xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision d25e572421a66270c0ee8d51c96256f2958a6f1d)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "SourcePrinter.h"
24 #include "WasmDump.h"
25 #include "XCOFFDump.h"
26 #include "llvm/ADT/IndexedMap.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Triple.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Demangle/Demangle.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
41 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
42 #include "llvm/MC/MCInst.h"
43 #include "llvm/MC/MCInstPrinter.h"
44 #include "llvm/MC/MCInstrAnalysis.h"
45 #include "llvm/MC/MCInstrInfo.h"
46 #include "llvm/MC/MCObjectFileInfo.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/MC/MCSubtargetInfo.h"
49 #include "llvm/MC/MCTargetOptions.h"
50 #include "llvm/Object/Archive.h"
51 #include "llvm/Object/COFF.h"
52 #include "llvm/Object/COFFImportFile.h"
53 #include "llvm/Object/ELFObjectFile.h"
54 #include "llvm/Object/FaultMapParser.h"
55 #include "llvm/Object/MachO.h"
56 #include "llvm/Object/MachOUniversal.h"
57 #include "llvm/Object/ObjectFile.h"
58 #include "llvm/Object/Wasm.h"
59 #include "llvm/Option/Arg.h"
60 #include "llvm/Option/ArgList.h"
61 #include "llvm/Option/Option.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/Errc.h"
65 #include "llvm/Support/FileSystem.h"
66 #include "llvm/Support/Format.h"
67 #include "llvm/Support/FormatVariadic.h"
68 #include "llvm/Support/GraphWriter.h"
69 #include "llvm/Support/Host.h"
70 #include "llvm/Support/InitLLVM.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/SourceMgr.h"
73 #include "llvm/Support/StringSaver.h"
74 #include "llvm/Support/TargetRegistry.h"
75 #include "llvm/Support/TargetSelect.h"
76 #include "llvm/Support/WithColor.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <algorithm>
79 #include <cctype>
80 #include <cstring>
81 #include <system_error>
82 #include <unordered_map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::object;
87 using namespace llvm::objdump;
88 using namespace llvm::opt;
89 
90 namespace {
91 
92 class CommonOptTable : public opt::OptTable {
93 public:
94   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
95                  const char *Description)
96       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
97     setGroupedShortOptions(true);
98   }
99 
100   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
101     Argv0 = sys::path::filename(Argv0);
102     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
103                              ShowHidden, ShowHidden);
104     // TODO Replace this with OptTable API once it adds extrahelp support.
105     outs() << "\nPass @FILE as argument to read options from FILE.\n";
106   }
107 
108 private:
109   const char *Usage;
110   const char *Description;
111 };
112 
113 // ObjdumpOptID is in ObjdumpOptID.h
114 
115 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
116 #include "ObjdumpOpts.inc"
117 #undef PREFIX
118 
119 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
120 #define OBJDUMP_nullptr nullptr
121 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
122                HELPTEXT, METAVAR, VALUES)                                      \
123   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
124    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
125    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
126    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
127 #include "ObjdumpOpts.inc"
128 #undef OPTION
129 #undef OBJDUMP_nullptr
130 };
131 
132 class ObjdumpOptTable : public CommonOptTable {
133 public:
134   ObjdumpOptTable()
135       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
136                        "llvm object file dumper") {}
137 };
138 
139 enum OtoolOptID {
140   OTOOL_INVALID = 0, // This is not an option ID.
141 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
142                HELPTEXT, METAVAR, VALUES)                                      \
143   OTOOL_##ID,
144 #include "OtoolOpts.inc"
145 #undef OPTION
146 };
147 
148 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
149 #include "OtoolOpts.inc"
150 #undef PREFIX
151 
152 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
153 #define OTOOL_nullptr nullptr
154 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
155                HELPTEXT, METAVAR, VALUES)                                      \
156   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
157    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
158    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
159    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
160 #include "OtoolOpts.inc"
161 #undef OPTION
162 #undef OTOOL_nullptr
163 };
164 
165 class OtoolOptTable : public CommonOptTable {
166 public:
167   OtoolOptTable()
168       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
169                        "Mach-O object file displaying tool") {}
170 };
171 
172 } // namespace
173 
174 #define DEBUG_TYPE "objdump"
175 
176 static uint64_t AdjustVMA;
177 static bool AllHeaders;
178 static std::string ArchName;
179 bool objdump::ArchiveHeaders;
180 bool objdump::Demangle;
181 bool objdump::Disassemble;
182 bool objdump::DisassembleAll;
183 bool objdump::SymbolDescription;
184 static std::vector<std::string> DisassembleSymbols;
185 static bool DisassembleZeroes;
186 static std::vector<std::string> DisassemblerOptions;
187 DIDumpType objdump::DwarfDumpType;
188 static bool DynamicRelocations;
189 static bool FaultMapSection;
190 static bool FileHeaders;
191 bool objdump::SectionContents;
192 static std::vector<std::string> InputFilenames;
193 bool objdump::PrintLines;
194 static bool MachOOpt;
195 std::string objdump::MCPU;
196 std::vector<std::string> objdump::MAttrs;
197 bool objdump::ShowRawInsn;
198 bool objdump::LeadingAddr;
199 static bool RawClangAST;
200 bool objdump::Relocations;
201 bool objdump::PrintImmHex;
202 bool objdump::PrivateHeaders;
203 std::vector<std::string> objdump::FilterSections;
204 bool objdump::SectionHeaders;
205 static bool ShowLMA;
206 bool objdump::PrintSource;
207 
208 static uint64_t StartAddress;
209 static bool HasStartAddressFlag;
210 static uint64_t StopAddress = UINT64_MAX;
211 static bool HasStopAddressFlag;
212 
213 bool objdump::SymbolTable;
214 static bool SymbolizeOperands;
215 static bool DynamicSymbolTable;
216 std::string objdump::TripleName;
217 bool objdump::UnwindInfo;
218 static bool Wide;
219 std::string objdump::Prefix;
220 uint32_t objdump::PrefixStrip;
221 
222 DebugVarsFormat objdump::DbgVariables = DVDisabled;
223 
224 int objdump::DbgIndent = 52;
225 
226 static StringSet<> DisasmSymbolSet;
227 StringSet<> objdump::FoundSectionSet;
228 static StringRef ToolName;
229 
230 namespace {
231 struct FilterResult {
232   // True if the section should not be skipped.
233   bool Keep;
234 
235   // True if the index counter should be incremented, even if the section should
236   // be skipped. For example, sections may be skipped if they are not included
237   // in the --section flag, but we still want those to count toward the section
238   // count.
239   bool IncrementIndex;
240 };
241 } // namespace
242 
243 static FilterResult checkSectionFilter(object::SectionRef S) {
244   if (FilterSections.empty())
245     return {/*Keep=*/true, /*IncrementIndex=*/true};
246 
247   Expected<StringRef> SecNameOrErr = S.getName();
248   if (!SecNameOrErr) {
249     consumeError(SecNameOrErr.takeError());
250     return {/*Keep=*/false, /*IncrementIndex=*/false};
251   }
252   StringRef SecName = *SecNameOrErr;
253 
254   // StringSet does not allow empty key so avoid adding sections with
255   // no name (such as the section with index 0) here.
256   if (!SecName.empty())
257     FoundSectionSet.insert(SecName);
258 
259   // Only show the section if it's in the FilterSections list, but always
260   // increment so the indexing is stable.
261   return {/*Keep=*/is_contained(FilterSections, SecName),
262           /*IncrementIndex=*/true};
263 }
264 
265 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
266                                          uint64_t *Idx) {
267   // Start at UINT64_MAX so that the first index returned after an increment is
268   // zero (after the unsigned wrap).
269   if (Idx)
270     *Idx = UINT64_MAX;
271   return SectionFilter(
272       [Idx](object::SectionRef S) {
273         FilterResult Result = checkSectionFilter(S);
274         if (Idx != nullptr && Result.IncrementIndex)
275           *Idx += 1;
276         return Result.Keep;
277       },
278       O);
279 }
280 
281 std::string objdump::getFileNameForError(const object::Archive::Child &C,
282                                          unsigned Index) {
283   Expected<StringRef> NameOrErr = C.getName();
284   if (NameOrErr)
285     return std::string(NameOrErr.get());
286   // If we have an error getting the name then we print the index of the archive
287   // member. Since we are already in an error state, we just ignore this error.
288   consumeError(NameOrErr.takeError());
289   return "<file index: " + std::to_string(Index) + ">";
290 }
291 
292 void objdump::reportWarning(const Twine &Message, StringRef File) {
293   // Output order between errs() and outs() matters especially for archive
294   // files where the output is per member object.
295   outs().flush();
296   WithColor::warning(errs(), ToolName)
297       << "'" << File << "': " << Message << "\n";
298 }
299 
300 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(StringRef File,
301                                                   const Twine &Message) {
302   outs().flush();
303   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
304   exit(1);
305 }
306 
307 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(Error E, StringRef FileName,
308                                                   StringRef ArchiveName,
309                                                   StringRef ArchitectureName) {
310   assert(E);
311   outs().flush();
312   WithColor::error(errs(), ToolName);
313   if (ArchiveName != "")
314     errs() << ArchiveName << "(" << FileName << ")";
315   else
316     errs() << "'" << FileName << "'";
317   if (!ArchitectureName.empty())
318     errs() << " (for architecture " << ArchitectureName << ")";
319   errs() << ": ";
320   logAllUnhandledErrors(std::move(E), errs());
321   exit(1);
322 }
323 
324 static void reportCmdLineWarning(const Twine &Message) {
325   WithColor::warning(errs(), ToolName) << Message << "\n";
326 }
327 
328 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(const Twine &Message) {
329   WithColor::error(errs(), ToolName) << Message << "\n";
330   exit(1);
331 }
332 
333 static void warnOnNoMatchForSections() {
334   SetVector<StringRef> MissingSections;
335   for (StringRef S : FilterSections) {
336     if (FoundSectionSet.count(S))
337       return;
338     // User may specify a unnamed section. Don't warn for it.
339     if (!S.empty())
340       MissingSections.insert(S);
341   }
342 
343   // Warn only if no section in FilterSections is matched.
344   for (StringRef S : MissingSections)
345     reportCmdLineWarning("section '" + S +
346                          "' mentioned in a -j/--section option, but not "
347                          "found in any input file");
348 }
349 
350 static const Target *getTarget(const ObjectFile *Obj) {
351   // Figure out the target triple.
352   Triple TheTriple("unknown-unknown-unknown");
353   if (TripleName.empty()) {
354     TheTriple = Obj->makeTriple();
355   } else {
356     TheTriple.setTriple(Triple::normalize(TripleName));
357     auto Arch = Obj->getArch();
358     if (Arch == Triple::arm || Arch == Triple::armeb)
359       Obj->setARMSubArch(TheTriple);
360   }
361 
362   // Get the target specific parser.
363   std::string Error;
364   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
365                                                          Error);
366   if (!TheTarget)
367     reportError(Obj->getFileName(), "can't find target: " + Error);
368 
369   // Update the triple name and return the found target.
370   TripleName = TheTriple.getTriple();
371   return TheTarget;
372 }
373 
374 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
375   return A.getOffset() < B.getOffset();
376 }
377 
378 static Error getRelocationValueString(const RelocationRef &Rel,
379                                       SmallVectorImpl<char> &Result) {
380   const ObjectFile *Obj = Rel.getObject();
381   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
382     return getELFRelocationValueString(ELF, Rel, Result);
383   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
384     return getCOFFRelocationValueString(COFF, Rel, Result);
385   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
386     return getWasmRelocationValueString(Wasm, Rel, Result);
387   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
388     return getMachORelocationValueString(MachO, Rel, Result);
389   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
390     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
391   llvm_unreachable("unknown object file format");
392 }
393 
394 /// Indicates whether this relocation should hidden when listing
395 /// relocations, usually because it is the trailing part of a multipart
396 /// relocation that will be printed as part of the leading relocation.
397 static bool getHidden(RelocationRef RelRef) {
398   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
399   if (!MachO)
400     return false;
401 
402   unsigned Arch = MachO->getArch();
403   DataRefImpl Rel = RelRef.getRawDataRefImpl();
404   uint64_t Type = MachO->getRelocationType(Rel);
405 
406   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
407   // is always hidden.
408   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
409     return Type == MachO::GENERIC_RELOC_PAIR;
410 
411   if (Arch == Triple::x86_64) {
412     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
413     // an X86_64_RELOC_SUBTRACTOR.
414     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
415       DataRefImpl RelPrev = Rel;
416       RelPrev.d.a--;
417       uint64_t PrevType = MachO->getRelocationType(RelPrev);
418       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
419         return true;
420     }
421   }
422 
423   return false;
424 }
425 
426 namespace {
427 
428 /// Get the column at which we want to start printing the instruction
429 /// disassembly, taking into account anything which appears to the left of it.
430 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
431   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
432 }
433 
434 static bool isAArch64Elf(const ObjectFile *Obj) {
435   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
436   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
437 }
438 
439 static bool isArmElf(const ObjectFile *Obj) {
440   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
441   return Elf && Elf->getEMachine() == ELF::EM_ARM;
442 }
443 
444 static bool hasMappingSymbols(const ObjectFile *Obj) {
445   return isArmElf(Obj) || isAArch64Elf(Obj);
446 }
447 
448 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
449                             const RelocationRef &Rel, uint64_t Address,
450                             bool Is64Bits) {
451   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
452   SmallString<16> Name;
453   SmallString<32> Val;
454   Rel.getTypeName(Name);
455   if (Error E = getRelocationValueString(Rel, Val))
456     reportError(std::move(E), FileName);
457   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
458 }
459 
460 class PrettyPrinter {
461 public:
462   virtual ~PrettyPrinter() = default;
463   virtual void
464   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
465             object::SectionedAddress Address, formatted_raw_ostream &OS,
466             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
467             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
468             LiveVariablePrinter &LVP) {
469     if (SP && (PrintSource || PrintLines))
470       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
471     LVP.printBetweenInsts(OS, false);
472 
473     size_t Start = OS.tell();
474     if (LeadingAddr)
475       OS << format("%8" PRIx64 ":", Address.Address);
476     if (ShowRawInsn) {
477       OS << ' ';
478       dumpBytes(Bytes, OS);
479     }
480 
481     // The output of printInst starts with a tab. Print some spaces so that
482     // the tab has 1 column and advances to the target tab stop.
483     unsigned TabStop = getInstStartColumn(STI);
484     unsigned Column = OS.tell() - Start;
485     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
486 
487     if (MI) {
488       // See MCInstPrinter::printInst. On targets where a PC relative immediate
489       // is relative to the next instruction and the length of a MCInst is
490       // difficult to measure (x86), this is the address of the next
491       // instruction.
492       uint64_t Addr =
493           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
494       IP.printInst(MI, Addr, "", STI, OS);
495     } else
496       OS << "\t<unknown>";
497   }
498 };
499 PrettyPrinter PrettyPrinterInst;
500 
501 class HexagonPrettyPrinter : public PrettyPrinter {
502 public:
503   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
504                  formatted_raw_ostream &OS) {
505     uint32_t opcode =
506       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
507     if (LeadingAddr)
508       OS << format("%8" PRIx64 ":", Address);
509     if (ShowRawInsn) {
510       OS << "\t";
511       dumpBytes(Bytes.slice(0, 4), OS);
512       OS << format("\t%08" PRIx32, opcode);
513     }
514   }
515   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
516                  object::SectionedAddress Address, formatted_raw_ostream &OS,
517                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
518                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
519                  LiveVariablePrinter &LVP) override {
520     if (SP && (PrintSource || PrintLines))
521       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
522     if (!MI) {
523       printLead(Bytes, Address.Address, OS);
524       OS << " <unknown>";
525       return;
526     }
527     std::string Buffer;
528     {
529       raw_string_ostream TempStream(Buffer);
530       IP.printInst(MI, Address.Address, "", STI, TempStream);
531     }
532     StringRef Contents(Buffer);
533     // Split off bundle attributes
534     auto PacketBundle = Contents.rsplit('\n');
535     // Split off first instruction from the rest
536     auto HeadTail = PacketBundle.first.split('\n');
537     auto Preamble = " { ";
538     auto Separator = "";
539 
540     // Hexagon's packets require relocations to be inline rather than
541     // clustered at the end of the packet.
542     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
543     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
544     auto PrintReloc = [&]() -> void {
545       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
546         if (RelCur->getOffset() == Address.Address) {
547           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
548           return;
549         }
550         ++RelCur;
551       }
552     };
553 
554     while (!HeadTail.first.empty()) {
555       OS << Separator;
556       Separator = "\n";
557       if (SP && (PrintSource || PrintLines))
558         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
559       printLead(Bytes, Address.Address, OS);
560       OS << Preamble;
561       Preamble = "   ";
562       StringRef Inst;
563       auto Duplex = HeadTail.first.split('\v');
564       if (!Duplex.second.empty()) {
565         OS << Duplex.first;
566         OS << "; ";
567         Inst = Duplex.second;
568       }
569       else
570         Inst = HeadTail.first;
571       OS << Inst;
572       HeadTail = HeadTail.second.split('\n');
573       if (HeadTail.first.empty())
574         OS << " } " << PacketBundle.second;
575       PrintReloc();
576       Bytes = Bytes.slice(4);
577       Address.Address += 4;
578     }
579   }
580 };
581 HexagonPrettyPrinter HexagonPrettyPrinterInst;
582 
583 class AMDGCNPrettyPrinter : public PrettyPrinter {
584 public:
585   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
586                  object::SectionedAddress Address, formatted_raw_ostream &OS,
587                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
588                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
589                  LiveVariablePrinter &LVP) override {
590     if (SP && (PrintSource || PrintLines))
591       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
592 
593     if (MI) {
594       SmallString<40> InstStr;
595       raw_svector_ostream IS(InstStr);
596 
597       IP.printInst(MI, Address.Address, "", STI, IS);
598 
599       OS << left_justify(IS.str(), 60);
600     } else {
601       // an unrecognized encoding - this is probably data so represent it
602       // using the .long directive, or .byte directive if fewer than 4 bytes
603       // remaining
604       if (Bytes.size() >= 4) {
605         OS << format("\t.long 0x%08" PRIx32 " ",
606                      support::endian::read32<support::little>(Bytes.data()));
607         OS.indent(42);
608       } else {
609           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
610           for (unsigned int i = 1; i < Bytes.size(); i++)
611             OS << format(", 0x%02" PRIx8, Bytes[i]);
612           OS.indent(55 - (6 * Bytes.size()));
613       }
614     }
615 
616     OS << format("// %012" PRIX64 ":", Address.Address);
617     if (Bytes.size() >= 4) {
618       // D should be casted to uint32_t here as it is passed by format to
619       // snprintf as vararg.
620       for (uint32_t D : makeArrayRef(
621                reinterpret_cast<const support::little32_t *>(Bytes.data()),
622                Bytes.size() / 4))
623         OS << format(" %08" PRIX32, D);
624     } else {
625       for (unsigned char B : Bytes)
626         OS << format(" %02" PRIX8, B);
627     }
628 
629     if (!Annot.empty())
630       OS << " // " << Annot;
631   }
632 };
633 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
634 
635 class BPFPrettyPrinter : public PrettyPrinter {
636 public:
637   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
638                  object::SectionedAddress Address, formatted_raw_ostream &OS,
639                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
640                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
641                  LiveVariablePrinter &LVP) override {
642     if (SP && (PrintSource || PrintLines))
643       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
644     if (LeadingAddr)
645       OS << format("%8" PRId64 ":", Address.Address / 8);
646     if (ShowRawInsn) {
647       OS << "\t";
648       dumpBytes(Bytes, OS);
649     }
650     if (MI)
651       IP.printInst(MI, Address.Address, "", STI, OS);
652     else
653       OS << "\t<unknown>";
654   }
655 };
656 BPFPrettyPrinter BPFPrettyPrinterInst;
657 
658 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
659   switch(Triple.getArch()) {
660   default:
661     return PrettyPrinterInst;
662   case Triple::hexagon:
663     return HexagonPrettyPrinterInst;
664   case Triple::amdgcn:
665     return AMDGCNPrettyPrinterInst;
666   case Triple::bpfel:
667   case Triple::bpfeb:
668     return BPFPrettyPrinterInst;
669   }
670 }
671 }
672 
673 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
674   assert(Obj->isELF());
675   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
676     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
677                          Obj->getFileName())
678         ->getType();
679   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
680     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
681                          Obj->getFileName())
682         ->getType();
683   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
684     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
685                          Obj->getFileName())
686         ->getType();
687   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
688     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
689                          Obj->getFileName())
690         ->getType();
691   llvm_unreachable("Unsupported binary format");
692 }
693 
694 template <class ELFT> static void
695 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
696                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
697   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
698     uint8_t SymbolType = Symbol.getELFType();
699     if (SymbolType == ELF::STT_SECTION)
700       continue;
701 
702     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
703     // ELFSymbolRef::getAddress() returns size instead of value for common
704     // symbols which is not desirable for disassembly output. Overriding.
705     if (SymbolType == ELF::STT_COMMON)
706       Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
707                               Obj->getFileName())
708                     ->st_value;
709 
710     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
711     if (Name.empty())
712       continue;
713 
714     section_iterator SecI =
715         unwrapOrError(Symbol.getSection(), Obj->getFileName());
716     if (SecI == Obj->section_end())
717       continue;
718 
719     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
720   }
721 }
722 
723 static void
724 addDynamicElfSymbols(const ObjectFile *Obj,
725                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
726   assert(Obj->isELF());
727   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
728     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
729   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
730     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
731   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
732     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
733   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
734     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
735   else
736     llvm_unreachable("Unsupported binary format");
737 }
738 
739 static void addPltEntries(const ObjectFile *Obj,
740                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
741                           StringSaver &Saver) {
742   Optional<SectionRef> Plt = None;
743   for (const SectionRef &Section : Obj->sections()) {
744     Expected<StringRef> SecNameOrErr = Section.getName();
745     if (!SecNameOrErr) {
746       consumeError(SecNameOrErr.takeError());
747       continue;
748     }
749     if (*SecNameOrErr == ".plt")
750       Plt = Section;
751   }
752   if (!Plt)
753     return;
754   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
755     for (auto PltEntry : ElfObj->getPltAddresses()) {
756       if (PltEntry.first) {
757         SymbolRef Symbol(*PltEntry.first, ElfObj);
758         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
759         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
760           if (!NameOrErr->empty())
761             AllSymbols[*Plt].emplace_back(
762                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
763                 SymbolType);
764           continue;
765         } else {
766           // The warning has been reported in disassembleObject().
767           consumeError(NameOrErr.takeError());
768         }
769       }
770       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
771                         " references an invalid symbol",
772                     Obj->getFileName());
773     }
774   }
775 }
776 
777 // Normally the disassembly output will skip blocks of zeroes. This function
778 // returns the number of zero bytes that can be skipped when dumping the
779 // disassembly of the instructions in Buf.
780 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
781   // Find the number of leading zeroes.
782   size_t N = 0;
783   while (N < Buf.size() && !Buf[N])
784     ++N;
785 
786   // We may want to skip blocks of zero bytes, but unless we see
787   // at least 8 of them in a row.
788   if (N < 8)
789     return 0;
790 
791   // We skip zeroes in multiples of 4 because do not want to truncate an
792   // instruction if it starts with a zero byte.
793   return N & ~0x3;
794 }
795 
796 // Returns a map from sections to their relocations.
797 static std::map<SectionRef, std::vector<RelocationRef>>
798 getRelocsMap(object::ObjectFile const &Obj) {
799   std::map<SectionRef, std::vector<RelocationRef>> Ret;
800   uint64_t I = (uint64_t)-1;
801   for (SectionRef Sec : Obj.sections()) {
802     ++I;
803     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
804     if (!RelocatedOrErr)
805       reportError(Obj.getFileName(),
806                   "section (" + Twine(I) +
807                       "): failed to get a relocated section: " +
808                       toString(RelocatedOrErr.takeError()));
809 
810     section_iterator Relocated = *RelocatedOrErr;
811     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
812       continue;
813     std::vector<RelocationRef> &V = Ret[*Relocated];
814     append_range(V, Sec.relocations());
815     // Sort relocations by address.
816     llvm::stable_sort(V, isRelocAddressLess);
817   }
818   return Ret;
819 }
820 
821 // Used for --adjust-vma to check if address should be adjusted by the
822 // specified value for a given section.
823 // For ELF we do not adjust non-allocatable sections like debug ones,
824 // because they are not loadable.
825 // TODO: implement for other file formats.
826 static bool shouldAdjustVA(const SectionRef &Section) {
827   const ObjectFile *Obj = Section.getObject();
828   if (Obj->isELF())
829     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
830   return false;
831 }
832 
833 
834 typedef std::pair<uint64_t, char> MappingSymbolPair;
835 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
836                                  uint64_t Address) {
837   auto It =
838       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
839         return Val.first <= Address;
840       });
841   // Return zero for any address before the first mapping symbol; this means
842   // we should use the default disassembly mode, depending on the target.
843   if (It == MappingSymbols.begin())
844     return '\x00';
845   return (It - 1)->second;
846 }
847 
848 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
849                                uint64_t End, const ObjectFile *Obj,
850                                ArrayRef<uint8_t> Bytes,
851                                ArrayRef<MappingSymbolPair> MappingSymbols,
852                                raw_ostream &OS) {
853   support::endianness Endian =
854       Obj->isLittleEndian() ? support::little : support::big;
855   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
856   if (Index + 4 <= End) {
857     dumpBytes(Bytes.slice(Index, 4), OS);
858     OS << "\t.word\t"
859            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
860                          10);
861     return 4;
862   }
863   if (Index + 2 <= End) {
864     dumpBytes(Bytes.slice(Index, 2), OS);
865     OS << "\t\t.short\t"
866            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
867                          6);
868     return 2;
869   }
870   dumpBytes(Bytes.slice(Index, 1), OS);
871   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
872   return 1;
873 }
874 
875 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
876                         ArrayRef<uint8_t> Bytes) {
877   // print out data up to 8 bytes at a time in hex and ascii
878   uint8_t AsciiData[9] = {'\0'};
879   uint8_t Byte;
880   int NumBytes = 0;
881 
882   for (; Index < End; ++Index) {
883     if (NumBytes == 0)
884       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
885     Byte = Bytes.slice(Index)[0];
886     outs() << format(" %02x", Byte);
887     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
888 
889     uint8_t IndentOffset = 0;
890     NumBytes++;
891     if (Index == End - 1 || NumBytes > 8) {
892       // Indent the space for less than 8 bytes data.
893       // 2 spaces for byte and one for space between bytes
894       IndentOffset = 3 * (8 - NumBytes);
895       for (int Excess = NumBytes; Excess < 8; Excess++)
896         AsciiData[Excess] = '\0';
897       NumBytes = 8;
898     }
899     if (NumBytes == 8) {
900       AsciiData[8] = '\0';
901       outs() << std::string(IndentOffset, ' ') << "         ";
902       outs() << reinterpret_cast<char *>(AsciiData);
903       outs() << '\n';
904       NumBytes = 0;
905     }
906   }
907 }
908 
909 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
910                                        const SymbolRef &Symbol) {
911   const StringRef FileName = Obj->getFileName();
912   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
913   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
914 
915   if (Obj->isXCOFF() && SymbolDescription) {
916     const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
917     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
918 
919     const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
920     Optional<XCOFF::StorageMappingClass> Smc =
921         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
922     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
923                         isLabel(XCOFFObj, Symbol));
924   } else
925     return SymbolInfoTy(Addr, Name,
926                         Obj->isELF() ? getElfSymbolType(Obj, Symbol)
927                                      : (uint8_t)ELF::STT_NOTYPE);
928 }
929 
930 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
931                                           const uint64_t Addr, StringRef &Name,
932                                           uint8_t Type) {
933   if (Obj->isXCOFF() && SymbolDescription)
934     return SymbolInfoTy(Addr, Name, None, None, false);
935   else
936     return SymbolInfoTy(Addr, Name, Type);
937 }
938 
939 static void
940 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
941                           MCDisassembler *DisAsm, MCInstPrinter *IP,
942                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
943                           uint64_t Start, uint64_t End,
944                           std::unordered_map<uint64_t, std::string> &Labels) {
945   // So far only supports X86.
946   if (!STI->getTargetTriple().isX86())
947     return;
948 
949   Labels.clear();
950   unsigned LabelCount = 0;
951   Start += SectionAddr;
952   End += SectionAddr;
953   uint64_t Index = Start;
954   while (Index < End) {
955     // Disassemble a real instruction and record function-local branch labels.
956     MCInst Inst;
957     uint64_t Size;
958     bool Disassembled = DisAsm->getInstruction(
959         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
960     if (Size == 0)
961       Size = 1;
962 
963     if (Disassembled && MIA) {
964       uint64_t Target;
965       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
966       if (TargetKnown && (Target >= Start && Target < End) &&
967           !Labels.count(Target))
968         Labels[Target] = ("L" + Twine(LabelCount++)).str();
969     }
970 
971     Index += Size;
972   }
973 }
974 
975 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
976 // This is currently only used on AMDGPU, and assumes the format of the
977 // void * argument passed to AMDGPU's createMCSymbolizer.
978 static void addSymbolizer(
979     MCContext &Ctx, const Target *Target, StringRef TripleName,
980     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
981     SectionSymbolsTy &Symbols,
982     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
983 
984   std::unique_ptr<MCRelocationInfo> RelInfo(
985       Target->createMCRelocationInfo(TripleName, Ctx));
986   if (!RelInfo)
987     return;
988   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
989       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
990   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
991   DisAsm->setSymbolizer(std::move(Symbolizer));
992 
993   if (!SymbolizeOperands)
994     return;
995 
996   // Synthesize labels referenced by branch instructions by
997   // disassembling, discarding the output, and collecting the referenced
998   // addresses from the symbolizer.
999   for (size_t Index = 0; Index != Bytes.size();) {
1000     MCInst Inst;
1001     uint64_t Size;
1002     DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index,
1003                            nulls());
1004     if (Size == 0)
1005       Size = 1;
1006     Index += Size;
1007   }
1008   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1009   // Copy and sort to remove duplicates.
1010   std::vector<uint64_t> LabelAddrs;
1011   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1012                     LabelAddrsRef.end());
1013   llvm::sort(LabelAddrs);
1014   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1015                     LabelAddrs.begin());
1016   // Add the labels.
1017   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1018     auto Name = std::make_unique<std::string>();
1019     *Name = (Twine("L") + Twine(LabelNum)).str();
1020     SynthesizedLabelNames.push_back(std::move(Name));
1021     Symbols.push_back(SymbolInfoTy(
1022         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1023   }
1024   llvm::stable_sort(Symbols);
1025   // Recreate the symbolizer with the new symbols list.
1026   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1027   Symbolizer.reset(Target->createMCSymbolizer(
1028       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1029   DisAsm->setSymbolizer(std::move(Symbolizer));
1030 }
1031 
1032 static StringRef getSegmentName(const MachOObjectFile *MachO,
1033                                 const SectionRef &Section) {
1034   if (MachO) {
1035     DataRefImpl DR = Section.getRawDataRefImpl();
1036     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1037     return SegmentName;
1038   }
1039   return "";
1040 }
1041 
1042 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1043                                     const MCAsmInfo &MAI,
1044                                     const MCSubtargetInfo &STI,
1045                                     StringRef Comments,
1046                                     LiveVariablePrinter &LVP) {
1047   do {
1048     if (!Comments.empty()) {
1049       // Emit a line of comments.
1050       StringRef Comment;
1051       std::tie(Comment, Comments) = Comments.split('\n');
1052       // MAI.getCommentColumn() assumes that instructions are printed at the
1053       // position of 8, while getInstStartColumn() returns the actual position.
1054       unsigned CommentColumn =
1055           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1056       FOS.PadToColumn(CommentColumn);
1057       FOS << MAI.getCommentString() << ' ' << Comment;
1058     }
1059     LVP.printAfterInst(FOS);
1060     FOS << '\n';
1061   } while (!Comments.empty());
1062   FOS.flush();
1063 }
1064 
1065 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1066                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1067                               MCDisassembler *SecondaryDisAsm,
1068                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1069                               const MCSubtargetInfo *PrimarySTI,
1070                               const MCSubtargetInfo *SecondarySTI,
1071                               PrettyPrinter &PIP,
1072                               SourcePrinter &SP, bool InlineRelocs) {
1073   const MCSubtargetInfo *STI = PrimarySTI;
1074   MCDisassembler *DisAsm = PrimaryDisAsm;
1075   bool PrimaryIsThumb = false;
1076   if (isArmElf(Obj))
1077     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1078 
1079   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1080   if (InlineRelocs)
1081     RelocMap = getRelocsMap(*Obj);
1082   bool Is64Bits = Obj->getBytesInAddress() > 4;
1083 
1084   // Create a mapping from virtual address to symbol name.  This is used to
1085   // pretty print the symbols while disassembling.
1086   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1087   SectionSymbolsTy AbsoluteSymbols;
1088   const StringRef FileName = Obj->getFileName();
1089   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1090   for (const SymbolRef &Symbol : Obj->symbols()) {
1091     Expected<StringRef> NameOrErr = Symbol.getName();
1092     if (!NameOrErr) {
1093       reportWarning(toString(NameOrErr.takeError()), FileName);
1094       continue;
1095     }
1096     if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1097       continue;
1098 
1099     if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1100       continue;
1101 
1102     if (MachO) {
1103       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1104       // symbols that support MachO header introspection. They do not bind to
1105       // code locations and are irrelevant for disassembly.
1106       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1107         continue;
1108       // Don't ask a Mach-O STAB symbol for its section unless you know that
1109       // STAB symbol's section field refers to a valid section index. Otherwise
1110       // the symbol may error trying to load a section that does not exist.
1111       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1112       uint8_t NType = (MachO->is64Bit() ?
1113                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1114                        MachO->getSymbolTableEntry(SymDRI).n_type);
1115       if (NType & MachO::N_STAB)
1116         continue;
1117     }
1118 
1119     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1120     if (SecI != Obj->section_end())
1121       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1122     else
1123       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1124   }
1125 
1126   if (AllSymbols.empty() && Obj->isELF())
1127     addDynamicElfSymbols(Obj, AllSymbols);
1128 
1129   BumpPtrAllocator A;
1130   StringSaver Saver(A);
1131   addPltEntries(Obj, AllSymbols, Saver);
1132 
1133   // Create a mapping from virtual address to section. An empty section can
1134   // cause more than one section at the same address. Sort such sections to be
1135   // before same-addressed non-empty sections so that symbol lookups prefer the
1136   // non-empty section.
1137   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1138   for (SectionRef Sec : Obj->sections())
1139     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1140   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1141     if (LHS.first != RHS.first)
1142       return LHS.first < RHS.first;
1143     return LHS.second.getSize() < RHS.second.getSize();
1144   });
1145 
1146   // Linked executables (.exe and .dll files) typically don't include a real
1147   // symbol table but they might contain an export table.
1148   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1149     for (const auto &ExportEntry : COFFObj->export_directories()) {
1150       StringRef Name;
1151       if (Error E = ExportEntry.getSymbolName(Name))
1152         reportError(std::move(E), Obj->getFileName());
1153       if (Name.empty())
1154         continue;
1155 
1156       uint32_t RVA;
1157       if (Error E = ExportEntry.getExportRVA(RVA))
1158         reportError(std::move(E), Obj->getFileName());
1159 
1160       uint64_t VA = COFFObj->getImageBase() + RVA;
1161       auto Sec = partition_point(
1162           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1163             return O.first <= VA;
1164           });
1165       if (Sec != SectionAddresses.begin()) {
1166         --Sec;
1167         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1168       } else
1169         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1170     }
1171   }
1172 
1173   // Sort all the symbols, this allows us to use a simple binary search to find
1174   // Multiple symbols can have the same address. Use a stable sort to stabilize
1175   // the output.
1176   StringSet<> FoundDisasmSymbolSet;
1177   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1178     llvm::stable_sort(SecSyms.second);
1179   llvm::stable_sort(AbsoluteSymbols);
1180 
1181   std::unique_ptr<DWARFContext> DICtx;
1182   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1183 
1184   if (DbgVariables != DVDisabled) {
1185     DICtx = DWARFContext::create(*Obj);
1186     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1187       LVP.addCompileUnit(CU->getUnitDIE(false));
1188   }
1189 
1190   LLVM_DEBUG(LVP.dump());
1191 
1192   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1193     if (FilterSections.empty() && !DisassembleAll &&
1194         (!Section.isText() || Section.isVirtual()))
1195       continue;
1196 
1197     uint64_t SectionAddr = Section.getAddress();
1198     uint64_t SectSize = Section.getSize();
1199     if (!SectSize)
1200       continue;
1201 
1202     // Get the list of all the symbols in this section.
1203     SectionSymbolsTy &Symbols = AllSymbols[Section];
1204     std::vector<MappingSymbolPair> MappingSymbols;
1205     if (hasMappingSymbols(Obj)) {
1206       for (const auto &Symb : Symbols) {
1207         uint64_t Address = Symb.Addr;
1208         StringRef Name = Symb.Name;
1209         if (Name.startswith("$d"))
1210           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1211         if (Name.startswith("$x"))
1212           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1213         if (Name.startswith("$a"))
1214           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1215         if (Name.startswith("$t"))
1216           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1217       }
1218     }
1219 
1220     llvm::sort(MappingSymbols);
1221 
1222     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1223         unwrapOrError(Section.getContents(), Obj->getFileName()));
1224 
1225     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1226     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1227       // AMDGPU disassembler uses symbolizer for printing labels
1228       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1229                     Symbols, SynthesizedLabelNames);
1230     }
1231 
1232     StringRef SegmentName = getSegmentName(MachO, Section);
1233     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1234     // If the section has no symbol at the start, just insert a dummy one.
1235     if (Symbols.empty() || Symbols[0].Addr != 0) {
1236       Symbols.insert(Symbols.begin(),
1237                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1238                                            Section.isText() ? ELF::STT_FUNC
1239                                                             : ELF::STT_OBJECT));
1240     }
1241 
1242     SmallString<40> Comments;
1243     raw_svector_ostream CommentStream(Comments);
1244 
1245     uint64_t VMAAdjustment = 0;
1246     if (shouldAdjustVA(Section))
1247       VMAAdjustment = AdjustVMA;
1248 
1249     uint64_t Size;
1250     uint64_t Index;
1251     bool PrintedSection = false;
1252     std::vector<RelocationRef> Rels = RelocMap[Section];
1253     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1254     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1255     // Disassemble symbol by symbol.
1256     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1257       std::string SymbolName = Symbols[SI].Name.str();
1258       if (Demangle)
1259         SymbolName = demangle(SymbolName);
1260 
1261       // Skip if --disassemble-symbols is not empty and the symbol is not in
1262       // the list.
1263       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1264         continue;
1265 
1266       uint64_t Start = Symbols[SI].Addr;
1267       if (Start < SectionAddr || StopAddress <= Start)
1268         continue;
1269       else
1270         FoundDisasmSymbolSet.insert(SymbolName);
1271 
1272       // The end is the section end, the beginning of the next symbol, or
1273       // --stop-address.
1274       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1275       if (SI + 1 < SE)
1276         End = std::min(End, Symbols[SI + 1].Addr);
1277       if (Start >= End || End <= StartAddress)
1278         continue;
1279       Start -= SectionAddr;
1280       End -= SectionAddr;
1281 
1282       if (!PrintedSection) {
1283         PrintedSection = true;
1284         outs() << "\nDisassembly of section ";
1285         if (!SegmentName.empty())
1286           outs() << SegmentName << ",";
1287         outs() << SectionName << ":\n";
1288       }
1289 
1290       outs() << '\n';
1291       if (LeadingAddr)
1292         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1293                          SectionAddr + Start + VMAAdjustment);
1294       if (Obj->isXCOFF() && SymbolDescription) {
1295         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1296       } else
1297         outs() << '<' << SymbolName << ">:\n";
1298 
1299       // Don't print raw contents of a virtual section. A virtual section
1300       // doesn't have any contents in the file.
1301       if (Section.isVirtual()) {
1302         outs() << "...\n";
1303         continue;
1304       }
1305 
1306       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1307                                           Bytes.slice(Start, End - Start),
1308                                           SectionAddr + Start, CommentStream);
1309       // To have round trippable disassembly, we fall back to decoding the
1310       // remaining bytes as instructions.
1311       //
1312       // If there is a failure, we disassemble the failed region as bytes before
1313       // falling back. The target is expected to print nothing in this case.
1314       //
1315       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1316       // Size bytes before falling back.
1317       // So if the entire symbol is 'eaten' by the target:
1318       //   Start += Size  // Now Start = End and we will never decode as
1319       //                  // instructions
1320       //
1321       // Right now, most targets return None i.e ignore to treat a symbol
1322       // separately. But WebAssembly decodes preludes for some symbols.
1323       //
1324       if (Status.hasValue()) {
1325         if (Status.getValue() == MCDisassembler::Fail) {
1326           outs() << "// Error in decoding " << SymbolName
1327                  << " : Decoding failed region as bytes.\n";
1328           for (uint64_t I = 0; I < Size; ++I) {
1329             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1330                    << "\n";
1331           }
1332         }
1333       } else {
1334         Size = 0;
1335       }
1336 
1337       Start += Size;
1338 
1339       Index = Start;
1340       if (SectionAddr < StartAddress)
1341         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1342 
1343       // If there is a data/common symbol inside an ELF text section and we are
1344       // only disassembling text (applicable all architectures), we are in a
1345       // situation where we must print the data and not disassemble it.
1346       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1347         uint8_t SymTy = Symbols[SI].Type;
1348         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1349           dumpELFData(SectionAddr, Index, End, Bytes);
1350           Index = End;
1351         }
1352       }
1353 
1354       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1355                              Symbols[SI].Type != ELF::STT_OBJECT &&
1356                              !DisassembleAll;
1357       bool DumpARMELFData = false;
1358       formatted_raw_ostream FOS(outs());
1359 
1360       std::unordered_map<uint64_t, std::string> AllLabels;
1361       if (SymbolizeOperands)
1362         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1363                                   SectionAddr, Index, End, AllLabels);
1364 
1365       while (Index < End) {
1366         // ARM and AArch64 ELF binaries can interleave data and text in the
1367         // same section. We rely on the markers introduced to understand what
1368         // we need to dump. If the data marker is within a function, it is
1369         // denoted as a word/short etc.
1370         if (CheckARMELFData) {
1371           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1372           DumpARMELFData = Kind == 'd';
1373           if (SecondarySTI) {
1374             if (Kind == 'a') {
1375               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1376               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1377             } else if (Kind == 't') {
1378               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1379               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1380             }
1381           }
1382         }
1383 
1384         if (DumpARMELFData) {
1385           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1386                                 MappingSymbols, FOS);
1387         } else {
1388           // When -z or --disassemble-zeroes are given we always dissasemble
1389           // them. Otherwise we might want to skip zero bytes we see.
1390           if (!DisassembleZeroes) {
1391             uint64_t MaxOffset = End - Index;
1392             // For --reloc: print zero blocks patched by relocations, so that
1393             // relocations can be shown in the dump.
1394             if (RelCur != RelEnd)
1395               MaxOffset = RelCur->getOffset() - Index;
1396 
1397             if (size_t N =
1398                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1399               FOS << "\t\t..." << '\n';
1400               Index += N;
1401               continue;
1402             }
1403           }
1404 
1405           // Print local label if there's any.
1406           auto Iter = AllLabels.find(SectionAddr + Index);
1407           if (Iter != AllLabels.end())
1408             FOS << "<" << Iter->second << ">:\n";
1409 
1410           // Disassemble a real instruction or a data when disassemble all is
1411           // provided
1412           MCInst Inst;
1413           bool Disassembled =
1414               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1415                                      SectionAddr + Index, CommentStream);
1416           if (Size == 0)
1417             Size = 1;
1418 
1419           LVP.update({Index, Section.getIndex()},
1420                      {Index + Size, Section.getIndex()}, Index + Size != End);
1421 
1422           IP->setCommentStream(CommentStream);
1423 
1424           PIP.printInst(
1425               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1426               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1427               "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
1428 
1429           IP->setCommentStream(llvm::nulls());
1430 
1431           // If disassembly has failed, avoid analysing invalid/incomplete
1432           // instruction information. Otherwise, try to resolve the target
1433           // address (jump target or memory operand address) and print it on the
1434           // right of the instruction.
1435           if (Disassembled && MIA) {
1436             // Branch targets are printed just after the instructions.
1437             llvm::raw_ostream *TargetOS = &FOS;
1438             uint64_t Target;
1439             bool PrintTarget =
1440                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1441             if (!PrintTarget)
1442               if (Optional<uint64_t> MaybeTarget =
1443                       MIA->evaluateMemoryOperandAddress(
1444                           Inst, SectionAddr + Index, Size)) {
1445                 Target = *MaybeTarget;
1446                 PrintTarget = true;
1447                 // Do not print real address when symbolizing.
1448                 if (!SymbolizeOperands) {
1449                   // Memory operand addresses are printed as comments.
1450                   TargetOS = &CommentStream;
1451                   *TargetOS << "0x" << Twine::utohexstr(Target);
1452                 }
1453               }
1454             if (PrintTarget) {
1455               // In a relocatable object, the target's section must reside in
1456               // the same section as the call instruction or it is accessed
1457               // through a relocation.
1458               //
1459               // In a non-relocatable object, the target may be in any section.
1460               // In that case, locate the section(s) containing the target
1461               // address and find the symbol in one of those, if possible.
1462               //
1463               // N.B. We don't walk the relocations in the relocatable case yet.
1464               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1465               if (!Obj->isRelocatableObject()) {
1466                 auto It = llvm::partition_point(
1467                     SectionAddresses,
1468                     [=](const std::pair<uint64_t, SectionRef> &O) {
1469                       return O.first <= Target;
1470                     });
1471                 uint64_t TargetSecAddr = 0;
1472                 while (It != SectionAddresses.begin()) {
1473                   --It;
1474                   if (TargetSecAddr == 0)
1475                     TargetSecAddr = It->first;
1476                   if (It->first != TargetSecAddr)
1477                     break;
1478                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1479                 }
1480               } else {
1481                 TargetSectionSymbols.push_back(&Symbols);
1482               }
1483               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1484 
1485               // Find the last symbol in the first candidate section whose
1486               // offset is less than or equal to the target. If there are no
1487               // such symbols, try in the next section and so on, before finally
1488               // using the nearest preceding absolute symbol (if any), if there
1489               // are no other valid symbols.
1490               const SymbolInfoTy *TargetSym = nullptr;
1491               for (const SectionSymbolsTy *TargetSymbols :
1492                    TargetSectionSymbols) {
1493                 auto It = llvm::partition_point(
1494                     *TargetSymbols,
1495                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1496                 if (It != TargetSymbols->begin()) {
1497                   TargetSym = &*(It - 1);
1498                   break;
1499                 }
1500               }
1501 
1502               // Print the labels corresponding to the target if there's any.
1503               bool LabelAvailable = AllLabels.count(Target);
1504               if (TargetSym != nullptr) {
1505                 uint64_t TargetAddress = TargetSym->Addr;
1506                 uint64_t Disp = Target - TargetAddress;
1507                 std::string TargetName = TargetSym->Name.str();
1508                 if (Demangle)
1509                   TargetName = demangle(TargetName);
1510 
1511                 *TargetOS << " <";
1512                 if (!Disp) {
1513                   // Always Print the binary symbol precisely corresponding to
1514                   // the target address.
1515                   *TargetOS << TargetName;
1516                 } else if (!LabelAvailable) {
1517                   // Always Print the binary symbol plus an offset if there's no
1518                   // local label corresponding to the target address.
1519                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1520                 } else {
1521                   *TargetOS << AllLabels[Target];
1522                 }
1523                 *TargetOS << ">";
1524               } else if (LabelAvailable) {
1525                 *TargetOS << " <" << AllLabels[Target] << ">";
1526               }
1527               // By convention, each record in the comment stream should be
1528               // terminated.
1529               if (TargetOS == &CommentStream)
1530                 *TargetOS << "\n";
1531             }
1532           }
1533         }
1534 
1535         assert(Ctx.getAsmInfo());
1536         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1537                                 CommentStream.str(), LVP);
1538         Comments.clear();
1539 
1540         // Hexagon does this in pretty printer
1541         if (Obj->getArch() != Triple::hexagon) {
1542           // Print relocation for instruction and data.
1543           while (RelCur != RelEnd) {
1544             uint64_t Offset = RelCur->getOffset();
1545             // If this relocation is hidden, skip it.
1546             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1547               ++RelCur;
1548               continue;
1549             }
1550 
1551             // Stop when RelCur's offset is past the disassembled
1552             // instruction/data. Note that it's possible the disassembled data
1553             // is not the complete data: we might see the relocation printed in
1554             // the middle of the data, but this matches the binutils objdump
1555             // output.
1556             if (Offset >= Index + Size)
1557               break;
1558 
1559             // When --adjust-vma is used, update the address printed.
1560             if (RelCur->getSymbol() != Obj->symbol_end()) {
1561               Expected<section_iterator> SymSI =
1562                   RelCur->getSymbol()->getSection();
1563               if (SymSI && *SymSI != Obj->section_end() &&
1564                   shouldAdjustVA(**SymSI))
1565                 Offset += AdjustVMA;
1566             }
1567 
1568             printRelocation(FOS, Obj->getFileName(), *RelCur,
1569                             SectionAddr + Offset, Is64Bits);
1570             LVP.printAfterOtherLine(FOS, true);
1571             ++RelCur;
1572           }
1573         }
1574 
1575         Index += Size;
1576       }
1577     }
1578   }
1579   StringSet<> MissingDisasmSymbolSet =
1580       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1581   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1582     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1583 }
1584 
1585 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1586   const Target *TheTarget = getTarget(Obj);
1587 
1588   // Package up features to be passed to target/subtarget
1589   SubtargetFeatures Features = Obj->getFeatures();
1590   if (!MAttrs.empty())
1591     for (unsigned I = 0; I != MAttrs.size(); ++I)
1592       Features.AddFeature(MAttrs[I]);
1593 
1594   std::unique_ptr<const MCRegisterInfo> MRI(
1595       TheTarget->createMCRegInfo(TripleName));
1596   if (!MRI)
1597     reportError(Obj->getFileName(),
1598                 "no register info for target " + TripleName);
1599 
1600   // Set up disassembler.
1601   MCTargetOptions MCOptions;
1602   std::unique_ptr<const MCAsmInfo> AsmInfo(
1603       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1604   if (!AsmInfo)
1605     reportError(Obj->getFileName(),
1606                 "no assembly info for target " + TripleName);
1607 
1608   if (MCPU.empty())
1609     MCPU = Obj->tryGetCPUName().getValueOr("").str();
1610 
1611   std::unique_ptr<const MCSubtargetInfo> STI(
1612       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1613   if (!STI)
1614     reportError(Obj->getFileName(),
1615                 "no subtarget info for target " + TripleName);
1616   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1617   if (!MII)
1618     reportError(Obj->getFileName(),
1619                 "no instruction info for target " + TripleName);
1620   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
1621   // FIXME: for now initialize MCObjectFileInfo with default values
1622   std::unique_ptr<MCObjectFileInfo> MOFI(
1623       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
1624   Ctx.setObjectFileInfo(MOFI.get());
1625 
1626   std::unique_ptr<MCDisassembler> DisAsm(
1627       TheTarget->createMCDisassembler(*STI, Ctx));
1628   if (!DisAsm)
1629     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1630 
1631   // If we have an ARM object file, we need a second disassembler, because
1632   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1633   // We use mapping symbols to switch between the two assemblers, where
1634   // appropriate.
1635   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1636   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1637   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1638     if (STI->checkFeatures("+thumb-mode"))
1639       Features.AddFeature("-thumb-mode");
1640     else
1641       Features.AddFeature("+thumb-mode");
1642     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1643                                                         Features.getString()));
1644     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1645   }
1646 
1647   std::unique_ptr<const MCInstrAnalysis> MIA(
1648       TheTarget->createMCInstrAnalysis(MII.get()));
1649 
1650   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1651   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1652       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1653   if (!IP)
1654     reportError(Obj->getFileName(),
1655                 "no instruction printer for target " + TripleName);
1656   IP->setPrintImmHex(PrintImmHex);
1657   IP->setPrintBranchImmAsAddress(true);
1658   IP->setSymbolizeOperands(SymbolizeOperands);
1659   IP->setMCInstrAnalysis(MIA.get());
1660 
1661   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1662   SourcePrinter SP(Obj, TheTarget->getName());
1663 
1664   for (StringRef Opt : DisassemblerOptions)
1665     if (!IP->applyTargetSpecificCLOption(Opt))
1666       reportError(Obj->getFileName(),
1667                   "Unrecognized disassembler option: " + Opt);
1668 
1669   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1670                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1671                     SP, InlineRelocs);
1672 }
1673 
1674 void objdump::printRelocations(const ObjectFile *Obj) {
1675   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1676                                                  "%08" PRIx64;
1677   // Regular objdump doesn't print relocations in non-relocatable object
1678   // files.
1679   if (!Obj->isRelocatableObject())
1680     return;
1681 
1682   // Build a mapping from relocation target to a vector of relocation
1683   // sections. Usually, there is an only one relocation section for
1684   // each relocated section.
1685   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1686   uint64_t Ndx;
1687   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1688     if (Section.relocation_begin() == Section.relocation_end())
1689       continue;
1690     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1691     if (!SecOrErr)
1692       reportError(Obj->getFileName(),
1693                   "section (" + Twine(Ndx) +
1694                       "): unable to get a relocation target: " +
1695                       toString(SecOrErr.takeError()));
1696     SecToRelSec[**SecOrErr].push_back(Section);
1697   }
1698 
1699   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1700     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1701     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
1702     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1703     uint32_t TypePadding = 24;
1704     outs() << left_justify("OFFSET", OffsetPadding) << " "
1705            << left_justify("TYPE", TypePadding) << " "
1706            << "VALUE\n";
1707 
1708     for (SectionRef Section : P.second) {
1709       for (const RelocationRef &Reloc : Section.relocations()) {
1710         uint64_t Address = Reloc.getOffset();
1711         SmallString<32> RelocName;
1712         SmallString<32> ValueStr;
1713         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1714           continue;
1715         Reloc.getTypeName(RelocName);
1716         if (Error E = getRelocationValueString(Reloc, ValueStr))
1717           reportError(std::move(E), Obj->getFileName());
1718 
1719         outs() << format(Fmt.data(), Address) << " "
1720                << left_justify(RelocName, TypePadding) << " " << ValueStr
1721                << "\n";
1722       }
1723     }
1724   }
1725 }
1726 
1727 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
1728   // For the moment, this option is for ELF only
1729   if (!Obj->isELF())
1730     return;
1731 
1732   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1733   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1734     reportError(Obj->getFileName(), "not a dynamic object");
1735     return;
1736   }
1737 
1738   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1739   if (DynRelSec.empty())
1740     return;
1741 
1742   outs() << "DYNAMIC RELOCATION RECORDS\n";
1743   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1744   for (const SectionRef &Section : DynRelSec)
1745     for (const RelocationRef &Reloc : Section.relocations()) {
1746       uint64_t Address = Reloc.getOffset();
1747       SmallString<32> RelocName;
1748       SmallString<32> ValueStr;
1749       Reloc.getTypeName(RelocName);
1750       if (Error E = getRelocationValueString(Reloc, ValueStr))
1751         reportError(std::move(E), Obj->getFileName());
1752       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1753              << ValueStr << "\n";
1754     }
1755 }
1756 
1757 // Returns true if we need to show LMA column when dumping section headers. We
1758 // show it only when the platform is ELF and either we have at least one section
1759 // whose VMA and LMA are different and/or when --show-lma flag is used.
1760 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1761   if (!Obj->isELF())
1762     return false;
1763   for (const SectionRef &S : ToolSectionFilter(*Obj))
1764     if (S.getAddress() != getELFSectionLMA(S))
1765       return true;
1766   return ShowLMA;
1767 }
1768 
1769 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1770   // Default column width for names is 13 even if no names are that long.
1771   size_t MaxWidth = 13;
1772   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1773     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1774     MaxWidth = std::max(MaxWidth, Name.size());
1775   }
1776   return MaxWidth;
1777 }
1778 
1779 void objdump::printSectionHeaders(const ObjectFile *Obj) {
1780   size_t NameWidth = getMaxSectionNameWidth(Obj);
1781   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1782   bool HasLMAColumn = shouldDisplayLMA(Obj);
1783   outs() << "\nSections:\n";
1784   if (HasLMAColumn)
1785     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1786            << left_justify("VMA", AddressWidth) << " "
1787            << left_justify("LMA", AddressWidth) << " Type\n";
1788   else
1789     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1790            << left_justify("VMA", AddressWidth) << " Type\n";
1791 
1792   uint64_t Idx;
1793   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1794     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1795     uint64_t VMA = Section.getAddress();
1796     if (shouldAdjustVA(Section))
1797       VMA += AdjustVMA;
1798 
1799     uint64_t Size = Section.getSize();
1800 
1801     std::string Type = Section.isText() ? "TEXT" : "";
1802     if (Section.isData())
1803       Type += Type.empty() ? "DATA" : ", DATA";
1804     if (Section.isBSS())
1805       Type += Type.empty() ? "BSS" : ", BSS";
1806     if (Section.isDebugSection())
1807       Type += Type.empty() ? "DEBUG" : ", DEBUG";
1808 
1809     if (HasLMAColumn)
1810       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1811                        Name.str().c_str(), Size)
1812              << format_hex_no_prefix(VMA, AddressWidth) << " "
1813              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1814              << " " << Type << "\n";
1815     else
1816       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1817                        Name.str().c_str(), Size)
1818              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1819   }
1820 }
1821 
1822 void objdump::printSectionContents(const ObjectFile *Obj) {
1823   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1824 
1825   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1826     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1827     uint64_t BaseAddr = Section.getAddress();
1828     uint64_t Size = Section.getSize();
1829     if (!Size)
1830       continue;
1831 
1832     outs() << "Contents of section ";
1833     StringRef SegmentName = getSegmentName(MachO, Section);
1834     if (!SegmentName.empty())
1835       outs() << SegmentName << ",";
1836     outs() << Name << ":\n";
1837     if (Section.isBSS()) {
1838       outs() << format("<skipping contents of bss section at [%04" PRIx64
1839                        ", %04" PRIx64 ")>\n",
1840                        BaseAddr, BaseAddr + Size);
1841       continue;
1842     }
1843 
1844     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1845 
1846     // Dump out the content as hex and printable ascii characters.
1847     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1848       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1849       // Dump line of hex.
1850       for (std::size_t I = 0; I < 16; ++I) {
1851         if (I != 0 && I % 4 == 0)
1852           outs() << ' ';
1853         if (Addr + I < End)
1854           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1855                  << hexdigit(Contents[Addr + I] & 0xF, true);
1856         else
1857           outs() << "  ";
1858       }
1859       // Print ascii.
1860       outs() << "  ";
1861       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1862         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1863           outs() << Contents[Addr + I];
1864         else
1865           outs() << ".";
1866       }
1867       outs() << "\n";
1868     }
1869   }
1870 }
1871 
1872 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1873                                StringRef ArchitectureName, bool DumpDynamic) {
1874   if (O->isCOFF() && !DumpDynamic) {
1875     outs() << "\nSYMBOL TABLE:\n";
1876     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
1877     return;
1878   }
1879 
1880   const StringRef FileName = O->getFileName();
1881 
1882   if (!DumpDynamic) {
1883     outs() << "\nSYMBOL TABLE:\n";
1884     for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
1885       printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
1886     return;
1887   }
1888 
1889   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
1890   if (!O->isELF()) {
1891     reportWarning(
1892         "this operation is not currently supported for this file format",
1893         FileName);
1894     return;
1895   }
1896 
1897   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
1898   for (auto I = ELF->getDynamicSymbolIterators().begin();
1899        I != ELF->getDynamicSymbolIterators().end(); ++I)
1900     printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
1901 }
1902 
1903 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
1904                           StringRef FileName, StringRef ArchiveName,
1905                           StringRef ArchitectureName, bool DumpDynamic) {
1906   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1907   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1908                                    ArchitectureName);
1909   if ((Address < StartAddress) || (Address > StopAddress))
1910     return;
1911   SymbolRef::Type Type =
1912       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
1913   uint32_t Flags =
1914       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
1915 
1916   // Don't ask a Mach-O STAB symbol for its section unless you know that
1917   // STAB symbol's section field refers to a valid section index. Otherwise
1918   // the symbol may error trying to load a section that does not exist.
1919   bool IsSTAB = false;
1920   if (MachO) {
1921     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1922     uint8_t NType =
1923         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
1924                           : MachO->getSymbolTableEntry(SymDRI).n_type);
1925     if (NType & MachO::N_STAB)
1926       IsSTAB = true;
1927   }
1928   section_iterator Section = IsSTAB
1929                                  ? O->section_end()
1930                                  : unwrapOrError(Symbol.getSection(), FileName,
1931                                                  ArchiveName, ArchitectureName);
1932 
1933   StringRef Name;
1934   if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1935     if (Expected<StringRef> NameOrErr = Section->getName())
1936       Name = *NameOrErr;
1937     else
1938       consumeError(NameOrErr.takeError());
1939 
1940   } else {
1941     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
1942                          ArchitectureName);
1943   }
1944 
1945   bool Global = Flags & SymbolRef::SF_Global;
1946   bool Weak = Flags & SymbolRef::SF_Weak;
1947   bool Absolute = Flags & SymbolRef::SF_Absolute;
1948   bool Common = Flags & SymbolRef::SF_Common;
1949   bool Hidden = Flags & SymbolRef::SF_Hidden;
1950 
1951   char GlobLoc = ' ';
1952   if ((Section != O->section_end() || Absolute) && !Weak)
1953     GlobLoc = Global ? 'g' : 'l';
1954   char IFunc = ' ';
1955   if (O->isELF()) {
1956     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
1957       IFunc = 'i';
1958     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
1959       GlobLoc = 'u';
1960   }
1961 
1962   char Debug = ' ';
1963   if (DumpDynamic)
1964     Debug = 'D';
1965   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1966     Debug = 'd';
1967 
1968   char FileFunc = ' ';
1969   if (Type == SymbolRef::ST_File)
1970     FileFunc = 'f';
1971   else if (Type == SymbolRef::ST_Function)
1972     FileFunc = 'F';
1973   else if (Type == SymbolRef::ST_Data)
1974     FileFunc = 'O';
1975 
1976   const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1977 
1978   outs() << format(Fmt, Address) << " "
1979          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
1980          << (Weak ? 'w' : ' ') // Weak?
1981          << ' '                // Constructor. Not supported yet.
1982          << ' '                // Warning. Not supported yet.
1983          << IFunc              // Indirect reference to another symbol.
1984          << Debug              // Debugging (d) or dynamic (D) symbol.
1985          << FileFunc           // Name of function (F), file (f) or object (O).
1986          << ' ';
1987   if (Absolute) {
1988     outs() << "*ABS*";
1989   } else if (Common) {
1990     outs() << "*COM*";
1991   } else if (Section == O->section_end()) {
1992     outs() << "*UND*";
1993   } else {
1994     StringRef SegmentName = getSegmentName(MachO, *Section);
1995     if (!SegmentName.empty())
1996       outs() << SegmentName << ",";
1997     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
1998     outs() << SectionName;
1999   }
2000 
2001   if (Common || O->isELF()) {
2002     uint64_t Val =
2003         Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2004     outs() << '\t' << format(Fmt, Val);
2005   }
2006 
2007   if (O->isELF()) {
2008     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2009     switch (Other) {
2010     case ELF::STV_DEFAULT:
2011       break;
2012     case ELF::STV_INTERNAL:
2013       outs() << " .internal";
2014       break;
2015     case ELF::STV_HIDDEN:
2016       outs() << " .hidden";
2017       break;
2018     case ELF::STV_PROTECTED:
2019       outs() << " .protected";
2020       break;
2021     default:
2022       outs() << format(" 0x%02x", Other);
2023       break;
2024     }
2025   } else if (Hidden) {
2026     outs() << " .hidden";
2027   }
2028 
2029   if (Demangle)
2030     outs() << ' ' << demangle(std::string(Name)) << '\n';
2031   else
2032     outs() << ' ' << Name << '\n';
2033 }
2034 
2035 static void printUnwindInfo(const ObjectFile *O) {
2036   outs() << "Unwind info:\n\n";
2037 
2038   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2039     printCOFFUnwindInfo(Coff);
2040   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2041     printMachOUnwindInfo(MachO);
2042   else
2043     // TODO: Extract DWARF dump tool to objdump.
2044     WithColor::error(errs(), ToolName)
2045         << "This operation is only currently supported "
2046            "for COFF and MachO object files.\n";
2047 }
2048 
2049 /// Dump the raw contents of the __clangast section so the output can be piped
2050 /// into llvm-bcanalyzer.
2051 static void printRawClangAST(const ObjectFile *Obj) {
2052   if (outs().is_displayed()) {
2053     WithColor::error(errs(), ToolName)
2054         << "The -raw-clang-ast option will dump the raw binary contents of "
2055            "the clang ast section.\n"
2056            "Please redirect the output to a file or another program such as "
2057            "llvm-bcanalyzer.\n";
2058     return;
2059   }
2060 
2061   StringRef ClangASTSectionName("__clangast");
2062   if (Obj->isCOFF()) {
2063     ClangASTSectionName = "clangast";
2064   }
2065 
2066   Optional<object::SectionRef> ClangASTSection;
2067   for (auto Sec : ToolSectionFilter(*Obj)) {
2068     StringRef Name;
2069     if (Expected<StringRef> NameOrErr = Sec.getName())
2070       Name = *NameOrErr;
2071     else
2072       consumeError(NameOrErr.takeError());
2073 
2074     if (Name == ClangASTSectionName) {
2075       ClangASTSection = Sec;
2076       break;
2077     }
2078   }
2079   if (!ClangASTSection)
2080     return;
2081 
2082   StringRef ClangASTContents = unwrapOrError(
2083       ClangASTSection.getValue().getContents(), Obj->getFileName());
2084   outs().write(ClangASTContents.data(), ClangASTContents.size());
2085 }
2086 
2087 static void printFaultMaps(const ObjectFile *Obj) {
2088   StringRef FaultMapSectionName;
2089 
2090   if (Obj->isELF()) {
2091     FaultMapSectionName = ".llvm_faultmaps";
2092   } else if (Obj->isMachO()) {
2093     FaultMapSectionName = "__llvm_faultmaps";
2094   } else {
2095     WithColor::error(errs(), ToolName)
2096         << "This operation is only currently supported "
2097            "for ELF and Mach-O executable files.\n";
2098     return;
2099   }
2100 
2101   Optional<object::SectionRef> FaultMapSection;
2102 
2103   for (auto Sec : ToolSectionFilter(*Obj)) {
2104     StringRef Name;
2105     if (Expected<StringRef> NameOrErr = Sec.getName())
2106       Name = *NameOrErr;
2107     else
2108       consumeError(NameOrErr.takeError());
2109 
2110     if (Name == FaultMapSectionName) {
2111       FaultMapSection = Sec;
2112       break;
2113     }
2114   }
2115 
2116   outs() << "FaultMap table:\n";
2117 
2118   if (!FaultMapSection.hasValue()) {
2119     outs() << "<not found>\n";
2120     return;
2121   }
2122 
2123   StringRef FaultMapContents =
2124       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2125   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2126                      FaultMapContents.bytes_end());
2127 
2128   outs() << FMP;
2129 }
2130 
2131 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2132   if (O->isELF()) {
2133     printELFFileHeader(O);
2134     printELFDynamicSection(O);
2135     printELFSymbolVersionInfo(O);
2136     return;
2137   }
2138   if (O->isCOFF())
2139     return printCOFFFileHeader(O);
2140   if (O->isWasm())
2141     return printWasmFileHeader(O);
2142   if (O->isMachO()) {
2143     printMachOFileHeader(O);
2144     if (!OnlyFirst)
2145       printMachOLoadCommands(O);
2146     return;
2147   }
2148   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2149 }
2150 
2151 static void printFileHeaders(const ObjectFile *O) {
2152   if (!O->isELF() && !O->isCOFF())
2153     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2154 
2155   Triple::ArchType AT = O->getArch();
2156   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2157   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2158 
2159   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2160   outs() << "start address: "
2161          << "0x" << format(Fmt.data(), Address) << "\n";
2162 }
2163 
2164 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2165   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2166   if (!ModeOrErr) {
2167     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2168     consumeError(ModeOrErr.takeError());
2169     return;
2170   }
2171   sys::fs::perms Mode = ModeOrErr.get();
2172   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2173   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2174   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2175   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2176   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2177   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2178   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2179   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2180   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2181 
2182   outs() << " ";
2183 
2184   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2185                    unwrapOrError(C.getGID(), Filename),
2186                    unwrapOrError(C.getRawSize(), Filename));
2187 
2188   StringRef RawLastModified = C.getRawLastModified();
2189   unsigned Seconds;
2190   if (RawLastModified.getAsInteger(10, Seconds))
2191     outs() << "(date: \"" << RawLastModified
2192            << "\" contains non-decimal chars) ";
2193   else {
2194     // Since ctime(3) returns a 26 character string of the form:
2195     // "Sun Sep 16 01:03:52 1973\n\0"
2196     // just print 24 characters.
2197     time_t t = Seconds;
2198     outs() << format("%.24s ", ctime(&t));
2199   }
2200 
2201   StringRef Name = "";
2202   Expected<StringRef> NameOrErr = C.getName();
2203   if (!NameOrErr) {
2204     consumeError(NameOrErr.takeError());
2205     Name = unwrapOrError(C.getRawName(), Filename);
2206   } else {
2207     Name = NameOrErr.get();
2208   }
2209   outs() << Name << "\n";
2210 }
2211 
2212 // For ELF only now.
2213 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2214   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2215     if (Elf->getEType() != ELF::ET_REL)
2216       return true;
2217   }
2218   return false;
2219 }
2220 
2221 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2222                                             uint64_t Start, uint64_t Stop) {
2223   if (!shouldWarnForInvalidStartStopAddress(Obj))
2224     return;
2225 
2226   for (const SectionRef &Section : Obj->sections())
2227     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2228       uint64_t BaseAddr = Section.getAddress();
2229       uint64_t Size = Section.getSize();
2230       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2231         return;
2232     }
2233 
2234   if (!HasStartAddressFlag)
2235     reportWarning("no section has address less than 0x" +
2236                       Twine::utohexstr(Stop) + " specified by --stop-address",
2237                   Obj->getFileName());
2238   else if (!HasStopAddressFlag)
2239     reportWarning("no section has address greater than or equal to 0x" +
2240                       Twine::utohexstr(Start) + " specified by --start-address",
2241                   Obj->getFileName());
2242   else
2243     reportWarning("no section overlaps the range [0x" +
2244                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2245                       ") specified by --start-address/--stop-address",
2246                   Obj->getFileName());
2247 }
2248 
2249 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2250                        const Archive::Child *C = nullptr) {
2251   // Avoid other output when using a raw option.
2252   if (!RawClangAST) {
2253     outs() << '\n';
2254     if (A)
2255       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2256     else
2257       outs() << O->getFileName();
2258     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2259   }
2260 
2261   if (HasStartAddressFlag || HasStopAddressFlag)
2262     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2263 
2264   // Note: the order here matches GNU objdump for compatability.
2265   StringRef ArchiveName = A ? A->getFileName() : "";
2266   if (ArchiveHeaders && !MachOOpt && C)
2267     printArchiveChild(ArchiveName, *C);
2268   if (FileHeaders)
2269     printFileHeaders(O);
2270   if (PrivateHeaders || FirstPrivateHeader)
2271     printPrivateFileHeaders(O, FirstPrivateHeader);
2272   if (SectionHeaders)
2273     printSectionHeaders(O);
2274   if (SymbolTable)
2275     printSymbolTable(O, ArchiveName);
2276   if (DynamicSymbolTable)
2277     printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2278                      /*DumpDynamic=*/true);
2279   if (DwarfDumpType != DIDT_Null) {
2280     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2281     // Dump the complete DWARF structure.
2282     DIDumpOptions DumpOpts;
2283     DumpOpts.DumpType = DwarfDumpType;
2284     DICtx->dump(outs(), DumpOpts);
2285   }
2286   if (Relocations && !Disassemble)
2287     printRelocations(O);
2288   if (DynamicRelocations)
2289     printDynamicRelocations(O);
2290   if (SectionContents)
2291     printSectionContents(O);
2292   if (Disassemble)
2293     disassembleObject(O, Relocations);
2294   if (UnwindInfo)
2295     printUnwindInfo(O);
2296 
2297   // Mach-O specific options:
2298   if (ExportsTrie)
2299     printExportsTrie(O);
2300   if (Rebase)
2301     printRebaseTable(O);
2302   if (Bind)
2303     printBindTable(O);
2304   if (LazyBind)
2305     printLazyBindTable(O);
2306   if (WeakBind)
2307     printWeakBindTable(O);
2308 
2309   // Other special sections:
2310   if (RawClangAST)
2311     printRawClangAST(O);
2312   if (FaultMapSection)
2313     printFaultMaps(O);
2314 }
2315 
2316 static void dumpObject(const COFFImportFile *I, const Archive *A,
2317                        const Archive::Child *C = nullptr) {
2318   StringRef ArchiveName = A ? A->getFileName() : "";
2319 
2320   // Avoid other output when using a raw option.
2321   if (!RawClangAST)
2322     outs() << '\n'
2323            << ArchiveName << "(" << I->getFileName() << ")"
2324            << ":\tfile format COFF-import-file"
2325            << "\n\n";
2326 
2327   if (ArchiveHeaders && !MachOOpt && C)
2328     printArchiveChild(ArchiveName, *C);
2329   if (SymbolTable)
2330     printCOFFSymbolTable(I);
2331 }
2332 
2333 /// Dump each object file in \a a;
2334 static void dumpArchive(const Archive *A) {
2335   Error Err = Error::success();
2336   unsigned I = -1;
2337   for (auto &C : A->children(Err)) {
2338     ++I;
2339     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2340     if (!ChildOrErr) {
2341       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2342         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2343       continue;
2344     }
2345     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2346       dumpObject(O, A, &C);
2347     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2348       dumpObject(I, A, &C);
2349     else
2350       reportError(errorCodeToError(object_error::invalid_file_type),
2351                   A->getFileName());
2352   }
2353   if (Err)
2354     reportError(std::move(Err), A->getFileName());
2355 }
2356 
2357 /// Open file and figure out how to dump it.
2358 static void dumpInput(StringRef file) {
2359   // If we are using the Mach-O specific object file parser, then let it parse
2360   // the file and process the command line options.  So the -arch flags can
2361   // be used to select specific slices, etc.
2362   if (MachOOpt) {
2363     parseInputMachO(file);
2364     return;
2365   }
2366 
2367   // Attempt to open the binary.
2368   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2369   Binary &Binary = *OBinary.getBinary();
2370 
2371   if (Archive *A = dyn_cast<Archive>(&Binary))
2372     dumpArchive(A);
2373   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2374     dumpObject(O);
2375   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2376     parseInputMachO(UB);
2377   else
2378     reportError(errorCodeToError(object_error::invalid_file_type), file);
2379 }
2380 
2381 template <typename T>
2382 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2383                         T &Value) {
2384   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2385     StringRef V(A->getValue());
2386     if (!llvm::to_integer(V, Value, 0)) {
2387       reportCmdLineError(A->getSpelling() +
2388                          ": expected a non-negative integer, but got '" + V +
2389                          "'");
2390     }
2391   }
2392 }
2393 
2394 static std::vector<std::string>
2395 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2396   std::vector<std::string> Values;
2397   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2398     llvm::SmallVector<StringRef, 2> SplitValues;
2399     llvm::SplitString(Value, SplitValues, ",");
2400     for (StringRef SplitValue : SplitValues)
2401       Values.push_back(SplitValue.str());
2402   }
2403   return Values;
2404 }
2405 
2406 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2407   MachOOpt = true;
2408   FullLeadingAddr = true;
2409   PrintImmHex = true;
2410 
2411   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2412   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2413   if (InputArgs.hasArg(OTOOL_d))
2414     FilterSections.push_back("__DATA,__data");
2415   DylibId = InputArgs.hasArg(OTOOL_D);
2416   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2417   DataInCode = InputArgs.hasArg(OTOOL_G);
2418   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2419   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2420   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2421   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2422   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2423   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2424   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2425   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2426   InfoPlist = InputArgs.hasArg(OTOOL_P);
2427   Relocations = InputArgs.hasArg(OTOOL_r);
2428   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2429     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2430     FilterSections.push_back(Filter);
2431   }
2432   if (InputArgs.hasArg(OTOOL_t))
2433     FilterSections.push_back("__TEXT,__text");
2434   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2435             InputArgs.hasArg(OTOOL_o);
2436   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2437   if (InputArgs.hasArg(OTOOL_x))
2438     FilterSections.push_back(",__text");
2439   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2440 
2441   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2442   if (InputFilenames.empty())
2443     reportCmdLineError("no input file");
2444 
2445   for (const Arg *A : InputArgs) {
2446     const Option &O = A->getOption();
2447     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2448       reportCmdLineWarning(O.getPrefixedName() +
2449                            " is obsolete and not implemented");
2450     }
2451   }
2452 }
2453 
2454 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2455   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2456   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2457   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2458   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2459   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2460   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2461   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2462   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2463   DisassembleSymbols =
2464       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2465   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2466   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2467     DwarfDumpType =
2468         StringSwitch<DIDumpType>(A->getValue()).Case("frames", DIDT_DebugFrame);
2469   }
2470   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2471   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2472   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2473   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2474   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2475   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2476   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2477   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2478   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2479   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2480   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2481   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2482   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2483   PrintImmHex =
2484       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2485   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2486   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2487   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2488   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2489   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2490   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2491   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2492   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2493   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2494   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2495   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2496   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2497   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2498   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2499   Wide = InputArgs.hasArg(OBJDUMP_wide);
2500   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2501   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2502   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2503     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2504                        .Case("ascii", DVASCII)
2505                        .Case("unicode", DVUnicode);
2506   }
2507   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2508 
2509   parseMachOOptions(InputArgs);
2510 
2511   // Parse -M (--disassembler-options) and deprecated
2512   // --x86-asm-syntax={att,intel}.
2513   //
2514   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2515   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2516   // called too late. For now we have to use the internal cl::opt option.
2517   const char *AsmSyntax = nullptr;
2518   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2519                                           OBJDUMP_x86_asm_syntax_att,
2520                                           OBJDUMP_x86_asm_syntax_intel)) {
2521     switch (A->getOption().getID()) {
2522     case OBJDUMP_x86_asm_syntax_att:
2523       AsmSyntax = "--x86-asm-syntax=att";
2524       continue;
2525     case OBJDUMP_x86_asm_syntax_intel:
2526       AsmSyntax = "--x86-asm-syntax=intel";
2527       continue;
2528     }
2529 
2530     SmallVector<StringRef, 2> Values;
2531     llvm::SplitString(A->getValue(), Values, ",");
2532     for (StringRef V : Values) {
2533       if (V == "att")
2534         AsmSyntax = "--x86-asm-syntax=att";
2535       else if (V == "intel")
2536         AsmSyntax = "--x86-asm-syntax=intel";
2537       else
2538         DisassemblerOptions.push_back(V.str());
2539     }
2540   }
2541   if (AsmSyntax) {
2542     const char *Argv[] = {"llvm-objdump", AsmSyntax};
2543     llvm::cl::ParseCommandLineOptions(2, Argv);
2544   }
2545 
2546   // objdump defaults to a.out if no filenames specified.
2547   if (InputFilenames.empty())
2548     InputFilenames.push_back("a.out");
2549 }
2550 
2551 int main(int argc, char **argv) {
2552   using namespace llvm;
2553   InitLLVM X(argc, argv);
2554 
2555   ToolName = argv[0];
2556   std::unique_ptr<CommonOptTable> T;
2557   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2558 
2559   StringRef Stem = sys::path::stem(ToolName);
2560   auto Is = [=](StringRef Tool) {
2561     // We need to recognize the following filenames:
2562     //
2563     // llvm-objdump -> objdump
2564     // llvm-otool-10.exe -> otool
2565     // powerpc64-unknown-freebsd13-objdump -> objdump
2566     auto I = Stem.rfind_insensitive(Tool);
2567     return I != StringRef::npos &&
2568            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
2569   };
2570   if (Is("otool")) {
2571     T = std::make_unique<OtoolOptTable>();
2572     Unknown = OTOOL_UNKNOWN;
2573     HelpFlag = OTOOL_help;
2574     HelpHiddenFlag = OTOOL_help_hidden;
2575     VersionFlag = OTOOL_version;
2576   } else {
2577     T = std::make_unique<ObjdumpOptTable>();
2578     Unknown = OBJDUMP_UNKNOWN;
2579     HelpFlag = OBJDUMP_help;
2580     HelpHiddenFlag = OBJDUMP_help_hidden;
2581     VersionFlag = OBJDUMP_version;
2582   }
2583 
2584   BumpPtrAllocator A;
2585   StringSaver Saver(A);
2586   opt::InputArgList InputArgs =
2587       T->parseArgs(argc, argv, Unknown, Saver,
2588                    [&](StringRef Msg) { reportCmdLineError(Msg); });
2589 
2590   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
2591     T->printHelp(ToolName);
2592     return 0;
2593   }
2594   if (InputArgs.hasArg(HelpHiddenFlag)) {
2595     T->printHelp(ToolName, /*show_hidden=*/true);
2596     return 0;
2597   }
2598 
2599   // Initialize targets and assembly printers/parsers.
2600   InitializeAllTargetInfos();
2601   InitializeAllTargetMCs();
2602   InitializeAllDisassemblers();
2603 
2604   if (InputArgs.hasArg(VersionFlag)) {
2605     cl::PrintVersionMessage();
2606     if (!Is("otool")) {
2607       outs() << '\n';
2608       TargetRegistry::printRegisteredTargetsForVersion(outs());
2609     }
2610     return 0;
2611   }
2612 
2613   if (Is("otool"))
2614     parseOtoolOptions(InputArgs);
2615   else
2616     parseObjdumpOptions(InputArgs);
2617 
2618   if (StartAddress >= StopAddress)
2619     reportCmdLineError("start address should be less than stop address");
2620 
2621   // Removes trailing separators from prefix.
2622   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2623     Prefix.pop_back();
2624 
2625   if (AllHeaders)
2626     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2627         SectionHeaders = SymbolTable = true;
2628 
2629   if (DisassembleAll || PrintSource || PrintLines ||
2630       !DisassembleSymbols.empty())
2631     Disassemble = true;
2632 
2633   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2634       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2635       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2636       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
2637       !(MachOOpt &&
2638         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2639          FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist ||
2640          LazyBind || LinkOptHints || ObjcMetaData || Rebase || Rpaths ||
2641          UniversalHeaders || WeakBind || !FilterSections.empty()))) {
2642     T->printHelp(ToolName);
2643     return 2;
2644   }
2645 
2646   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2647 
2648   llvm::for_each(InputFilenames, dumpInput);
2649 
2650   warnOnNoMatchForSections();
2651 
2652   return EXIT_SUCCESS;
2653 }
2654