xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision d16c162c9453db855503134fe29ae4a3c0bec936)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/WithColor.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cctype>
66 #include <cstring>
67 #include <system_error>
68 #include <unordered_map>
69 #include <utility>
70 
71 using namespace llvm::object;
72 
73 namespace llvm {
74 
75 cl::OptionCategory ObjdumpCat("llvm-objdump Options");
76 
77 // MachO specific
78 extern cl::OptionCategory MachOCat;
79 extern cl::opt<bool> Bind;
80 extern cl::opt<bool> DataInCode;
81 extern cl::opt<bool> DylibsUsed;
82 extern cl::opt<bool> DylibId;
83 extern cl::opt<bool> ExportsTrie;
84 extern cl::opt<bool> FirstPrivateHeader;
85 extern cl::opt<bool> IndirectSymbols;
86 extern cl::opt<bool> InfoPlist;
87 extern cl::opt<bool> LazyBind;
88 extern cl::opt<bool> LinkOptHints;
89 extern cl::opt<bool> ObjcMetaData;
90 extern cl::opt<bool> Rebase;
91 extern cl::opt<bool> UniversalHeaders;
92 extern cl::opt<bool> WeakBind;
93 
94 static cl::opt<uint64_t> AdjustVMA(
95     "adjust-vma",
96     cl::desc("Increase the displayed address by the specified offset"),
97     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
98 
99 static cl::opt<bool>
100     AllHeaders("all-headers",
101                cl::desc("Display all available header information"),
102                cl::cat(ObjdumpCat));
103 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
104                                  cl::NotHidden, cl::Grouping,
105                                  cl::aliasopt(AllHeaders));
106 
107 static cl::opt<std::string>
108     ArchName("arch-name",
109              cl::desc("Target arch to disassemble for, "
110                       "see -version for available targets"),
111              cl::cat(ObjdumpCat));
112 
113 cl::opt<bool> ArchiveHeaders("archive-headers",
114                              cl::desc("Display archive header information"),
115                              cl::cat(ObjdumpCat));
116 static cl::alias ArchiveHeadersShort("a",
117                                      cl::desc("Alias for --archive-headers"),
118                                      cl::NotHidden, cl::Grouping,
119                                      cl::aliasopt(ArchiveHeaders));
120 
121 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
122                        cl::init(false), cl::cat(ObjdumpCat));
123 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
124                                cl::NotHidden, cl::Grouping,
125                                cl::aliasopt(Demangle));
126 
127 cl::opt<bool> Disassemble(
128     "disassemble",
129     cl::desc("Display assembler mnemonics for the machine instructions"),
130     cl::cat(ObjdumpCat));
131 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
132                                   cl::NotHidden, cl::Grouping,
133                                   cl::aliasopt(Disassemble));
134 
135 cl::opt<bool> DisassembleAll(
136     "disassemble-all",
137     cl::desc("Display assembler mnemonics for the machine instructions"),
138     cl::cat(ObjdumpCat));
139 static cl::alias DisassembleAllShort("D",
140                                      cl::desc("Alias for --disassemble-all"),
141                                      cl::NotHidden, cl::Grouping,
142                                      cl::aliasopt(DisassembleAll));
143 
144 static cl::list<std::string>
145     DisassembleFunctions("disassemble-functions", cl::CommaSeparated,
146                          cl::desc("List of functions to disassemble. "
147                                   "Accept demangled names when --demangle is "
148                                   "specified, otherwise accept mangled names"),
149                          cl::cat(ObjdumpCat));
150 
151 static cl::opt<bool> DisassembleZeroes(
152     "disassemble-zeroes",
153     cl::desc("Do not skip blocks of zeroes when disassembling"),
154     cl::cat(ObjdumpCat));
155 static cl::alias
156     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
157                            cl::NotHidden, cl::Grouping,
158                            cl::aliasopt(DisassembleZeroes));
159 
160 static cl::list<std::string>
161     DisassemblerOptions("disassembler-options",
162                         cl::desc("Pass target specific disassembler options"),
163                         cl::value_desc("options"), cl::CommaSeparated,
164                         cl::cat(ObjdumpCat));
165 static cl::alias
166     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
167                              cl::NotHidden, cl::Grouping, cl::Prefix,
168                              cl::CommaSeparated,
169                              cl::aliasopt(DisassemblerOptions));
170 
171 cl::opt<DIDumpType> DwarfDumpType(
172     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
173     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
174     cl::cat(ObjdumpCat));
175 
176 static cl::opt<bool> DynamicRelocations(
177     "dynamic-reloc",
178     cl::desc("Display the dynamic relocation entries in the file"),
179     cl::cat(ObjdumpCat));
180 static cl::alias DynamicRelocationShort("R",
181                                         cl::desc("Alias for --dynamic-reloc"),
182                                         cl::NotHidden, cl::Grouping,
183                                         cl::aliasopt(DynamicRelocations));
184 
185 static cl::opt<bool>
186     FaultMapSection("fault-map-section",
187                     cl::desc("Display contents of faultmap section"),
188                     cl::cat(ObjdumpCat));
189 
190 static cl::opt<bool>
191     FileHeaders("file-headers",
192                 cl::desc("Display the contents of the overall file header"),
193                 cl::cat(ObjdumpCat));
194 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
195                                   cl::NotHidden, cl::Grouping,
196                                   cl::aliasopt(FileHeaders));
197 
198 cl::opt<bool> SectionContents("full-contents",
199                               cl::desc("Display the content of each section"),
200                               cl::cat(ObjdumpCat));
201 static cl::alias SectionContentsShort("s",
202                                       cl::desc("Alias for --full-contents"),
203                                       cl::NotHidden, cl::Grouping,
204                                       cl::aliasopt(SectionContents));
205 
206 static cl::list<std::string> InputFilenames(cl::Positional,
207                                             cl::desc("<input object files>"),
208                                             cl::ZeroOrMore,
209                                             cl::cat(ObjdumpCat));
210 
211 static cl::opt<bool>
212     PrintLines("line-numbers",
213                cl::desc("Display source line numbers with "
214                         "disassembly. Implies disassemble object"),
215                cl::cat(ObjdumpCat));
216 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
217                                  cl::NotHidden, cl::Grouping,
218                                  cl::aliasopt(PrintLines));
219 
220 static cl::opt<bool> MachOOpt("macho",
221                               cl::desc("Use MachO specific object file parser"),
222                               cl::cat(ObjdumpCat));
223 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
224                         cl::Grouping, cl::aliasopt(MachOOpt));
225 
226 cl::opt<std::string>
227     MCPU("mcpu",
228          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
229          cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
230 
231 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
232                              cl::desc("Target specific attributes"),
233                              cl::value_desc("a1,+a2,-a3,..."),
234                              cl::cat(ObjdumpCat));
235 
236 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
237                             cl::desc("When disassembling "
238                                      "instructions, do not print "
239                                      "the instruction bytes."),
240                             cl::cat(ObjdumpCat));
241 cl::opt<bool> NoLeadingAddr("no-leading-addr",
242                             cl::desc("Print no leading address"),
243                             cl::cat(ObjdumpCat));
244 
245 static cl::opt<bool> RawClangAST(
246     "raw-clang-ast",
247     cl::desc("Dump the raw binary contents of the clang AST section"),
248     cl::cat(ObjdumpCat));
249 
250 cl::opt<bool>
251     Relocations("reloc", cl::desc("Display the relocation entries in the file"),
252                 cl::cat(ObjdumpCat));
253 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
254                                   cl::NotHidden, cl::Grouping,
255                                   cl::aliasopt(Relocations));
256 
257 cl::opt<bool> PrintImmHex("print-imm-hex",
258                           cl::desc("Use hex format for immediate values"),
259                           cl::cat(ObjdumpCat));
260 
261 cl::opt<bool> PrivateHeaders("private-headers",
262                              cl::desc("Display format specific file headers"),
263                              cl::cat(ObjdumpCat));
264 static cl::alias PrivateHeadersShort("p",
265                                      cl::desc("Alias for --private-headers"),
266                                      cl::NotHidden, cl::Grouping,
267                                      cl::aliasopt(PrivateHeaders));
268 
269 cl::list<std::string>
270     FilterSections("section",
271                    cl::desc("Operate on the specified sections only. "
272                             "With -macho dump segment,section"),
273                    cl::cat(ObjdumpCat));
274 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
275                                  cl::NotHidden, cl::Grouping, cl::Prefix,
276                                  cl::aliasopt(FilterSections));
277 
278 cl::opt<bool> SectionHeaders("section-headers",
279                              cl::desc("Display summaries of the "
280                                       "headers for each section."),
281                              cl::cat(ObjdumpCat));
282 static cl::alias SectionHeadersShort("headers",
283                                      cl::desc("Alias for --section-headers"),
284                                      cl::NotHidden,
285                                      cl::aliasopt(SectionHeaders));
286 static cl::alias SectionHeadersShorter("h",
287                                        cl::desc("Alias for --section-headers"),
288                                        cl::NotHidden, cl::Grouping,
289                                        cl::aliasopt(SectionHeaders));
290 
291 static cl::opt<bool>
292     ShowLMA("show-lma",
293             cl::desc("Display LMA column when dumping ELF section headers"),
294             cl::cat(ObjdumpCat));
295 
296 static cl::opt<bool> PrintSource(
297     "source",
298     cl::desc(
299         "Display source inlined with disassembly. Implies disassemble object"),
300     cl::cat(ObjdumpCat));
301 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
302                                   cl::NotHidden, cl::Grouping,
303                                   cl::aliasopt(PrintSource));
304 
305 static cl::opt<uint64_t>
306     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
307                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
308 static cl::opt<uint64_t> StopAddress("stop-address",
309                                      cl::desc("Stop disassembly at address"),
310                                      cl::value_desc("address"),
311                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
312 
313 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"),
314                           cl::cat(ObjdumpCat));
315 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
316                                   cl::NotHidden, cl::Grouping,
317                                   cl::aliasopt(SymbolTable));
318 
319 cl::opt<std::string> TripleName("triple",
320                                 cl::desc("Target triple to disassemble for, "
321                                          "see -version for available targets"),
322                                 cl::cat(ObjdumpCat));
323 
324 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"),
325                          cl::cat(ObjdumpCat));
326 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
327                                  cl::NotHidden, cl::Grouping,
328                                  cl::aliasopt(UnwindInfo));
329 
330 static cl::opt<bool>
331     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
332          cl::cat(ObjdumpCat));
333 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
334 
335 static cl::extrahelp
336     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
337 
338 static StringSet<> DisasmFuncsSet;
339 static StringSet<> FoundSectionSet;
340 static StringRef ToolName;
341 
342 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
343 
344 static bool shouldKeep(object::SectionRef S) {
345   if (FilterSections.empty())
346     return true;
347   StringRef SecName;
348   std::error_code error = S.getName(SecName);
349   if (error)
350     return false;
351   // StringSet does not allow empty key so avoid adding sections with
352   // no name (such as the section with index 0) here.
353   if (!SecName.empty())
354     FoundSectionSet.insert(SecName);
355   return is_contained(FilterSections, SecName);
356 }
357 
358 SectionFilter ToolSectionFilter(object::ObjectFile const &O) {
359   return SectionFilter([](object::SectionRef S) { return shouldKeep(S); }, O);
360 }
361 
362 void error(std::error_code EC) {
363   if (!EC)
364     return;
365   WithColor::error(errs(), ToolName)
366       << "reading file: " << EC.message() << ".\n";
367   errs().flush();
368   exit(1);
369 }
370 
371 void error(Error E) {
372   if (!E)
373     return;
374   WithColor::error(errs(), ToolName) << toString(std::move(E));
375   exit(1);
376 }
377 
378 LLVM_ATTRIBUTE_NORETURN void error(Twine Message) {
379   WithColor::error(errs(), ToolName) << Message << ".\n";
380   errs().flush();
381   exit(1);
382 }
383 
384 void warn(StringRef Message) {
385   WithColor::warning(errs(), ToolName) << Message << ".\n";
386   errs().flush();
387 }
388 
389 void warn(Twine Message) {
390   WithColor::warning(errs(), ToolName) << Message << "\n";
391 }
392 
393 LLVM_ATTRIBUTE_NORETURN void report_error(StringRef File, Twine Message) {
394   WithColor::error(errs(), ToolName)
395       << "'" << File << "': " << Message << ".\n";
396   exit(1);
397 }
398 
399 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef File) {
400   assert(E);
401   std::string Buf;
402   raw_string_ostream OS(Buf);
403   logAllUnhandledErrors(std::move(E), OS);
404   OS.flush();
405   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
406   exit(1);
407 }
408 
409 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef ArchiveName,
410                                           StringRef FileName,
411                                           StringRef ArchitectureName) {
412   assert(E);
413   WithColor::error(errs(), ToolName);
414   if (ArchiveName != "")
415     errs() << ArchiveName << "(" << FileName << ")";
416   else
417     errs() << "'" << FileName << "'";
418   if (!ArchitectureName.empty())
419     errs() << " (for architecture " << ArchitectureName << ")";
420   std::string Buf;
421   raw_string_ostream OS(Buf);
422   logAllUnhandledErrors(std::move(E), OS);
423   OS.flush();
424   errs() << ": " << Buf;
425   exit(1);
426 }
427 
428 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef ArchiveName,
429                                           const object::Archive::Child &C,
430                                           StringRef ArchitectureName) {
431   Expected<StringRef> NameOrErr = C.getName();
432   // TODO: if we have a error getting the name then it would be nice to print
433   // the index of which archive member this is and or its offset in the
434   // archive instead of "???" as the name.
435   if (!NameOrErr) {
436     consumeError(NameOrErr.takeError());
437     report_error(std::move(E), ArchiveName, "???", ArchitectureName);
438   } else
439     report_error(std::move(E), ArchiveName, NameOrErr.get(), ArchitectureName);
440 }
441 
442 static void warnOnNoMatchForSections() {
443   SetVector<StringRef> MissingSections;
444   for (StringRef S : FilterSections) {
445     if (FoundSectionSet.count(S))
446       return;
447     // User may specify a unnamed section. Don't warn for it.
448     if (!S.empty())
449       MissingSections.insert(S);
450   }
451 
452   // Warn only if no section in FilterSections is matched.
453   for (StringRef S : MissingSections)
454     warn("section '" + S + "' mentioned in a -j/--section option, but not "
455          "found in any input file");
456 }
457 
458 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
459   // Figure out the target triple.
460   Triple TheTriple("unknown-unknown-unknown");
461   if (TripleName.empty()) {
462     if (Obj)
463       TheTriple = Obj->makeTriple();
464   } else {
465     TheTriple.setTriple(Triple::normalize(TripleName));
466 
467     // Use the triple, but also try to combine with ARM build attributes.
468     if (Obj) {
469       auto Arch = Obj->getArch();
470       if (Arch == Triple::arm || Arch == Triple::armeb)
471         Obj->setARMSubArch(TheTriple);
472     }
473   }
474 
475   // Get the target specific parser.
476   std::string Error;
477   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
478                                                          Error);
479   if (!TheTarget) {
480     if (Obj)
481       report_error(Obj->getFileName(), "can't find target: " + Error);
482     else
483       error("can't find target: " + Error);
484   }
485 
486   // Update the triple name and return the found target.
487   TripleName = TheTriple.getTriple();
488   return TheTarget;
489 }
490 
491 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
492   return A.getOffset() < B.getOffset();
493 }
494 
495 static Error getRelocationValueString(const RelocationRef &Rel,
496                                       SmallVectorImpl<char> &Result) {
497   const ObjectFile *Obj = Rel.getObject();
498   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
499     return getELFRelocationValueString(ELF, Rel, Result);
500   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
501     return getCOFFRelocationValueString(COFF, Rel, Result);
502   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
503     return getWasmRelocationValueString(Wasm, Rel, Result);
504   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
505     return getMachORelocationValueString(MachO, Rel, Result);
506   llvm_unreachable("unknown object file format");
507 }
508 
509 /// Indicates whether this relocation should hidden when listing
510 /// relocations, usually because it is the trailing part of a multipart
511 /// relocation that will be printed as part of the leading relocation.
512 static bool getHidden(RelocationRef RelRef) {
513   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
514   if (!MachO)
515     return false;
516 
517   unsigned Arch = MachO->getArch();
518   DataRefImpl Rel = RelRef.getRawDataRefImpl();
519   uint64_t Type = MachO->getRelocationType(Rel);
520 
521   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
522   // is always hidden.
523   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
524     return Type == MachO::GENERIC_RELOC_PAIR;
525 
526   if (Arch == Triple::x86_64) {
527     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
528     // an X86_64_RELOC_SUBTRACTOR.
529     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
530       DataRefImpl RelPrev = Rel;
531       RelPrev.d.a--;
532       uint64_t PrevType = MachO->getRelocationType(RelPrev);
533       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
534         return true;
535     }
536   }
537 
538   return false;
539 }
540 
541 namespace {
542 class SourcePrinter {
543 protected:
544   DILineInfo OldLineInfo;
545   const ObjectFile *Obj = nullptr;
546   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
547   // File name to file contents of source
548   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
549   // Mark the line endings of the cached source
550   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
551 
552 private:
553   bool cacheSource(const DILineInfo& LineInfoFile);
554 
555 public:
556   SourcePrinter() = default;
557   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
558     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
559     SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None;
560     SymbolizerOpts.Demangle = false;
561     SymbolizerOpts.DefaultArch = DefaultArch;
562     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
563   }
564   virtual ~SourcePrinter() = default;
565   virtual void printSourceLine(raw_ostream &OS,
566                                object::SectionedAddress Address,
567                                StringRef Delimiter = "; ");
568 };
569 
570 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
571   std::unique_ptr<MemoryBuffer> Buffer;
572   if (LineInfo.Source) {
573     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
574   } else {
575     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
576     if (!BufferOrError)
577       return false;
578     Buffer = std::move(*BufferOrError);
579   }
580   // Chomp the file to get lines
581   const char *BufferStart = Buffer->getBufferStart(),
582              *BufferEnd = Buffer->getBufferEnd();
583   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
584   const char *Start = BufferStart;
585   for (const char *I = BufferStart; I != BufferEnd; ++I)
586     if (*I == '\n') {
587       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
588       Start = I + 1;
589     }
590   if (Start < BufferEnd)
591     Lines.emplace_back(Start, BufferEnd - Start);
592   SourceCache[LineInfo.FileName] = std::move(Buffer);
593   return true;
594 }
595 
596 void SourcePrinter::printSourceLine(raw_ostream &OS,
597                                     object::SectionedAddress Address,
598                                     StringRef Delimiter) {
599   if (!Symbolizer)
600     return;
601 
602   DILineInfo LineInfo = DILineInfo();
603   auto ExpectedLineInfo =
604       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
605   if (!ExpectedLineInfo)
606     consumeError(ExpectedLineInfo.takeError());
607   else
608     LineInfo = *ExpectedLineInfo;
609 
610   if ((LineInfo.FileName == "<invalid>") || LineInfo.Line == 0 ||
611       ((OldLineInfo.Line == LineInfo.Line) &&
612        (OldLineInfo.FileName == LineInfo.FileName)))
613     return;
614 
615   if (PrintLines)
616     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
617   if (PrintSource) {
618     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
619       if (!cacheSource(LineInfo))
620         return;
621     auto LineBuffer = LineCache.find(LineInfo.FileName);
622     if (LineBuffer != LineCache.end()) {
623       if (LineInfo.Line > LineBuffer->second.size())
624         return;
625       // Vector begins at 0, line numbers are non-zero
626       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
627     }
628   }
629   OldLineInfo = LineInfo;
630 }
631 
632 static bool isAArch64Elf(const ObjectFile *Obj) {
633   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
634   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
635 }
636 
637 static bool isArmElf(const ObjectFile *Obj) {
638   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
639   return Elf && Elf->getEMachine() == ELF::EM_ARM;
640 }
641 
642 static bool hasMappingSymbols(const ObjectFile *Obj) {
643   return isArmElf(Obj) || isAArch64Elf(Obj);
644 }
645 
646 static void printRelocation(const RelocationRef &Rel, uint64_t Address,
647                             bool Is64Bits) {
648   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
649   SmallString<16> Name;
650   SmallString<32> Val;
651   Rel.getTypeName(Name);
652   error(getRelocationValueString(Rel, Val));
653   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
654 }
655 
656 class PrettyPrinter {
657 public:
658   virtual ~PrettyPrinter() = default;
659   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
660                          ArrayRef<uint8_t> Bytes,
661                          object::SectionedAddress Address, raw_ostream &OS,
662                          StringRef Annot, MCSubtargetInfo const &STI,
663                          SourcePrinter *SP,
664                          std::vector<RelocationRef> *Rels = nullptr) {
665     if (SP && (PrintSource || PrintLines))
666       SP->printSourceLine(OS, Address);
667 
668     {
669       formatted_raw_ostream FOS(OS);
670       if (!NoLeadingAddr)
671         FOS << format("%8" PRIx64 ":", Address.Address);
672       if (!NoShowRawInsn) {
673         FOS << ' ';
674         dumpBytes(Bytes, FOS);
675       }
676       FOS.flush();
677       // The output of printInst starts with a tab. Print some spaces so that
678       // the tab has 1 column and advances to the target tab stop.
679       unsigned TabStop = NoShowRawInsn ? 16 : 40;
680       unsigned Column = FOS.getColumn();
681       FOS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
682 
683       // The dtor calls flush() to ensure the indent comes before printInst().
684     }
685 
686     if (MI)
687       IP.printInst(MI, OS, "", STI);
688     else
689       OS << "\t<unknown>";
690   }
691 };
692 PrettyPrinter PrettyPrinterInst;
693 
694 class HexagonPrettyPrinter : public PrettyPrinter {
695 public:
696   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
697                  raw_ostream &OS) {
698     uint32_t opcode =
699       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
700     if (!NoLeadingAddr)
701       OS << format("%8" PRIx64 ":", Address);
702     if (!NoShowRawInsn) {
703       OS << "\t";
704       dumpBytes(Bytes.slice(0, 4), OS);
705       OS << format("\t%08" PRIx32, opcode);
706     }
707   }
708   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
709                  object::SectionedAddress Address, raw_ostream &OS,
710                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
711                  std::vector<RelocationRef> *Rels) override {
712     if (SP && (PrintSource || PrintLines))
713       SP->printSourceLine(OS, Address, "");
714     if (!MI) {
715       printLead(Bytes, Address.Address, OS);
716       OS << " <unknown>";
717       return;
718     }
719     std::string Buffer;
720     {
721       raw_string_ostream TempStream(Buffer);
722       IP.printInst(MI, TempStream, "", STI);
723     }
724     StringRef Contents(Buffer);
725     // Split off bundle attributes
726     auto PacketBundle = Contents.rsplit('\n');
727     // Split off first instruction from the rest
728     auto HeadTail = PacketBundle.first.split('\n');
729     auto Preamble = " { ";
730     auto Separator = "";
731 
732     // Hexagon's packets require relocations to be inline rather than
733     // clustered at the end of the packet.
734     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
735     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
736     auto PrintReloc = [&]() -> void {
737       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
738         if (RelCur->getOffset() == Address.Address) {
739           printRelocation(*RelCur, Address.Address, false);
740           return;
741         }
742         ++RelCur;
743       }
744     };
745 
746     while (!HeadTail.first.empty()) {
747       OS << Separator;
748       Separator = "\n";
749       if (SP && (PrintSource || PrintLines))
750         SP->printSourceLine(OS, Address, "");
751       printLead(Bytes, Address.Address, OS);
752       OS << Preamble;
753       Preamble = "   ";
754       StringRef Inst;
755       auto Duplex = HeadTail.first.split('\v');
756       if (!Duplex.second.empty()) {
757         OS << Duplex.first;
758         OS << "; ";
759         Inst = Duplex.second;
760       }
761       else
762         Inst = HeadTail.first;
763       OS << Inst;
764       HeadTail = HeadTail.second.split('\n');
765       if (HeadTail.first.empty())
766         OS << " } " << PacketBundle.second;
767       PrintReloc();
768       Bytes = Bytes.slice(4);
769       Address.Address += 4;
770     }
771   }
772 };
773 HexagonPrettyPrinter HexagonPrettyPrinterInst;
774 
775 class AMDGCNPrettyPrinter : public PrettyPrinter {
776 public:
777   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
778                  object::SectionedAddress Address, raw_ostream &OS,
779                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
780                  std::vector<RelocationRef> *Rels) override {
781     if (SP && (PrintSource || PrintLines))
782       SP->printSourceLine(OS, Address);
783 
784     if (MI) {
785       SmallString<40> InstStr;
786       raw_svector_ostream IS(InstStr);
787 
788       IP.printInst(MI, IS, "", STI);
789 
790       OS << left_justify(IS.str(), 60);
791     } else {
792       // an unrecognized encoding - this is probably data so represent it
793       // using the .long directive, or .byte directive if fewer than 4 bytes
794       // remaining
795       if (Bytes.size() >= 4) {
796         OS << format("\t.long 0x%08" PRIx32 " ",
797                      support::endian::read32<support::little>(Bytes.data()));
798         OS.indent(42);
799       } else {
800           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
801           for (unsigned int i = 1; i < Bytes.size(); i++)
802             OS << format(", 0x%02" PRIx8, Bytes[i]);
803           OS.indent(55 - (6 * Bytes.size()));
804       }
805     }
806 
807     OS << format("// %012" PRIX64 ":", Address.Address);
808     if (Bytes.size() >= 4) {
809       // D should be casted to uint32_t here as it is passed by format to
810       // snprintf as vararg.
811       for (uint32_t D : makeArrayRef(
812                reinterpret_cast<const support::little32_t *>(Bytes.data()),
813                Bytes.size() / 4))
814         OS << format(" %08" PRIX32, D);
815     } else {
816       for (unsigned char B : Bytes)
817         OS << format(" %02" PRIX8, B);
818     }
819 
820     if (!Annot.empty())
821       OS << " // " << Annot;
822   }
823 };
824 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
825 
826 class BPFPrettyPrinter : public PrettyPrinter {
827 public:
828   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
829                  object::SectionedAddress Address, raw_ostream &OS,
830                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
831                  std::vector<RelocationRef> *Rels) override {
832     if (SP && (PrintSource || PrintLines))
833       SP->printSourceLine(OS, Address);
834     if (!NoLeadingAddr)
835       OS << format("%8" PRId64 ":", Address.Address / 8);
836     if (!NoShowRawInsn) {
837       OS << "\t";
838       dumpBytes(Bytes, OS);
839     }
840     if (MI)
841       IP.printInst(MI, OS, "", STI);
842     else
843       OS << "\t<unknown>";
844   }
845 };
846 BPFPrettyPrinter BPFPrettyPrinterInst;
847 
848 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
849   switch(Triple.getArch()) {
850   default:
851     return PrettyPrinterInst;
852   case Triple::hexagon:
853     return HexagonPrettyPrinterInst;
854   case Triple::amdgcn:
855     return AMDGCNPrettyPrinterInst;
856   case Triple::bpfel:
857   case Triple::bpfeb:
858     return BPFPrettyPrinterInst;
859   }
860 }
861 }
862 
863 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
864   assert(Obj->isELF());
865   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
866     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
867   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
868     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
869   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
870     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
871   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
872     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
873   llvm_unreachable("Unsupported binary format");
874 }
875 
876 template <class ELFT> static void
877 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
878                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
879   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
880     uint8_t SymbolType = Symbol.getELFType();
881     if (SymbolType == ELF::STT_SECTION)
882       continue;
883 
884     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
885     // ELFSymbolRef::getAddress() returns size instead of value for common
886     // symbols which is not desirable for disassembly output. Overriding.
887     if (SymbolType == ELF::STT_COMMON)
888       Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
889 
890     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
891     if (Name.empty())
892       continue;
893 
894     section_iterator SecI =
895         unwrapOrError(Symbol.getSection(), Obj->getFileName());
896     if (SecI == Obj->section_end())
897       continue;
898 
899     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
900   }
901 }
902 
903 static void
904 addDynamicElfSymbols(const ObjectFile *Obj,
905                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
906   assert(Obj->isELF());
907   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
908     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
909   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
910     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
911   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
912     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
913   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
914     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
915   else
916     llvm_unreachable("Unsupported binary format");
917 }
918 
919 static void addPltEntries(const ObjectFile *Obj,
920                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
921                           StringSaver &Saver) {
922   Optional<SectionRef> Plt = None;
923   for (const SectionRef &Section : Obj->sections()) {
924     StringRef Name;
925     if (Section.getName(Name))
926       continue;
927     if (Name == ".plt")
928       Plt = Section;
929   }
930   if (!Plt)
931     return;
932   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
933     for (auto PltEntry : ElfObj->getPltAddresses()) {
934       SymbolRef Symbol(PltEntry.first, ElfObj);
935       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
936 
937       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
938       if (!Name.empty())
939         AllSymbols[*Plt].emplace_back(
940             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
941     }
942   }
943 }
944 
945 // Normally the disassembly output will skip blocks of zeroes. This function
946 // returns the number of zero bytes that can be skipped when dumping the
947 // disassembly of the instructions in Buf.
948 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
949   // Find the number of leading zeroes.
950   size_t N = 0;
951   while (N < Buf.size() && !Buf[N])
952     ++N;
953 
954   // We may want to skip blocks of zero bytes, but unless we see
955   // at least 8 of them in a row.
956   if (N < 8)
957     return 0;
958 
959   // We skip zeroes in multiples of 4 because do not want to truncate an
960   // instruction if it starts with a zero byte.
961   return N & ~0x3;
962 }
963 
964 // Returns a map from sections to their relocations.
965 static std::map<SectionRef, std::vector<RelocationRef>>
966 getRelocsMap(object::ObjectFile const &Obj) {
967   std::map<SectionRef, std::vector<RelocationRef>> Ret;
968   for (SectionRef Sec : Obj.sections()) {
969     section_iterator Relocated = Sec.getRelocatedSection();
970     if (Relocated == Obj.section_end() || !shouldKeep(*Relocated))
971       continue;
972     std::vector<RelocationRef> &V = Ret[*Relocated];
973     for (const RelocationRef &R : Sec.relocations())
974       V.push_back(R);
975     // Sort relocations by address.
976     llvm::stable_sort(V, isRelocAddressLess);
977   }
978   return Ret;
979 }
980 
981 // Used for --adjust-vma to check if address should be adjusted by the
982 // specified value for a given section.
983 // For ELF we do not adjust non-allocatable sections like debug ones,
984 // because they are not loadable.
985 // TODO: implement for other file formats.
986 static bool shouldAdjustVA(const SectionRef &Section) {
987   const ObjectFile *Obj = Section.getObject();
988   if (isa<object::ELFObjectFileBase>(Obj))
989     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
990   return false;
991 }
992 
993 
994 typedef std::pair<uint64_t, char> MappingSymbolPair;
995 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
996                                  uint64_t Address) {
997   auto It =
998       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
999         return Val.first <= Address;
1000       });
1001   // Return zero for any address before the first mapping symbol; this means
1002   // we should use the default disassembly mode, depending on the target.
1003   if (It == MappingSymbols.begin())
1004     return '\x00';
1005   return (It - 1)->second;
1006 }
1007 
1008 static uint64_t
1009 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1010                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
1011                ArrayRef<MappingSymbolPair> MappingSymbols) {
1012   support::endianness Endian =
1013       Obj->isLittleEndian() ? support::little : support::big;
1014   while (Index < End) {
1015     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1016     outs() << "\t";
1017     if (Index + 4 <= End) {
1018       dumpBytes(Bytes.slice(Index, 4), outs());
1019       outs() << "\t.word\t"
1020              << format_hex(
1021                     support::endian::read32(Bytes.data() + Index, Endian), 10);
1022       Index += 4;
1023     } else if (Index + 2 <= End) {
1024       dumpBytes(Bytes.slice(Index, 2), outs());
1025       outs() << "\t\t.short\t"
1026              << format_hex(
1027                     support::endian::read16(Bytes.data() + Index, Endian), 6);
1028       Index += 2;
1029     } else {
1030       dumpBytes(Bytes.slice(Index, 1), outs());
1031       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1032       ++Index;
1033     }
1034     outs() << "\n";
1035     if (getMappingSymbolKind(MappingSymbols, Index) != 'd')
1036       break;
1037   }
1038   return Index;
1039 }
1040 
1041 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1042                         ArrayRef<uint8_t> Bytes) {
1043   // print out data up to 8 bytes at a time in hex and ascii
1044   uint8_t AsciiData[9] = {'\0'};
1045   uint8_t Byte;
1046   int NumBytes = 0;
1047 
1048   for (; Index < End; ++Index) {
1049     if (NumBytes == 0)
1050       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1051     Byte = Bytes.slice(Index)[0];
1052     outs() << format(" %02x", Byte);
1053     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1054 
1055     uint8_t IndentOffset = 0;
1056     NumBytes++;
1057     if (Index == End - 1 || NumBytes > 8) {
1058       // Indent the space for less than 8 bytes data.
1059       // 2 spaces for byte and one for space between bytes
1060       IndentOffset = 3 * (8 - NumBytes);
1061       for (int Excess = NumBytes; Excess < 8; Excess++)
1062         AsciiData[Excess] = '\0';
1063       NumBytes = 8;
1064     }
1065     if (NumBytes == 8) {
1066       AsciiData[8] = '\0';
1067       outs() << std::string(IndentOffset, ' ') << "         ";
1068       outs() << reinterpret_cast<char *>(AsciiData);
1069       outs() << '\n';
1070       NumBytes = 0;
1071     }
1072   }
1073 }
1074 
1075 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1076                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1077                               MCDisassembler *SecondaryDisAsm,
1078                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1079                               const MCSubtargetInfo *PrimarySTI,
1080                               const MCSubtargetInfo *SecondarySTI,
1081                               PrettyPrinter &PIP,
1082                               SourcePrinter &SP, bool InlineRelocs) {
1083   const MCSubtargetInfo *STI = PrimarySTI;
1084   MCDisassembler *DisAsm = PrimaryDisAsm;
1085   bool PrimaryIsThumb = false;
1086   if (isArmElf(Obj))
1087     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1088 
1089   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1090   if (InlineRelocs)
1091     RelocMap = getRelocsMap(*Obj);
1092   bool Is64Bits = Obj->getBytesInAddress() > 4;
1093 
1094   // Create a mapping from virtual address to symbol name.  This is used to
1095   // pretty print the symbols while disassembling.
1096   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1097   SectionSymbolsTy AbsoluteSymbols;
1098   const StringRef FileName = Obj->getFileName();
1099   for (const SymbolRef &Symbol : Obj->symbols()) {
1100     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1101 
1102     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1103     if (Name.empty())
1104       continue;
1105 
1106     uint8_t SymbolType = ELF::STT_NOTYPE;
1107     if (Obj->isELF()) {
1108       SymbolType = getElfSymbolType(Obj, Symbol);
1109       if (SymbolType == ELF::STT_SECTION)
1110         continue;
1111     }
1112 
1113     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1114     if (SecI != Obj->section_end())
1115       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1116     else
1117       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1118   }
1119   if (AllSymbols.empty() && Obj->isELF())
1120     addDynamicElfSymbols(Obj, AllSymbols);
1121 
1122   BumpPtrAllocator A;
1123   StringSaver Saver(A);
1124   addPltEntries(Obj, AllSymbols, Saver);
1125 
1126   // Create a mapping from virtual address to section.
1127   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1128   for (SectionRef Sec : Obj->sections())
1129     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1130   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1131 
1132   // Linked executables (.exe and .dll files) typically don't include a real
1133   // symbol table but they might contain an export table.
1134   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1135     for (const auto &ExportEntry : COFFObj->export_directories()) {
1136       StringRef Name;
1137       error(ExportEntry.getSymbolName(Name));
1138       if (Name.empty())
1139         continue;
1140       uint32_t RVA;
1141       error(ExportEntry.getExportRVA(RVA));
1142 
1143       uint64_t VA = COFFObj->getImageBase() + RVA;
1144       auto Sec = partition_point(
1145           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1146             return O.first <= VA;
1147           });
1148       if (Sec != SectionAddresses.begin()) {
1149         --Sec;
1150         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1151       } else
1152         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1153     }
1154   }
1155 
1156   // Sort all the symbols, this allows us to use a simple binary search to find
1157   // a symbol near an address.
1158   StringSet<> FoundDisasmFuncsSet;
1159   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1160     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1161   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1162 
1163   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1164     if (FilterSections.empty() && !DisassembleAll &&
1165         (!Section.isText() || Section.isVirtual()))
1166       continue;
1167 
1168     uint64_t SectionAddr = Section.getAddress();
1169     uint64_t SectSize = Section.getSize();
1170     if (!SectSize)
1171       continue;
1172 
1173     // Get the list of all the symbols in this section.
1174     SectionSymbolsTy &Symbols = AllSymbols[Section];
1175     std::vector<MappingSymbolPair> MappingSymbols;
1176     if (hasMappingSymbols(Obj)) {
1177       for (const auto &Symb : Symbols) {
1178         uint64_t Address = std::get<0>(Symb);
1179         StringRef Name = std::get<1>(Symb);
1180         if (Name.startswith("$d"))
1181           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1182         if (Name.startswith("$x"))
1183           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1184         if (Name.startswith("$a"))
1185           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1186         if (Name.startswith("$t"))
1187           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1188       }
1189     }
1190 
1191     llvm::sort(MappingSymbols);
1192 
1193     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1194       // AMDGPU disassembler uses symbolizer for printing labels
1195       std::unique_ptr<MCRelocationInfo> RelInfo(
1196         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1197       if (RelInfo) {
1198         std::unique_ptr<MCSymbolizer> Symbolizer(
1199           TheTarget->createMCSymbolizer(
1200             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1201         DisAsm->setSymbolizer(std::move(Symbolizer));
1202       }
1203     }
1204 
1205     StringRef SegmentName = "";
1206     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1207       DataRefImpl DR = Section.getRawDataRefImpl();
1208       SegmentName = MachO->getSectionFinalSegmentName(DR);
1209     }
1210     StringRef SectionName;
1211     error(Section.getName(SectionName));
1212 
1213     // If the section has no symbol at the start, just insert a dummy one.
1214     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1215       Symbols.insert(
1216           Symbols.begin(),
1217           std::make_tuple(SectionAddr, SectionName,
1218                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1219     }
1220 
1221     SmallString<40> Comments;
1222     raw_svector_ostream CommentStream(Comments);
1223 
1224     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1225         unwrapOrError(Section.getContents(), Obj->getFileName()));
1226 
1227     uint64_t VMAAdjustment = 0;
1228     if (shouldAdjustVA(Section))
1229       VMAAdjustment = AdjustVMA;
1230 
1231     uint64_t Size;
1232     uint64_t Index;
1233     bool PrintedSection = false;
1234     std::vector<RelocationRef> Rels = RelocMap[Section];
1235     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1236     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1237     // Disassemble symbol by symbol.
1238     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1239       std::string SymbolName = std::get<1>(Symbols[SI]).str();
1240       if (Demangle)
1241         SymbolName = demangle(SymbolName);
1242 
1243       // Skip if --disassemble-functions is not empty and the symbol is not in
1244       // the list.
1245       if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName))
1246         continue;
1247 
1248       uint64_t Start = std::get<0>(Symbols[SI]);
1249       if (Start < SectionAddr || StopAddress <= Start)
1250         continue;
1251       else
1252         FoundDisasmFuncsSet.insert(SymbolName);
1253 
1254       // The end is the section end, the beginning of the next symbol, or
1255       // --stop-address.
1256       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1257       if (SI + 1 < SE)
1258         End = std::min(End, std::get<0>(Symbols[SI + 1]));
1259       if (Start >= End || End <= StartAddress)
1260         continue;
1261       Start -= SectionAddr;
1262       End -= SectionAddr;
1263 
1264       if (!PrintedSection) {
1265         PrintedSection = true;
1266         outs() << "\nDisassembly of section ";
1267         if (!SegmentName.empty())
1268           outs() << SegmentName << ",";
1269         outs() << SectionName << ":\n";
1270       }
1271 
1272       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1273         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1274           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1275           Start += 256;
1276         }
1277         if (SI == SE - 1 ||
1278             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1279           // cut trailing zeroes at the end of kernel
1280           // cut up to 256 bytes
1281           const uint64_t EndAlign = 256;
1282           const auto Limit = End - (std::min)(EndAlign, End - Start);
1283           while (End > Limit &&
1284             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1285             End -= 4;
1286         }
1287       }
1288 
1289       outs() << '\n';
1290       if (!NoLeadingAddr)
1291         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1292                          SectionAddr + Start + VMAAdjustment);
1293 
1294       outs() << SymbolName << ":\n";
1295 
1296       // Don't print raw contents of a virtual section. A virtual section
1297       // doesn't have any contents in the file.
1298       if (Section.isVirtual()) {
1299         outs() << "...\n";
1300         continue;
1301       }
1302 
1303 #ifndef NDEBUG
1304       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1305 #else
1306       raw_ostream &DebugOut = nulls();
1307 #endif
1308 
1309       // Some targets (like WebAssembly) have a special prelude at the start
1310       // of each symbol.
1311       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1312                             SectionAddr + Start, DebugOut, CommentStream);
1313       Start += Size;
1314 
1315       Index = Start;
1316       if (SectionAddr < StartAddress)
1317         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1318 
1319       // If there is a data/common symbol inside an ELF text section and we are
1320       // only disassembling text (applicable all architectures), we are in a
1321       // situation where we must print the data and not disassemble it.
1322       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1323         uint8_t SymTy = std::get<2>(Symbols[SI]);
1324         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1325           dumpELFData(SectionAddr, Index, End, Bytes);
1326           Index = End;
1327         }
1328       }
1329 
1330       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1331                              std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1332                              !DisassembleAll;
1333       while (Index < End) {
1334         // ARM and AArch64 ELF binaries can interleave data and text in the
1335         // same section. We rely on the markers introduced to understand what
1336         // we need to dump. If the data marker is within a function, it is
1337         // denoted as a word/short etc.
1338         if (CheckARMELFData &&
1339             getMappingSymbolKind(MappingSymbols, Index) == 'd') {
1340           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1341                                  MappingSymbols);
1342           continue;
1343         }
1344 
1345         // When -z or --disassemble-zeroes are given we always dissasemble
1346         // them. Otherwise we might want to skip zero bytes we see.
1347         if (!DisassembleZeroes) {
1348           uint64_t MaxOffset = End - Index;
1349           // For -reloc: print zero blocks patched by relocations, so that
1350           // relocations can be shown in the dump.
1351           if (RelCur != RelEnd)
1352             MaxOffset = RelCur->getOffset() - Index;
1353 
1354           if (size_t N =
1355                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1356             outs() << "\t\t..." << '\n';
1357             Index += N;
1358             continue;
1359           }
1360         }
1361 
1362         if (SecondarySTI) {
1363           if (getMappingSymbolKind(MappingSymbols, Index) == 'a') {
1364             STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1365             DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1366           } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') {
1367             STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1368             DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1369           }
1370         }
1371 
1372         // Disassemble a real instruction or a data when disassemble all is
1373         // provided
1374         MCInst Inst;
1375         bool Disassembled = DisAsm->getInstruction(
1376             Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut,
1377             CommentStream);
1378         if (Size == 0)
1379           Size = 1;
1380 
1381         PIP.printInst(
1382             *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1383             {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, outs(),
1384             "", *STI, &SP, &Rels);
1385         outs() << CommentStream.str();
1386         Comments.clear();
1387 
1388         // Try to resolve the target of a call, tail call, etc. to a specific
1389         // symbol.
1390         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1391                     MIA->isConditionalBranch(Inst))) {
1392           uint64_t Target;
1393           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1394             // In a relocatable object, the target's section must reside in
1395             // the same section as the call instruction or it is accessed
1396             // through a relocation.
1397             //
1398             // In a non-relocatable object, the target may be in any section.
1399             //
1400             // N.B. We don't walk the relocations in the relocatable case yet.
1401             auto *TargetSectionSymbols = &Symbols;
1402             if (!Obj->isRelocatableObject()) {
1403               auto It = partition_point(
1404                   SectionAddresses,
1405                   [=](const std::pair<uint64_t, SectionRef> &O) {
1406                     return O.first <= Target;
1407                   });
1408               if (It != SectionAddresses.begin()) {
1409                 --It;
1410                 TargetSectionSymbols = &AllSymbols[It->second];
1411               } else {
1412                 TargetSectionSymbols = &AbsoluteSymbols;
1413               }
1414             }
1415 
1416             // Find the last symbol in the section whose offset is less than
1417             // or equal to the target. If there isn't a section that contains
1418             // the target, find the nearest preceding absolute symbol.
1419             auto TargetSym = partition_point(
1420                 *TargetSectionSymbols,
1421                 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1422                   return std::get<0>(O) <= Target;
1423                 });
1424             if (TargetSym == TargetSectionSymbols->begin()) {
1425               TargetSectionSymbols = &AbsoluteSymbols;
1426               TargetSym = partition_point(
1427                   AbsoluteSymbols,
1428                   [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1429                     return std::get<0>(O) <= Target;
1430                   });
1431             }
1432             if (TargetSym != TargetSectionSymbols->begin()) {
1433               --TargetSym;
1434               uint64_t TargetAddress = std::get<0>(*TargetSym);
1435               StringRef TargetName = std::get<1>(*TargetSym);
1436               outs() << " <" << TargetName;
1437               uint64_t Disp = Target - TargetAddress;
1438               if (Disp)
1439                 outs() << "+0x" << Twine::utohexstr(Disp);
1440               outs() << '>';
1441             }
1442           }
1443         }
1444         outs() << "\n";
1445 
1446         // Hexagon does this in pretty printer
1447         if (Obj->getArch() != Triple::hexagon) {
1448           // Print relocation for instruction.
1449           while (RelCur != RelEnd) {
1450             uint64_t Offset = RelCur->getOffset();
1451             // If this relocation is hidden, skip it.
1452             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1453               ++RelCur;
1454               continue;
1455             }
1456 
1457             // Stop when RelCur's offset is past the current instruction.
1458             if (Offset >= Index + Size)
1459               break;
1460 
1461             // When --adjust-vma is used, update the address printed.
1462             if (RelCur->getSymbol() != Obj->symbol_end()) {
1463               Expected<section_iterator> SymSI =
1464                   RelCur->getSymbol()->getSection();
1465               if (SymSI && *SymSI != Obj->section_end() &&
1466                   shouldAdjustVA(**SymSI))
1467                 Offset += AdjustVMA;
1468             }
1469 
1470             printRelocation(*RelCur, SectionAddr + Offset, Is64Bits);
1471             ++RelCur;
1472           }
1473         }
1474 
1475         Index += Size;
1476       }
1477     }
1478   }
1479   StringSet<> MissingDisasmFuncsSet =
1480       set_difference(DisasmFuncsSet, FoundDisasmFuncsSet);
1481   for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys())
1482     warn("failed to disassemble missing function " + MissingDisasmFunc);
1483 }
1484 
1485 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1486   const Target *TheTarget = getTarget(Obj);
1487 
1488   // Package up features to be passed to target/subtarget
1489   SubtargetFeatures Features = Obj->getFeatures();
1490   if (!MAttrs.empty())
1491     for (unsigned I = 0; I != MAttrs.size(); ++I)
1492       Features.AddFeature(MAttrs[I]);
1493 
1494   std::unique_ptr<const MCRegisterInfo> MRI(
1495       TheTarget->createMCRegInfo(TripleName));
1496   if (!MRI)
1497     report_error(Obj->getFileName(),
1498                  "no register info for target " + TripleName);
1499 
1500   // Set up disassembler.
1501   std::unique_ptr<const MCAsmInfo> AsmInfo(
1502       TheTarget->createMCAsmInfo(*MRI, TripleName));
1503   if (!AsmInfo)
1504     report_error(Obj->getFileName(),
1505                  "no assembly info for target " + TripleName);
1506   std::unique_ptr<const MCSubtargetInfo> STI(
1507       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1508   if (!STI)
1509     report_error(Obj->getFileName(),
1510                  "no subtarget info for target " + TripleName);
1511   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1512   if (!MII)
1513     report_error(Obj->getFileName(),
1514                  "no instruction info for target " + TripleName);
1515   MCObjectFileInfo MOFI;
1516   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1517   // FIXME: for now initialize MCObjectFileInfo with default values
1518   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1519 
1520   std::unique_ptr<MCDisassembler> DisAsm(
1521       TheTarget->createMCDisassembler(*STI, Ctx));
1522   if (!DisAsm)
1523     report_error(Obj->getFileName(),
1524                  "no disassembler for target " + TripleName);
1525 
1526   // If we have an ARM object file, we need a second disassembler, because
1527   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1528   // We use mapping symbols to switch between the two assemblers, where
1529   // appropriate.
1530   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1531   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1532   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1533     if (STI->checkFeatures("+thumb-mode"))
1534       Features.AddFeature("-thumb-mode");
1535     else
1536       Features.AddFeature("+thumb-mode");
1537     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1538                                                         Features.getString()));
1539     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1540   }
1541 
1542   std::unique_ptr<const MCInstrAnalysis> MIA(
1543       TheTarget->createMCInstrAnalysis(MII.get()));
1544 
1545   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1546   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1547       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1548   if (!IP)
1549     report_error(Obj->getFileName(),
1550                  "no instruction printer for target " + TripleName);
1551   IP->setPrintImmHex(PrintImmHex);
1552 
1553   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1554   SourcePrinter SP(Obj, TheTarget->getName());
1555 
1556   for (StringRef Opt : DisassemblerOptions)
1557     if (!IP->applyTargetSpecificCLOption(Opt))
1558       error("Unrecognized disassembler option: " + Opt);
1559 
1560   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1561                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1562                     SP, InlineRelocs);
1563 }
1564 
1565 void printRelocations(const ObjectFile *Obj) {
1566   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1567                                                  "%08" PRIx64;
1568   // Regular objdump doesn't print relocations in non-relocatable object
1569   // files.
1570   if (!Obj->isRelocatableObject())
1571     return;
1572 
1573   // Build a mapping from relocation target to a vector of relocation
1574   // sections. Usually, there is an only one relocation section for
1575   // each relocated section.
1576   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1577   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1578     if (Section.relocation_begin() == Section.relocation_end())
1579       continue;
1580     const SectionRef TargetSec = *Section.getRelocatedSection();
1581     SecToRelSec[TargetSec].push_back(Section);
1582   }
1583 
1584   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1585     StringRef SecName;
1586     error(P.first.getName(SecName));
1587     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1588 
1589     for (SectionRef Section : P.second) {
1590       for (const RelocationRef &Reloc : Section.relocations()) {
1591         uint64_t Address = Reloc.getOffset();
1592         SmallString<32> RelocName;
1593         SmallString<32> ValueStr;
1594         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1595           continue;
1596         Reloc.getTypeName(RelocName);
1597         error(getRelocationValueString(Reloc, ValueStr));
1598         outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1599                << ValueStr << "\n";
1600       }
1601     }
1602     outs() << "\n";
1603   }
1604 }
1605 
1606 void printDynamicRelocations(const ObjectFile *Obj) {
1607   // For the moment, this option is for ELF only
1608   if (!Obj->isELF())
1609     return;
1610 
1611   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1612   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1613     error("not a dynamic object");
1614     return;
1615   }
1616 
1617   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1618   if (DynRelSec.empty())
1619     return;
1620 
1621   outs() << "DYNAMIC RELOCATION RECORDS\n";
1622   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1623   for (const SectionRef &Section : DynRelSec)
1624     for (const RelocationRef &Reloc : Section.relocations()) {
1625       uint64_t Address = Reloc.getOffset();
1626       SmallString<32> RelocName;
1627       SmallString<32> ValueStr;
1628       Reloc.getTypeName(RelocName);
1629       error(getRelocationValueString(Reloc, ValueStr));
1630       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1631              << ValueStr << "\n";
1632     }
1633 }
1634 
1635 // Returns true if we need to show LMA column when dumping section headers. We
1636 // show it only when the platform is ELF and either we have at least one section
1637 // whose VMA and LMA are different and/or when --show-lma flag is used.
1638 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1639   if (!Obj->isELF())
1640     return false;
1641   for (const SectionRef &S : ToolSectionFilter(*Obj))
1642     if (S.getAddress() != getELFSectionLMA(S))
1643       return true;
1644   return ShowLMA;
1645 }
1646 
1647 void printSectionHeaders(const ObjectFile *Obj) {
1648   bool HasLMAColumn = shouldDisplayLMA(Obj);
1649   if (HasLMAColumn)
1650     outs() << "Sections:\n"
1651               "Idx Name          Size     VMA              LMA              "
1652               "Type\n";
1653   else
1654     outs() << "Sections:\n"
1655               "Idx Name          Size     VMA          Type\n";
1656 
1657   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1658     StringRef Name;
1659     error(Section.getName(Name));
1660     uint64_t VMA = Section.getAddress();
1661     if (shouldAdjustVA(Section))
1662       VMA += AdjustVMA;
1663 
1664     uint64_t Size = Section.getSize();
1665     bool Text = Section.isText();
1666     bool Data = Section.isData();
1667     bool BSS = Section.isBSS();
1668     std::string Type = (std::string(Text ? "TEXT " : "") +
1669                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1670 
1671     if (HasLMAColumn)
1672       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %016" PRIx64
1673                        " %s\n",
1674                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1675                        VMA, getELFSectionLMA(Section), Type.c_str());
1676     else
1677       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1678                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1679                        VMA, Type.c_str());
1680   }
1681   outs() << "\n";
1682 }
1683 
1684 void printSectionContents(const ObjectFile *Obj) {
1685   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1686     StringRef Name;
1687     error(Section.getName(Name));
1688     uint64_t BaseAddr = Section.getAddress();
1689     uint64_t Size = Section.getSize();
1690     if (!Size)
1691       continue;
1692 
1693     outs() << "Contents of section " << Name << ":\n";
1694     if (Section.isBSS()) {
1695       outs() << format("<skipping contents of bss section at [%04" PRIx64
1696                        ", %04" PRIx64 ")>\n",
1697                        BaseAddr, BaseAddr + Size);
1698       continue;
1699     }
1700 
1701     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1702 
1703     // Dump out the content as hex and printable ascii characters.
1704     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1705       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1706       // Dump line of hex.
1707       for (std::size_t I = 0; I < 16; ++I) {
1708         if (I != 0 && I % 4 == 0)
1709           outs() << ' ';
1710         if (Addr + I < End)
1711           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1712                  << hexdigit(Contents[Addr + I] & 0xF, true);
1713         else
1714           outs() << "  ";
1715       }
1716       // Print ascii.
1717       outs() << "  ";
1718       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1719         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1720           outs() << Contents[Addr + I];
1721         else
1722           outs() << ".";
1723       }
1724       outs() << "\n";
1725     }
1726   }
1727 }
1728 
1729 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1730                       StringRef ArchitectureName) {
1731   outs() << "SYMBOL TABLE:\n";
1732 
1733   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1734     printCOFFSymbolTable(Coff);
1735     return;
1736   }
1737 
1738   const StringRef FileName = O->getFileName();
1739   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1740     const SymbolRef &Symbol = *I;
1741     uint64_t Address = unwrapOrError(Symbol.getAddress(), ArchiveName, FileName,
1742                                      ArchitectureName);
1743     if ((Address < StartAddress) || (Address > StopAddress))
1744       continue;
1745     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), ArchiveName,
1746                                          FileName, ArchitectureName);
1747     uint32_t Flags = Symbol.getFlags();
1748     section_iterator Section = unwrapOrError(Symbol.getSection(), ArchiveName,
1749                                              FileName, ArchitectureName);
1750     StringRef Name;
1751     if (Type == SymbolRef::ST_Debug && Section != O->section_end())
1752       Section->getName(Name);
1753     else
1754       Name = unwrapOrError(Symbol.getName(), ArchiveName, FileName,
1755                            ArchitectureName);
1756 
1757     bool Global = Flags & SymbolRef::SF_Global;
1758     bool Weak = Flags & SymbolRef::SF_Weak;
1759     bool Absolute = Flags & SymbolRef::SF_Absolute;
1760     bool Common = Flags & SymbolRef::SF_Common;
1761     bool Hidden = Flags & SymbolRef::SF_Hidden;
1762 
1763     char GlobLoc = ' ';
1764     if (Type != SymbolRef::ST_Unknown)
1765       GlobLoc = Global ? 'g' : 'l';
1766     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1767                  ? 'd' : ' ';
1768     char FileFunc = ' ';
1769     if (Type == SymbolRef::ST_File)
1770       FileFunc = 'f';
1771     else if (Type == SymbolRef::ST_Function)
1772       FileFunc = 'F';
1773     else if (Type == SymbolRef::ST_Data)
1774       FileFunc = 'O';
1775 
1776     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1777                                                    "%08" PRIx64;
1778 
1779     outs() << format(Fmt, Address) << " "
1780            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1781            << (Weak ? 'w' : ' ') // Weak?
1782            << ' ' // Constructor. Not supported yet.
1783            << ' ' // Warning. Not supported yet.
1784            << ' ' // Indirect reference to another symbol.
1785            << Debug // Debugging (d) or dynamic (D) symbol.
1786            << FileFunc // Name of function (F), file (f) or object (O).
1787            << ' ';
1788     if (Absolute) {
1789       outs() << "*ABS*";
1790     } else if (Common) {
1791       outs() << "*COM*";
1792     } else if (Section == O->section_end()) {
1793       outs() << "*UND*";
1794     } else {
1795       if (const MachOObjectFile *MachO =
1796           dyn_cast<const MachOObjectFile>(O)) {
1797         DataRefImpl DR = Section->getRawDataRefImpl();
1798         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1799         outs() << SegmentName << ",";
1800       }
1801       StringRef SectionName;
1802       error(Section->getName(SectionName));
1803       outs() << SectionName;
1804     }
1805 
1806     if (Common || isa<ELFObjectFileBase>(O)) {
1807       uint64_t Val =
1808           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1809       outs() << format("\t%08" PRIx64, Val);
1810     }
1811 
1812     if (isa<ELFObjectFileBase>(O)) {
1813       uint8_t Other = ELFSymbolRef(Symbol).getOther();
1814       switch (Other) {
1815       case ELF::STV_DEFAULT:
1816         break;
1817       case ELF::STV_INTERNAL:
1818         outs() << " .internal";
1819         break;
1820       case ELF::STV_HIDDEN:
1821         outs() << " .hidden";
1822         break;
1823       case ELF::STV_PROTECTED:
1824         outs() << " .protected";
1825         break;
1826       default:
1827         outs() << format(" 0x%02x", Other);
1828         break;
1829       }
1830     } else if (Hidden) {
1831       outs() << " .hidden";
1832     }
1833 
1834     if (Demangle)
1835       outs() << ' ' << demangle(Name) << '\n';
1836     else
1837       outs() << ' ' << Name << '\n';
1838   }
1839 }
1840 
1841 static void printUnwindInfo(const ObjectFile *O) {
1842   outs() << "Unwind info:\n\n";
1843 
1844   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1845     printCOFFUnwindInfo(Coff);
1846   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1847     printMachOUnwindInfo(MachO);
1848   else
1849     // TODO: Extract DWARF dump tool to objdump.
1850     WithColor::error(errs(), ToolName)
1851         << "This operation is only currently supported "
1852            "for COFF and MachO object files.\n";
1853 }
1854 
1855 /// Dump the raw contents of the __clangast section so the output can be piped
1856 /// into llvm-bcanalyzer.
1857 void printRawClangAST(const ObjectFile *Obj) {
1858   if (outs().is_displayed()) {
1859     WithColor::error(errs(), ToolName)
1860         << "The -raw-clang-ast option will dump the raw binary contents of "
1861            "the clang ast section.\n"
1862            "Please redirect the output to a file or another program such as "
1863            "llvm-bcanalyzer.\n";
1864     return;
1865   }
1866 
1867   StringRef ClangASTSectionName("__clangast");
1868   if (isa<COFFObjectFile>(Obj)) {
1869     ClangASTSectionName = "clangast";
1870   }
1871 
1872   Optional<object::SectionRef> ClangASTSection;
1873   for (auto Sec : ToolSectionFilter(*Obj)) {
1874     StringRef Name;
1875     Sec.getName(Name);
1876     if (Name == ClangASTSectionName) {
1877       ClangASTSection = Sec;
1878       break;
1879     }
1880   }
1881   if (!ClangASTSection)
1882     return;
1883 
1884   StringRef ClangASTContents = unwrapOrError(
1885       ClangASTSection.getValue().getContents(), Obj->getFileName());
1886   outs().write(ClangASTContents.data(), ClangASTContents.size());
1887 }
1888 
1889 static void printFaultMaps(const ObjectFile *Obj) {
1890   StringRef FaultMapSectionName;
1891 
1892   if (isa<ELFObjectFileBase>(Obj)) {
1893     FaultMapSectionName = ".llvm_faultmaps";
1894   } else if (isa<MachOObjectFile>(Obj)) {
1895     FaultMapSectionName = "__llvm_faultmaps";
1896   } else {
1897     WithColor::error(errs(), ToolName)
1898         << "This operation is only currently supported "
1899            "for ELF and Mach-O executable files.\n";
1900     return;
1901   }
1902 
1903   Optional<object::SectionRef> FaultMapSection;
1904 
1905   for (auto Sec : ToolSectionFilter(*Obj)) {
1906     StringRef Name;
1907     Sec.getName(Name);
1908     if (Name == FaultMapSectionName) {
1909       FaultMapSection = Sec;
1910       break;
1911     }
1912   }
1913 
1914   outs() << "FaultMap table:\n";
1915 
1916   if (!FaultMapSection.hasValue()) {
1917     outs() << "<not found>\n";
1918     return;
1919   }
1920 
1921   StringRef FaultMapContents =
1922       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
1923   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1924                      FaultMapContents.bytes_end());
1925 
1926   outs() << FMP;
1927 }
1928 
1929 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1930   if (O->isELF()) {
1931     printELFFileHeader(O);
1932     printELFDynamicSection(O);
1933     printELFSymbolVersionInfo(O);
1934     return;
1935   }
1936   if (O->isCOFF())
1937     return printCOFFFileHeader(O);
1938   if (O->isWasm())
1939     return printWasmFileHeader(O);
1940   if (O->isMachO()) {
1941     printMachOFileHeader(O);
1942     if (!OnlyFirst)
1943       printMachOLoadCommands(O);
1944     return;
1945   }
1946   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1947 }
1948 
1949 static void printFileHeaders(const ObjectFile *O) {
1950   if (!O->isELF() && !O->isCOFF())
1951     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1952 
1953   Triple::ArchType AT = O->getArch();
1954   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1955   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
1956 
1957   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1958   outs() << "start address: "
1959          << "0x" << format(Fmt.data(), Address) << "\n\n";
1960 }
1961 
1962 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1963   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1964   if (!ModeOrErr) {
1965     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1966     consumeError(ModeOrErr.takeError());
1967     return;
1968   }
1969   sys::fs::perms Mode = ModeOrErr.get();
1970   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1971   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1972   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1973   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1974   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1975   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1976   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1977   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1978   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1979 
1980   outs() << " ";
1981 
1982   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
1983                    unwrapOrError(C.getGID(), Filename),
1984                    unwrapOrError(C.getRawSize(), Filename));
1985 
1986   StringRef RawLastModified = C.getRawLastModified();
1987   unsigned Seconds;
1988   if (RawLastModified.getAsInteger(10, Seconds))
1989     outs() << "(date: \"" << RawLastModified
1990            << "\" contains non-decimal chars) ";
1991   else {
1992     // Since ctime(3) returns a 26 character string of the form:
1993     // "Sun Sep 16 01:03:52 1973\n\0"
1994     // just print 24 characters.
1995     time_t t = Seconds;
1996     outs() << format("%.24s ", ctime(&t));
1997   }
1998 
1999   StringRef Name = "";
2000   Expected<StringRef> NameOrErr = C.getName();
2001   if (!NameOrErr) {
2002     consumeError(NameOrErr.takeError());
2003     Name = unwrapOrError(C.getRawName(), Filename);
2004   } else {
2005     Name = NameOrErr.get();
2006   }
2007   outs() << Name << "\n";
2008 }
2009 
2010 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2011                        const Archive::Child *C = nullptr) {
2012   // Avoid other output when using a raw option.
2013   if (!RawClangAST) {
2014     outs() << '\n';
2015     if (A)
2016       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2017     else
2018       outs() << O->getFileName();
2019     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
2020   }
2021 
2022   StringRef ArchiveName = A ? A->getFileName() : "";
2023   if (FileHeaders)
2024     printFileHeaders(O);
2025   if (ArchiveHeaders && !MachOOpt && C)
2026     printArchiveChild(ArchiveName, *C);
2027   if (Disassemble)
2028     disassembleObject(O, Relocations);
2029   if (Relocations && !Disassemble)
2030     printRelocations(O);
2031   if (DynamicRelocations)
2032     printDynamicRelocations(O);
2033   if (SectionHeaders)
2034     printSectionHeaders(O);
2035   if (SectionContents)
2036     printSectionContents(O);
2037   if (SymbolTable)
2038     printSymbolTable(O, ArchiveName);
2039   if (UnwindInfo)
2040     printUnwindInfo(O);
2041   if (PrivateHeaders || FirstPrivateHeader)
2042     printPrivateFileHeaders(O, FirstPrivateHeader);
2043   if (ExportsTrie)
2044     printExportsTrie(O);
2045   if (Rebase)
2046     printRebaseTable(O);
2047   if (Bind)
2048     printBindTable(O);
2049   if (LazyBind)
2050     printLazyBindTable(O);
2051   if (WeakBind)
2052     printWeakBindTable(O);
2053   if (RawClangAST)
2054     printRawClangAST(O);
2055   if (FaultMapSection)
2056     printFaultMaps(O);
2057   if (DwarfDumpType != DIDT_Null) {
2058     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2059     // Dump the complete DWARF structure.
2060     DIDumpOptions DumpOpts;
2061     DumpOpts.DumpType = DwarfDumpType;
2062     DICtx->dump(outs(), DumpOpts);
2063   }
2064 }
2065 
2066 static void dumpObject(const COFFImportFile *I, const Archive *A,
2067                        const Archive::Child *C = nullptr) {
2068   StringRef ArchiveName = A ? A->getFileName() : "";
2069 
2070   // Avoid other output when using a raw option.
2071   if (!RawClangAST)
2072     outs() << '\n'
2073            << ArchiveName << "(" << I->getFileName() << ")"
2074            << ":\tfile format COFF-import-file"
2075            << "\n\n";
2076 
2077   if (ArchiveHeaders && !MachOOpt && C)
2078     printArchiveChild(ArchiveName, *C);
2079   if (SymbolTable)
2080     printCOFFSymbolTable(I);
2081 }
2082 
2083 /// Dump each object file in \a a;
2084 static void dumpArchive(const Archive *A) {
2085   Error Err = Error::success();
2086   for (auto &C : A->children(Err)) {
2087     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2088     if (!ChildOrErr) {
2089       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2090         report_error(std::move(E), A->getFileName(), C);
2091       continue;
2092     }
2093     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2094       dumpObject(O, A, &C);
2095     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2096       dumpObject(I, A, &C);
2097     else
2098       report_error(errorCodeToError(object_error::invalid_file_type),
2099                    A->getFileName());
2100   }
2101   if (Err)
2102     report_error(std::move(Err), A->getFileName());
2103 }
2104 
2105 /// Open file and figure out how to dump it.
2106 static void dumpInput(StringRef file) {
2107   // If we are using the Mach-O specific object file parser, then let it parse
2108   // the file and process the command line options.  So the -arch flags can
2109   // be used to select specific slices, etc.
2110   if (MachOOpt) {
2111     parseInputMachO(file);
2112     return;
2113   }
2114 
2115   // Attempt to open the binary.
2116   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2117   Binary &Binary = *OBinary.getBinary();
2118 
2119   if (Archive *A = dyn_cast<Archive>(&Binary))
2120     dumpArchive(A);
2121   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2122     dumpObject(O);
2123   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2124     parseInputMachO(UB);
2125   else
2126     report_error(errorCodeToError(object_error::invalid_file_type), file);
2127 }
2128 } // namespace llvm
2129 
2130 int main(int argc, char **argv) {
2131   using namespace llvm;
2132   InitLLVM X(argc, argv);
2133   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2134   cl::HideUnrelatedOptions(OptionFilters);
2135 
2136   // Initialize targets and assembly printers/parsers.
2137   InitializeAllTargetInfos();
2138   InitializeAllTargetMCs();
2139   InitializeAllDisassemblers();
2140 
2141   // Register the target printer for --version.
2142   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2143 
2144   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2145 
2146   if (StartAddress >= StopAddress)
2147     error("start address should be less than stop address");
2148 
2149   ToolName = argv[0];
2150 
2151   // Defaults to a.out if no filenames specified.
2152   if (InputFilenames.empty())
2153     InputFilenames.push_back("a.out");
2154 
2155   if (AllHeaders)
2156     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2157         SectionHeaders = SymbolTable = true;
2158 
2159   if (DisassembleAll || PrintSource || PrintLines ||
2160       (!DisassembleFunctions.empty()))
2161     Disassemble = true;
2162 
2163   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2164       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2165       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2166       !UnwindInfo && !FaultMapSection &&
2167       !(MachOOpt &&
2168         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2169          FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2170          LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2171          WeakBind || !FilterSections.empty()))) {
2172     cl::PrintHelpMessage();
2173     return 2;
2174   }
2175 
2176   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2177                         DisassembleFunctions.end());
2178 
2179   llvm::for_each(InputFilenames, dumpInput);
2180 
2181   warnOnNoMatchForSections();
2182 
2183   return EXIT_SUCCESS;
2184 }
2185