xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision d6d7f7b1d2639a06002779aed5dccf53fee20c6e)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Debuginfod/BuildIDFetcher.h"
38 #include "llvm/Debuginfod/Debuginfod.h"
39 #include "llvm/Debuginfod/HTTPClient.h"
40 #include "llvm/Demangle/Demangle.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/MCContext.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
45 #include "llvm/MC/MCInst.h"
46 #include "llvm/MC/MCInstPrinter.h"
47 #include "llvm/MC/MCInstrAnalysis.h"
48 #include "llvm/MC/MCInstrInfo.h"
49 #include "llvm/MC/MCObjectFileInfo.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/BuildID.h"
55 #include "llvm/Object/COFF.h"
56 #include "llvm/Object/COFFImportFile.h"
57 #include "llvm/Object/ELFObjectFile.h"
58 #include "llvm/Object/ELFTypes.h"
59 #include "llvm/Object/FaultMapParser.h"
60 #include "llvm/Object/MachO.h"
61 #include "llvm/Object/MachOUniversal.h"
62 #include "llvm/Object/ObjectFile.h"
63 #include "llvm/Object/OffloadBinary.h"
64 #include "llvm/Object/Wasm.h"
65 #include "llvm/Option/Arg.h"
66 #include "llvm/Option/ArgList.h"
67 #include "llvm/Option/Option.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Errc.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/Format.h"
73 #include "llvm/Support/FormatVariadic.h"
74 #include "llvm/Support/GraphWriter.h"
75 #include "llvm/Support/InitLLVM.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/TargetParser/Host.h"
83 #include "llvm/TargetParser/Triple.h"
84 #include <algorithm>
85 #include <cctype>
86 #include <cstring>
87 #include <optional>
88 #include <system_error>
89 #include <unordered_map>
90 #include <utility>
91 
92 using namespace llvm;
93 using namespace llvm::object;
94 using namespace llvm::objdump;
95 using namespace llvm::opt;
96 
97 namespace {
98 
99 class CommonOptTable : public opt::GenericOptTable {
100 public:
101   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
102                  const char *Description)
103       : opt::GenericOptTable(OptionInfos), Usage(Usage),
104         Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
111                                     Description, ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 namespace objdump_opt {
123 #define PREFIX(NAME, VALUE)                                                    \
124   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
125   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
126                                                 std::size(NAME##_init) - 1);
127 #include "ObjdumpOpts.inc"
128 #undef PREFIX
129 
130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
131 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
132                HELPTEXT, METAVAR, VALUES)                                      \
133   {PREFIX,          NAME,         HELPTEXT,                                    \
134    METAVAR,         OBJDUMP_##ID, opt::Option::KIND##Class,                    \
135    PARAM,           FLAGS,        OBJDUMP_##GROUP,                             \
136    OBJDUMP_##ALIAS, ALIASARGS,    VALUES},
137 #include "ObjdumpOpts.inc"
138 #undef OPTION
139 };
140 } // namespace objdump_opt
141 
142 class ObjdumpOptTable : public CommonOptTable {
143 public:
144   ObjdumpOptTable()
145       : CommonOptTable(objdump_opt::ObjdumpInfoTable,
146                        " [options] <input object files>",
147                        "llvm object file dumper") {}
148 };
149 
150 enum OtoolOptID {
151   OTOOL_INVALID = 0, // This is not an option ID.
152 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
153                HELPTEXT, METAVAR, VALUES)                                      \
154   OTOOL_##ID,
155 #include "OtoolOpts.inc"
156 #undef OPTION
157 };
158 
159 namespace otool {
160 #define PREFIX(NAME, VALUE)                                                    \
161   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
162   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
163                                                 std::size(NAME##_init) - 1);
164 #include "OtoolOpts.inc"
165 #undef PREFIX
166 
167 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
168 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
169                HELPTEXT, METAVAR, VALUES)                                      \
170   {PREFIX,        NAME,       HELPTEXT,                                        \
171    METAVAR,       OTOOL_##ID, opt::Option::KIND##Class,                        \
172    PARAM,         FLAGS,      OTOOL_##GROUP,                                   \
173    OTOOL_##ALIAS, ALIASARGS,  VALUES},
174 #include "OtoolOpts.inc"
175 #undef OPTION
176 };
177 } // namespace otool
178 
179 class OtoolOptTable : public CommonOptTable {
180 public:
181   OtoolOptTable()
182       : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
183                        "Mach-O object file displaying tool") {}
184 };
185 
186 } // namespace
187 
188 #define DEBUG_TYPE "objdump"
189 
190 static uint64_t AdjustVMA;
191 static bool AllHeaders;
192 static std::string ArchName;
193 bool objdump::ArchiveHeaders;
194 bool objdump::Demangle;
195 bool objdump::Disassemble;
196 bool objdump::DisassembleAll;
197 bool objdump::SymbolDescription;
198 bool objdump::TracebackTable;
199 static std::vector<std::string> DisassembleSymbols;
200 static bool DisassembleZeroes;
201 static std::vector<std::string> DisassemblerOptions;
202 DIDumpType objdump::DwarfDumpType;
203 static bool DynamicRelocations;
204 static bool FaultMapSection;
205 static bool FileHeaders;
206 bool objdump::SectionContents;
207 static std::vector<std::string> InputFilenames;
208 bool objdump::PrintLines;
209 static bool MachOOpt;
210 std::string objdump::MCPU;
211 std::vector<std::string> objdump::MAttrs;
212 bool objdump::ShowRawInsn;
213 bool objdump::LeadingAddr;
214 static bool Offloading;
215 static bool RawClangAST;
216 bool objdump::Relocations;
217 bool objdump::PrintImmHex;
218 bool objdump::PrivateHeaders;
219 std::vector<std::string> objdump::FilterSections;
220 bool objdump::SectionHeaders;
221 static bool ShowAllSymbols;
222 static bool ShowLMA;
223 bool objdump::PrintSource;
224 
225 static uint64_t StartAddress;
226 static bool HasStartAddressFlag;
227 static uint64_t StopAddress = UINT64_MAX;
228 static bool HasStopAddressFlag;
229 
230 bool objdump::SymbolTable;
231 static bool SymbolizeOperands;
232 static bool DynamicSymbolTable;
233 std::string objdump::TripleName;
234 bool objdump::UnwindInfo;
235 static bool Wide;
236 std::string objdump::Prefix;
237 uint32_t objdump::PrefixStrip;
238 
239 DebugVarsFormat objdump::DbgVariables = DVDisabled;
240 
241 int objdump::DbgIndent = 52;
242 
243 static StringSet<> DisasmSymbolSet;
244 StringSet<> objdump::FoundSectionSet;
245 static StringRef ToolName;
246 
247 std::unique_ptr<BuildIDFetcher> BIDFetcher;
248 ExitOnError ExitOnErr;
249 
250 namespace {
251 struct FilterResult {
252   // True if the section should not be skipped.
253   bool Keep;
254 
255   // True if the index counter should be incremented, even if the section should
256   // be skipped. For example, sections may be skipped if they are not included
257   // in the --section flag, but we still want those to count toward the section
258   // count.
259   bool IncrementIndex;
260 };
261 } // namespace
262 
263 static FilterResult checkSectionFilter(object::SectionRef S) {
264   if (FilterSections.empty())
265     return {/*Keep=*/true, /*IncrementIndex=*/true};
266 
267   Expected<StringRef> SecNameOrErr = S.getName();
268   if (!SecNameOrErr) {
269     consumeError(SecNameOrErr.takeError());
270     return {/*Keep=*/false, /*IncrementIndex=*/false};
271   }
272   StringRef SecName = *SecNameOrErr;
273 
274   // StringSet does not allow empty key so avoid adding sections with
275   // no name (such as the section with index 0) here.
276   if (!SecName.empty())
277     FoundSectionSet.insert(SecName);
278 
279   // Only show the section if it's in the FilterSections list, but always
280   // increment so the indexing is stable.
281   return {/*Keep=*/is_contained(FilterSections, SecName),
282           /*IncrementIndex=*/true};
283 }
284 
285 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
286                                          uint64_t *Idx) {
287   // Start at UINT64_MAX so that the first index returned after an increment is
288   // zero (after the unsigned wrap).
289   if (Idx)
290     *Idx = UINT64_MAX;
291   return SectionFilter(
292       [Idx](object::SectionRef S) {
293         FilterResult Result = checkSectionFilter(S);
294         if (Idx != nullptr && Result.IncrementIndex)
295           *Idx += 1;
296         return Result.Keep;
297       },
298       O);
299 }
300 
301 std::string objdump::getFileNameForError(const object::Archive::Child &C,
302                                          unsigned Index) {
303   Expected<StringRef> NameOrErr = C.getName();
304   if (NameOrErr)
305     return std::string(NameOrErr.get());
306   // If we have an error getting the name then we print the index of the archive
307   // member. Since we are already in an error state, we just ignore this error.
308   consumeError(NameOrErr.takeError());
309   return "<file index: " + std::to_string(Index) + ">";
310 }
311 
312 void objdump::reportWarning(const Twine &Message, StringRef File) {
313   // Output order between errs() and outs() matters especially for archive
314   // files where the output is per member object.
315   outs().flush();
316   WithColor::warning(errs(), ToolName)
317       << "'" << File << "': " << Message << "\n";
318 }
319 
320 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
321   outs().flush();
322   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
323   exit(1);
324 }
325 
326 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
327                                        StringRef ArchiveName,
328                                        StringRef ArchitectureName) {
329   assert(E);
330   outs().flush();
331   WithColor::error(errs(), ToolName);
332   if (ArchiveName != "")
333     errs() << ArchiveName << "(" << FileName << ")";
334   else
335     errs() << "'" << FileName << "'";
336   if (!ArchitectureName.empty())
337     errs() << " (for architecture " << ArchitectureName << ")";
338   errs() << ": ";
339   logAllUnhandledErrors(std::move(E), errs());
340   exit(1);
341 }
342 
343 static void reportCmdLineWarning(const Twine &Message) {
344   WithColor::warning(errs(), ToolName) << Message << "\n";
345 }
346 
347 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
348   WithColor::error(errs(), ToolName) << Message << "\n";
349   exit(1);
350 }
351 
352 static void warnOnNoMatchForSections() {
353   SetVector<StringRef> MissingSections;
354   for (StringRef S : FilterSections) {
355     if (FoundSectionSet.count(S))
356       return;
357     // User may specify a unnamed section. Don't warn for it.
358     if (!S.empty())
359       MissingSections.insert(S);
360   }
361 
362   // Warn only if no section in FilterSections is matched.
363   for (StringRef S : MissingSections)
364     reportCmdLineWarning("section '" + S +
365                          "' mentioned in a -j/--section option, but not "
366                          "found in any input file");
367 }
368 
369 static const Target *getTarget(const ObjectFile *Obj) {
370   // Figure out the target triple.
371   Triple TheTriple("unknown-unknown-unknown");
372   if (TripleName.empty()) {
373     TheTriple = Obj->makeTriple();
374   } else {
375     TheTriple.setTriple(Triple::normalize(TripleName));
376     auto Arch = Obj->getArch();
377     if (Arch == Triple::arm || Arch == Triple::armeb)
378       Obj->setARMSubArch(TheTriple);
379   }
380 
381   // Get the target specific parser.
382   std::string Error;
383   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
384                                                          Error);
385   if (!TheTarget)
386     reportError(Obj->getFileName(), "can't find target: " + Error);
387 
388   // Update the triple name and return the found target.
389   TripleName = TheTriple.getTriple();
390   return TheTarget;
391 }
392 
393 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
394   return A.getOffset() < B.getOffset();
395 }
396 
397 static Error getRelocationValueString(const RelocationRef &Rel,
398                                       SmallVectorImpl<char> &Result) {
399   const ObjectFile *Obj = Rel.getObject();
400   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
401     return getELFRelocationValueString(ELF, Rel, Result);
402   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
403     return getCOFFRelocationValueString(COFF, Rel, Result);
404   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
405     return getWasmRelocationValueString(Wasm, Rel, Result);
406   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
407     return getMachORelocationValueString(MachO, Rel, Result);
408   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
409     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
410   llvm_unreachable("unknown object file format");
411 }
412 
413 /// Indicates whether this relocation should hidden when listing
414 /// relocations, usually because it is the trailing part of a multipart
415 /// relocation that will be printed as part of the leading relocation.
416 static bool getHidden(RelocationRef RelRef) {
417   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
418   if (!MachO)
419     return false;
420 
421   unsigned Arch = MachO->getArch();
422   DataRefImpl Rel = RelRef.getRawDataRefImpl();
423   uint64_t Type = MachO->getRelocationType(Rel);
424 
425   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
426   // is always hidden.
427   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
428     return Type == MachO::GENERIC_RELOC_PAIR;
429 
430   if (Arch == Triple::x86_64) {
431     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
432     // an X86_64_RELOC_SUBTRACTOR.
433     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
434       DataRefImpl RelPrev = Rel;
435       RelPrev.d.a--;
436       uint64_t PrevType = MachO->getRelocationType(RelPrev);
437       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
438         return true;
439     }
440   }
441 
442   return false;
443 }
444 
445 /// Get the column at which we want to start printing the instruction
446 /// disassembly, taking into account anything which appears to the left of it.
447 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
448   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
449 }
450 
451 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
452                                    raw_ostream &OS) {
453   // The output of printInst starts with a tab. Print some spaces so that
454   // the tab has 1 column and advances to the target tab stop.
455   unsigned TabStop = getInstStartColumn(STI);
456   unsigned Column = OS.tell() - Start;
457   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
458 }
459 
460 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
461                            formatted_raw_ostream &OS,
462                            MCSubtargetInfo const &STI) {
463   size_t Start = OS.tell();
464   if (LeadingAddr)
465     OS << format("%8" PRIx64 ":", Address);
466   if (ShowRawInsn) {
467     OS << ' ';
468     dumpBytes(Bytes, OS);
469   }
470   AlignToInstStartColumn(Start, STI, OS);
471 }
472 
473 namespace {
474 
475 static bool isAArch64Elf(const ObjectFile &Obj) {
476   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
477   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
478 }
479 
480 static bool isArmElf(const ObjectFile &Obj) {
481   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
482   return Elf && Elf->getEMachine() == ELF::EM_ARM;
483 }
484 
485 static bool isCSKYElf(const ObjectFile &Obj) {
486   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
487   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
488 }
489 
490 static bool hasMappingSymbols(const ObjectFile &Obj) {
491   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
492 }
493 
494 static bool isMappingSymbol(const SymbolInfoTy &Sym) {
495   return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") ||
496          Sym.Name.startswith("$a") || Sym.Name.startswith("$t");
497 }
498 
499 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
500                             const RelocationRef &Rel, uint64_t Address,
501                             bool Is64Bits) {
502   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
503   SmallString<16> Name;
504   SmallString<32> Val;
505   Rel.getTypeName(Name);
506   if (Error E = getRelocationValueString(Rel, Val))
507     reportError(std::move(E), FileName);
508   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
509   if (LeadingAddr)
510     OS << format(Fmt.data(), Address);
511   OS << Name << "\t" << Val;
512 }
513 
514 class PrettyPrinter {
515 public:
516   virtual ~PrettyPrinter() = default;
517   virtual void
518   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
519             object::SectionedAddress Address, formatted_raw_ostream &OS,
520             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
521             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
522             LiveVariablePrinter &LVP) {
523     if (SP && (PrintSource || PrintLines))
524       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
525     LVP.printBetweenInsts(OS, false);
526 
527     printRawData(Bytes, Address.Address, OS, STI);
528 
529     if (MI) {
530       // See MCInstPrinter::printInst. On targets where a PC relative immediate
531       // is relative to the next instruction and the length of a MCInst is
532       // difficult to measure (x86), this is the address of the next
533       // instruction.
534       uint64_t Addr =
535           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
536       IP.printInst(MI, Addr, "", STI, OS);
537     } else
538       OS << "\t<unknown>";
539   }
540 };
541 PrettyPrinter PrettyPrinterInst;
542 
543 class HexagonPrettyPrinter : public PrettyPrinter {
544 public:
545   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
546                  formatted_raw_ostream &OS) {
547     uint32_t opcode =
548       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
549     if (LeadingAddr)
550       OS << format("%8" PRIx64 ":", Address);
551     if (ShowRawInsn) {
552       OS << "\t";
553       dumpBytes(Bytes.slice(0, 4), OS);
554       OS << format("\t%08" PRIx32, opcode);
555     }
556   }
557   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
558                  object::SectionedAddress Address, formatted_raw_ostream &OS,
559                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
560                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
561                  LiveVariablePrinter &LVP) override {
562     if (SP && (PrintSource || PrintLines))
563       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
564     if (!MI) {
565       printLead(Bytes, Address.Address, OS);
566       OS << " <unknown>";
567       return;
568     }
569     std::string Buffer;
570     {
571       raw_string_ostream TempStream(Buffer);
572       IP.printInst(MI, Address.Address, "", STI, TempStream);
573     }
574     StringRef Contents(Buffer);
575     // Split off bundle attributes
576     auto PacketBundle = Contents.rsplit('\n');
577     // Split off first instruction from the rest
578     auto HeadTail = PacketBundle.first.split('\n');
579     auto Preamble = " { ";
580     auto Separator = "";
581 
582     // Hexagon's packets require relocations to be inline rather than
583     // clustered at the end of the packet.
584     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
585     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
586     auto PrintReloc = [&]() -> void {
587       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
588         if (RelCur->getOffset() == Address.Address) {
589           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
590           return;
591         }
592         ++RelCur;
593       }
594     };
595 
596     while (!HeadTail.first.empty()) {
597       OS << Separator;
598       Separator = "\n";
599       if (SP && (PrintSource || PrintLines))
600         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
601       printLead(Bytes, Address.Address, OS);
602       OS << Preamble;
603       Preamble = "   ";
604       StringRef Inst;
605       auto Duplex = HeadTail.first.split('\v');
606       if (!Duplex.second.empty()) {
607         OS << Duplex.first;
608         OS << "; ";
609         Inst = Duplex.second;
610       }
611       else
612         Inst = HeadTail.first;
613       OS << Inst;
614       HeadTail = HeadTail.second.split('\n');
615       if (HeadTail.first.empty())
616         OS << " } " << PacketBundle.second;
617       PrintReloc();
618       Bytes = Bytes.slice(4);
619       Address.Address += 4;
620     }
621   }
622 };
623 HexagonPrettyPrinter HexagonPrettyPrinterInst;
624 
625 class AMDGCNPrettyPrinter : public PrettyPrinter {
626 public:
627   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
628                  object::SectionedAddress Address, formatted_raw_ostream &OS,
629                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
630                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
631                  LiveVariablePrinter &LVP) override {
632     if (SP && (PrintSource || PrintLines))
633       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
634 
635     if (MI) {
636       SmallString<40> InstStr;
637       raw_svector_ostream IS(InstStr);
638 
639       IP.printInst(MI, Address.Address, "", STI, IS);
640 
641       OS << left_justify(IS.str(), 60);
642     } else {
643       // an unrecognized encoding - this is probably data so represent it
644       // using the .long directive, or .byte directive if fewer than 4 bytes
645       // remaining
646       if (Bytes.size() >= 4) {
647         OS << format("\t.long 0x%08" PRIx32 " ",
648                      support::endian::read32<support::little>(Bytes.data()));
649         OS.indent(42);
650       } else {
651           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
652           for (unsigned int i = 1; i < Bytes.size(); i++)
653             OS << format(", 0x%02" PRIx8, Bytes[i]);
654           OS.indent(55 - (6 * Bytes.size()));
655       }
656     }
657 
658     OS << format("// %012" PRIX64 ":", Address.Address);
659     if (Bytes.size() >= 4) {
660       // D should be casted to uint32_t here as it is passed by format to
661       // snprintf as vararg.
662       for (uint32_t D :
663            ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
664                     Bytes.size() / 4))
665           OS << format(" %08" PRIX32, D);
666     } else {
667       for (unsigned char B : Bytes)
668         OS << format(" %02" PRIX8, B);
669     }
670 
671     if (!Annot.empty())
672       OS << " // " << Annot;
673   }
674 };
675 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
676 
677 class BPFPrettyPrinter : public PrettyPrinter {
678 public:
679   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
680                  object::SectionedAddress Address, formatted_raw_ostream &OS,
681                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
682                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
683                  LiveVariablePrinter &LVP) override {
684     if (SP && (PrintSource || PrintLines))
685       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
686     if (LeadingAddr)
687       OS << format("%8" PRId64 ":", Address.Address / 8);
688     if (ShowRawInsn) {
689       OS << "\t";
690       dumpBytes(Bytes, OS);
691     }
692     if (MI)
693       IP.printInst(MI, Address.Address, "", STI, OS);
694     else
695       OS << "\t<unknown>";
696   }
697 };
698 BPFPrettyPrinter BPFPrettyPrinterInst;
699 
700 class ARMPrettyPrinter : public PrettyPrinter {
701 public:
702   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
703                  object::SectionedAddress Address, formatted_raw_ostream &OS,
704                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
705                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
706                  LiveVariablePrinter &LVP) override {
707     if (SP && (PrintSource || PrintLines))
708       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
709     LVP.printBetweenInsts(OS, false);
710 
711     size_t Start = OS.tell();
712     if (LeadingAddr)
713       OS << format("%8" PRIx64 ":", Address.Address);
714     if (ShowRawInsn) {
715       size_t Pos = 0, End = Bytes.size();
716       if (STI.checkFeatures("+thumb-mode")) {
717         for (; Pos + 2 <= End; Pos += 2)
718           OS << ' '
719              << format_hex_no_prefix(
720                     llvm::support::endian::read<uint16_t>(
721                         Bytes.data() + Pos, InstructionEndianness),
722                     4);
723       } else {
724         for (; Pos + 4 <= End; Pos += 4)
725           OS << ' '
726              << format_hex_no_prefix(
727                     llvm::support::endian::read<uint32_t>(
728                         Bytes.data() + Pos, InstructionEndianness),
729                     8);
730       }
731       if (Pos < End) {
732         OS << ' ';
733         dumpBytes(Bytes.slice(Pos), OS);
734       }
735     }
736 
737     AlignToInstStartColumn(Start, STI, OS);
738 
739     if (MI) {
740       IP.printInst(MI, Address.Address, "", STI, OS);
741     } else
742       OS << "\t<unknown>";
743   }
744 
745   void setInstructionEndianness(llvm::support::endianness Endianness) {
746     InstructionEndianness = Endianness;
747   }
748 
749 private:
750   llvm::support::endianness InstructionEndianness = llvm::support::little;
751 };
752 ARMPrettyPrinter ARMPrettyPrinterInst;
753 
754 class AArch64PrettyPrinter : public PrettyPrinter {
755 public:
756   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
757                  object::SectionedAddress Address, formatted_raw_ostream &OS,
758                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
759                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
760                  LiveVariablePrinter &LVP) override {
761     if (SP && (PrintSource || PrintLines))
762       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
763     LVP.printBetweenInsts(OS, false);
764 
765     size_t Start = OS.tell();
766     if (LeadingAddr)
767       OS << format("%8" PRIx64 ":", Address.Address);
768     if (ShowRawInsn) {
769       size_t Pos = 0, End = Bytes.size();
770       for (; Pos + 4 <= End; Pos += 4)
771         OS << ' '
772            << format_hex_no_prefix(
773                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
774                                                         llvm::support::little),
775                   8);
776       if (Pos < End) {
777         OS << ' ';
778         dumpBytes(Bytes.slice(Pos), OS);
779       }
780     }
781 
782     AlignToInstStartColumn(Start, STI, OS);
783 
784     if (MI) {
785       IP.printInst(MI, Address.Address, "", STI, OS);
786     } else
787       OS << "\t<unknown>";
788   }
789 };
790 AArch64PrettyPrinter AArch64PrettyPrinterInst;
791 
792 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
793   switch(Triple.getArch()) {
794   default:
795     return PrettyPrinterInst;
796   case Triple::hexagon:
797     return HexagonPrettyPrinterInst;
798   case Triple::amdgcn:
799     return AMDGCNPrettyPrinterInst;
800   case Triple::bpfel:
801   case Triple::bpfeb:
802     return BPFPrettyPrinterInst;
803   case Triple::arm:
804   case Triple::armeb:
805   case Triple::thumb:
806   case Triple::thumbeb:
807     return ARMPrettyPrinterInst;
808   case Triple::aarch64:
809   case Triple::aarch64_be:
810   case Triple::aarch64_32:
811     return AArch64PrettyPrinterInst;
812   }
813 }
814 } // namespace
815 
816 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
817   assert(Obj.isELF());
818   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
819     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
820                          Obj.getFileName())
821         ->getType();
822   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
823     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
824                          Obj.getFileName())
825         ->getType();
826   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
827     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
828                          Obj.getFileName())
829         ->getType();
830   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
831     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
832                          Obj.getFileName())
833         ->getType();
834   llvm_unreachable("Unsupported binary format");
835 }
836 
837 template <class ELFT>
838 static void
839 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
840                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
841   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
842     uint8_t SymbolType = Symbol.getELFType();
843     if (SymbolType == ELF::STT_SECTION)
844       continue;
845 
846     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
847     // ELFSymbolRef::getAddress() returns size instead of value for common
848     // symbols which is not desirable for disassembly output. Overriding.
849     if (SymbolType == ELF::STT_COMMON)
850       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
851                               Obj.getFileName())
852                     ->st_value;
853 
854     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
855     if (Name.empty())
856       continue;
857 
858     section_iterator SecI =
859         unwrapOrError(Symbol.getSection(), Obj.getFileName());
860     if (SecI == Obj.section_end())
861       continue;
862 
863     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
864   }
865 }
866 
867 static void
868 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
869                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
870   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
871     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
872   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
873     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
874   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
875     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
876   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
877     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
878   else
879     llvm_unreachable("Unsupported binary format");
880 }
881 
882 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
883   for (auto SecI : Obj.sections()) {
884     const WasmSection &Section = Obj.getWasmSection(SecI);
885     if (Section.Type == wasm::WASM_SEC_CODE)
886       return SecI;
887   }
888   return std::nullopt;
889 }
890 
891 static void
892 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
893                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
894   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
895   if (!Section)
896     return;
897   SectionSymbolsTy &Symbols = AllSymbols[*Section];
898 
899   std::set<uint64_t> SymbolAddresses;
900   for (const auto &Sym : Symbols)
901     SymbolAddresses.insert(Sym.Addr);
902 
903   for (const wasm::WasmFunction &Function : Obj.functions()) {
904     uint64_t Address = Function.CodeSectionOffset;
905     // Only add fallback symbols for functions not already present in the symbol
906     // table.
907     if (SymbolAddresses.count(Address))
908       continue;
909     // This function has no symbol, so it should have no SymbolName.
910     assert(Function.SymbolName.empty());
911     // We use DebugName for the name, though it may be empty if there is no
912     // "name" custom section, or that section is missing a name for this
913     // function.
914     StringRef Name = Function.DebugName;
915     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
916   }
917 }
918 
919 static void addPltEntries(const ObjectFile &Obj,
920                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
921                           StringSaver &Saver) {
922   auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
923   if (!ElfObj)
924     return;
925   DenseMap<StringRef, SectionRef> Sections;
926   for (SectionRef Section : Obj.sections()) {
927     Expected<StringRef> SecNameOrErr = Section.getName();
928     if (!SecNameOrErr) {
929       consumeError(SecNameOrErr.takeError());
930       continue;
931     }
932     Sections[*SecNameOrErr] = Section;
933   }
934   for (auto Plt : ElfObj->getPltEntries()) {
935     if (Plt.Symbol) {
936       SymbolRef Symbol(*Plt.Symbol, ElfObj);
937       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
938       if (Expected<StringRef> NameOrErr = Symbol.getName()) {
939         if (!NameOrErr->empty())
940           AllSymbols[Sections[Plt.Section]].emplace_back(
941               Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
942         continue;
943       } else {
944         // The warning has been reported in disassembleObject().
945         consumeError(NameOrErr.takeError());
946       }
947     }
948     reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
949                       " references an invalid symbol",
950                   Obj.getFileName());
951   }
952 }
953 
954 // Normally the disassembly output will skip blocks of zeroes. This function
955 // returns the number of zero bytes that can be skipped when dumping the
956 // disassembly of the instructions in Buf.
957 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
958   // Find the number of leading zeroes.
959   size_t N = 0;
960   while (N < Buf.size() && !Buf[N])
961     ++N;
962 
963   // We may want to skip blocks of zero bytes, but unless we see
964   // at least 8 of them in a row.
965   if (N < 8)
966     return 0;
967 
968   // We skip zeroes in multiples of 4 because do not want to truncate an
969   // instruction if it starts with a zero byte.
970   return N & ~0x3;
971 }
972 
973 // Returns a map from sections to their relocations.
974 static std::map<SectionRef, std::vector<RelocationRef>>
975 getRelocsMap(object::ObjectFile const &Obj) {
976   std::map<SectionRef, std::vector<RelocationRef>> Ret;
977   uint64_t I = (uint64_t)-1;
978   for (SectionRef Sec : Obj.sections()) {
979     ++I;
980     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
981     if (!RelocatedOrErr)
982       reportError(Obj.getFileName(),
983                   "section (" + Twine(I) +
984                       "): failed to get a relocated section: " +
985                       toString(RelocatedOrErr.takeError()));
986 
987     section_iterator Relocated = *RelocatedOrErr;
988     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
989       continue;
990     std::vector<RelocationRef> &V = Ret[*Relocated];
991     append_range(V, Sec.relocations());
992     // Sort relocations by address.
993     llvm::stable_sort(V, isRelocAddressLess);
994   }
995   return Ret;
996 }
997 
998 // Used for --adjust-vma to check if address should be adjusted by the
999 // specified value for a given section.
1000 // For ELF we do not adjust non-allocatable sections like debug ones,
1001 // because they are not loadable.
1002 // TODO: implement for other file formats.
1003 static bool shouldAdjustVA(const SectionRef &Section) {
1004   const ObjectFile *Obj = Section.getObject();
1005   if (Obj->isELF())
1006     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1007   return false;
1008 }
1009 
1010 
1011 typedef std::pair<uint64_t, char> MappingSymbolPair;
1012 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1013                                  uint64_t Address) {
1014   auto It =
1015       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1016         return Val.first <= Address;
1017       });
1018   // Return zero for any address before the first mapping symbol; this means
1019   // we should use the default disassembly mode, depending on the target.
1020   if (It == MappingSymbols.begin())
1021     return '\x00';
1022   return (It - 1)->second;
1023 }
1024 
1025 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1026                                uint64_t End, const ObjectFile &Obj,
1027                                ArrayRef<uint8_t> Bytes,
1028                                ArrayRef<MappingSymbolPair> MappingSymbols,
1029                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1030   support::endianness Endian =
1031       Obj.isLittleEndian() ? support::little : support::big;
1032   size_t Start = OS.tell();
1033   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1034   if (Index + 4 <= End) {
1035     dumpBytes(Bytes.slice(Index, 4), OS);
1036     AlignToInstStartColumn(Start, STI, OS);
1037     OS << "\t.word\t"
1038            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1039                          10);
1040     return 4;
1041   }
1042   if (Index + 2 <= End) {
1043     dumpBytes(Bytes.slice(Index, 2), OS);
1044     AlignToInstStartColumn(Start, STI, OS);
1045     OS << "\t.short\t"
1046        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1047     return 2;
1048   }
1049   dumpBytes(Bytes.slice(Index, 1), OS);
1050   AlignToInstStartColumn(Start, STI, OS);
1051   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1052   return 1;
1053 }
1054 
1055 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1056                         ArrayRef<uint8_t> Bytes) {
1057   // print out data up to 8 bytes at a time in hex and ascii
1058   uint8_t AsciiData[9] = {'\0'};
1059   uint8_t Byte;
1060   int NumBytes = 0;
1061 
1062   for (; Index < End; ++Index) {
1063     if (NumBytes == 0)
1064       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1065     Byte = Bytes.slice(Index)[0];
1066     outs() << format(" %02x", Byte);
1067     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1068 
1069     uint8_t IndentOffset = 0;
1070     NumBytes++;
1071     if (Index == End - 1 || NumBytes > 8) {
1072       // Indent the space for less than 8 bytes data.
1073       // 2 spaces for byte and one for space between bytes
1074       IndentOffset = 3 * (8 - NumBytes);
1075       for (int Excess = NumBytes; Excess < 8; Excess++)
1076         AsciiData[Excess] = '\0';
1077       NumBytes = 8;
1078     }
1079     if (NumBytes == 8) {
1080       AsciiData[8] = '\0';
1081       outs() << std::string(IndentOffset, ' ') << "         ";
1082       outs() << reinterpret_cast<char *>(AsciiData);
1083       outs() << '\n';
1084       NumBytes = 0;
1085     }
1086   }
1087 }
1088 
1089 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1090                                        const SymbolRef &Symbol) {
1091   const StringRef FileName = Obj.getFileName();
1092   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1093   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1094 
1095   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1096     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1097     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1098 
1099     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1100     std::optional<XCOFF::StorageMappingClass> Smc =
1101         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1102     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1103                         isLabel(XCOFFObj, Symbol));
1104   } else if (Obj.isXCOFF()) {
1105     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1106     return SymbolInfoTy(Addr, Name, SymType, true);
1107   } else
1108     return SymbolInfoTy(Addr, Name,
1109                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1110                                     : (uint8_t)ELF::STT_NOTYPE);
1111 }
1112 
1113 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1114                                           const uint64_t Addr, StringRef &Name,
1115                                           uint8_t Type) {
1116   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1117     return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false);
1118   else
1119     return SymbolInfoTy(Addr, Name, Type);
1120 }
1121 
1122 static void
1123 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1124                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1125                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1126   if (AddrToBBAddrMap.empty())
1127     return;
1128   Labels.clear();
1129   uint64_t StartAddress = SectionAddr + Start;
1130   uint64_t EndAddress = SectionAddr + End;
1131   auto Iter = AddrToBBAddrMap.find(StartAddress);
1132   if (Iter == AddrToBBAddrMap.end())
1133     return;
1134   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1135     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1136     if (BBAddress >= EndAddress)
1137       continue;
1138     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1139   }
1140 }
1141 
1142 static void collectLocalBranchTargets(
1143     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1144     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1145     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1146   // So far only supports PowerPC and X86.
1147   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1148     return;
1149 
1150   Labels.clear();
1151   unsigned LabelCount = 0;
1152   Start += SectionAddr;
1153   End += SectionAddr;
1154   uint64_t Index = Start;
1155   while (Index < End) {
1156     // Disassemble a real instruction and record function-local branch labels.
1157     MCInst Inst;
1158     uint64_t Size;
1159     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1160     bool Disassembled =
1161         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1162     if (Size == 0)
1163       Size = std::min<uint64_t>(ThisBytes.size(),
1164                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1165 
1166     if (Disassembled && MIA) {
1167       uint64_t Target;
1168       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1169       // On PowerPC, if the address of a branch is the same as the target, it
1170       // means that it's a function call. Do not mark the label for this case.
1171       if (TargetKnown && (Target >= Start && Target < End) &&
1172           !Labels.count(Target) &&
1173           !(STI->getTargetTriple().isPPC() && Target == Index))
1174         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1175     }
1176     Index += Size;
1177   }
1178 }
1179 
1180 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1181 // This is currently only used on AMDGPU, and assumes the format of the
1182 // void * argument passed to AMDGPU's createMCSymbolizer.
1183 static void addSymbolizer(
1184     MCContext &Ctx, const Target *Target, StringRef TripleName,
1185     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1186     SectionSymbolsTy &Symbols,
1187     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1188 
1189   std::unique_ptr<MCRelocationInfo> RelInfo(
1190       Target->createMCRelocationInfo(TripleName, Ctx));
1191   if (!RelInfo)
1192     return;
1193   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1194       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1195   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1196   DisAsm->setSymbolizer(std::move(Symbolizer));
1197 
1198   if (!SymbolizeOperands)
1199     return;
1200 
1201   // Synthesize labels referenced by branch instructions by
1202   // disassembling, discarding the output, and collecting the referenced
1203   // addresses from the symbolizer.
1204   for (size_t Index = 0; Index != Bytes.size();) {
1205     MCInst Inst;
1206     uint64_t Size;
1207     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1208     const uint64_t ThisAddr = SectionAddr + Index;
1209     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1210     if (Size == 0)
1211       Size = std::min<uint64_t>(ThisBytes.size(),
1212                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1213     Index += Size;
1214   }
1215   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1216   // Copy and sort to remove duplicates.
1217   std::vector<uint64_t> LabelAddrs;
1218   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1219                     LabelAddrsRef.end());
1220   llvm::sort(LabelAddrs);
1221   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1222                     LabelAddrs.begin());
1223   // Add the labels.
1224   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1225     auto Name = std::make_unique<std::string>();
1226     *Name = (Twine("L") + Twine(LabelNum)).str();
1227     SynthesizedLabelNames.push_back(std::move(Name));
1228     Symbols.push_back(SymbolInfoTy(
1229         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1230   }
1231   llvm::stable_sort(Symbols);
1232   // Recreate the symbolizer with the new symbols list.
1233   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1234   Symbolizer.reset(Target->createMCSymbolizer(
1235       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1236   DisAsm->setSymbolizer(std::move(Symbolizer));
1237 }
1238 
1239 static StringRef getSegmentName(const MachOObjectFile *MachO,
1240                                 const SectionRef &Section) {
1241   if (MachO) {
1242     DataRefImpl DR = Section.getRawDataRefImpl();
1243     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1244     return SegmentName;
1245   }
1246   return "";
1247 }
1248 
1249 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1250                                     const MCAsmInfo &MAI,
1251                                     const MCSubtargetInfo &STI,
1252                                     StringRef Comments,
1253                                     LiveVariablePrinter &LVP) {
1254   do {
1255     if (!Comments.empty()) {
1256       // Emit a line of comments.
1257       StringRef Comment;
1258       std::tie(Comment, Comments) = Comments.split('\n');
1259       // MAI.getCommentColumn() assumes that instructions are printed at the
1260       // position of 8, while getInstStartColumn() returns the actual position.
1261       unsigned CommentColumn =
1262           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1263       FOS.PadToColumn(CommentColumn);
1264       FOS << MAI.getCommentString() << ' ' << Comment;
1265     }
1266     LVP.printAfterInst(FOS);
1267     FOS << '\n';
1268   } while (!Comments.empty());
1269   FOS.flush();
1270 }
1271 
1272 static void createFakeELFSections(ObjectFile &Obj) {
1273   assert(Obj.isELF());
1274   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1275     Elf32LEObj->createFakeSections();
1276   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1277     Elf64LEObj->createFakeSections();
1278   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1279     Elf32BEObj->createFakeSections();
1280   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1281     Elf64BEObj->createFakeSections();
1282   else
1283     llvm_unreachable("Unsupported binary format");
1284 }
1285 
1286 // Tries to fetch a more complete version of the given object file using its
1287 // Build ID. Returns std::nullopt if nothing was found.
1288 static std::optional<OwningBinary<Binary>>
1289 fetchBinaryByBuildID(const ObjectFile &Obj) {
1290   object::BuildIDRef BuildID = getBuildID(&Obj);
1291   if (BuildID.empty())
1292     return std::nullopt;
1293   std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1294   if (!Path)
1295     return std::nullopt;
1296   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1297   if (!DebugBinary) {
1298     reportWarning(toString(DebugBinary.takeError()), *Path);
1299     return std::nullopt;
1300   }
1301   return std::move(*DebugBinary);
1302 }
1303 
1304 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1305                               const ObjectFile &DbgObj, MCContext &Ctx,
1306                               MCDisassembler *PrimaryDisAsm,
1307                               MCDisassembler *SecondaryDisAsm,
1308                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1309                               const MCSubtargetInfo *PrimarySTI,
1310                               const MCSubtargetInfo *SecondarySTI,
1311                               PrettyPrinter &PIP, SourcePrinter &SP,
1312                               bool InlineRelocs) {
1313   const MCSubtargetInfo *STI = PrimarySTI;
1314   MCDisassembler *DisAsm = PrimaryDisAsm;
1315   bool PrimaryIsThumb = false;
1316   if (isArmElf(Obj))
1317     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1318 
1319   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1320   if (InlineRelocs)
1321     RelocMap = getRelocsMap(Obj);
1322   bool Is64Bits = Obj.getBytesInAddress() > 4;
1323 
1324   // Create a mapping from virtual address to symbol name.  This is used to
1325   // pretty print the symbols while disassembling.
1326   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1327   SectionSymbolsTy AbsoluteSymbols;
1328   const StringRef FileName = Obj.getFileName();
1329   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1330   for (const SymbolRef &Symbol : Obj.symbols()) {
1331     Expected<StringRef> NameOrErr = Symbol.getName();
1332     if (!NameOrErr) {
1333       reportWarning(toString(NameOrErr.takeError()), FileName);
1334       continue;
1335     }
1336     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1337       continue;
1338 
1339     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1340       continue;
1341 
1342     if (MachO) {
1343       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1344       // symbols that support MachO header introspection. They do not bind to
1345       // code locations and are irrelevant for disassembly.
1346       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1347         continue;
1348       // Don't ask a Mach-O STAB symbol for its section unless you know that
1349       // STAB symbol's section field refers to a valid section index. Otherwise
1350       // the symbol may error trying to load a section that does not exist.
1351       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1352       uint8_t NType = (MachO->is64Bit() ?
1353                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1354                        MachO->getSymbolTableEntry(SymDRI).n_type);
1355       if (NType & MachO::N_STAB)
1356         continue;
1357     }
1358 
1359     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1360     if (SecI != Obj.section_end())
1361       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1362     else
1363       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1364   }
1365 
1366   if (AllSymbols.empty() && Obj.isELF())
1367     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1368 
1369   if (Obj.isWasm())
1370     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1371 
1372   if (Obj.isELF() && Obj.sections().empty())
1373     createFakeELFSections(Obj);
1374 
1375   BumpPtrAllocator A;
1376   StringSaver Saver(A);
1377   addPltEntries(Obj, AllSymbols, Saver);
1378 
1379   // Create a mapping from virtual address to section. An empty section can
1380   // cause more than one section at the same address. Sort such sections to be
1381   // before same-addressed non-empty sections so that symbol lookups prefer the
1382   // non-empty section.
1383   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1384   for (SectionRef Sec : Obj.sections())
1385     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1386   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1387     if (LHS.first != RHS.first)
1388       return LHS.first < RHS.first;
1389     return LHS.second.getSize() < RHS.second.getSize();
1390   });
1391 
1392   // Linked executables (.exe and .dll files) typically don't include a real
1393   // symbol table but they might contain an export table.
1394   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1395     for (const auto &ExportEntry : COFFObj->export_directories()) {
1396       StringRef Name;
1397       if (Error E = ExportEntry.getSymbolName(Name))
1398         reportError(std::move(E), Obj.getFileName());
1399       if (Name.empty())
1400         continue;
1401 
1402       uint32_t RVA;
1403       if (Error E = ExportEntry.getExportRVA(RVA))
1404         reportError(std::move(E), Obj.getFileName());
1405 
1406       uint64_t VA = COFFObj->getImageBase() + RVA;
1407       auto Sec = partition_point(
1408           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1409             return O.first <= VA;
1410           });
1411       if (Sec != SectionAddresses.begin()) {
1412         --Sec;
1413         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1414       } else
1415         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1416     }
1417   }
1418 
1419   // Sort all the symbols, this allows us to use a simple binary search to find
1420   // Multiple symbols can have the same address. Use a stable sort to stabilize
1421   // the output.
1422   StringSet<> FoundDisasmSymbolSet;
1423   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1424     llvm::stable_sort(SecSyms.second);
1425   llvm::stable_sort(AbsoluteSymbols);
1426 
1427   std::unique_ptr<DWARFContext> DICtx;
1428   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1429 
1430   if (DbgVariables != DVDisabled) {
1431     DICtx = DWARFContext::create(DbgObj);
1432     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1433       LVP.addCompileUnit(CU->getUnitDIE(false));
1434   }
1435 
1436   LLVM_DEBUG(LVP.dump());
1437 
1438   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1439   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1440                                std::nullopt) {
1441     AddrToBBAddrMap.clear();
1442     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1443       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1444       if (!BBAddrMapsOrErr) {
1445         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1446         return;
1447       }
1448       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1449         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1450                                 std::move(FunctionBBAddrMap));
1451     }
1452   };
1453 
1454   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1455   // single mapping, since they don't have any conflicts.
1456   if (SymbolizeOperands && !Obj.isRelocatableObject())
1457     ReadBBAddrMap();
1458 
1459   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1460     if (FilterSections.empty() && !DisassembleAll &&
1461         (!Section.isText() || Section.isVirtual()))
1462       continue;
1463 
1464     uint64_t SectionAddr = Section.getAddress();
1465     uint64_t SectSize = Section.getSize();
1466     if (!SectSize)
1467       continue;
1468 
1469     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1470     // corresponding to this section, if present.
1471     if (SymbolizeOperands && Obj.isRelocatableObject())
1472       ReadBBAddrMap(Section.getIndex());
1473 
1474     // Get the list of all the symbols in this section.
1475     SectionSymbolsTy &Symbols = AllSymbols[Section];
1476     std::vector<MappingSymbolPair> MappingSymbols;
1477     if (hasMappingSymbols(Obj)) {
1478       for (const auto &Symb : Symbols) {
1479         uint64_t Address = Symb.Addr;
1480         StringRef Name = Symb.Name;
1481         if (Name.startswith("$d"))
1482           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1483         if (Name.startswith("$x"))
1484           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1485         if (Name.startswith("$a"))
1486           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1487         if (Name.startswith("$t"))
1488           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1489       }
1490     }
1491 
1492     llvm::sort(MappingSymbols);
1493 
1494     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1495         unwrapOrError(Section.getContents(), Obj.getFileName()));
1496 
1497     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1498     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1499       // AMDGPU disassembler uses symbolizer for printing labels
1500       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1501                     Symbols, SynthesizedLabelNames);
1502     }
1503 
1504     StringRef SegmentName = getSegmentName(MachO, Section);
1505     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1506     // If the section has no symbol at the start, just insert a dummy one.
1507     if (Symbols.empty() || Symbols[0].Addr != 0) {
1508       Symbols.insert(Symbols.begin(),
1509                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1510                                            Section.isText() ? ELF::STT_FUNC
1511                                                             : ELF::STT_OBJECT));
1512     }
1513 
1514     SmallString<40> Comments;
1515     raw_svector_ostream CommentStream(Comments);
1516 
1517     uint64_t VMAAdjustment = 0;
1518     if (shouldAdjustVA(Section))
1519       VMAAdjustment = AdjustVMA;
1520 
1521     // In executable and shared objects, r_offset holds a virtual address.
1522     // Subtract SectionAddr from the r_offset field of a relocation to get
1523     // the section offset.
1524     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1525     uint64_t Size;
1526     uint64_t Index;
1527     bool PrintedSection = false;
1528     std::vector<RelocationRef> Rels = RelocMap[Section];
1529     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1530     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1531 
1532     // Loop over each chunk of code between two points where at least
1533     // one symbol is defined.
1534     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1535       // Advance SI past all the symbols starting at the same address,
1536       // and make an ArrayRef of them.
1537       unsigned FirstSI = SI;
1538       uint64_t Start = Symbols[SI].Addr;
1539       ArrayRef<SymbolInfoTy> SymbolsHere;
1540       while (SI != SE && Symbols[SI].Addr == Start)
1541         ++SI;
1542       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1543 
1544       // Get the demangled names of all those symbols. We end up with a vector
1545       // of StringRef that holds the names we're going to use, and a vector of
1546       // std::string that stores the new strings returned by demangle(), if
1547       // any. If we don't call demangle() then that vector can stay empty.
1548       std::vector<StringRef> SymNamesHere;
1549       std::vector<std::string> DemangledSymNamesHere;
1550       if (Demangle) {
1551         // Fetch the demangled names and store them locally.
1552         for (const SymbolInfoTy &Symbol : SymbolsHere)
1553           DemangledSymNamesHere.push_back(demangle(Symbol.Name));
1554         // Now we've finished modifying that vector, it's safe to make
1555         // a vector of StringRefs pointing into it.
1556         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1557                             DemangledSymNamesHere.end());
1558       } else {
1559         for (const SymbolInfoTy &Symbol : SymbolsHere)
1560           SymNamesHere.push_back(Symbol.Name);
1561       }
1562 
1563       // Distinguish ELF data from code symbols, which will be used later on to
1564       // decide whether to 'disassemble' this chunk as a data declaration via
1565       // dumpELFData(), or whether to treat it as code.
1566       //
1567       // If data _and_ code symbols are defined at the same address, the code
1568       // takes priority, on the grounds that disassembling code is our main
1569       // purpose here, and it would be a worse failure to _not_ interpret
1570       // something that _was_ meaningful as code than vice versa.
1571       //
1572       // Any ELF symbol type that is not clearly data will be regarded as code.
1573       // In particular, one of the uses of STT_NOTYPE is for branch targets
1574       // inside functions, for which STT_FUNC would be inaccurate.
1575       //
1576       // So here, we spot whether there's any non-data symbol present at all,
1577       // and only set the DisassembleAsData flag if there isn't. Also, we use
1578       // this distinction to inform the decision of which symbol to print at
1579       // the head of the section, so that if we're printing code, we print a
1580       // code-related symbol name to go with it.
1581       bool DisassembleAsData = false;
1582       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1583       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1584         DisassembleAsData = true; // unless we find a code symbol below
1585 
1586         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1587           uint8_t SymTy = SymbolsHere[i].Type;
1588           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1589             DisassembleAsData = false;
1590             DisplaySymIndex = i;
1591           }
1592         }
1593       }
1594 
1595       // Decide which symbol(s) from this collection we're going to print.
1596       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1597       // If the user has given the --disassemble-symbols option, then we must
1598       // display every symbol in that set, and no others.
1599       if (!DisasmSymbolSet.empty()) {
1600         bool FoundAny = false;
1601         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1602           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1603             SymsToPrint[i] = true;
1604             FoundAny = true;
1605           }
1606         }
1607 
1608         // And if none of the symbols here is one that the user asked for, skip
1609         // disassembling this entire chunk of code.
1610         if (!FoundAny)
1611           continue;
1612       } else {
1613         // Otherwise, print whichever symbol at this location is last in the
1614         // Symbols array, because that array is pre-sorted in a way intended to
1615         // correlate with priority of which symbol to display.
1616         SymsToPrint[DisplaySymIndex] = true;
1617       }
1618 
1619       // Now that we know we're disassembling this section, override the choice
1620       // of which symbols to display by printing _all_ of them at this address
1621       // if the user asked for all symbols.
1622       //
1623       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1624       // only the chunk of code headed by 'foo', but also show any other
1625       // symbols defined at that address, such as aliases for 'foo', or the ARM
1626       // mapping symbol preceding its code.
1627       if (ShowAllSymbols) {
1628         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1629           SymsToPrint[i] = true;
1630       }
1631 
1632       if (Start < SectionAddr || StopAddress <= Start)
1633         continue;
1634 
1635       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1636         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1637 
1638       // The end is the section end, the beginning of the next symbol, or
1639       // --stop-address.
1640       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1641       if (SI < SE)
1642         End = std::min(End, Symbols[SI].Addr);
1643       if (Start >= End || End <= StartAddress)
1644         continue;
1645       Start -= SectionAddr;
1646       End -= SectionAddr;
1647 
1648       if (!PrintedSection) {
1649         PrintedSection = true;
1650         outs() << "\nDisassembly of section ";
1651         if (!SegmentName.empty())
1652           outs() << SegmentName << ",";
1653         outs() << SectionName << ":\n";
1654       }
1655 
1656       outs() << '\n';
1657 
1658       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1659         if (!SymsToPrint[i])
1660           continue;
1661 
1662         const SymbolInfoTy &Symbol = SymbolsHere[i];
1663         const StringRef SymbolName = SymNamesHere[i];
1664 
1665         if (LeadingAddr)
1666           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1667                            SectionAddr + Start + VMAAdjustment);
1668         if (Obj.isXCOFF() && SymbolDescription) {
1669           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1670         } else
1671           outs() << '<' << SymbolName << ">:\n";
1672       }
1673 
1674       // Don't print raw contents of a virtual section. A virtual section
1675       // doesn't have any contents in the file.
1676       if (Section.isVirtual()) {
1677         outs() << "...\n";
1678         continue;
1679       }
1680 
1681       // See if any of the symbols defined at this location triggers target-
1682       // specific disassembly behavior, e.g. of special descriptors or function
1683       // prelude information.
1684       //
1685       // We stop this loop at the first symbol that triggers some kind of
1686       // interesting behavior (if any), on the assumption that if two symbols
1687       // defined at the same address trigger two conflicting symbol handlers,
1688       // the object file is probably confused anyway, and it would make even
1689       // less sense to present the output of _both_ handlers, because that
1690       // would describe the same data twice.
1691       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1692         SymbolInfoTy Symbol = SymbolsHere[SHI];
1693 
1694         auto Status =
1695             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1696                                   SectionAddr + Start, CommentStream);
1697 
1698         if (!Status) {
1699           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1700           // any interesting handling for this symbol. Try the other symbols
1701           // defined at this address.
1702           continue;
1703         }
1704 
1705         if (*Status == MCDisassembler::Fail) {
1706           // If onSymbolStart returns Fail, that means it identified some kind
1707           // of special data at this address, but wasn't able to disassemble it
1708           // meaningfully. So we fall back to disassembling the failed region
1709           // as bytes, assuming that the target detected the failure before
1710           // printing anything.
1711           //
1712           // Return values Success or SoftFail (i.e no 'real' failure) are
1713           // expected to mean that the target has emitted its own output.
1714           //
1715           // Either way, 'Size' will have been set to the amount of data
1716           // covered by whatever prologue the target identified. So we advance
1717           // our own position to beyond that. Sometimes that will be the entire
1718           // distance to the next symbol, and sometimes it will be just a
1719           // prologue and we should start disassembling instructions from where
1720           // it left off.
1721           outs() << "// Error in decoding " << SymNamesHere[SHI]
1722                  << " : Decoding failed region as bytes.\n";
1723           for (uint64_t I = 0; I < Size; ++I) {
1724             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1725                    << "\n";
1726           }
1727         }
1728         Start += Size;
1729         break;
1730       }
1731 
1732       Index = Start;
1733       if (SectionAddr < StartAddress)
1734         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1735 
1736       if (DisassembleAsData) {
1737         dumpELFData(SectionAddr, Index, End, Bytes);
1738         Index = End;
1739         continue;
1740       }
1741 
1742       bool DumpARMELFData = false;
1743       bool DumpTracebackTableForXCOFFFunction =
1744           Obj.isXCOFF() && Section.isText() && TracebackTable &&
1745           Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
1746           (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
1747 
1748       formatted_raw_ostream FOS(outs());
1749 
1750       std::unordered_map<uint64_t, std::string> AllLabels;
1751       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1752       if (SymbolizeOperands) {
1753         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1754                                   SectionAddr, Index, End, AllLabels);
1755         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1756                                BBAddrMapLabels);
1757       }
1758 
1759       while (Index < End) {
1760         // ARM and AArch64 ELF binaries can interleave data and text in the
1761         // same section. We rely on the markers introduced to understand what
1762         // we need to dump. If the data marker is within a function, it is
1763         // denoted as a word/short etc.
1764         if (!MappingSymbols.empty()) {
1765           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1766           DumpARMELFData = Kind == 'd';
1767           if (SecondarySTI) {
1768             if (Kind == 'a') {
1769               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1770               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1771             } else if (Kind == 't') {
1772               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1773               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1774             }
1775           }
1776         }
1777 
1778         if (DumpARMELFData) {
1779           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1780                                 MappingSymbols, *STI, FOS);
1781         } else {
1782           // When -z or --disassemble-zeroes are given we always dissasemble
1783           // them. Otherwise we might want to skip zero bytes we see.
1784           if (!DisassembleZeroes) {
1785             uint64_t MaxOffset = End - Index;
1786             // For --reloc: print zero blocks patched by relocations, so that
1787             // relocations can be shown in the dump.
1788             if (RelCur != RelEnd)
1789               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1790                                    MaxOffset);
1791 
1792             if (size_t N =
1793                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1794               FOS << "\t\t..." << '\n';
1795               Index += N;
1796               continue;
1797             }
1798           }
1799 
1800           if (DumpTracebackTableForXCOFFFunction &&
1801               doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
1802             dumpTracebackTable(Bytes.slice(Index),
1803                                SectionAddr + Index + VMAAdjustment, FOS,
1804                                SectionAddr + End + VMAAdjustment, *STI,
1805                                cast<XCOFFObjectFile>(&Obj));
1806             Index = End;
1807             continue;
1808           }
1809 
1810           // Print local label if there's any.
1811           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1812           if (Iter1 != BBAddrMapLabels.end()) {
1813             for (StringRef Label : Iter1->second)
1814               FOS << "<" << Label << ">:\n";
1815           } else {
1816             auto Iter2 = AllLabels.find(SectionAddr + Index);
1817             if (Iter2 != AllLabels.end())
1818               FOS << "<" << Iter2->second << ">:\n";
1819           }
1820 
1821           // Disassemble a real instruction or a data when disassemble all is
1822           // provided
1823           MCInst Inst;
1824           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1825           uint64_t ThisAddr = SectionAddr + Index;
1826           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1827                                                      ThisAddr, CommentStream);
1828           if (Size == 0)
1829             Size = std::min<uint64_t>(
1830                 ThisBytes.size(),
1831                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1832 
1833           LVP.update({Index, Section.getIndex()},
1834                      {Index + Size, Section.getIndex()}, Index + Size != End);
1835 
1836           IP->setCommentStream(CommentStream);
1837 
1838           PIP.printInst(
1839               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1840               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1841               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1842 
1843           IP->setCommentStream(llvm::nulls());
1844 
1845           // If disassembly has failed, avoid analysing invalid/incomplete
1846           // instruction information. Otherwise, try to resolve the target
1847           // address (jump target or memory operand address) and print it on the
1848           // right of the instruction.
1849           if (Disassembled && MIA) {
1850             // Branch targets are printed just after the instructions.
1851             llvm::raw_ostream *TargetOS = &FOS;
1852             uint64_t Target;
1853             bool PrintTarget =
1854                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1855             if (!PrintTarget)
1856               if (std::optional<uint64_t> MaybeTarget =
1857                       MIA->evaluateMemoryOperandAddress(
1858                           Inst, STI, SectionAddr + Index, Size)) {
1859                 Target = *MaybeTarget;
1860                 PrintTarget = true;
1861                 // Do not print real address when symbolizing.
1862                 if (!SymbolizeOperands) {
1863                   // Memory operand addresses are printed as comments.
1864                   TargetOS = &CommentStream;
1865                   *TargetOS << "0x" << Twine::utohexstr(Target);
1866                 }
1867               }
1868             if (PrintTarget) {
1869               // In a relocatable object, the target's section must reside in
1870               // the same section as the call instruction or it is accessed
1871               // through a relocation.
1872               //
1873               // In a non-relocatable object, the target may be in any section.
1874               // In that case, locate the section(s) containing the target
1875               // address and find the symbol in one of those, if possible.
1876               //
1877               // N.B. We don't walk the relocations in the relocatable case yet.
1878               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1879               if (!Obj.isRelocatableObject()) {
1880                 auto It = llvm::partition_point(
1881                     SectionAddresses,
1882                     [=](const std::pair<uint64_t, SectionRef> &O) {
1883                       return O.first <= Target;
1884                     });
1885                 uint64_t TargetSecAddr = 0;
1886                 while (It != SectionAddresses.begin()) {
1887                   --It;
1888                   if (TargetSecAddr == 0)
1889                     TargetSecAddr = It->first;
1890                   if (It->first != TargetSecAddr)
1891                     break;
1892                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1893                 }
1894               } else {
1895                 TargetSectionSymbols.push_back(&Symbols);
1896               }
1897               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1898 
1899               // Find the last symbol in the first candidate section whose
1900               // offset is less than or equal to the target. If there are no
1901               // such symbols, try in the next section and so on, before finally
1902               // using the nearest preceding absolute symbol (if any), if there
1903               // are no other valid symbols.
1904               const SymbolInfoTy *TargetSym = nullptr;
1905               for (const SectionSymbolsTy *TargetSymbols :
1906                    TargetSectionSymbols) {
1907                 auto It = llvm::partition_point(
1908                     *TargetSymbols,
1909                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1910                 while (It != TargetSymbols->begin()) {
1911                   --It;
1912                   // Skip mapping symbols to avoid possible ambiguity as they
1913                   // do not allow uniquely identifying the target address.
1914                   if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) {
1915                     TargetSym = &*It;
1916                     break;
1917                   }
1918                 }
1919                 if (TargetSym)
1920                   break;
1921               }
1922 
1923               // Print the labels corresponding to the target if there's any.
1924               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1925               bool LabelAvailable = AllLabels.count(Target);
1926               if (TargetSym != nullptr) {
1927                 uint64_t TargetAddress = TargetSym->Addr;
1928                 uint64_t Disp = Target - TargetAddress;
1929                 std::string TargetName = Demangle ? demangle(TargetSym->Name)
1930                                                   : TargetSym->Name.str();
1931 
1932                 *TargetOS << " <";
1933                 if (!Disp) {
1934                   // Always Print the binary symbol precisely corresponding to
1935                   // the target address.
1936                   *TargetOS << TargetName;
1937                 } else if (BBAddrMapLabelAvailable) {
1938                   *TargetOS << BBAddrMapLabels[Target].front();
1939                 } else if (LabelAvailable) {
1940                   *TargetOS << AllLabels[Target];
1941                 } else {
1942                   // Always Print the binary symbol plus an offset if there's no
1943                   // local label corresponding to the target address.
1944                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1945                 }
1946                 *TargetOS << ">";
1947               } else if (BBAddrMapLabelAvailable) {
1948                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1949               } else if (LabelAvailable) {
1950                 *TargetOS << " <" << AllLabels[Target] << ">";
1951               }
1952               // By convention, each record in the comment stream should be
1953               // terminated.
1954               if (TargetOS == &CommentStream)
1955                 *TargetOS << "\n";
1956             }
1957           }
1958         }
1959 
1960         assert(Ctx.getAsmInfo());
1961         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1962                                 CommentStream.str(), LVP);
1963         Comments.clear();
1964 
1965         // Hexagon does this in pretty printer
1966         if (Obj.getArch() != Triple::hexagon) {
1967           // Print relocation for instruction and data.
1968           while (RelCur != RelEnd) {
1969             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1970             // If this relocation is hidden, skip it.
1971             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1972               ++RelCur;
1973               continue;
1974             }
1975 
1976             // Stop when RelCur's offset is past the disassembled
1977             // instruction/data. Note that it's possible the disassembled data
1978             // is not the complete data: we might see the relocation printed in
1979             // the middle of the data, but this matches the binutils objdump
1980             // output.
1981             if (Offset >= Index + Size)
1982               break;
1983 
1984             // When --adjust-vma is used, update the address printed.
1985             if (RelCur->getSymbol() != Obj.symbol_end()) {
1986               Expected<section_iterator> SymSI =
1987                   RelCur->getSymbol()->getSection();
1988               if (SymSI && *SymSI != Obj.section_end() &&
1989                   shouldAdjustVA(**SymSI))
1990                 Offset += AdjustVMA;
1991             }
1992 
1993             printRelocation(FOS, Obj.getFileName(), *RelCur,
1994                             SectionAddr + Offset, Is64Bits);
1995             LVP.printAfterOtherLine(FOS, true);
1996             ++RelCur;
1997           }
1998         }
1999 
2000         Index += Size;
2001       }
2002     }
2003   }
2004   StringSet<> MissingDisasmSymbolSet =
2005       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2006   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2007     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2008 }
2009 
2010 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2011   // If information useful for showing the disassembly is missing, try to find a
2012   // more complete binary and disassemble that instead.
2013   OwningBinary<Binary> FetchedBinary;
2014   if (Obj->symbols().empty()) {
2015     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2016             fetchBinaryByBuildID(*Obj)) {
2017       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2018         if (!O->symbols().empty() ||
2019             (!O->sections().empty() && Obj->sections().empty())) {
2020           FetchedBinary = std::move(*FetchedBinaryOpt);
2021           Obj = O;
2022         }
2023       }
2024     }
2025   }
2026 
2027   const Target *TheTarget = getTarget(Obj);
2028 
2029   // Package up features to be passed to target/subtarget
2030   Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2031   if (!FeaturesValue)
2032     reportError(FeaturesValue.takeError(), Obj->getFileName());
2033   SubtargetFeatures Features = *FeaturesValue;
2034   if (!MAttrs.empty()) {
2035     for (unsigned I = 0; I != MAttrs.size(); ++I)
2036       Features.AddFeature(MAttrs[I]);
2037   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2038     Features.AddFeature("+all");
2039   }
2040 
2041   std::unique_ptr<const MCRegisterInfo> MRI(
2042       TheTarget->createMCRegInfo(TripleName));
2043   if (!MRI)
2044     reportError(Obj->getFileName(),
2045                 "no register info for target " + TripleName);
2046 
2047   // Set up disassembler.
2048   MCTargetOptions MCOptions;
2049   std::unique_ptr<const MCAsmInfo> AsmInfo(
2050       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2051   if (!AsmInfo)
2052     reportError(Obj->getFileName(),
2053                 "no assembly info for target " + TripleName);
2054 
2055   if (MCPU.empty())
2056     MCPU = Obj->tryGetCPUName().value_or("").str();
2057 
2058   if (isArmElf(*Obj)) {
2059     // When disassembling big-endian Arm ELF, the instruction endianness is
2060     // determined in a complex way. In relocatable objects, AAELF32 mandates
2061     // that instruction endianness matches the ELF file endianness; in
2062     // executable images, that's true unless the file header has the EF_ARM_BE8
2063     // flag, in which case instructions are little-endian regardless of data
2064     // endianness.
2065     //
2066     // We must set the big-endian-instructions SubtargetFeature to make the
2067     // disassembler read the instructions the right way round, and also tell
2068     // our own prettyprinter to retrieve the encodings the same way to print in
2069     // hex.
2070     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2071 
2072     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2073                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2074       Features.AddFeature("+big-endian-instructions");
2075       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2076     } else {
2077       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2078     }
2079   }
2080 
2081   std::unique_ptr<const MCSubtargetInfo> STI(
2082       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2083   if (!STI)
2084     reportError(Obj->getFileName(),
2085                 "no subtarget info for target " + TripleName);
2086   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2087   if (!MII)
2088     reportError(Obj->getFileName(),
2089                 "no instruction info for target " + TripleName);
2090   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
2091   // FIXME: for now initialize MCObjectFileInfo with default values
2092   std::unique_ptr<MCObjectFileInfo> MOFI(
2093       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
2094   Ctx.setObjectFileInfo(MOFI.get());
2095 
2096   std::unique_ptr<MCDisassembler> DisAsm(
2097       TheTarget->createMCDisassembler(*STI, Ctx));
2098   if (!DisAsm)
2099     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2100 
2101   // If we have an ARM object file, we need a second disassembler, because
2102   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2103   // We use mapping symbols to switch between the two assemblers, where
2104   // appropriate.
2105   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2106   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2107   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
2108     if (STI->checkFeatures("+thumb-mode"))
2109       Features.AddFeature("-thumb-mode");
2110     else
2111       Features.AddFeature("+thumb-mode");
2112     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2113                                                         Features.getString()));
2114     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2115   }
2116 
2117   std::unique_ptr<const MCInstrAnalysis> MIA(
2118       TheTarget->createMCInstrAnalysis(MII.get()));
2119 
2120   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2121   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2122       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2123   if (!IP)
2124     reportError(Obj->getFileName(),
2125                 "no instruction printer for target " + TripleName);
2126   IP->setPrintImmHex(PrintImmHex);
2127   IP->setPrintBranchImmAsAddress(true);
2128   IP->setSymbolizeOperands(SymbolizeOperands);
2129   IP->setMCInstrAnalysis(MIA.get());
2130 
2131   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2132 
2133   const ObjectFile *DbgObj = Obj;
2134   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2135     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2136             fetchBinaryByBuildID(*Obj)) {
2137       if (auto *FetchedObj =
2138               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2139         if (FetchedObj->hasDebugInfo()) {
2140           FetchedBinary = std::move(*DebugBinaryOpt);
2141           DbgObj = FetchedObj;
2142         }
2143       }
2144     }
2145   }
2146 
2147   std::unique_ptr<object::Binary> DSYMBinary;
2148   std::unique_ptr<MemoryBuffer> DSYMBuf;
2149   if (!DbgObj->hasDebugInfo()) {
2150     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2151       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2152                                            DSYMBinary, DSYMBuf);
2153       if (!DbgObj)
2154         return;
2155     }
2156   }
2157 
2158   SourcePrinter SP(DbgObj, TheTarget->getName());
2159 
2160   for (StringRef Opt : DisassemblerOptions)
2161     if (!IP->applyTargetSpecificCLOption(Opt))
2162       reportError(Obj->getFileName(),
2163                   "Unrecognized disassembler option: " + Opt);
2164 
2165   disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(),
2166                     SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(),
2167                     SecondarySTI.get(), PIP, SP, InlineRelocs);
2168 }
2169 
2170 void objdump::printRelocations(const ObjectFile *Obj) {
2171   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2172                                                  "%08" PRIx64;
2173 
2174   // Build a mapping from relocation target to a vector of relocation
2175   // sections. Usually, there is an only one relocation section for
2176   // each relocated section.
2177   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2178   uint64_t Ndx;
2179   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2180     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2181       continue;
2182     if (Section.relocation_begin() == Section.relocation_end())
2183       continue;
2184     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2185     if (!SecOrErr)
2186       reportError(Obj->getFileName(),
2187                   "section (" + Twine(Ndx) +
2188                       "): unable to get a relocation target: " +
2189                       toString(SecOrErr.takeError()));
2190     SecToRelSec[**SecOrErr].push_back(Section);
2191   }
2192 
2193   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2194     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2195     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2196     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2197     uint32_t TypePadding = 24;
2198     outs() << left_justify("OFFSET", OffsetPadding) << " "
2199            << left_justify("TYPE", TypePadding) << " "
2200            << "VALUE\n";
2201 
2202     for (SectionRef Section : P.second) {
2203       for (const RelocationRef &Reloc : Section.relocations()) {
2204         uint64_t Address = Reloc.getOffset();
2205         SmallString<32> RelocName;
2206         SmallString<32> ValueStr;
2207         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2208           continue;
2209         Reloc.getTypeName(RelocName);
2210         if (Error E = getRelocationValueString(Reloc, ValueStr))
2211           reportError(std::move(E), Obj->getFileName());
2212 
2213         outs() << format(Fmt.data(), Address) << " "
2214                << left_justify(RelocName, TypePadding) << " " << ValueStr
2215                << "\n";
2216       }
2217     }
2218   }
2219 }
2220 
2221 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2222   // For the moment, this option is for ELF only
2223   if (!Obj->isELF())
2224     return;
2225 
2226   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2227   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
2228         return Sec.getType() == ELF::SHT_DYNAMIC;
2229       })) {
2230     reportError(Obj->getFileName(), "not a dynamic object");
2231     return;
2232   }
2233 
2234   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2235   if (DynRelSec.empty())
2236     return;
2237 
2238   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
2239   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2240   const uint32_t TypePadding = 24;
2241   outs() << left_justify("OFFSET", OffsetPadding) << ' '
2242          << left_justify("TYPE", TypePadding) << " VALUE\n";
2243 
2244   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2245   for (const SectionRef &Section : DynRelSec)
2246     for (const RelocationRef &Reloc : Section.relocations()) {
2247       uint64_t Address = Reloc.getOffset();
2248       SmallString<32> RelocName;
2249       SmallString<32> ValueStr;
2250       Reloc.getTypeName(RelocName);
2251       if (Error E = getRelocationValueString(Reloc, ValueStr))
2252         reportError(std::move(E), Obj->getFileName());
2253       outs() << format(Fmt.data(), Address) << ' '
2254              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2255     }
2256 }
2257 
2258 // Returns true if we need to show LMA column when dumping section headers. We
2259 // show it only when the platform is ELF and either we have at least one section
2260 // whose VMA and LMA are different and/or when --show-lma flag is used.
2261 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2262   if (!Obj.isELF())
2263     return false;
2264   for (const SectionRef &S : ToolSectionFilter(Obj))
2265     if (S.getAddress() != getELFSectionLMA(S))
2266       return true;
2267   return ShowLMA;
2268 }
2269 
2270 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2271   // Default column width for names is 13 even if no names are that long.
2272   size_t MaxWidth = 13;
2273   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2274     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2275     MaxWidth = std::max(MaxWidth, Name.size());
2276   }
2277   return MaxWidth;
2278 }
2279 
2280 void objdump::printSectionHeaders(ObjectFile &Obj) {
2281   if (Obj.isELF() && Obj.sections().empty())
2282     createFakeELFSections(Obj);
2283 
2284   size_t NameWidth = getMaxSectionNameWidth(Obj);
2285   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2286   bool HasLMAColumn = shouldDisplayLMA(Obj);
2287   outs() << "\nSections:\n";
2288   if (HasLMAColumn)
2289     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2290            << left_justify("VMA", AddressWidth) << " "
2291            << left_justify("LMA", AddressWidth) << " Type\n";
2292   else
2293     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2294            << left_justify("VMA", AddressWidth) << " Type\n";
2295 
2296   uint64_t Idx;
2297   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2298     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2299     uint64_t VMA = Section.getAddress();
2300     if (shouldAdjustVA(Section))
2301       VMA += AdjustVMA;
2302 
2303     uint64_t Size = Section.getSize();
2304 
2305     std::string Type = Section.isText() ? "TEXT" : "";
2306     if (Section.isData())
2307       Type += Type.empty() ? "DATA" : ", DATA";
2308     if (Section.isBSS())
2309       Type += Type.empty() ? "BSS" : ", BSS";
2310     if (Section.isDebugSection())
2311       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2312 
2313     if (HasLMAColumn)
2314       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2315                        Name.str().c_str(), Size)
2316              << format_hex_no_prefix(VMA, AddressWidth) << " "
2317              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2318              << " " << Type << "\n";
2319     else
2320       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2321                        Name.str().c_str(), Size)
2322              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2323   }
2324 }
2325 
2326 void objdump::printSectionContents(const ObjectFile *Obj) {
2327   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2328 
2329   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2330     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2331     uint64_t BaseAddr = Section.getAddress();
2332     uint64_t Size = Section.getSize();
2333     if (!Size)
2334       continue;
2335 
2336     outs() << "Contents of section ";
2337     StringRef SegmentName = getSegmentName(MachO, Section);
2338     if (!SegmentName.empty())
2339       outs() << SegmentName << ",";
2340     outs() << Name << ":\n";
2341     if (Section.isBSS()) {
2342       outs() << format("<skipping contents of bss section at [%04" PRIx64
2343                        ", %04" PRIx64 ")>\n",
2344                        BaseAddr, BaseAddr + Size);
2345       continue;
2346     }
2347 
2348     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2349 
2350     // Dump out the content as hex and printable ascii characters.
2351     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2352       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2353       // Dump line of hex.
2354       for (std::size_t I = 0; I < 16; ++I) {
2355         if (I != 0 && I % 4 == 0)
2356           outs() << ' ';
2357         if (Addr + I < End)
2358           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2359                  << hexdigit(Contents[Addr + I] & 0xF, true);
2360         else
2361           outs() << "  ";
2362       }
2363       // Print ascii.
2364       outs() << "  ";
2365       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2366         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2367           outs() << Contents[Addr + I];
2368         else
2369           outs() << ".";
2370       }
2371       outs() << "\n";
2372     }
2373   }
2374 }
2375 
2376 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2377                                StringRef ArchitectureName, bool DumpDynamic) {
2378   if (O.isCOFF() && !DumpDynamic) {
2379     outs() << "\nSYMBOL TABLE:\n";
2380     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2381     return;
2382   }
2383 
2384   const StringRef FileName = O.getFileName();
2385 
2386   if (!DumpDynamic) {
2387     outs() << "\nSYMBOL TABLE:\n";
2388     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2389       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2390                   DumpDynamic);
2391     return;
2392   }
2393 
2394   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2395   if (!O.isELF()) {
2396     reportWarning(
2397         "this operation is not currently supported for this file format",
2398         FileName);
2399     return;
2400   }
2401 
2402   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2403   auto Symbols = ELF->getDynamicSymbolIterators();
2404   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2405       ELF->readDynsymVersions();
2406   if (!SymbolVersionsOrErr) {
2407     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2408     SymbolVersionsOrErr = std::vector<VersionEntry>();
2409     (void)!SymbolVersionsOrErr;
2410   }
2411   for (auto &Sym : Symbols)
2412     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2413                 ArchitectureName, DumpDynamic);
2414 }
2415 
2416 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2417                           ArrayRef<VersionEntry> SymbolVersions,
2418                           StringRef FileName, StringRef ArchiveName,
2419                           StringRef ArchitectureName, bool DumpDynamic) {
2420   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2421   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2422                                    ArchitectureName);
2423   if ((Address < StartAddress) || (Address > StopAddress))
2424     return;
2425   SymbolRef::Type Type =
2426       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2427   uint32_t Flags =
2428       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2429 
2430   // Don't ask a Mach-O STAB symbol for its section unless you know that
2431   // STAB symbol's section field refers to a valid section index. Otherwise
2432   // the symbol may error trying to load a section that does not exist.
2433   bool IsSTAB = false;
2434   if (MachO) {
2435     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2436     uint8_t NType =
2437         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2438                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2439     if (NType & MachO::N_STAB)
2440       IsSTAB = true;
2441   }
2442   section_iterator Section = IsSTAB
2443                                  ? O.section_end()
2444                                  : unwrapOrError(Symbol.getSection(), FileName,
2445                                                  ArchiveName, ArchitectureName);
2446 
2447   StringRef Name;
2448   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2449     if (Expected<StringRef> NameOrErr = Section->getName())
2450       Name = *NameOrErr;
2451     else
2452       consumeError(NameOrErr.takeError());
2453 
2454   } else {
2455     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2456                          ArchitectureName);
2457   }
2458 
2459   bool Global = Flags & SymbolRef::SF_Global;
2460   bool Weak = Flags & SymbolRef::SF_Weak;
2461   bool Absolute = Flags & SymbolRef::SF_Absolute;
2462   bool Common = Flags & SymbolRef::SF_Common;
2463   bool Hidden = Flags & SymbolRef::SF_Hidden;
2464 
2465   char GlobLoc = ' ';
2466   if ((Section != O.section_end() || Absolute) && !Weak)
2467     GlobLoc = Global ? 'g' : 'l';
2468   char IFunc = ' ';
2469   if (O.isELF()) {
2470     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2471       IFunc = 'i';
2472     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2473       GlobLoc = 'u';
2474   }
2475 
2476   char Debug = ' ';
2477   if (DumpDynamic)
2478     Debug = 'D';
2479   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2480     Debug = 'd';
2481 
2482   char FileFunc = ' ';
2483   if (Type == SymbolRef::ST_File)
2484     FileFunc = 'f';
2485   else if (Type == SymbolRef::ST_Function)
2486     FileFunc = 'F';
2487   else if (Type == SymbolRef::ST_Data)
2488     FileFunc = 'O';
2489 
2490   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2491 
2492   outs() << format(Fmt, Address) << " "
2493          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2494          << (Weak ? 'w' : ' ') // Weak?
2495          << ' '                // Constructor. Not supported yet.
2496          << ' '                // Warning. Not supported yet.
2497          << IFunc              // Indirect reference to another symbol.
2498          << Debug              // Debugging (d) or dynamic (D) symbol.
2499          << FileFunc           // Name of function (F), file (f) or object (O).
2500          << ' ';
2501   if (Absolute) {
2502     outs() << "*ABS*";
2503   } else if (Common) {
2504     outs() << "*COM*";
2505   } else if (Section == O.section_end()) {
2506     if (O.isXCOFF()) {
2507       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2508           Symbol.getRawDataRefImpl());
2509       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2510         outs() << "*DEBUG*";
2511       else
2512         outs() << "*UND*";
2513     } else
2514       outs() << "*UND*";
2515   } else {
2516     StringRef SegmentName = getSegmentName(MachO, *Section);
2517     if (!SegmentName.empty())
2518       outs() << SegmentName << ",";
2519     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2520     outs() << SectionName;
2521     if (O.isXCOFF()) {
2522       std::optional<SymbolRef> SymRef =
2523           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2524       if (SymRef) {
2525 
2526         Expected<StringRef> NameOrErr = SymRef->getName();
2527 
2528         if (NameOrErr) {
2529           outs() << " (csect:";
2530           std::string SymName =
2531               Demangle ? demangle(*NameOrErr) : NameOrErr->str();
2532 
2533           if (SymbolDescription)
2534             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2535                                                 SymName);
2536 
2537           outs() << ' ' << SymName;
2538           outs() << ") ";
2539         } else
2540           reportWarning(toString(NameOrErr.takeError()), FileName);
2541       }
2542     }
2543   }
2544 
2545   if (Common)
2546     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2547   else if (O.isXCOFF())
2548     outs() << '\t'
2549            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2550                               Symbol.getRawDataRefImpl()));
2551   else if (O.isELF())
2552     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2553 
2554   if (O.isELF()) {
2555     if (!SymbolVersions.empty()) {
2556       const VersionEntry &Ver =
2557           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2558       std::string Str;
2559       if (!Ver.Name.empty())
2560         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2561       outs() << ' ' << left_justify(Str, 12);
2562     }
2563 
2564     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2565     switch (Other) {
2566     case ELF::STV_DEFAULT:
2567       break;
2568     case ELF::STV_INTERNAL:
2569       outs() << " .internal";
2570       break;
2571     case ELF::STV_HIDDEN:
2572       outs() << " .hidden";
2573       break;
2574     case ELF::STV_PROTECTED:
2575       outs() << " .protected";
2576       break;
2577     default:
2578       outs() << format(" 0x%02x", Other);
2579       break;
2580     }
2581   } else if (Hidden) {
2582     outs() << " .hidden";
2583   }
2584 
2585   std::string SymName = Demangle ? demangle(Name) : Name.str();
2586   if (O.isXCOFF() && SymbolDescription)
2587     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2588 
2589   outs() << ' ' << SymName << '\n';
2590 }
2591 
2592 static void printUnwindInfo(const ObjectFile *O) {
2593   outs() << "Unwind info:\n\n";
2594 
2595   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2596     printCOFFUnwindInfo(Coff);
2597   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2598     printMachOUnwindInfo(MachO);
2599   else
2600     // TODO: Extract DWARF dump tool to objdump.
2601     WithColor::error(errs(), ToolName)
2602         << "This operation is only currently supported "
2603            "for COFF and MachO object files.\n";
2604 }
2605 
2606 /// Dump the raw contents of the __clangast section so the output can be piped
2607 /// into llvm-bcanalyzer.
2608 static void printRawClangAST(const ObjectFile *Obj) {
2609   if (outs().is_displayed()) {
2610     WithColor::error(errs(), ToolName)
2611         << "The -raw-clang-ast option will dump the raw binary contents of "
2612            "the clang ast section.\n"
2613            "Please redirect the output to a file or another program such as "
2614            "llvm-bcanalyzer.\n";
2615     return;
2616   }
2617 
2618   StringRef ClangASTSectionName("__clangast");
2619   if (Obj->isCOFF()) {
2620     ClangASTSectionName = "clangast";
2621   }
2622 
2623   std::optional<object::SectionRef> ClangASTSection;
2624   for (auto Sec : ToolSectionFilter(*Obj)) {
2625     StringRef Name;
2626     if (Expected<StringRef> NameOrErr = Sec.getName())
2627       Name = *NameOrErr;
2628     else
2629       consumeError(NameOrErr.takeError());
2630 
2631     if (Name == ClangASTSectionName) {
2632       ClangASTSection = Sec;
2633       break;
2634     }
2635   }
2636   if (!ClangASTSection)
2637     return;
2638 
2639   StringRef ClangASTContents =
2640       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2641   outs().write(ClangASTContents.data(), ClangASTContents.size());
2642 }
2643 
2644 static void printFaultMaps(const ObjectFile *Obj) {
2645   StringRef FaultMapSectionName;
2646 
2647   if (Obj->isELF()) {
2648     FaultMapSectionName = ".llvm_faultmaps";
2649   } else if (Obj->isMachO()) {
2650     FaultMapSectionName = "__llvm_faultmaps";
2651   } else {
2652     WithColor::error(errs(), ToolName)
2653         << "This operation is only currently supported "
2654            "for ELF and Mach-O executable files.\n";
2655     return;
2656   }
2657 
2658   std::optional<object::SectionRef> FaultMapSection;
2659 
2660   for (auto Sec : ToolSectionFilter(*Obj)) {
2661     StringRef Name;
2662     if (Expected<StringRef> NameOrErr = Sec.getName())
2663       Name = *NameOrErr;
2664     else
2665       consumeError(NameOrErr.takeError());
2666 
2667     if (Name == FaultMapSectionName) {
2668       FaultMapSection = Sec;
2669       break;
2670     }
2671   }
2672 
2673   outs() << "FaultMap table:\n";
2674 
2675   if (!FaultMapSection) {
2676     outs() << "<not found>\n";
2677     return;
2678   }
2679 
2680   StringRef FaultMapContents =
2681       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2682   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2683                      FaultMapContents.bytes_end());
2684 
2685   outs() << FMP;
2686 }
2687 
2688 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2689   if (O->isELF()) {
2690     printELFFileHeader(O);
2691     printELFDynamicSection(O);
2692     printELFSymbolVersionInfo(O);
2693     return;
2694   }
2695   if (O->isCOFF())
2696     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2697   if (O->isWasm())
2698     return printWasmFileHeader(O);
2699   if (O->isMachO()) {
2700     printMachOFileHeader(O);
2701     if (!OnlyFirst)
2702       printMachOLoadCommands(O);
2703     return;
2704   }
2705   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2706 }
2707 
2708 static void printFileHeaders(const ObjectFile *O) {
2709   if (!O->isELF() && !O->isCOFF())
2710     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2711 
2712   Triple::ArchType AT = O->getArch();
2713   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2714   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2715 
2716   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2717   outs() << "start address: "
2718          << "0x" << format(Fmt.data(), Address) << "\n";
2719 }
2720 
2721 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2722   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2723   if (!ModeOrErr) {
2724     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2725     consumeError(ModeOrErr.takeError());
2726     return;
2727   }
2728   sys::fs::perms Mode = ModeOrErr.get();
2729   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2730   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2731   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2732   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2733   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2734   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2735   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2736   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2737   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2738 
2739   outs() << " ";
2740 
2741   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2742                    unwrapOrError(C.getGID(), Filename),
2743                    unwrapOrError(C.getRawSize(), Filename));
2744 
2745   StringRef RawLastModified = C.getRawLastModified();
2746   unsigned Seconds;
2747   if (RawLastModified.getAsInteger(10, Seconds))
2748     outs() << "(date: \"" << RawLastModified
2749            << "\" contains non-decimal chars) ";
2750   else {
2751     // Since ctime(3) returns a 26 character string of the form:
2752     // "Sun Sep 16 01:03:52 1973\n\0"
2753     // just print 24 characters.
2754     time_t t = Seconds;
2755     outs() << format("%.24s ", ctime(&t));
2756   }
2757 
2758   StringRef Name = "";
2759   Expected<StringRef> NameOrErr = C.getName();
2760   if (!NameOrErr) {
2761     consumeError(NameOrErr.takeError());
2762     Name = unwrapOrError(C.getRawName(), Filename);
2763   } else {
2764     Name = NameOrErr.get();
2765   }
2766   outs() << Name << "\n";
2767 }
2768 
2769 // For ELF only now.
2770 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2771   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2772     if (Elf->getEType() != ELF::ET_REL)
2773       return true;
2774   }
2775   return false;
2776 }
2777 
2778 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2779                                             uint64_t Start, uint64_t Stop) {
2780   if (!shouldWarnForInvalidStartStopAddress(Obj))
2781     return;
2782 
2783   for (const SectionRef &Section : Obj->sections())
2784     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2785       uint64_t BaseAddr = Section.getAddress();
2786       uint64_t Size = Section.getSize();
2787       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2788         return;
2789     }
2790 
2791   if (!HasStartAddressFlag)
2792     reportWarning("no section has address less than 0x" +
2793                       Twine::utohexstr(Stop) + " specified by --stop-address",
2794                   Obj->getFileName());
2795   else if (!HasStopAddressFlag)
2796     reportWarning("no section has address greater than or equal to 0x" +
2797                       Twine::utohexstr(Start) + " specified by --start-address",
2798                   Obj->getFileName());
2799   else
2800     reportWarning("no section overlaps the range [0x" +
2801                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2802                       ") specified by --start-address/--stop-address",
2803                   Obj->getFileName());
2804 }
2805 
2806 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2807                        const Archive::Child *C = nullptr) {
2808   // Avoid other output when using a raw option.
2809   if (!RawClangAST) {
2810     outs() << '\n';
2811     if (A)
2812       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2813     else
2814       outs() << O->getFileName();
2815     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2816   }
2817 
2818   if (HasStartAddressFlag || HasStopAddressFlag)
2819     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2820 
2821   // Note: the order here matches GNU objdump for compatability.
2822   StringRef ArchiveName = A ? A->getFileName() : "";
2823   if (ArchiveHeaders && !MachOOpt && C)
2824     printArchiveChild(ArchiveName, *C);
2825   if (FileHeaders)
2826     printFileHeaders(O);
2827   if (PrivateHeaders || FirstPrivateHeader)
2828     printPrivateFileHeaders(O, FirstPrivateHeader);
2829   if (SectionHeaders)
2830     printSectionHeaders(*O);
2831   if (SymbolTable)
2832     printSymbolTable(*O, ArchiveName);
2833   if (DynamicSymbolTable)
2834     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2835                      /*DumpDynamic=*/true);
2836   if (DwarfDumpType != DIDT_Null) {
2837     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2838     // Dump the complete DWARF structure.
2839     DIDumpOptions DumpOpts;
2840     DumpOpts.DumpType = DwarfDumpType;
2841     DICtx->dump(outs(), DumpOpts);
2842   }
2843   if (Relocations && !Disassemble)
2844     printRelocations(O);
2845   if (DynamicRelocations)
2846     printDynamicRelocations(O);
2847   if (SectionContents)
2848     printSectionContents(O);
2849   if (Disassemble)
2850     disassembleObject(O, Relocations);
2851   if (UnwindInfo)
2852     printUnwindInfo(O);
2853 
2854   // Mach-O specific options:
2855   if (ExportsTrie)
2856     printExportsTrie(O);
2857   if (Rebase)
2858     printRebaseTable(O);
2859   if (Bind)
2860     printBindTable(O);
2861   if (LazyBind)
2862     printLazyBindTable(O);
2863   if (WeakBind)
2864     printWeakBindTable(O);
2865 
2866   // Other special sections:
2867   if (RawClangAST)
2868     printRawClangAST(O);
2869   if (FaultMapSection)
2870     printFaultMaps(O);
2871   if (Offloading)
2872     dumpOffloadBinary(*O);
2873 }
2874 
2875 static void dumpObject(const COFFImportFile *I, const Archive *A,
2876                        const Archive::Child *C = nullptr) {
2877   StringRef ArchiveName = A ? A->getFileName() : "";
2878 
2879   // Avoid other output when using a raw option.
2880   if (!RawClangAST)
2881     outs() << '\n'
2882            << ArchiveName << "(" << I->getFileName() << ")"
2883            << ":\tfile format COFF-import-file"
2884            << "\n\n";
2885 
2886   if (ArchiveHeaders && !MachOOpt && C)
2887     printArchiveChild(ArchiveName, *C);
2888   if (SymbolTable)
2889     printCOFFSymbolTable(*I);
2890 }
2891 
2892 /// Dump each object file in \a a;
2893 static void dumpArchive(const Archive *A) {
2894   Error Err = Error::success();
2895   unsigned I = -1;
2896   for (auto &C : A->children(Err)) {
2897     ++I;
2898     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2899     if (!ChildOrErr) {
2900       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2901         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2902       continue;
2903     }
2904     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2905       dumpObject(O, A, &C);
2906     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2907       dumpObject(I, A, &C);
2908     else
2909       reportError(errorCodeToError(object_error::invalid_file_type),
2910                   A->getFileName());
2911   }
2912   if (Err)
2913     reportError(std::move(Err), A->getFileName());
2914 }
2915 
2916 /// Open file and figure out how to dump it.
2917 static void dumpInput(StringRef file) {
2918   // If we are using the Mach-O specific object file parser, then let it parse
2919   // the file and process the command line options.  So the -arch flags can
2920   // be used to select specific slices, etc.
2921   if (MachOOpt) {
2922     parseInputMachO(file);
2923     return;
2924   }
2925 
2926   // Attempt to open the binary.
2927   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2928   Binary &Binary = *OBinary.getBinary();
2929 
2930   if (Archive *A = dyn_cast<Archive>(&Binary))
2931     dumpArchive(A);
2932   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2933     dumpObject(O);
2934   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2935     parseInputMachO(UB);
2936   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2937     dumpOffloadSections(*OB);
2938   else
2939     reportError(errorCodeToError(object_error::invalid_file_type), file);
2940 }
2941 
2942 template <typename T>
2943 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2944                         T &Value) {
2945   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2946     StringRef V(A->getValue());
2947     if (!llvm::to_integer(V, Value, 0)) {
2948       reportCmdLineError(A->getSpelling() +
2949                          ": expected a non-negative integer, but got '" + V +
2950                          "'");
2951     }
2952   }
2953 }
2954 
2955 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
2956   StringRef V(A->getValue());
2957   object::BuildID BID = parseBuildID(V);
2958   if (BID.empty())
2959     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
2960                        V + "'");
2961   return BID;
2962 }
2963 
2964 void objdump::invalidArgValue(const opt::Arg *A) {
2965   reportCmdLineError("'" + StringRef(A->getValue()) +
2966                      "' is not a valid value for '" + A->getSpelling() + "'");
2967 }
2968 
2969 static std::vector<std::string>
2970 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2971   std::vector<std::string> Values;
2972   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2973     llvm::SmallVector<StringRef, 2> SplitValues;
2974     llvm::SplitString(Value, SplitValues, ",");
2975     for (StringRef SplitValue : SplitValues)
2976       Values.push_back(SplitValue.str());
2977   }
2978   return Values;
2979 }
2980 
2981 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2982   MachOOpt = true;
2983   FullLeadingAddr = true;
2984   PrintImmHex = true;
2985 
2986   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2987   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2988   if (InputArgs.hasArg(OTOOL_d))
2989     FilterSections.push_back("__DATA,__data");
2990   DylibId = InputArgs.hasArg(OTOOL_D);
2991   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2992   DataInCode = InputArgs.hasArg(OTOOL_G);
2993   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2994   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2995   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2996   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2997   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2998   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2999   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3000   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
3001   InfoPlist = InputArgs.hasArg(OTOOL_P);
3002   Relocations = InputArgs.hasArg(OTOOL_r);
3003   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3004     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
3005     FilterSections.push_back(Filter);
3006   }
3007   if (InputArgs.hasArg(OTOOL_t))
3008     FilterSections.push_back("__TEXT,__text");
3009   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3010             InputArgs.hasArg(OTOOL_o);
3011   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3012   if (InputArgs.hasArg(OTOOL_x))
3013     FilterSections.push_back(",__text");
3014   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3015 
3016   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3017   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3018 
3019   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3020   if (InputFilenames.empty())
3021     reportCmdLineError("no input file");
3022 
3023   for (const Arg *A : InputArgs) {
3024     const Option &O = A->getOption();
3025     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3026       reportCmdLineWarning(O.getPrefixedName() +
3027                            " is obsolete and not implemented");
3028     }
3029   }
3030 }
3031 
3032 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3033   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3034   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3035   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3036   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3037   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3038   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3039   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3040   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3041   TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3042   DisassembleSymbols =
3043       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3044   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3045   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3046     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3047                         .Case("frames", DIDT_DebugFrame)
3048                         .Default(DIDT_Null);
3049     if (DwarfDumpType == DIDT_Null)
3050       invalidArgValue(A);
3051   }
3052   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3053   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3054   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3055   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3056   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3057   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3058   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3059   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3060   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3061   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3062   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3063   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3064   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3065   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3066   PrintImmHex =
3067       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3068   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3069   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3070   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3071   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3072   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3073   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3074   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3075   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3076   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3077   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3078   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3079   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3080   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3081   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3082   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3083   Wide = InputArgs.hasArg(OBJDUMP_wide);
3084   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3085   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3086   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3087     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3088                        .Case("ascii", DVASCII)
3089                        .Case("unicode", DVUnicode)
3090                        .Default(DVInvalid);
3091     if (DbgVariables == DVInvalid)
3092       invalidArgValue(A);
3093   }
3094   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3095 
3096   parseMachOOptions(InputArgs);
3097 
3098   // Parse -M (--disassembler-options) and deprecated
3099   // --x86-asm-syntax={att,intel}.
3100   //
3101   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3102   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3103   // called too late. For now we have to use the internal cl::opt option.
3104   const char *AsmSyntax = nullptr;
3105   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3106                                           OBJDUMP_x86_asm_syntax_att,
3107                                           OBJDUMP_x86_asm_syntax_intel)) {
3108     switch (A->getOption().getID()) {
3109     case OBJDUMP_x86_asm_syntax_att:
3110       AsmSyntax = "--x86-asm-syntax=att";
3111       continue;
3112     case OBJDUMP_x86_asm_syntax_intel:
3113       AsmSyntax = "--x86-asm-syntax=intel";
3114       continue;
3115     }
3116 
3117     SmallVector<StringRef, 2> Values;
3118     llvm::SplitString(A->getValue(), Values, ",");
3119     for (StringRef V : Values) {
3120       if (V == "att")
3121         AsmSyntax = "--x86-asm-syntax=att";
3122       else if (V == "intel")
3123         AsmSyntax = "--x86-asm-syntax=intel";
3124       else
3125         DisassemblerOptions.push_back(V.str());
3126     }
3127   }
3128   if (AsmSyntax) {
3129     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3130     llvm::cl::ParseCommandLineOptions(2, Argv);
3131   }
3132 
3133   // Look up any provided build IDs, then append them to the input filenames.
3134   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3135     object::BuildID BuildID = parseBuildIDArg(A);
3136     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3137     if (!Path) {
3138       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3139                          A->getValue() + "'");
3140     }
3141     InputFilenames.push_back(std::move(*Path));
3142   }
3143 
3144   // objdump defaults to a.out if no filenames specified.
3145   if (InputFilenames.empty())
3146     InputFilenames.push_back("a.out");
3147 }
3148 
3149 int main(int argc, char **argv) {
3150   using namespace llvm;
3151   InitLLVM X(argc, argv);
3152 
3153   ToolName = argv[0];
3154   std::unique_ptr<CommonOptTable> T;
3155   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3156 
3157   StringRef Stem = sys::path::stem(ToolName);
3158   auto Is = [=](StringRef Tool) {
3159     // We need to recognize the following filenames:
3160     //
3161     // llvm-objdump -> objdump
3162     // llvm-otool-10.exe -> otool
3163     // powerpc64-unknown-freebsd13-objdump -> objdump
3164     auto I = Stem.rfind_insensitive(Tool);
3165     return I != StringRef::npos &&
3166            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3167   };
3168   if (Is("otool")) {
3169     T = std::make_unique<OtoolOptTable>();
3170     Unknown = OTOOL_UNKNOWN;
3171     HelpFlag = OTOOL_help;
3172     HelpHiddenFlag = OTOOL_help_hidden;
3173     VersionFlag = OTOOL_version;
3174   } else {
3175     T = std::make_unique<ObjdumpOptTable>();
3176     Unknown = OBJDUMP_UNKNOWN;
3177     HelpFlag = OBJDUMP_help;
3178     HelpHiddenFlag = OBJDUMP_help_hidden;
3179     VersionFlag = OBJDUMP_version;
3180   }
3181 
3182   BumpPtrAllocator A;
3183   StringSaver Saver(A);
3184   opt::InputArgList InputArgs =
3185       T->parseArgs(argc, argv, Unknown, Saver,
3186                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3187 
3188   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3189     T->printHelp(ToolName);
3190     return 0;
3191   }
3192   if (InputArgs.hasArg(HelpHiddenFlag)) {
3193     T->printHelp(ToolName, /*ShowHidden=*/true);
3194     return 0;
3195   }
3196 
3197   // Initialize targets and assembly printers/parsers.
3198   InitializeAllTargetInfos();
3199   InitializeAllTargetMCs();
3200   InitializeAllDisassemblers();
3201 
3202   if (InputArgs.hasArg(VersionFlag)) {
3203     cl::PrintVersionMessage();
3204     if (!Is("otool")) {
3205       outs() << '\n';
3206       TargetRegistry::printRegisteredTargetsForVersion(outs());
3207     }
3208     return 0;
3209   }
3210 
3211   // Initialize debuginfod.
3212   const bool ShouldUseDebuginfodByDefault =
3213       InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3214   std::vector<std::string> DebugFileDirectories =
3215       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3216   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3217                         ShouldUseDebuginfodByDefault)) {
3218     HTTPClient::initialize();
3219     BIDFetcher =
3220         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3221   } else {
3222     BIDFetcher =
3223         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3224   }
3225 
3226   if (Is("otool"))
3227     parseOtoolOptions(InputArgs);
3228   else
3229     parseObjdumpOptions(InputArgs);
3230 
3231   if (StartAddress >= StopAddress)
3232     reportCmdLineError("start address should be less than stop address");
3233 
3234   // Removes trailing separators from prefix.
3235   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3236     Prefix.pop_back();
3237 
3238   if (AllHeaders)
3239     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3240         SectionHeaders = SymbolTable = true;
3241 
3242   if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3243       !DisassembleSymbols.empty())
3244     Disassemble = true;
3245 
3246   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3247       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3248       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3249       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3250       !(MachOOpt &&
3251         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3252          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3253          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3254          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3255          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3256     T->printHelp(ToolName);
3257     return 2;
3258   }
3259 
3260   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3261 
3262   llvm::for_each(InputFilenames, dumpInput);
3263 
3264   warnOnNoMatchForSections();
3265 
3266   return EXIT_SUCCESS;
3267 }
3268