
195 
196 cl::opt<bool> SectionContents("full-contents",
197                               cl::desc("Display the content of each section"),
198                               cl::cat(ObjdumpCat));
199 static cl::alias SectionContentsShort("s",
200                                       cl::desc("Alias for --full-contents"),
201                                       cl::NotHidden, cl::Grouping,
202                                       cl::aliasopt(SectionContents));
203 
204 static cl::list<std::string> InputFilenames(cl::Positional,
205                                             cl::desc("<input object files>"),
206                                             cl::ZeroOrMore,
207                                             cl::cat(ObjdumpCat));
208 
209 static cl::opt<bool>
210     PrintLines("line-numbers",
211                cl::desc("Display source line numbers with "
212                         "disassembly. Implies disassemble object"),
213                cl::cat(ObjdumpCat));
214 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
215                                  cl::NotHidden, cl::Grouping,
216                                  cl::aliasopt(PrintLines));
217 
218 static cl::opt<bool> MachOOpt("macho",
219                               cl::desc("Use MachO specific object file parser"),
220                               cl::cat(ObjdumpCat));
221 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
222                         cl::Grouping, cl::aliasopt(MachOOpt));
223 
224 cl::opt<std::string>
225     MCPU("mcpu",
226          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
227          cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
228 
229 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
230                              cl::desc("Target specific attributes"),
231                              cl::value_desc("a1,+a2,-a3,..."),
232                              cl::cat(ObjdumpCat));
233 
234 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
235                             cl::desc("When disassembling "
236                                      "instructions, do not print "
237                                      "the instruction bytes."),
238                             cl::cat(ObjdumpCat));
239 cl::opt<bool> NoLeadingAddr("no-leading-addr",
240                             cl::desc("Print no leading address"),
241                             cl::cat(ObjdumpCat));
242 
243 static cl::opt<bool> RawClangAST(
244     "raw-clang-ast",
245     cl::desc("Dump the raw binary contents of the clang AST section"),
246     cl::cat(ObjdumpCat));
247 
248 cl::opt<bool>
249     Relocations("reloc", cl::desc("Display the relocation entries in the file"),
250                 cl::cat(ObjdumpCat));
251 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
252                                   cl::NotHidden, cl::Grouping,
253                                   cl::aliasopt(Relocations));
254 
255 cl::opt<bool> PrintImmHex("print-imm-hex",
256                           cl::desc("Use hex format for immediate values"),
257                           cl::cat(ObjdumpCat));
258 
259 cl::opt<bool> PrivateHeaders("private-headers",
260                              cl::desc("Display format specific file headers"),
261                              cl::cat(ObjdumpCat));
262 static cl::alias PrivateHeadersShort("p",
263                                      cl::desc("Alias for --private-headers"),
264                                      cl::NotHidden, cl::Grouping,
265                                      cl::aliasopt(PrivateHeaders));
266 
267 cl::list<std::string>
268     FilterSections("section",
269                    cl::desc("Operate on the specified sections only. "
270                             "With -macho dump segment,section"),
271                    cl::cat(ObjdumpCat));
272 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
273                                  cl::NotHidden, cl::Grouping, cl::Prefix,
274                                  cl::aliasopt(FilterSections));
275 
276 cl::opt<bool> SectionHeaders("section-headers",
277                              cl::desc("Display summaries of the "
278                                       "headers for each section."),
279                              cl::cat(ObjdumpCat));
280 static cl::alias SectionHeadersShort("headers",
281                                      cl::desc("Alias for --section-headers"),
282                                      cl::NotHidden,
283                                      cl::aliasopt(SectionHeaders));
284 static cl::alias SectionHeadersShorter("h",
285                                        cl::desc("Alias for --section-headers"),
286                                        cl::NotHidden, cl::Grouping,
287                                        cl::aliasopt(SectionHeaders));
288 
289 static cl::opt<bool>
290     ShowLMA("show-lma",
291             cl::desc("Display LMA column when dumping ELF section headers"),
292             cl::cat(ObjdumpCat));
293 
294 static cl::opt<bool> PrintSource(
295     "source",
296     cl::desc(
297         "Display source inlined with disassembly. Implies disassemble object"),
298     cl::cat(ObjdumpCat));
299 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
300                                   cl::NotHidden, cl::Grouping,
301                                   cl::aliasopt(PrintSource));
302 
303 static cl::opt<uint64_t>
304     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
305                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
306 static cl::opt<uint64_t> StopAddress("stop-address",
307                                      cl::desc("Stop disassembly at address"),
308                                      cl::value_desc("address"),
309                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
310 
311 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"),
312                           cl::cat(ObjdumpCat));
313 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
314                                   cl::NotHidden, cl::Grouping,
315                                   cl::aliasopt(SymbolTable));
316 
317 cl::opt<std::string> TripleName("triple",
318                                 cl::desc("Target triple to disassemble for, "
319                                          "see -version for available targets"),
320                                 cl::cat(ObjdumpCat));
321 
322 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"),
323                          cl::cat(ObjdumpCat));
324 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
325                                  cl::NotHidden, cl::Grouping,
326                                  cl::aliasopt(UnwindInfo));
327 
328 static cl::opt<bool>
329     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
330          cl::cat(ObjdumpCat));
331 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
332 
333 static StringSet<> DisasmFuncsSet;
334 static StringRef ToolName;
335 
336 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
337 
338 static bool shouldKeep(object::SectionRef S) {
339   if (FilterSections.empty())
340     return true;
341   StringRef String;
342   std::error_code error = S.getName(String);
343   if (error)
344     return false;
345   return is_contained(FilterSections, String);
346 }
347 
348 SectionFilter ToolSectionFilter(object::ObjectFile const &O) {
349   return SectionFilter([](object::SectionRef S) { return shouldKeep(S); }, O);
350 }
351 
352 void error(std::error_code EC) {
353   if (!EC)
354     return;
355   WithColor::error(errs(), ToolName)
356       << "reading file: " << EC.message() << ".\n";
357   errs().flush();
358   exit(1);
359 }
360 
361 void error(Error E) {
362   if (!E)
363     return;
364   WithColor::error(errs(), ToolName) << toString(std::move(E));
365   exit(1);
366 }
367 
368 LLVM_ATTRIBUTE_NORETURN void error(Twine Message) {
369   WithColor::error(errs(), ToolName) << Message << ".\n";
370   errs().flush();
371   exit(1);
372 }
373 
374 void warn(StringRef Message) {
375   WithColor::warning(errs(), ToolName) << Message << ".\n";
376   errs().flush();
377 }
378 
379 void warn(Twine Message) {
380   WithColor::warning(errs(), ToolName) << Message << "\n";
381 }
382 
383 LLVM_ATTRIBUTE_NORETURN void report_error(StringRef File, Twine Message) {
384   WithColor::error(errs(), ToolName)
385       << "'" << File << "': " << Message << ".\n";
386   exit(1);
387 }
388 
389 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef File) {
390   assert(E);
391   std::string Buf;
392   raw_string_ostream OS(Buf);
393   logAllUnhandledErrors(std::move(E), OS);
394   OS.flush();
395   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
396   exit(1);
397 }
398 
399 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef ArchiveName,
400                                           StringRef FileName,
401                                           StringRef ArchitectureName) {
402   assert(E);
403   WithColor::error(errs(), ToolName);
404   if (ArchiveName != "")
405     errs() << ArchiveName << "(" << FileName << ")";
406   else
407     errs() << "'" << FileName << "'";
408   if (!ArchitectureName.empty())
409     errs() << " (for architecture " << ArchitectureName << ")";
410   std::string Buf;
411   raw_string_ostream OS(Buf);
412   logAllUnhandledErrors(std::move(E), OS);
413   OS.flush();
414   errs() << ": " << Buf;
415   exit(1);
416 }
417 
418 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef ArchiveName,
419                                           const object::Archive::Child &C,
420                                           StringRef ArchitectureName) {
421   Expected<StringRef> NameOrErr = C.getName();
422   // TODO: if we have a error getting the name then it would be nice to print
423   // the index of which archive member this is and or its offset in the
424   // archive instead of "???" as the name.
425   if (!NameOrErr) {
426     consumeError(NameOrErr.takeError());
427     report_error(std::move(E), ArchiveName, "???", ArchitectureName);
428   } else
429     report_error(std::move(E), ArchiveName, NameOrErr.get(), ArchitectureName);
430 }
431 
432 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
433   // Figure out the target triple.
434   Triple TheTriple("unknown-unknown-unknown");
435   if (TripleName.empty()) {
436     if (Obj)
437       TheTriple = Obj->makeTriple();
438   } else {
439     TheTriple.setTriple(Triple::normalize(TripleName));
440 
441     // Use the triple, but also try to combine with ARM build attributes.
442     if (Obj) {
443       auto Arch = Obj->getArch();
444       if (Arch == Triple::arm || Arch == Triple::armeb)
445         Obj->setARMSubArch(TheTriple);
446     }
447   }
448 
449   // Get the target specific parser.
450   std::string Error;
451   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
452                                                          Error);
453   if (!TheTarget) {
454     if (Obj)
455       report_error(Obj->getFileName(), "can't find target: " + Error);
456     else
457       error("can't find target: " + Error);
458   }
459 
460   // Update the triple name and return the found target.
461   TripleName = TheTriple.getTriple();
462   return TheTarget;
463 }
464 
465 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
466   return A.getOffset() < B.getOffset();
467 }
468 
469 static Error getRelocationValueString(const RelocationRef &Rel,
470                                       SmallVectorImpl<char> &Result) {
471   const ObjectFile *Obj = Rel.getObject();
472   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
473     return getELFRelocationValueString(ELF, Rel, Result);
474   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
475     return getCOFFRelocationValueString(COFF, Rel, Result);
476   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
477     return getWasmRelocationValueString(Wasm, Rel, Result);
478   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
479     return getMachORelocationValueString(MachO, Rel, Result);
480   llvm_unreachable("unknown object file format");
481 }
482 
483 /// Indicates whether this relocation should hidden when listing
484 /// relocations, usually because it is the trailing part of a multipart
485 /// relocation that will be printed as part of the leading relocation.
486 static bool getHidden(RelocationRef RelRef) {
487   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
488   if (!MachO)
489     return false;
490 
491   unsigned Arch = MachO->getArch();
492   DataRefImpl Rel = RelRef.getRawDataRefImpl();
493   uint64_t Type = MachO->getRelocationType(Rel);
494 
495   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
496   // is always hidden.
497   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
498     return Type == MachO::GENERIC_RELOC_PAIR;
499 
500   if (Arch == Triple::x86_64) {
501     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
502     // an X86_64_RELOC_SUBTRACTOR.
503     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
504       DataRefImpl RelPrev = Rel;
505       RelPrev.d.a--;
506       uint64_t PrevType = MachO->getRelocationType(RelPrev);
507       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
508         return true;
509     }
510   }
511 
512   return false;
513 }
514 
515 namespace {
516 class SourcePrinter {
517 protected:
518   DILineInfo OldLineInfo;
519   const ObjectFile *Obj = nullptr;
520   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
521   // File name to file contents of source
522   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
523   // Mark the line endings of the cached source
524   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
525 
526 private:
527   bool cacheSource(const DILineInfo& LineInfoFile);
528 
529 public:
530   SourcePrinter() = default;
531   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
532     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
533     SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None;
534     SymbolizerOpts.Demangle = false;
535     SymbolizerOpts.DefaultArch = DefaultArch;
536     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
537   }
538   virtual ~SourcePrinter() = default;
539   virtual void printSourceLine(raw_ostream &OS,
540                                object::SectionedAddress Address,
541                                StringRef Delimiter = "; ");
542 };
543 
544 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
545   std::unique_ptr<MemoryBuffer> Buffer;
546   if (LineInfo.Source) {
547     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
548   } else {
549     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
550     if (!BufferOrError)
551       return false;
552     Buffer = std::move(*BufferOrError);
553   }
554   // Chomp the file to get lines
555   const char *BufferStart = Buffer->getBufferStart(),
556              *BufferEnd = Buffer->getBufferEnd();
557   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
558   const char *Start = BufferStart;
559   for (const char *I = BufferStart; I != BufferEnd; ++I)
560     if (*I == '\n') {
561       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
562       Start = I + 1;
563     }
564   if (Start < BufferEnd)
565     Lines.emplace_back(Start, BufferEnd - Start);
566   SourceCache[LineInfo.FileName] = std::move(Buffer);
567   return true;
568 }
569 
570 void SourcePrinter::printSourceLine(raw_ostream &OS,
571                                     object::SectionedAddress Address,
572                                     StringRef Delimiter) {
573   if (!Symbolizer)
574     return;
575 
576   DILineInfo LineInfo = DILineInfo();
577   auto ExpectedLineInfo =
578       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
579   if (!ExpectedLineInfo)
580     consumeError(ExpectedLineInfo.takeError());
581   else
582     LineInfo = *ExpectedLineInfo;
583 
584   if ((LineInfo.FileName == "<invalid>") || LineInfo.Line == 0 ||
585       ((OldLineInfo.Line == LineInfo.Line) &&
586        (OldLineInfo.FileName == LineInfo.FileName)))
587     return;
588 
589   if (PrintLines)
590     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
591   if (PrintSource) {
592     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
593       if (!cacheSource(LineInfo))
594         return;
595     auto LineBuffer = LineCache.find(LineInfo.FileName);
596     if (LineBuffer != LineCache.end()) {
597       if (LineInfo.Line > LineBuffer->second.size())
598         return;
599       // Vector begins at 0, line numbers are non-zero
600       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
601     }
602   }
603   OldLineInfo = LineInfo;
604 }
605 
606 static bool isAArch64Elf(const ObjectFile *Obj) {
607   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
608   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
609 }
610 
611 static bool isArmElf(const ObjectFile *Obj) {
612   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
613   return Elf && Elf->getEMachine() == ELF::EM_ARM;
614 }
615 
616 static bool hasMappingSymbols(const ObjectFile *Obj) {
617   return isArmElf(Obj) || isAArch64Elf(Obj);
618 }
619 
620 static void printRelocation(const RelocationRef &Rel, uint64_t Address,
621                             bool Is64Bits) {
622   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
623   SmallString<16> Name;
624   SmallString<32> Val;
625   Rel.getTypeName(Name);
626   error(getRelocationValueString(Rel, Val));
627   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
628 }
629 
630 class PrettyPrinter {
631 public:
632   virtual ~PrettyPrinter() = default;
633   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
634                          ArrayRef<uint8_t> Bytes,
635                          object::SectionedAddress Address, raw_ostream &OS,
636                          StringRef Annot, MCSubtargetInfo const &STI,
637                          SourcePrinter *SP,
638                          std::vector<RelocationRef> *Rels = nullptr) {
639     if (SP && (PrintSource || PrintLines))
640       SP->printSourceLine(OS, Address);
641 
642     {
643       formatted_raw_ostream FOS(OS);
644       if (!NoLeadingAddr)
645         FOS << format("%8" PRIx64 ":", Address.Address);
646       if (!NoShowRawInsn) {
647         FOS << ' ';
648         dumpBytes(Bytes, FOS);
649       }
650       FOS.flush();
651       // The output of printInst starts with a tab. Print some spaces so that
652       // the tab has 1 column and advances to the target tab stop.
653       unsigned TabStop = NoShowRawInsn ? 16 : 40;
654       unsigned Column = FOS.getColumn();
655       FOS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
656 
657       // The dtor calls flush() to ensure the indent comes before printInst().
658     }
659 
660     if (MI)
661       IP.printInst(MI, OS, "", STI);
662     else
663       OS << "\t<unknown>";
664   }
665 };
666 PrettyPrinter PrettyPrinterInst;
667 
668 class HexagonPrettyPrinter : public PrettyPrinter {
669 public:
670   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
671                  raw_ostream &OS) {
672     uint32_t opcode =
673       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
674     if (!NoLeadingAddr)
675       OS << format("%8" PRIx64 ":", Address);
676     if (!NoShowRawInsn) {
677       OS << "\t";
678       dumpBytes(Bytes.slice(0, 4), OS);
679       OS << format("\t%08" PRIx32, opcode);
680     }
681   }
682   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
683                  object::SectionedAddress Address, raw_ostream &OS,
684                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
685                  std::vector<RelocationRef> *Rels) override {
686     if (SP && (PrintSource || PrintLines))
687       SP->printSourceLine(OS, Address, "");
688     if (!MI) {
689       printLead(Bytes, Address.Address, OS);
690       OS << " <unknown>";
691       return;
692     }
693     std::string Buffer;
694     {
695       raw_string_ostream TempStream(Buffer);
696       IP.printInst(MI, TempStream, "", STI);
697     }
698     StringRef Contents(Buffer);
699     // Split off bundle attributes
700     auto PacketBundle = Contents.rsplit('\n');
701     // Split off first instruction from the rest
702     auto HeadTail = PacketBundle.first.split('\n');
703     auto Preamble = " { ";
704     auto Separator = "";
705 
706     // Hexagon's packets require relocations to be inline rather than
707     // clustered at the end of the packet.
708     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
709     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
710     auto PrintReloc = [&]() -> void {
711       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
712         if (RelCur->getOffset() == Address.Address) {
713           printRelocation(*RelCur, Address.Address, false);
714           return;
715         }
716         ++RelCur;
717       }
718     };
719 
720     while (!HeadTail.first.empty()) {
721       OS << Separator;
722       Separator = "\n";
723       if (SP && (PrintSource || PrintLines))
724         SP->printSourceLine(OS, Address, "");
725       printLead(Bytes, Address.Address, OS);
726       OS << Preamble;
727       Preamble = "   ";
728       StringRef Inst;
729       auto Duplex = HeadTail.first.split('\v');
730       if (!Duplex.second.empty()) {
731         OS << Duplex.first;
732         OS << "; ";
733         Inst = Duplex.second;
734       }
735       else
736         Inst = HeadTail.first;
737       OS << Inst;
738       HeadTail = HeadTail.second.split('\n');
739       if (HeadTail.first.empty())
740         OS << " } " << PacketBundle.second;
741       PrintReloc();
742       Bytes = Bytes.slice(4);
743       Address.Address += 4;
744     }
745   }
746 };
747 HexagonPrettyPrinter HexagonPrettyPrinterInst;
748 
749 class AMDGCNPrettyPrinter : public PrettyPrinter {
750 public:
751   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
752                  object::SectionedAddress Address, raw_ostream &OS,
753                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
754                  std::vector<RelocationRef> *Rels) override {
755     if (SP && (PrintSource || PrintLines))
756       SP->printSourceLine(OS, Address);
757 
758     if (MI) {
759       SmallString<40> InstStr;
760       raw_svector_ostream IS(InstStr);
761 
762       IP.printInst(MI, IS, "", STI);
763 
764       OS << left_justify(IS.str(), 60);
765     } else {
766       // an unrecognized encoding - this is probably data so represent it
767       // using the .long directive, or .byte directive if fewer than 4 bytes
768       // remaining
769       if (Bytes.size() >= 4) {
770         OS << format("\t.long 0x%08" PRIx32 " ",
771                      support::endian::read32<support::little>(Bytes.data()));
772         OS.indent(42);
773       } else {
774           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
775           for (unsigned int i = 1; i < Bytes.size(); i++)
776             OS << format(", 0x%02" PRIx8, Bytes[i]);
777           OS.indent(55 - (6 * Bytes.size()));
778       }
779     }
780 
781     OS << format("// %012" PRIX64 ":", Address.Address);
782     if (Bytes.size() >= 4) {
783       // D should be casted to uint32_t here as it is passed by format to
784       // snprintf as vararg.
785       for (uint32_t D : makeArrayRef(
786                reinterpret_cast<const support::little32_t *>(Bytes.data()),
787                Bytes.size() / 4))
788         OS << format(" %08" PRIX32, D);
789     } else {
790       for (unsigned char B : Bytes)
791         OS << format(" %02" PRIX8, B);
792     }
793 
794     if (!Annot.empty())
795       OS << " // " << Annot;
796   }
797 };
798 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
799 
800 class BPFPrettyPrinter : public PrettyPrinter {
801 public:
802   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
803                  object::SectionedAddress Address, raw_ostream &OS,
804                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
805                  std::vector<RelocationRef> *Rels) override {
806     if (SP && (PrintSource || PrintLines))
807       SP->printSourceLine(OS, Address);
808     if (!NoLeadingAddr)
809       OS << format("%8" PRId64 ":", Address.Address / 8);
810     if (!NoShowRawInsn) {
811       OS << "\t";
812       dumpBytes(Bytes, OS);
813     }
814     if (MI)
815       IP.printInst(MI, OS, "", STI);
816     else
817       OS << "\t<unknown>";
818   }
819 };
820 BPFPrettyPrinter BPFPrettyPrinterInst;
821 
822 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
823   switch(Triple.getArch()) {
824   default:
825     return PrettyPrinterInst;
826   case Triple::hexagon:
827     return HexagonPrettyPrinterInst;
828   case Triple::amdgcn:
829     return AMDGCNPrettyPrinterInst;
830   case Triple::bpfel:
831   case Triple::bpfeb:
832     return BPFPrettyPrinterInst;
833   }
834 }
835 }
836 
837 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
838   assert(Obj->isELF());
839   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
840     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
841   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
842     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
843   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
844     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
845   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
846     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
847   llvm_unreachable("Unsupported binary format");
848 }
849 
850 template <class ELFT> static void
851 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
852                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
853   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
854     uint8_t SymbolType = Symbol.getELFType();
855     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
856       continue;
857 
858     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
859     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
860     if (Name.empty())
861       continue;
862 
863     section_iterator SecI =
864         unwrapOrError(Symbol.getSection(), Obj->getFileName());
865     if (SecI == Obj->section_end())
866       continue;
867 
868     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
869   }
870 }
871 
872 static void
873 addDynamicElfSymbols(const ObjectFile *Obj,
874                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
875   assert(Obj->isELF());
876   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
877     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
878   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
879     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
880   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
881     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
882   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
883     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
884   else
885     llvm_unreachable("Unsupported binary format");
886 }
887 
888 static void addPltEntries(const ObjectFile *Obj,
889                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
890                           StringSaver &Saver) {
891   Optional<SectionRef> Plt = None;
892   for (const SectionRef &Section : Obj->sections()) {
893     StringRef Name;
894     if (Section.getName(Name))
895       continue;
896     if (Name == ".plt")
897       Plt = Section;
898   }
899   if (!Plt)
900     return;
901   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
902     for (auto PltEntry : ElfObj->getPltAddresses()) {
903       SymbolRef Symbol(PltEntry.first, ElfObj);
904       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
905 
906       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
907       if (!Name.empty())
908         AllSymbols[*Plt].emplace_back(
909             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
910     }
911   }
912 }
913 
914 // Normally the disassembly output will skip blocks of zeroes. This function
915 // returns the number of zero bytes that can be skipped when dumping the
916 // disassembly of the instructions in Buf.
917 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
918   // Find the number of leading zeroes.
919   size_t N = 0;
920   while (N < Buf.size() && !Buf[N])
921     ++N;
922 
923   // We may want to skip blocks of zero bytes, but unless we see
924   // at least 8 of them in a row.
925   if (N < 8)
926     return 0;
927 
928   // We skip zeroes in multiples of 4 because do not want to truncate an
929   // instruction if it starts with a zero byte.
930   return N & ~0x3;
931 }
932 
933 // Returns a map from sections to their relocations.
934 static std::map<SectionRef, std::vector<RelocationRef>>
935 getRelocsMap(object::ObjectFile const &Obj) {
936   std::map<SectionRef, std::vector<RelocationRef>> Ret;
937   for (SectionRef Sec : Obj.sections()) {
938     section_iterator Relocated = Sec.getRelocatedSection();
939     if (Relocated == Obj.section_end() || !shouldKeep(*Relocated))
940       continue;
941     std::vector<RelocationRef> &V = Ret[*Relocated];
942     for (const RelocationRef &R : Sec.relocations())
943       V.push_back(R);
944     // Sort relocations by address.
945     llvm::stable_sort(V, isRelocAddressLess);
946   }
947   return Ret;
948 }
949 
950 // Used for --adjust-vma to check if address should be adjusted by the
951 // specified value for a given section.
952 // For ELF we do not adjust non-allocatable sections like debug ones,
953 // because they are not loadable.
954 // TODO: implement for other file formats.
955 static bool shouldAdjustVA(const SectionRef &Section) {
956   const ObjectFile *Obj = Section.getObject();
957   if (isa<object::ELFObjectFileBase>(Obj))
958     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
959   return false;
960 }
961 
962 
963 typedef std::pair<uint64_t, char> MappingSymbolPair;
964 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
965                                  uint64_t Address) {
966   auto Sym = bsearch(MappingSymbols, [Address](const MappingSymbolPair &Val) {
967       return Val.first > Address;
968   });
969   // Return zero for any address before the first mapping symbol; this means
970   // we should use the default disassembly mode, depending on the target.
971   if (Sym == MappingSymbols.begin())
972     return '\x00';
973   return (Sym - 1)->second;
974 }
975 
976 static uint64_t
977 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
978                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
979                ArrayRef<MappingSymbolPair> MappingSymbols) {
980   support::endianness Endian =
981       Obj->isLittleEndian() ? support::little : support::big;
982   while (Index < End) {
983     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
984     outs() << "\t";
985     if (Index + 4 <= End) {
986       dumpBytes(Bytes.slice(Index, 4), outs());
987       outs() << "\t.word\t"
988              << format_hex(
989                     support::endian::read32(Bytes.data() + Index, Endian), 10);
990       Index += 4;
991     } else if (Index + 2 <= End) {
992       dumpBytes(Bytes.slice(Index, 2), outs());
993       outs() << "\t\t.short\t"
994              << format_hex(
995                     support::endian::read16(Bytes.data() + Index, Endian), 6);
996       Index += 2;
997     } else {
998       dumpBytes(Bytes.slice(Index, 1), outs());
999       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1000       ++Index;
1001     }
1002     outs() << "\n";
1003     if (getMappingSymbolKind(MappingSymbols, Index) != 'd')
1004       break;
1005   }
1006   return Index;
1007 }
1008 
1009 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1010                         ArrayRef<uint8_t> Bytes) {
1011   // print out data up to 8 bytes at a time in hex and ascii
1012   uint8_t AsciiData[9] = {'\0'};
1013   uint8_t Byte;
1014   int NumBytes = 0;
1015 
1016   for (; Index < End; ++Index) {
1017     if (NumBytes == 0)
1018       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1019     Byte = Bytes.slice(Index)[0];
1020     outs() << format(" %02x", Byte);
1021     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1022 
1023     uint8_t IndentOffset = 0;
1024     NumBytes++;
1025     if (Index == End - 1 || NumBytes > 8) {
1026       // Indent the space for less than 8 bytes data.
1027       // 2 spaces for byte and one for space between bytes
1028       IndentOffset = 3 * (8 - NumBytes);
1029       for (int Excess = NumBytes; Excess < 8; Excess++)
1030         AsciiData[Excess] = '\0';
1031       NumBytes = 8;
1032     }
1033     if (NumBytes == 8) {
1034       AsciiData[8] = '\0';
1035       outs() << std::string(IndentOffset, ' ') << "         ";
1036       outs() << reinterpret_cast<char *>(AsciiData);
1037       outs() << '\n';
1038       NumBytes = 0;
1039     }
1040   }
1041 }
1042 
1043 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1044                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1045                               MCDisassembler *SecondaryDisAsm,
1046                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1047                               const MCSubtargetInfo *PrimarySTI,
1048                               const MCSubtargetInfo *SecondarySTI,
1049                               PrettyPrinter &PIP,
1050                               SourcePrinter &SP, bool InlineRelocs) {
1051   const MCSubtargetInfo *STI = PrimarySTI;
1052   MCDisassembler *DisAsm = PrimaryDisAsm;
1053   bool PrimaryIsThumb = false;
1054   if (isArmElf(Obj))
1055     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1056 
1057   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1058   if (InlineRelocs)
1059     RelocMap = getRelocsMap(*Obj);
1060   bool Is64Bits = Obj->getBytesInAddress() > 4;
1061 
1062   // Create a mapping from virtual address to symbol name.  This is used to
1063   // pretty print the symbols while disassembling.
1064   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1065   SectionSymbolsTy AbsoluteSymbols;
1066   const StringRef FileName = Obj->getFileName();
1067   for (const SymbolRef &Symbol : Obj->symbols()) {
1068     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1069 
1070     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1071     if (Name.empty())
1072       continue;
1073 
1074     uint8_t SymbolType = ELF::STT_NOTYPE;
1075     if (Obj->isELF()) {
1076       SymbolType = getElfSymbolType(Obj, Symbol);
1077       if (SymbolType == ELF::STT_SECTION)
1078         continue;
1079     }
1080 
1081     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1082     if (SecI != Obj->section_end())
1083       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1084     else
1085       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1086   }
1087   if (AllSymbols.empty() && Obj->isELF())
1088     addDynamicElfSymbols(Obj, AllSymbols);
1089 
1090   BumpPtrAllocator A;
1091   StringSaver Saver(A);
1092   addPltEntries(Obj, AllSymbols, Saver);
1093 
1094   // Create a mapping from virtual address to section.
1095   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1096   for (SectionRef Sec : Obj->sections())
1097     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1098   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1099 
1100   // Linked executables (.exe and .dll files) typically don't include a real
1101   // symbol table but they might contain an export table.
1102   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1103     for (const auto &ExportEntry : COFFObj->export_directories()) {
1104       StringRef Name;
1105       error(ExportEntry.getSymbolName(Name));
1106       if (Name.empty())
1107         continue;
1108       uint32_t RVA;
1109       error(ExportEntry.getExportRVA(RVA));
1110 
1111       uint64_t VA = COFFObj->getImageBase() + RVA;
1112       auto Sec = llvm::bsearch(
1113           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &RHS) {
1114             return VA < RHS.first;
1115           });
1116       if (Sec != SectionAddresses.begin()) {
1117         --Sec;
1118         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1119       } else
1120         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1121     }
1122   }
1123 
1124   // Sort all the symbols, this allows us to use a simple binary search to find
1125   // a symbol near an address.
1126   StringSet<> FoundDisasmFuncsSet;
1127   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1128     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1129   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1130 
1131   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1132     if (FilterSections.empty() && !DisassembleAll &&
1133         (!Section.isText() || Section.isVirtual()))
1134       continue;
1135 
1136     uint64_t SectionAddr = Section.getAddress();
1137     uint64_t SectSize = Section.getSize();
1138     if (!SectSize)
1139       continue;
1140 
1141     // Get the list of all the symbols in this section.
1142     SectionSymbolsTy &Symbols = AllSymbols[Section];
1143     std::vector<MappingSymbolPair> MappingSymbols;
1144     if (hasMappingSymbols(Obj)) {
1145       for (const auto &Symb : Symbols) {
1146         uint64_t Address = std::get<0>(Symb);
1147         StringRef Name = std::get<1>(Symb);
1148         if (Name.startswith("$d"))
1149           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1150         if (Name.startswith("$x"))
1151           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1152         if (Name.startswith("$a"))
1153           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1154         if (Name.startswith("$t"))
1155           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1156       }
1157     }
1158 
1159     llvm::sort(MappingSymbols);
1160 
1161     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1162       // AMDGPU disassembler uses symbolizer for printing labels
1163       std::unique_ptr<MCRelocationInfo> RelInfo(
1164         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1165       if (RelInfo) {
1166         std::unique_ptr<MCSymbolizer> Symbolizer(
1167           TheTarget->createMCSymbolizer(
1168             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1169         DisAsm->setSymbolizer(std::move(Symbolizer));
1170       }
1171     }
1172 
1173     StringRef SegmentName = "";
1174     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1175       DataRefImpl DR = Section.getRawDataRefImpl();
1176       SegmentName = MachO->getSectionFinalSegmentName(DR);
1177     }
1178     StringRef SectionName;
1179     error(Section.getName(SectionName));
1180 
1181     // If the section has no symbol at the start, just insert a dummy one.
1182     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1183       Symbols.insert(
1184           Symbols.begin(),
1185           std::make_tuple(SectionAddr, SectionName,
1186                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1187     }
1188 
1189     SmallString<40> Comments;
1190     raw_svector_ostream CommentStream(Comments);
1191 
1192     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1193         unwrapOrError(Section.getContents(), Obj->getFileName()));
1194 
1195     uint64_t VMAAdjustment = 0;
1196     if (shouldAdjustVA(Section))
1197       VMAAdjustment = AdjustVMA;
1198 
1199     uint64_t Size;
1200     uint64_t Index;
1201     bool PrintedSection = false;
1202     std::vector<RelocationRef> Rels = RelocMap[Section];
1203     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1204     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1205     // Disassemble symbol by symbol.
1206     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1207       // Skip if --disassemble-functions is not empty and the symbol is not in
1208       // the list.
1209       if (!DisasmFuncsSet.empty() &&
1210           !DisasmFuncsSet.count(std::get<1>(Symbols[SI])))
1211         continue;
1212 
1213       uint64_t Start = std::get<0>(Symbols[SI]);
1214       if (Start < SectionAddr || StopAddress <= Start)
1215         continue;
1216       else
1217         FoundDisasmFuncsSet.insert(std::get<1>(Symbols[SI]));
1218 
1219       // The end is the section end, the beginning of the next symbol, or
1220       // --stop-address.
1221       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1222       if (SI + 1 < SE)
1223         End = std::min(End, std::get<0>(Symbols[SI + 1]));
1224       if (Start >= End || End <= StartAddress)
1225         continue;
1226       Start -= SectionAddr;
1227       End -= SectionAddr;
1228 
1229       if (!PrintedSection) {
1230         PrintedSection = true;
1231         outs() << "\nDisassembly of section ";
1232         if (!SegmentName.empty())
1233           outs() << SegmentName << ",";
1234         outs() << SectionName << ":\n";
1235       }
1236 
1237       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1238         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1239           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1240           Start += 256;
1241         }
1242         if (SI == SE - 1 ||
1243             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1244           // cut trailing zeroes at the end of kernel
1245           // cut up to 256 bytes
1246           const uint64_t EndAlign = 256;
1247           const auto Limit = End - (std::min)(EndAlign, End - Start);
1248           while (End > Limit &&
1249             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1250             End -= 4;
1251         }
1252       }
1253 
1254       outs() << '\n';
1255       if (!NoLeadingAddr)
1256         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1257                          SectionAddr + Start + VMAAdjustment);
1258 
1259       StringRef SymbolName = std::get<1>(Symbols[SI]);
1260       if (Demangle)
1261         outs() << demangle(SymbolName) << ":\n";
1262       else
1263         outs() << SymbolName << ":\n";
1264 
1265       // Don't print raw contents of a virtual section. A virtual section
1266       // doesn't have any contents in the file.
1267       if (Section.isVirtual()) {
1268         outs() << "...\n";
1269         continue;
1270       }
1271 
1272 #ifndef NDEBUG
1273       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1274 #else
1275       raw_ostream &DebugOut = nulls();
1276 #endif
1277 
1278       // Some targets (like WebAssembly) have a special prelude at the start
1279       // of each symbol.
1280       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1281                             SectionAddr + Start, DebugOut, CommentStream);
1282       Start += Size;
1283 
1284       Index = Start;
1285       if (SectionAddr < StartAddress)
1286         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1287 
1288       // If there is a data symbol inside an ELF text section and we are
1289       // only disassembling text (applicable all architectures), we are in a
1290       // situation where we must print the data and not disassemble it.
1291       if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT &&
1292           !DisassembleAll && Section.isText()) {
1293         dumpELFData(SectionAddr, Index, End, Bytes);
1294         Index = End;
1295       }
1296 
1297       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1298                              std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1299                              !DisassembleAll;
1300       while (Index < End) {
1301         // ARM and AArch64 ELF binaries can interleave data and text in the
1302         // same section. We rely on the markers introduced to understand what
1303         // we need to dump. If the data marker is within a function, it is
1304         // denoted as a word/short etc.
1305         if (CheckARMELFData &&
1306             getMappingSymbolKind(MappingSymbols, Index) == 'd') {
1307           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1308                                  MappingSymbols);
1309           continue;
1310         }
1311 
1312         // When -z or --disassemble-zeroes are given we always dissasemble
1313         // them. Otherwise we might want to skip zero bytes we see.
1314         if (!DisassembleZeroes) {
1315           uint64_t MaxOffset = End - Index;
1316           // For -reloc: print zero blocks patched by relocations, so that
1317           // relocations can be shown in the dump.
1318           if (RelCur != RelEnd)
1319             MaxOffset = RelCur->getOffset() - Index;
1320 
1321           if (size_t N =
1322                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1323             outs() << "\t\t..." << '\n';
1324             Index += N;
1325             continue;
1326           }
1327         }
1328 
1329         if (SecondarySTI) {
1330           if (getMappingSymbolKind(MappingSymbols, Index) == 'a') {
1331             STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1332             DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1333           } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') {
1334             STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1335             DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1336           }
1337         }
1338 
1339         // Disassemble a real instruction or a data when disassemble all is
1340         // provided
1341         MCInst Inst;
1342         bool Disassembled = DisAsm->getInstruction(
1343             Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut,
1344             CommentStream);
1345         if (Size == 0)
1346           Size = 1;
1347 
1348         PIP.printInst(
1349             *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1350             {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, outs(),
1351             "", *STI, &SP, &Rels);
1352         outs() << CommentStream.str();
1353         Comments.clear();
1354 
1355         // Try to resolve the target of a call, tail call, etc. to a specific
1356         // symbol.
1357         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1358                     MIA->isConditionalBranch(Inst))) {
1359           uint64_t Target;
1360           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1361             // In a relocatable object, the target's section must reside in
1362             // the same section as the call instruction or it is accessed
1363             // through a relocation.
1364             //
1365             // In a non-relocatable object, the target may be in any section.
1366             //
1367             // N.B. We don't walk the relocations in the relocatable case yet.
1368             auto *TargetSectionSymbols = &Symbols;
1369             if (!Obj->isRelocatableObject()) {
1370               auto It = llvm::bsearch(
1371                   SectionAddresses,
1372                   [=](const std::pair<uint64_t, SectionRef> &RHS) {
1373                     return Target < RHS.first;
1374                   });
1375               if (It != SectionAddresses.begin()) {
1376                 --It;
1377                 TargetSectionSymbols = &AllSymbols[It->second];
1378               } else {
1379                 TargetSectionSymbols = &AbsoluteSymbols;
1380               }
1381             }
1382 
1383             // Find the last symbol in the section whose offset is less than
1384             // or equal to the target. If there isn't a section that contains
1385             // the target, find the nearest preceding absolute symbol.
1386             auto TargetSym = llvm::bsearch(
1387                 *TargetSectionSymbols,
1388                 [=](const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1389                   return Target < std::get<0>(RHS);
1390                 });
1391             if (TargetSym == TargetSectionSymbols->begin()) {
1392               TargetSectionSymbols = &AbsoluteSymbols;
1393               TargetSym = llvm::bsearch(
1394                   AbsoluteSymbols,
1395                   [=](const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1396                     return Target < std::get<0>(RHS);
1397                   });
1398             }
1399             if (TargetSym != TargetSectionSymbols->begin()) {
1400               --TargetSym;
1401               uint64_t TargetAddress = std::get<0>(*TargetSym);
1402               StringRef TargetName = std::get<1>(*TargetSym);
1403               outs() << " <" << TargetName;
1404               uint64_t Disp = Target - TargetAddress;
1405               if (Disp)
1406                 outs() << "+0x" << Twine::utohexstr(Disp);
1407               outs() << '>';
1408             }
1409           }
1410         }
1411         outs() << "\n";
1412 
1413         // Hexagon does this in pretty printer
1414         if (Obj->getArch() != Triple::hexagon) {
1415           // Print relocation for instruction.
1416           while (RelCur != RelEnd) {
1417             uint64_t Offset = RelCur->getOffset();
1418             // If this relocation is hidden, skip it.
1419             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1420               ++RelCur;
1421               continue;
1422             }
1423 
1424             // Stop when RelCur's offset is past the current instruction.
1425             if (Offset >= Index + Size)
1426               break;
1427 
1428             // When --adjust-vma is used, update the address printed.
1429             if (RelCur->getSymbol() != Obj->symbol_end()) {
1430               Expected<section_iterator> SymSI =
1431                   RelCur->getSymbol()->getSection();
1432               if (SymSI && *SymSI != Obj->section_end() &&
1433                   shouldAdjustVA(**SymSI))
1434                 Offset += AdjustVMA;
1435             }
1436 
1437             printRelocation(*RelCur, SectionAddr + Offset, Is64Bits);
1438             ++RelCur;
1439           }
1440         }
1441 
1442         Index += Size;
1443       }
1444     }
1445   }
1446   StringSet<> MissingDisasmFuncsSet =
1447       set_difference(DisasmFuncsSet, FoundDisasmFuncsSet);
1448   for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys())
1449     warn("failed to disassemble missing function " + MissingDisasmFunc);
1450 }
1451 
1452 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1453   if (StartAddress >= StopAddress)
1454     error("start address should be less than stop address");
1455 
1456   const Target *TheTarget = getTarget(Obj);
1457 
1458   // Package up features to be passed to target/subtarget
1459   SubtargetFeatures Features = Obj->getFeatures();
1460   if (!MAttrs.empty())
1461     for (unsigned I = 0; I != MAttrs.size(); ++I)
1462       Features.AddFeature(MAttrs[I]);
1463 
1464   std::unique_ptr<const MCRegisterInfo> MRI(
1465       TheTarget->createMCRegInfo(TripleName));
1466   if (!MRI)
1467     report_error(Obj->getFileName(),
1468                  "no register info for target " + TripleName);
1469 
1470   // Set up disassembler.
1471   std::unique_ptr<const MCAsmInfo> AsmInfo(
1472       TheTarget->createMCAsmInfo(*MRI, TripleName));
1473   if (!AsmInfo)
1474     report_error(Obj->getFileName(),
1475                  "no assembly info for target " + TripleName);
1476   std::unique_ptr<const MCSubtargetInfo> STI(
1477       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1478   if (!STI)
1479     report_error(Obj->getFileName(),
1480                  "no subtarget info for target " + TripleName);
1481   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1482   if (!MII)
1483     report_error(Obj->getFileName(),
1484                  "no instruction info for target " + TripleName);
1485   MCObjectFileInfo MOFI;
1486   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1487   // FIXME: for now initialize MCObjectFileInfo with default values
1488   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1489 
1490   std::unique_ptr<MCDisassembler> DisAsm(
1491       TheTarget->createMCDisassembler(*STI, Ctx));
1492   if (!DisAsm)
1493     report_error(Obj->getFileName(),
1494                  "no disassembler for target " + TripleName);
1495 
1496   // If we have an ARM object file, we need a second disassembler, because
1497   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1498   // We use mapping symbols to switch between the two assemblers, where
1499   // appropriate.
1500   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1501   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1502   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1503     if (STI->checkFeatures("+thumb-mode"))
1504       Features.AddFeature("-thumb-mode");
1505     else
1506       Features.AddFeature("+thumb-mode");
1507     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1508                                                         Features.getString()));
1509     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1510   }
1511 
1512   std::unique_ptr<const MCInstrAnalysis> MIA(
1513       TheTarget->createMCInstrAnalysis(MII.get()));
1514 
1515   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1516   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1517       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1518   if (!IP)
1519     report_error(Obj->getFileName(),
1520                  "no instruction printer for target " + TripleName);
1521   IP->setPrintImmHex(PrintImmHex);
1522 
1523   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1524   SourcePrinter SP(Obj, TheTarget->getName());
1525 
1526   for (StringRef Opt : DisassemblerOptions)
1527     if (!IP->applyTargetSpecificCLOption(Opt))
1528       error("Unrecognized disassembler option: " + Opt);
1529 
1530   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1531                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1532                     SP, InlineRelocs);
1533 }
1534 
1535 void printRelocations(const ObjectFile *Obj) {
1536   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1537                                                  "%08" PRIx64;
1538   // Regular objdump doesn't print relocations in non-relocatable object
1539   // files.
1540   if (!Obj->isRelocatableObject())
1541     return;
1542 
1543   // Build a mapping from relocation target to a vector of relocation
1544   // sections. Usually, there is an only one relocation section for
1545   // each relocated section.
1546   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1547   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1548     if (Section.relocation_begin() == Section.relocation_end())
1549       continue;
1550     const SectionRef TargetSec = *Section.getRelocatedSection();
1551     SecToRelSec[TargetSec].push_back(Section);
1552   }
1553 
1554   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1555     StringRef SecName;
1556     error(P.first.getName(SecName));
1557     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1558 
1559     for (SectionRef Section : P.second) {
1560       for (const RelocationRef &Reloc : Section.relocations()) {
1561         uint64_t Address = Reloc.getOffset();
1562         SmallString<32> RelocName;
1563         SmallString<32> ValueStr;
1564         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1565           continue;
1566         Reloc.getTypeName(RelocName);
1567         error(getRelocationValueString(Reloc, ValueStr));
1568         outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1569                << ValueStr << "\n";
1570       }
1571     }
1572     outs() << "\n";
1573   }
1574 }
1575 
1576 void printDynamicRelocations(const ObjectFile *Obj) {
1577   // For the moment, this option is for ELF only
1578   if (!Obj->isELF())
1579     return;
1580 
1581   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1582   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1583     error("not a dynamic object");
1584     return;
1585   }
1586 
1587   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1588   if (DynRelSec.empty())
1589     return;
1590 
1591   outs() << "DYNAMIC RELOCATION RECORDS\n";
1592   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1593   for (const SectionRef &Section : DynRelSec)
1594     for (const RelocationRef &Reloc : Section.relocations()) {
1595       uint64_t Address = Reloc.getOffset();
1596       SmallString<32> RelocName;
1597       SmallString<32> ValueStr;
1598       Reloc.getTypeName(RelocName);
1599       error(getRelocationValueString(Reloc, ValueStr));
1600       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1601              << ValueStr << "\n";
1602     }
1603 }
1604 
1605 // Returns true if we need to show LMA column when dumping section headers. We
1606 // show it only when the platform is ELF and either we have at least one section
1607 // whose VMA and LMA are different and/or when --show-lma flag is used.
1608 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1609   if (!Obj->isELF())
1610     return false;
1611   for (const SectionRef &S : ToolSectionFilter(*Obj))
1612     if (S.getAddress() != getELFSectionLMA(S))
1613       return true;
1614   return ShowLMA;
1615 }
1616 
1617 void printSectionHeaders(const ObjectFile *Obj) {
1618   bool HasLMAColumn = shouldDisplayLMA(Obj);
1619   if (HasLMAColumn)
1620     outs() << "Sections:\n"
1621               "Idx Name          Size     VMA              LMA              "
1622               "Type\n";
1623   else
1624     outs() << "Sections:\n"
1625               "Idx Name          Size     VMA          Type\n";
1626 
1627   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1628     StringRef Name;
1629     error(Section.getName(Name));
1630     uint64_t VMA = Section.getAddress();
1631     if (shouldAdjustVA(Section))
1632       VMA += AdjustVMA;
1633 
1634     uint64_t Size = Section.getSize();
1635     bool Text = Section.isText();
1636     bool Data = Section.isData();
1637     bool BSS = Section.isBSS();
1638     std::string Type = (std::string(Text ? "TEXT " : "") +
1639                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1640 
1641     if (HasLMAColumn)
1642       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %016" PRIx64
1643                        " %s\n",
1644                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1645                        VMA, getELFSectionLMA(Section), Type.c_str());
1646     else
1647       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1648                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1649                        VMA, Type.c_str());
1650   }
1651   outs() << "\n";
1652 }
1653 
1654 void printSectionContents(const ObjectFile *Obj) {
1655   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1656     StringRef Name;
1657     error(Section.getName(Name));
1658     uint64_t BaseAddr = Section.getAddress();
1659     uint64_t Size = Section.getSize();
1660     if (!Size)
1661       continue;
1662 
1663     outs() << "Contents of section " << Name << ":\n";
1664     if (Section.isBSS()) {
1665       outs() << format("<skipping contents of bss section at [%04" PRIx64
1666                        ", %04" PRIx64 ")>\n",
1667                        BaseAddr, BaseAddr + Size);
1668       continue;
1669     }
1670 
1671     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1672 
1673     // Dump out the content as hex and printable ascii characters.
1674     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1675       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1676       // Dump line of hex.
1677       for (std::size_t I = 0; I < 16; ++I) {
1678         if (I != 0 && I % 4 == 0)
1679           outs() << ' ';
1680         if (Addr + I < End)
1681           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1682                  << hexdigit(Contents[Addr + I] & 0xF, true);
1683         else
1684           outs() << "  ";
1685       }
1686       // Print ascii.
1687       outs() << "  ";
1688       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1689         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1690           outs() << Contents[Addr + I];
1691         else
1692           outs() << ".";
1693       }
1694       outs() << "\n";
1695     }
1696   }
1697 }
1698 
1699 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1700                       StringRef ArchitectureName) {
1701   outs() << "SYMBOL TABLE:\n";
1702 
1703   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1704     printCOFFSymbolTable(Coff);
1705     return;
1706   }
1707 
1708   const StringRef FileName = O->getFileName();
1709   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1710     const SymbolRef &Symbol = *I;
1711     uint64_t Address = unwrapOrError(Symbol.getAddress(), ArchiveName, FileName,
1712                                      ArchitectureName);
1713     if ((Address < StartAddress) || (Address > StopAddress))
1714       continue;
1715     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), ArchiveName,
1716                                          FileName, ArchitectureName);
1717     uint32_t Flags = Symbol.getFlags();
1718     section_iterator Section = unwrapOrError(Symbol.getSection(), ArchiveName,
1719                                              FileName, ArchitectureName);
1720     StringRef Name;
1721     if (Type == SymbolRef::ST_Debug && Section != O->section_end())
1722       Section->getName(Name);
1723     else
1724       Name = unwrapOrError(Symbol.getName(), ArchiveName, FileName,
1725                            ArchitectureName);
1726 
1727     bool Global = Flags & SymbolRef::SF_Global;
1728     bool Weak = Flags & SymbolRef::SF_Weak;
1729     bool Absolute = Flags & SymbolRef::SF_Absolute;
1730     bool Common = Flags & SymbolRef::SF_Common;
1731     bool Hidden = Flags & SymbolRef::SF_Hidden;
1732 
1733     char GlobLoc = ' ';
1734     if (Type != SymbolRef::ST_Unknown)
1735       GlobLoc = Global ? 'g' : 'l';
1736     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1737                  ? 'd' : ' ';
1738     char FileFunc = ' ';
1739     if (Type == SymbolRef::ST_File)
1740       FileFunc = 'f';
1741     else if (Type == SymbolRef::ST_Function)
1742       FileFunc = 'F';
1743     else if (Type == SymbolRef::ST_Data)
1744       FileFunc = 'O';
1745 
1746     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1747                                                    "%08" PRIx64;
1748 
1749     outs() << format(Fmt, Address) << " "
1750            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1751            << (Weak ? 'w' : ' ') // Weak?
1752            << ' ' // Constructor. Not supported yet.
1753            << ' ' // Warning. Not supported yet.
1754            << ' ' // Indirect reference to another symbol.
1755            << Debug // Debugging (d) or dynamic (D) symbol.
1756            << FileFunc // Name of function (F), file (f) or object (O).
1757            << ' ';
1758     if (Absolute) {
1759       outs() << "*ABS*";
1760     } else if (Common) {
1761       outs() << "*COM*";
1762     } else if (Section == O->section_end()) {
1763       outs() << "*UND*";
1764     } else {
1765       if (const MachOObjectFile *MachO =
1766           dyn_cast<const MachOObjectFile>(O)) {
1767         DataRefImpl DR = Section->getRawDataRefImpl();
1768         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1769         outs() << SegmentName << ",";
1770       }
1771       StringRef SectionName;
1772       error(Section->getName(SectionName));
1773       outs() << SectionName;
1774     }
1775 
1776     if (Common || isa<ELFObjectFileBase>(O)) {
1777       uint64_t Val =
1778           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1779       outs() << format("\t%08" PRIx64, Val);
1780     }
1781 
1782     if (isa<ELFObjectFileBase>(O)) {
1783       uint8_t Other = ELFSymbolRef(Symbol).getOther();
1784       switch (Other) {
1785       case ELF::STV_DEFAULT:
1786         break;
1787       case ELF::STV_INTERNAL:
1788         outs() << " .internal";
1789         break;
1790       case ELF::STV_HIDDEN:
1791         outs() << " .hidden";
1792         break;
1793       case ELF::STV_PROTECTED:
1794         outs() << " .protected";
1795         break;
1796       default:
1797         outs() << format(" 0x%02x", Other);
1798         break;
1799       }
1800     } else if (Hidden) {
1801       outs() << " .hidden";
1802     }
1803 
1804     if (Demangle)
1805       outs() << ' ' << demangle(Name) << '\n';
1806     else
1807       outs() << ' ' << Name << '\n';
1808   }
1809 }
1810 
1811 static void printUnwindInfo(const ObjectFile *O) {
1812   outs() << "Unwind info:\n\n";
1813 
1814   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1815     printCOFFUnwindInfo(Coff);
1816   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1817     printMachOUnwindInfo(MachO);
1818   else
1819     // TODO: Extract DWARF dump tool to objdump.
1820     WithColor::error(errs(), ToolName)
1821         << "This operation is only currently supported "
1822            "for COFF and MachO object files.\n";
1823 }
1824 
1825 /// Dump the raw contents of the __clangast section so the output can be piped
1826 /// into llvm-bcanalyzer.
1827 void printRawClangAST(const ObjectFile *Obj) {
1828   if (outs().is_displayed()) {
1829     WithColor::error(errs(), ToolName)
1830         << "The -raw-clang-ast option will dump the raw binary contents of "
1831            "the clang ast section.\n"
1832            "Please redirect the output to a file or another program such as "
1833            "llvm-bcanalyzer.\n";
1834     return;
1835   }
1836 
1837   StringRef ClangASTSectionName("__clangast");
1838   if (isa<COFFObjectFile>(Obj)) {
1839     ClangASTSectionName = "clangast";
1840   }
1841 
1842   Optional<object::SectionRef> ClangASTSection;
1843   for (auto Sec : ToolSectionFilter(*Obj)) {
1844     StringRef Name;
1845     Sec.getName(Name);
1846     if (Name == ClangASTSectionName) {
1847       ClangASTSection = Sec;
1848       break;
1849     }
1850   }
1851   if (!ClangASTSection)
1852     return;
1853 
1854   StringRef ClangASTContents = unwrapOrError(
1855       ClangASTSection.getValue().getContents(), Obj->getFileName());
1856   outs().write(ClangASTContents.data(), ClangASTContents.size());
1857 }
1858 
1859 static void printFaultMaps(const ObjectFile *Obj) {
1860   StringRef FaultMapSectionName;
1861 
1862   if (isa<ELFObjectFileBase>(Obj)) {
1863     FaultMapSectionName = ".llvm_faultmaps";
1864   } else if (isa<MachOObjectFile>(Obj)) {
1865     FaultMapSectionName = "__llvm_faultmaps";
1866   } else {
1867     WithColor::error(errs(), ToolName)
1868         << "This operation is only currently supported "
1869            "for ELF and Mach-O executable files.\n";
1870     return;
1871   }
1872 
1873   Optional<object::SectionRef> FaultMapSection;
1874 
1875   for (auto Sec : ToolSectionFilter(*Obj)) {
1876     StringRef Name;
1877     Sec.getName(Name);
1878     if (Name == FaultMapSectionName) {
1879       FaultMapSection = Sec;
1880       break;
1881     }
1882   }
1883 
1884   outs() << "FaultMap table:\n";
1885 
1886   if (!FaultMapSection.hasValue()) {
1887     outs() << "<not found>\n";
1888     return;
1889   }
1890 
1891   StringRef FaultMapContents =
1892       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
1893   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1894                      FaultMapContents.bytes_end());
1895 
1896   outs() << FMP;
1897 }
1898 
1899 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1900   if (O->isELF()) {
1901     printELFFileHeader(O);
1902     printELFDynamicSection(O);
1903     printELFSymbolVersionInfo(O);
1904     return;
1905   }
1906   if (O->isCOFF())
1907     return printCOFFFileHeader(O);
1908   if (O->isWasm())
1909     return printWasmFileHeader(O);
1910   if (O->isMachO()) {
1911     printMachOFileHeader(O);
1912     if (!OnlyFirst)
1913       printMachOLoadCommands(O);
1914     return;
1915   }
1916   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1917 }
1918 
1919 static void printFileHeaders(const ObjectFile *O) {
1920   if (!O->isELF() && !O->isCOFF())
1921     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1922 
1923   Triple::ArchType AT = O->getArch();
1924   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1925   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
1926 
1927   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1928   outs() << "start address: "
1929          << "0x" << format(Fmt.data(), Address) << "\n\n";
1930 }
1931 
1932 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1933   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1934   if (!ModeOrErr) {
1935     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1936     consumeError(ModeOrErr.takeError());
1937     return;
1938   }
1939   sys::fs::perms Mode = ModeOrErr.get();
1940   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1941   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1942   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1943   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1944   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1945   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1946   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1947   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1948   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1949 
1950   outs() << " ";
1951 
1952   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
1953                    unwrapOrError(C.getGID(), Filename),
1954                    unwrapOrError(C.getRawSize(), Filename));
1955 
1956   StringRef RawLastModified = C.getRawLastModified();
1957   unsigned Seconds;
1958   if (RawLastModified.getAsInteger(10, Seconds))
1959     outs() << "(date: \"" << RawLastModified
1960            << "\" contains non-decimal chars) ";
1961   else {
1962     // Since ctime(3) returns a 26 character string of the form:
1963     // "Sun Sep 16 01:03:52 1973\n\0"
1964     // just print 24 characters.
1965     time_t t = Seconds;
1966     outs() << format("%.24s ", ctime(&t));
1967   }
1968 
1969   StringRef Name = "";
1970   Expected<StringRef> NameOrErr = C.getName();
1971   if (!NameOrErr) {
1972     consumeError(NameOrErr.takeError());
1973     Name = unwrapOrError(C.getRawName(), Filename);
1974   } else {
1975     Name = NameOrErr.get();
1976   }
1977   outs() << Name << "\n";
1978 }
1979 
1980 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
1981                        const Archive::Child *C = nullptr) {
1982   // Avoid other output when using a raw option.
1983   if (!RawClangAST) {
1984     outs() << '\n';
1985     if (A)
1986       outs() << A->getFileName() << "(" << O->getFileName() << ")";
1987     else
1988       outs() << O->getFileName();
1989     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
1990   }
1991 
1992   StringRef ArchiveName = A ? A->getFileName() : "";
1993   if (FileHeaders)
1994     printFileHeaders(O);
1995   if (ArchiveHeaders && !MachOOpt && C)
1996     printArchiveChild(ArchiveName, *C);
1997   if (Disassemble)
1998     disassembleObject(O, Relocations);
1999   if (Relocations && !Disassemble)
2000     printRelocations(O);
2001   if (DynamicRelocations)
2002     printDynamicRelocations(O);
2003   if (SectionHeaders)
2004     printSectionHeaders(O);
2005   if (SectionContents)
2006     printSectionContents(O);
2007   if (SymbolTable)
2008     printSymbolTable(O, ArchiveName);
2009   if (UnwindInfo)
2010     printUnwindInfo(O);
2011   if (PrivateHeaders || FirstPrivateHeader)
2012     printPrivateFileHeaders(O, FirstPrivateHeader);
2013   if (ExportsTrie)
2014     printExportsTrie(O);
2015   if (Rebase)
2016     printRebaseTable(O);
2017   if (Bind)
2018     printBindTable(O);
2019   if (LazyBind)
2020     printLazyBindTable(O);
2021   if (WeakBind)
2022     printWeakBindTable(O);
2023   if (RawClangAST)
2024     printRawClangAST(O);
2025   if (FaultMapSection)
2026     printFaultMaps(O);
2027   if (DwarfDumpType != DIDT_Null) {
2028     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2029     // Dump the complete DWARF structure.
2030     DIDumpOptions DumpOpts;
2031     DumpOpts.DumpType = DwarfDumpType;
2032     DICtx->dump(outs(), DumpOpts);
2033   }
2034 }
2035 
2036 static void dumpObject(const COFFImportFile *I, const Archive *A,
2037                        const Archive::Child *C = nullptr) {
2038   StringRef ArchiveName = A ? A->getFileName() : "";
2039 
2040   // Avoid other output when using a raw option.
2041   if (!RawClangAST)
2042     outs() << '\n'
2043            << ArchiveName << "(" << I->getFileName() << ")"
2044            << ":\tfile format COFF-import-file"
2045            << "\n\n";
2046 
2047   if (ArchiveHeaders && !MachOOpt && C)
2048     printArchiveChild(ArchiveName, *C);
2049   if (SymbolTable)
2050     printCOFFSymbolTable(I);
2051 }
2052 
2053 /// Dump each object file in \a a;
2054 static void dumpArchive(const Archive *A) {
2055   Error Err = Error::success();
2056   for (auto &C : A->children(Err)) {
2057     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2058     if (!ChildOrErr) {
2059       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2060         report_error(std::move(E), A->getFileName(), C);
2061       continue;
2062     }
2063     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2064       dumpObject(O, A, &C);
2065     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2066       dumpObject(I, A, &C);
2067     else
2068       report_error(errorCodeToError(object_error::invalid_file_type),
2069                    A->getFileName());
2070   }
2071   if (Err)
2072     report_error(std::move(Err), A->getFileName());
2073 }
2074 
2075 /// Open file and figure out how to dump it.
2076 static void dumpInput(StringRef file) {
2077   // If we are using the Mach-O specific object file parser, then let it parse
2078   // the file and process the command line options.  So the -arch flags can
2079   // be used to select specific slices, etc.
2080   if (MachOOpt) {
2081     parseInputMachO(file);
2082     return;
2083   }
2084 
2085   // Attempt to open the binary.
2086   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2087   Binary &Binary = *OBinary.getBinary();
2088 
2089   if (Archive *A = dyn_cast<Archive>(&Binary))
2090     dumpArchive(A);
2091   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2092     dumpObject(O);
2093   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2094     parseInputMachO(UB);
2095   else
2096     report_error(errorCodeToError(object_error::invalid_file_type), file);
2097 }
2098 } // namespace llvm
2099 
2100 int main(int argc, char **argv) {
2101   using namespace llvm;
2102   InitLLVM X(argc, argv);
2103   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2104   cl::HideUnrelatedOptions(OptionFilters);
2105 
2106   // Initialize targets and assembly printers/parsers.
2107   InitializeAllTargetInfos();
2108   InitializeAllTargetMCs();
2109   InitializeAllDisassemblers();
2110 
2111   // Register the target printer for --version.
2112   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2113 
2114   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2115 
2116   ToolName = argv[0];
2117 
2118   // Defaults to a.out if no filenames specified.
2119   if (InputFilenames.empty())
2120     InputFilenames.push_back("a.out");
2121 
2122   if (AllHeaders)
2123     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2124         SectionHeaders = SymbolTable = true;
2125 
2126   if (DisassembleAll || PrintSource || PrintLines ||
2127       (!DisassembleFunctions.empty()))
2128     Disassemble = true;
2129 
2130   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2131       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2132       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2133       !UnwindInfo && !FaultMapSection &&
2134       !(MachOOpt &&
2135         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2136          FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2137          LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2138          WeakBind || !FilterSections.empty()))) {
2139     cl::PrintHelpMessage();
2140     return 2;
2141   }
2142 
2143   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2144                         DisassembleFunctions.end());
2145 
2146   llvm::for_each(InputFilenames, dumpInput);
2147 
2148   return EXIT_SUCCESS;
2149 }
2150