xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision d033ece0c985d3f89c261d030ff2ff1d9c58bbc6)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringSet.h"
34 #include "llvm/ADT/Triple.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
37 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
38 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
39 #include "llvm/Debuginfod/BuildIDFetcher.h"
40 #include "llvm/Debuginfod/Debuginfod.h"
41 #include "llvm/Debuginfod/HTTPClient.h"
42 #include "llvm/Demangle/Demangle.h"
43 #include "llvm/MC/MCAsmInfo.h"
44 #include "llvm/MC/MCContext.h"
45 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
46 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
47 #include "llvm/MC/MCInst.h"
48 #include "llvm/MC/MCInstPrinter.h"
49 #include "llvm/MC/MCInstrAnalysis.h"
50 #include "llvm/MC/MCInstrInfo.h"
51 #include "llvm/MC/MCObjectFileInfo.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/MC/MCSubtargetInfo.h"
54 #include "llvm/MC/MCTargetOptions.h"
55 #include "llvm/MC/TargetRegistry.h"
56 #include "llvm/Object/Archive.h"
57 #include "llvm/Object/BuildID.h"
58 #include "llvm/Object/COFF.h"
59 #include "llvm/Object/COFFImportFile.h"
60 #include "llvm/Object/ELFObjectFile.h"
61 #include "llvm/Object/ELFTypes.h"
62 #include "llvm/Object/FaultMapParser.h"
63 #include "llvm/Object/MachO.h"
64 #include "llvm/Object/MachOUniversal.h"
65 #include "llvm/Object/ObjectFile.h"
66 #include "llvm/Object/OffloadBinary.h"
67 #include "llvm/Object/Wasm.h"
68 #include "llvm/Option/Arg.h"
69 #include "llvm/Option/ArgList.h"
70 #include "llvm/Option/Option.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/Errc.h"
74 #include "llvm/Support/FileSystem.h"
75 #include "llvm/Support/Format.h"
76 #include "llvm/Support/FormatVariadic.h"
77 #include "llvm/Support/GraphWriter.h"
78 #include "llvm/Support/Host.h"
79 #include "llvm/Support/InitLLVM.h"
80 #include "llvm/Support/MemoryBuffer.h"
81 #include "llvm/Support/SourceMgr.h"
82 #include "llvm/Support/StringSaver.h"
83 #include "llvm/Support/TargetSelect.h"
84 #include "llvm/Support/WithColor.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include <algorithm>
87 #include <cctype>
88 #include <cstring>
89 #include <system_error>
90 #include <unordered_map>
91 #include <utility>
92 
93 using namespace llvm;
94 using namespace llvm::object;
95 using namespace llvm::objdump;
96 using namespace llvm::opt;
97 
98 namespace {
99 
100 class CommonOptTable : public opt::OptTable {
101 public:
102   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
103                  const char *Description)
104       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
111                              ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 
123 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
124 #include "ObjdumpOpts.inc"
125 #undef PREFIX
126 
127 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
128 #define OBJDUMP_nullptr nullptr
129 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
130                HELPTEXT, METAVAR, VALUES)                                      \
131   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
132    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
133    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
134    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
135 #include "ObjdumpOpts.inc"
136 #undef OPTION
137 #undef OBJDUMP_nullptr
138 };
139 
140 class ObjdumpOptTable : public CommonOptTable {
141 public:
142   ObjdumpOptTable()
143       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
144                        "llvm object file dumper") {}
145 };
146 
147 enum OtoolOptID {
148   OTOOL_INVALID = 0, // This is not an option ID.
149 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
150                HELPTEXT, METAVAR, VALUES)                                      \
151   OTOOL_##ID,
152 #include "OtoolOpts.inc"
153 #undef OPTION
154 };
155 
156 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
157 #include "OtoolOpts.inc"
158 #undef PREFIX
159 
160 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
161 #define OTOOL_nullptr nullptr
162 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
163                HELPTEXT, METAVAR, VALUES)                                      \
164   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
165    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
166    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
167    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
168 #include "OtoolOpts.inc"
169 #undef OPTION
170 #undef OTOOL_nullptr
171 };
172 
173 class OtoolOptTable : public CommonOptTable {
174 public:
175   OtoolOptTable()
176       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
177                        "Mach-O object file displaying tool") {}
178 };
179 
180 } // namespace
181 
182 #define DEBUG_TYPE "objdump"
183 
184 static uint64_t AdjustVMA;
185 static bool AllHeaders;
186 static std::string ArchName;
187 bool objdump::ArchiveHeaders;
188 bool objdump::Demangle;
189 bool objdump::Disassemble;
190 bool objdump::DisassembleAll;
191 bool objdump::SymbolDescription;
192 static std::vector<std::string> DisassembleSymbols;
193 static bool DisassembleZeroes;
194 static std::vector<std::string> DisassemblerOptions;
195 DIDumpType objdump::DwarfDumpType;
196 static bool DynamicRelocations;
197 static bool FaultMapSection;
198 static bool FileHeaders;
199 bool objdump::SectionContents;
200 static std::vector<std::string> InputFilenames;
201 bool objdump::PrintLines;
202 static bool MachOOpt;
203 std::string objdump::MCPU;
204 std::vector<std::string> objdump::MAttrs;
205 bool objdump::ShowRawInsn;
206 bool objdump::LeadingAddr;
207 static bool Offloading;
208 static bool RawClangAST;
209 bool objdump::Relocations;
210 bool objdump::PrintImmHex;
211 bool objdump::PrivateHeaders;
212 std::vector<std::string> objdump::FilterSections;
213 bool objdump::SectionHeaders;
214 static bool ShowAllSymbols;
215 static bool ShowLMA;
216 bool objdump::PrintSource;
217 
218 static uint64_t StartAddress;
219 static bool HasStartAddressFlag;
220 static uint64_t StopAddress = UINT64_MAX;
221 static bool HasStopAddressFlag;
222 
223 bool objdump::SymbolTable;
224 static bool SymbolizeOperands;
225 static bool DynamicSymbolTable;
226 std::string objdump::TripleName;
227 bool objdump::UnwindInfo;
228 static bool Wide;
229 std::string objdump::Prefix;
230 uint32_t objdump::PrefixStrip;
231 
232 DebugVarsFormat objdump::DbgVariables = DVDisabled;
233 
234 int objdump::DbgIndent = 52;
235 
236 static StringSet<> DisasmSymbolSet;
237 StringSet<> objdump::FoundSectionSet;
238 static StringRef ToolName;
239 
240 std::unique_ptr<BuildIDFetcher> BIDFetcher;
241 ExitOnError ExitOnErr;
242 
243 namespace {
244 struct FilterResult {
245   // True if the section should not be skipped.
246   bool Keep;
247 
248   // True if the index counter should be incremented, even if the section should
249   // be skipped. For example, sections may be skipped if they are not included
250   // in the --section flag, but we still want those to count toward the section
251   // count.
252   bool IncrementIndex;
253 };
254 } // namespace
255 
256 static FilterResult checkSectionFilter(object::SectionRef S) {
257   if (FilterSections.empty())
258     return {/*Keep=*/true, /*IncrementIndex=*/true};
259 
260   Expected<StringRef> SecNameOrErr = S.getName();
261   if (!SecNameOrErr) {
262     consumeError(SecNameOrErr.takeError());
263     return {/*Keep=*/false, /*IncrementIndex=*/false};
264   }
265   StringRef SecName = *SecNameOrErr;
266 
267   // StringSet does not allow empty key so avoid adding sections with
268   // no name (such as the section with index 0) here.
269   if (!SecName.empty())
270     FoundSectionSet.insert(SecName);
271 
272   // Only show the section if it's in the FilterSections list, but always
273   // increment so the indexing is stable.
274   return {/*Keep=*/is_contained(FilterSections, SecName),
275           /*IncrementIndex=*/true};
276 }
277 
278 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
279                                          uint64_t *Idx) {
280   // Start at UINT64_MAX so that the first index returned after an increment is
281   // zero (after the unsigned wrap).
282   if (Idx)
283     *Idx = UINT64_MAX;
284   return SectionFilter(
285       [Idx](object::SectionRef S) {
286         FilterResult Result = checkSectionFilter(S);
287         if (Idx != nullptr && Result.IncrementIndex)
288           *Idx += 1;
289         return Result.Keep;
290       },
291       O);
292 }
293 
294 std::string objdump::getFileNameForError(const object::Archive::Child &C,
295                                          unsigned Index) {
296   Expected<StringRef> NameOrErr = C.getName();
297   if (NameOrErr)
298     return std::string(NameOrErr.get());
299   // If we have an error getting the name then we print the index of the archive
300   // member. Since we are already in an error state, we just ignore this error.
301   consumeError(NameOrErr.takeError());
302   return "<file index: " + std::to_string(Index) + ">";
303 }
304 
305 void objdump::reportWarning(const Twine &Message, StringRef File) {
306   // Output order between errs() and outs() matters especially for archive
307   // files where the output is per member object.
308   outs().flush();
309   WithColor::warning(errs(), ToolName)
310       << "'" << File << "': " << Message << "\n";
311 }
312 
313 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
314   outs().flush();
315   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
316   exit(1);
317 }
318 
319 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
320                                        StringRef ArchiveName,
321                                        StringRef ArchitectureName) {
322   assert(E);
323   outs().flush();
324   WithColor::error(errs(), ToolName);
325   if (ArchiveName != "")
326     errs() << ArchiveName << "(" << FileName << ")";
327   else
328     errs() << "'" << FileName << "'";
329   if (!ArchitectureName.empty())
330     errs() << " (for architecture " << ArchitectureName << ")";
331   errs() << ": ";
332   logAllUnhandledErrors(std::move(E), errs());
333   exit(1);
334 }
335 
336 static void reportCmdLineWarning(const Twine &Message) {
337   WithColor::warning(errs(), ToolName) << Message << "\n";
338 }
339 
340 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
341   WithColor::error(errs(), ToolName) << Message << "\n";
342   exit(1);
343 }
344 
345 static void warnOnNoMatchForSections() {
346   SetVector<StringRef> MissingSections;
347   for (StringRef S : FilterSections) {
348     if (FoundSectionSet.count(S))
349       return;
350     // User may specify a unnamed section. Don't warn for it.
351     if (!S.empty())
352       MissingSections.insert(S);
353   }
354 
355   // Warn only if no section in FilterSections is matched.
356   for (StringRef S : MissingSections)
357     reportCmdLineWarning("section '" + S +
358                          "' mentioned in a -j/--section option, but not "
359                          "found in any input file");
360 }
361 
362 static const Target *getTarget(const ObjectFile *Obj) {
363   // Figure out the target triple.
364   Triple TheTriple("unknown-unknown-unknown");
365   if (TripleName.empty()) {
366     TheTriple = Obj->makeTriple();
367   } else {
368     TheTriple.setTriple(Triple::normalize(TripleName));
369     auto Arch = Obj->getArch();
370     if (Arch == Triple::arm || Arch == Triple::armeb)
371       Obj->setARMSubArch(TheTriple);
372   }
373 
374   // Get the target specific parser.
375   std::string Error;
376   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
377                                                          Error);
378   if (!TheTarget)
379     reportError(Obj->getFileName(), "can't find target: " + Error);
380 
381   // Update the triple name and return the found target.
382   TripleName = TheTriple.getTriple();
383   return TheTarget;
384 }
385 
386 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
387   return A.getOffset() < B.getOffset();
388 }
389 
390 static Error getRelocationValueString(const RelocationRef &Rel,
391                                       SmallVectorImpl<char> &Result) {
392   const ObjectFile *Obj = Rel.getObject();
393   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
394     return getELFRelocationValueString(ELF, Rel, Result);
395   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
396     return getCOFFRelocationValueString(COFF, Rel, Result);
397   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
398     return getWasmRelocationValueString(Wasm, Rel, Result);
399   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
400     return getMachORelocationValueString(MachO, Rel, Result);
401   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
402     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
403   llvm_unreachable("unknown object file format");
404 }
405 
406 /// Indicates whether this relocation should hidden when listing
407 /// relocations, usually because it is the trailing part of a multipart
408 /// relocation that will be printed as part of the leading relocation.
409 static bool getHidden(RelocationRef RelRef) {
410   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
411   if (!MachO)
412     return false;
413 
414   unsigned Arch = MachO->getArch();
415   DataRefImpl Rel = RelRef.getRawDataRefImpl();
416   uint64_t Type = MachO->getRelocationType(Rel);
417 
418   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
419   // is always hidden.
420   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
421     return Type == MachO::GENERIC_RELOC_PAIR;
422 
423   if (Arch == Triple::x86_64) {
424     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
425     // an X86_64_RELOC_SUBTRACTOR.
426     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
427       DataRefImpl RelPrev = Rel;
428       RelPrev.d.a--;
429       uint64_t PrevType = MachO->getRelocationType(RelPrev);
430       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
431         return true;
432     }
433   }
434 
435   return false;
436 }
437 
438 namespace {
439 
440 /// Get the column at which we want to start printing the instruction
441 /// disassembly, taking into account anything which appears to the left of it.
442 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
443   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
444 }
445 
446 static bool isAArch64Elf(const ObjectFile &Obj) {
447   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
448   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
449 }
450 
451 static bool isArmElf(const ObjectFile &Obj) {
452   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
453   return Elf && Elf->getEMachine() == ELF::EM_ARM;
454 }
455 
456 static bool isCSKYElf(const ObjectFile &Obj) {
457   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
458   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
459 }
460 
461 static bool hasMappingSymbols(const ObjectFile &Obj) {
462   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
463 }
464 
465 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
466                             const RelocationRef &Rel, uint64_t Address,
467                             bool Is64Bits) {
468   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
469   SmallString<16> Name;
470   SmallString<32> Val;
471   Rel.getTypeName(Name);
472   if (Error E = getRelocationValueString(Rel, Val))
473     reportError(std::move(E), FileName);
474   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
475 }
476 
477 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
478                                    raw_ostream &OS) {
479   // The output of printInst starts with a tab. Print some spaces so that
480   // the tab has 1 column and advances to the target tab stop.
481   unsigned TabStop = getInstStartColumn(STI);
482   unsigned Column = OS.tell() - Start;
483   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
484 }
485 
486 class PrettyPrinter {
487 public:
488   virtual ~PrettyPrinter() = default;
489   virtual void
490   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
491             object::SectionedAddress Address, formatted_raw_ostream &OS,
492             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
493             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
494             LiveVariablePrinter &LVP) {
495     if (SP && (PrintSource || PrintLines))
496       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
497     LVP.printBetweenInsts(OS, false);
498 
499     size_t Start = OS.tell();
500     if (LeadingAddr)
501       OS << format("%8" PRIx64 ":", Address.Address);
502     if (ShowRawInsn) {
503       OS << ' ';
504       dumpBytes(Bytes, OS);
505     }
506 
507     AlignToInstStartColumn(Start, STI, OS);
508 
509     if (MI) {
510       // See MCInstPrinter::printInst. On targets where a PC relative immediate
511       // is relative to the next instruction and the length of a MCInst is
512       // difficult to measure (x86), this is the address of the next
513       // instruction.
514       uint64_t Addr =
515           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
516       IP.printInst(MI, Addr, "", STI, OS);
517     } else
518       OS << "\t<unknown>";
519   }
520 };
521 PrettyPrinter PrettyPrinterInst;
522 
523 class HexagonPrettyPrinter : public PrettyPrinter {
524 public:
525   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
526                  formatted_raw_ostream &OS) {
527     uint32_t opcode =
528       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
529     if (LeadingAddr)
530       OS << format("%8" PRIx64 ":", Address);
531     if (ShowRawInsn) {
532       OS << "\t";
533       dumpBytes(Bytes.slice(0, 4), OS);
534       OS << format("\t%08" PRIx32, opcode);
535     }
536   }
537   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
538                  object::SectionedAddress Address, formatted_raw_ostream &OS,
539                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
540                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
541                  LiveVariablePrinter &LVP) override {
542     if (SP && (PrintSource || PrintLines))
543       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
544     if (!MI) {
545       printLead(Bytes, Address.Address, OS);
546       OS << " <unknown>";
547       return;
548     }
549     std::string Buffer;
550     {
551       raw_string_ostream TempStream(Buffer);
552       IP.printInst(MI, Address.Address, "", STI, TempStream);
553     }
554     StringRef Contents(Buffer);
555     // Split off bundle attributes
556     auto PacketBundle = Contents.rsplit('\n');
557     // Split off first instruction from the rest
558     auto HeadTail = PacketBundle.first.split('\n');
559     auto Preamble = " { ";
560     auto Separator = "";
561 
562     // Hexagon's packets require relocations to be inline rather than
563     // clustered at the end of the packet.
564     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
565     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
566     auto PrintReloc = [&]() -> void {
567       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
568         if (RelCur->getOffset() == Address.Address) {
569           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
570           return;
571         }
572         ++RelCur;
573       }
574     };
575 
576     while (!HeadTail.first.empty()) {
577       OS << Separator;
578       Separator = "\n";
579       if (SP && (PrintSource || PrintLines))
580         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
581       printLead(Bytes, Address.Address, OS);
582       OS << Preamble;
583       Preamble = "   ";
584       StringRef Inst;
585       auto Duplex = HeadTail.first.split('\v');
586       if (!Duplex.second.empty()) {
587         OS << Duplex.first;
588         OS << "; ";
589         Inst = Duplex.second;
590       }
591       else
592         Inst = HeadTail.first;
593       OS << Inst;
594       HeadTail = HeadTail.second.split('\n');
595       if (HeadTail.first.empty())
596         OS << " } " << PacketBundle.second;
597       PrintReloc();
598       Bytes = Bytes.slice(4);
599       Address.Address += 4;
600     }
601   }
602 };
603 HexagonPrettyPrinter HexagonPrettyPrinterInst;
604 
605 class AMDGCNPrettyPrinter : public PrettyPrinter {
606 public:
607   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
608                  object::SectionedAddress Address, formatted_raw_ostream &OS,
609                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
610                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
611                  LiveVariablePrinter &LVP) override {
612     if (SP && (PrintSource || PrintLines))
613       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
614 
615     if (MI) {
616       SmallString<40> InstStr;
617       raw_svector_ostream IS(InstStr);
618 
619       IP.printInst(MI, Address.Address, "", STI, IS);
620 
621       OS << left_justify(IS.str(), 60);
622     } else {
623       // an unrecognized encoding - this is probably data so represent it
624       // using the .long directive, or .byte directive if fewer than 4 bytes
625       // remaining
626       if (Bytes.size() >= 4) {
627         OS << format("\t.long 0x%08" PRIx32 " ",
628                      support::endian::read32<support::little>(Bytes.data()));
629         OS.indent(42);
630       } else {
631           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
632           for (unsigned int i = 1; i < Bytes.size(); i++)
633             OS << format(", 0x%02" PRIx8, Bytes[i]);
634           OS.indent(55 - (6 * Bytes.size()));
635       }
636     }
637 
638     OS << format("// %012" PRIX64 ":", Address.Address);
639     if (Bytes.size() >= 4) {
640       // D should be casted to uint32_t here as it is passed by format to
641       // snprintf as vararg.
642       for (uint32_t D : makeArrayRef(
643                reinterpret_cast<const support::little32_t *>(Bytes.data()),
644                Bytes.size() / 4))
645         OS << format(" %08" PRIX32, D);
646     } else {
647       for (unsigned char B : Bytes)
648         OS << format(" %02" PRIX8, B);
649     }
650 
651     if (!Annot.empty())
652       OS << " // " << Annot;
653   }
654 };
655 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
656 
657 class BPFPrettyPrinter : public PrettyPrinter {
658 public:
659   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
660                  object::SectionedAddress Address, formatted_raw_ostream &OS,
661                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
662                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
663                  LiveVariablePrinter &LVP) override {
664     if (SP && (PrintSource || PrintLines))
665       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
666     if (LeadingAddr)
667       OS << format("%8" PRId64 ":", Address.Address / 8);
668     if (ShowRawInsn) {
669       OS << "\t";
670       dumpBytes(Bytes, OS);
671     }
672     if (MI)
673       IP.printInst(MI, Address.Address, "", STI, OS);
674     else
675       OS << "\t<unknown>";
676   }
677 };
678 BPFPrettyPrinter BPFPrettyPrinterInst;
679 
680 class ARMPrettyPrinter : public PrettyPrinter {
681 public:
682   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
683                  object::SectionedAddress Address, formatted_raw_ostream &OS,
684                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
685                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
686                  LiveVariablePrinter &LVP) override {
687     if (SP && (PrintSource || PrintLines))
688       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
689     LVP.printBetweenInsts(OS, false);
690 
691     size_t Start = OS.tell();
692     if (LeadingAddr)
693       OS << format("%8" PRIx64 ":", Address.Address);
694     if (ShowRawInsn) {
695       size_t Pos = 0, End = Bytes.size();
696       if (STI.checkFeatures("+thumb-mode")) {
697         for (; Pos + 2 <= End; Pos += 2)
698           OS << ' '
699              << format_hex_no_prefix(
700                     llvm::support::endian::read<uint16_t>(
701                         Bytes.data() + Pos, InstructionEndianness),
702                     4);
703       } else {
704         for (; Pos + 4 <= End; Pos += 4)
705           OS << ' '
706              << format_hex_no_prefix(
707                     llvm::support::endian::read<uint32_t>(
708                         Bytes.data() + Pos, InstructionEndianness),
709                     8);
710       }
711       if (Pos < End) {
712         OS << ' ';
713         dumpBytes(Bytes.slice(Pos), OS);
714       }
715     }
716 
717     AlignToInstStartColumn(Start, STI, OS);
718 
719     if (MI) {
720       IP.printInst(MI, Address.Address, "", STI, OS);
721     } else
722       OS << "\t<unknown>";
723   }
724 
725   void setInstructionEndianness(llvm::support::endianness Endianness) {
726     InstructionEndianness = Endianness;
727   }
728 
729 private:
730   llvm::support::endianness InstructionEndianness = llvm::support::little;
731 };
732 ARMPrettyPrinter ARMPrettyPrinterInst;
733 
734 class AArch64PrettyPrinter : public PrettyPrinter {
735 public:
736   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
737                  object::SectionedAddress Address, formatted_raw_ostream &OS,
738                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
739                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
740                  LiveVariablePrinter &LVP) override {
741     if (SP && (PrintSource || PrintLines))
742       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
743     LVP.printBetweenInsts(OS, false);
744 
745     size_t Start = OS.tell();
746     if (LeadingAddr)
747       OS << format("%8" PRIx64 ":", Address.Address);
748     if (ShowRawInsn) {
749       size_t Pos = 0, End = Bytes.size();
750       for (; Pos + 4 <= End; Pos += 4)
751         OS << ' '
752            << format_hex_no_prefix(
753                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
754                                                         llvm::support::little),
755                   8);
756       if (Pos < End) {
757         OS << ' ';
758         dumpBytes(Bytes.slice(Pos), OS);
759       }
760     }
761 
762     AlignToInstStartColumn(Start, STI, OS);
763 
764     if (MI) {
765       IP.printInst(MI, Address.Address, "", STI, OS);
766     } else
767       OS << "\t<unknown>";
768   }
769 };
770 AArch64PrettyPrinter AArch64PrettyPrinterInst;
771 
772 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
773   switch(Triple.getArch()) {
774   default:
775     return PrettyPrinterInst;
776   case Triple::hexagon:
777     return HexagonPrettyPrinterInst;
778   case Triple::amdgcn:
779     return AMDGCNPrettyPrinterInst;
780   case Triple::bpfel:
781   case Triple::bpfeb:
782     return BPFPrettyPrinterInst;
783   case Triple::arm:
784   case Triple::armeb:
785   case Triple::thumb:
786   case Triple::thumbeb:
787     return ARMPrettyPrinterInst;
788   case Triple::aarch64:
789   case Triple::aarch64_be:
790   case Triple::aarch64_32:
791     return AArch64PrettyPrinterInst;
792   }
793 }
794 }
795 
796 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
797   assert(Obj.isELF());
798   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
799     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
800                          Obj.getFileName())
801         ->getType();
802   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
803     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
804                          Obj.getFileName())
805         ->getType();
806   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
807     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
808                          Obj.getFileName())
809         ->getType();
810   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
811     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
812                          Obj.getFileName())
813         ->getType();
814   llvm_unreachable("Unsupported binary format");
815 }
816 
817 template <class ELFT>
818 static void
819 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
820                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
821   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
822     uint8_t SymbolType = Symbol.getELFType();
823     if (SymbolType == ELF::STT_SECTION)
824       continue;
825 
826     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
827     // ELFSymbolRef::getAddress() returns size instead of value for common
828     // symbols which is not desirable for disassembly output. Overriding.
829     if (SymbolType == ELF::STT_COMMON)
830       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
831                               Obj.getFileName())
832                     ->st_value;
833 
834     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
835     if (Name.empty())
836       continue;
837 
838     section_iterator SecI =
839         unwrapOrError(Symbol.getSection(), Obj.getFileName());
840     if (SecI == Obj.section_end())
841       continue;
842 
843     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
844   }
845 }
846 
847 static void
848 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
849                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
850   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
851     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
852   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
853     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
854   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
855     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
856   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
857     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
858   else
859     llvm_unreachable("Unsupported binary format");
860 }
861 
862 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
863   for (auto SecI : Obj.sections()) {
864     const WasmSection &Section = Obj.getWasmSection(SecI);
865     if (Section.Type == wasm::WASM_SEC_CODE)
866       return SecI;
867   }
868   return None;
869 }
870 
871 static void
872 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
873                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
874   Optional<SectionRef> Section = getWasmCodeSection(Obj);
875   if (!Section)
876     return;
877   SectionSymbolsTy &Symbols = AllSymbols[*Section];
878 
879   std::set<uint64_t> SymbolAddresses;
880   for (const auto &Sym : Symbols)
881     SymbolAddresses.insert(Sym.Addr);
882 
883   for (const wasm::WasmFunction &Function : Obj.functions()) {
884     uint64_t Address = Function.CodeSectionOffset;
885     // Only add fallback symbols for functions not already present in the symbol
886     // table.
887     if (SymbolAddresses.count(Address))
888       continue;
889     // This function has no symbol, so it should have no SymbolName.
890     assert(Function.SymbolName.empty());
891     // We use DebugName for the name, though it may be empty if there is no
892     // "name" custom section, or that section is missing a name for this
893     // function.
894     StringRef Name = Function.DebugName;
895     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
896   }
897 }
898 
899 static void addPltEntries(const ObjectFile &Obj,
900                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
901                           StringSaver &Saver) {
902   Optional<SectionRef> Plt;
903   for (const SectionRef &Section : Obj.sections()) {
904     Expected<StringRef> SecNameOrErr = Section.getName();
905     if (!SecNameOrErr) {
906       consumeError(SecNameOrErr.takeError());
907       continue;
908     }
909     if (*SecNameOrErr == ".plt")
910       Plt = Section;
911   }
912   if (!Plt)
913     return;
914   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) {
915     for (auto PltEntry : ElfObj->getPltAddresses()) {
916       if (PltEntry.first) {
917         SymbolRef Symbol(*PltEntry.first, ElfObj);
918         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
919         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
920           if (!NameOrErr->empty())
921             AllSymbols[*Plt].emplace_back(
922                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
923                 SymbolType);
924           continue;
925         } else {
926           // The warning has been reported in disassembleObject().
927           consumeError(NameOrErr.takeError());
928         }
929       }
930       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
931                         " references an invalid symbol",
932                     Obj.getFileName());
933     }
934   }
935 }
936 
937 // Normally the disassembly output will skip blocks of zeroes. This function
938 // returns the number of zero bytes that can be skipped when dumping the
939 // disassembly of the instructions in Buf.
940 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
941   // Find the number of leading zeroes.
942   size_t N = 0;
943   while (N < Buf.size() && !Buf[N])
944     ++N;
945 
946   // We may want to skip blocks of zero bytes, but unless we see
947   // at least 8 of them in a row.
948   if (N < 8)
949     return 0;
950 
951   // We skip zeroes in multiples of 4 because do not want to truncate an
952   // instruction if it starts with a zero byte.
953   return N & ~0x3;
954 }
955 
956 // Returns a map from sections to their relocations.
957 static std::map<SectionRef, std::vector<RelocationRef>>
958 getRelocsMap(object::ObjectFile const &Obj) {
959   std::map<SectionRef, std::vector<RelocationRef>> Ret;
960   uint64_t I = (uint64_t)-1;
961   for (SectionRef Sec : Obj.sections()) {
962     ++I;
963     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
964     if (!RelocatedOrErr)
965       reportError(Obj.getFileName(),
966                   "section (" + Twine(I) +
967                       "): failed to get a relocated section: " +
968                       toString(RelocatedOrErr.takeError()));
969 
970     section_iterator Relocated = *RelocatedOrErr;
971     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
972       continue;
973     std::vector<RelocationRef> &V = Ret[*Relocated];
974     append_range(V, Sec.relocations());
975     // Sort relocations by address.
976     llvm::stable_sort(V, isRelocAddressLess);
977   }
978   return Ret;
979 }
980 
981 // Used for --adjust-vma to check if address should be adjusted by the
982 // specified value for a given section.
983 // For ELF we do not adjust non-allocatable sections like debug ones,
984 // because they are not loadable.
985 // TODO: implement for other file formats.
986 static bool shouldAdjustVA(const SectionRef &Section) {
987   const ObjectFile *Obj = Section.getObject();
988   if (Obj->isELF())
989     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
990   return false;
991 }
992 
993 
994 typedef std::pair<uint64_t, char> MappingSymbolPair;
995 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
996                                  uint64_t Address) {
997   auto It =
998       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
999         return Val.first <= Address;
1000       });
1001   // Return zero for any address before the first mapping symbol; this means
1002   // we should use the default disassembly mode, depending on the target.
1003   if (It == MappingSymbols.begin())
1004     return '\x00';
1005   return (It - 1)->second;
1006 }
1007 
1008 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1009                                uint64_t End, const ObjectFile &Obj,
1010                                ArrayRef<uint8_t> Bytes,
1011                                ArrayRef<MappingSymbolPair> MappingSymbols,
1012                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1013   support::endianness Endian =
1014       Obj.isLittleEndian() ? support::little : support::big;
1015   size_t Start = OS.tell();
1016   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1017   if (Index + 4 <= End) {
1018     dumpBytes(Bytes.slice(Index, 4), OS);
1019     AlignToInstStartColumn(Start, STI, OS);
1020     OS << "\t.word\t"
1021            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1022                          10);
1023     return 4;
1024   }
1025   if (Index + 2 <= End) {
1026     dumpBytes(Bytes.slice(Index, 2), OS);
1027     AlignToInstStartColumn(Start, STI, OS);
1028     OS << "\t.short\t"
1029        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1030     return 2;
1031   }
1032   dumpBytes(Bytes.slice(Index, 1), OS);
1033   AlignToInstStartColumn(Start, STI, OS);
1034   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1035   return 1;
1036 }
1037 
1038 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1039                         ArrayRef<uint8_t> Bytes) {
1040   // print out data up to 8 bytes at a time in hex and ascii
1041   uint8_t AsciiData[9] = {'\0'};
1042   uint8_t Byte;
1043   int NumBytes = 0;
1044 
1045   for (; Index < End; ++Index) {
1046     if (NumBytes == 0)
1047       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1048     Byte = Bytes.slice(Index)[0];
1049     outs() << format(" %02x", Byte);
1050     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1051 
1052     uint8_t IndentOffset = 0;
1053     NumBytes++;
1054     if (Index == End - 1 || NumBytes > 8) {
1055       // Indent the space for less than 8 bytes data.
1056       // 2 spaces for byte and one for space between bytes
1057       IndentOffset = 3 * (8 - NumBytes);
1058       for (int Excess = NumBytes; Excess < 8; Excess++)
1059         AsciiData[Excess] = '\0';
1060       NumBytes = 8;
1061     }
1062     if (NumBytes == 8) {
1063       AsciiData[8] = '\0';
1064       outs() << std::string(IndentOffset, ' ') << "         ";
1065       outs() << reinterpret_cast<char *>(AsciiData);
1066       outs() << '\n';
1067       NumBytes = 0;
1068     }
1069   }
1070 }
1071 
1072 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1073                                        const SymbolRef &Symbol) {
1074   const StringRef FileName = Obj.getFileName();
1075   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1076   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1077 
1078   if (Obj.isXCOFF() && SymbolDescription) {
1079     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1080     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1081 
1082     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1083     Optional<XCOFF::StorageMappingClass> Smc =
1084         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1085     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1086                         isLabel(XCOFFObj, Symbol));
1087   } else if (Obj.isXCOFF()) {
1088     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1089     return SymbolInfoTy(Addr, Name, SymType, true);
1090   } else
1091     return SymbolInfoTy(Addr, Name,
1092                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1093                                     : (uint8_t)ELF::STT_NOTYPE);
1094 }
1095 
1096 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1097                                           const uint64_t Addr, StringRef &Name,
1098                                           uint8_t Type) {
1099   if (Obj.isXCOFF() && SymbolDescription)
1100     return SymbolInfoTy(Addr, Name, None, None, false);
1101   else
1102     return SymbolInfoTy(Addr, Name, Type);
1103 }
1104 
1105 static void
1106 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1107                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1108                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1109   if (AddrToBBAddrMap.empty())
1110     return;
1111   Labels.clear();
1112   uint64_t StartAddress = SectionAddr + Start;
1113   uint64_t EndAddress = SectionAddr + End;
1114   auto Iter = AddrToBBAddrMap.find(StartAddress);
1115   if (Iter == AddrToBBAddrMap.end())
1116     return;
1117   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1118     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1119     if (BBAddress >= EndAddress)
1120       continue;
1121     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1122   }
1123 }
1124 
1125 static void collectLocalBranchTargets(
1126     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1127     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1128     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1129   // So far only supports PowerPC and X86.
1130   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1131     return;
1132 
1133   Labels.clear();
1134   unsigned LabelCount = 0;
1135   Start += SectionAddr;
1136   End += SectionAddr;
1137   uint64_t Index = Start;
1138   while (Index < End) {
1139     // Disassemble a real instruction and record function-local branch labels.
1140     MCInst Inst;
1141     uint64_t Size;
1142     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1143     bool Disassembled =
1144         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1145     if (Size == 0)
1146       Size = std::min<uint64_t>(ThisBytes.size(),
1147                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1148 
1149     if (Disassembled && MIA) {
1150       uint64_t Target;
1151       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1152       // On PowerPC, if the address of a branch is the same as the target, it
1153       // means that it's a function call. Do not mark the label for this case.
1154       if (TargetKnown && (Target >= Start && Target < End) &&
1155           !Labels.count(Target) &&
1156           !(STI->getTargetTriple().isPPC() && Target == Index))
1157         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1158     }
1159     Index += Size;
1160   }
1161 }
1162 
1163 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1164 // This is currently only used on AMDGPU, and assumes the format of the
1165 // void * argument passed to AMDGPU's createMCSymbolizer.
1166 static void addSymbolizer(
1167     MCContext &Ctx, const Target *Target, StringRef TripleName,
1168     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1169     SectionSymbolsTy &Symbols,
1170     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1171 
1172   std::unique_ptr<MCRelocationInfo> RelInfo(
1173       Target->createMCRelocationInfo(TripleName, Ctx));
1174   if (!RelInfo)
1175     return;
1176   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1177       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1178   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1179   DisAsm->setSymbolizer(std::move(Symbolizer));
1180 
1181   if (!SymbolizeOperands)
1182     return;
1183 
1184   // Synthesize labels referenced by branch instructions by
1185   // disassembling, discarding the output, and collecting the referenced
1186   // addresses from the symbolizer.
1187   for (size_t Index = 0; Index != Bytes.size();) {
1188     MCInst Inst;
1189     uint64_t Size;
1190     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1191     DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1192     if (Size == 0)
1193       Size = std::min<uint64_t>(ThisBytes.size(),
1194                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1195     Index += Size;
1196   }
1197   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1198   // Copy and sort to remove duplicates.
1199   std::vector<uint64_t> LabelAddrs;
1200   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1201                     LabelAddrsRef.end());
1202   llvm::sort(LabelAddrs);
1203   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1204                     LabelAddrs.begin());
1205   // Add the labels.
1206   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1207     auto Name = std::make_unique<std::string>();
1208     *Name = (Twine("L") + Twine(LabelNum)).str();
1209     SynthesizedLabelNames.push_back(std::move(Name));
1210     Symbols.push_back(SymbolInfoTy(
1211         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1212   }
1213   llvm::stable_sort(Symbols);
1214   // Recreate the symbolizer with the new symbols list.
1215   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1216   Symbolizer.reset(Target->createMCSymbolizer(
1217       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1218   DisAsm->setSymbolizer(std::move(Symbolizer));
1219 }
1220 
1221 static StringRef getSegmentName(const MachOObjectFile *MachO,
1222                                 const SectionRef &Section) {
1223   if (MachO) {
1224     DataRefImpl DR = Section.getRawDataRefImpl();
1225     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1226     return SegmentName;
1227   }
1228   return "";
1229 }
1230 
1231 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1232                                     const MCAsmInfo &MAI,
1233                                     const MCSubtargetInfo &STI,
1234                                     StringRef Comments,
1235                                     LiveVariablePrinter &LVP) {
1236   do {
1237     if (!Comments.empty()) {
1238       // Emit a line of comments.
1239       StringRef Comment;
1240       std::tie(Comment, Comments) = Comments.split('\n');
1241       // MAI.getCommentColumn() assumes that instructions are printed at the
1242       // position of 8, while getInstStartColumn() returns the actual position.
1243       unsigned CommentColumn =
1244           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1245       FOS.PadToColumn(CommentColumn);
1246       FOS << MAI.getCommentString() << ' ' << Comment;
1247     }
1248     LVP.printAfterInst(FOS);
1249     FOS << '\n';
1250   } while (!Comments.empty());
1251   FOS.flush();
1252 }
1253 
1254 static void createFakeELFSections(ObjectFile &Obj) {
1255   assert(Obj.isELF());
1256   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1257     Elf32LEObj->createFakeSections();
1258   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1259     Elf64LEObj->createFakeSections();
1260   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1261     Elf32BEObj->createFakeSections();
1262   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1263     Elf64BEObj->createFakeSections();
1264   else
1265     llvm_unreachable("Unsupported binary format");
1266 }
1267 
1268 // Tries to fetch a more complete version of the given object file using its
1269 // Build ID. Returns None if nothing was found.
1270 static Optional<OwningBinary<Binary>>
1271 fetchBinaryByBuildID(const ObjectFile &Obj) {
1272   Optional<object::BuildIDRef> BuildID = getBuildID(&Obj);
1273   if (!BuildID)
1274     return None;
1275   Optional<std::string> Path = BIDFetcher->fetch(*BuildID);
1276   if (!Path)
1277     return None;
1278   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1279   if (!DebugBinary) {
1280     reportWarning(toString(DebugBinary.takeError()), *Path);
1281     return None;
1282   }
1283   return std::move(*DebugBinary);
1284 }
1285 
1286 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1287                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1288                               MCDisassembler *SecondaryDisAsm,
1289                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1290                               const MCSubtargetInfo *PrimarySTI,
1291                               const MCSubtargetInfo *SecondarySTI,
1292                               PrettyPrinter &PIP, SourcePrinter &SP,
1293                               bool InlineRelocs) {
1294   const MCSubtargetInfo *STI = PrimarySTI;
1295   MCDisassembler *DisAsm = PrimaryDisAsm;
1296   bool PrimaryIsThumb = false;
1297   if (isArmElf(Obj))
1298     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1299 
1300   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1301   if (InlineRelocs)
1302     RelocMap = getRelocsMap(Obj);
1303   bool Is64Bits = Obj.getBytesInAddress() > 4;
1304 
1305   // Create a mapping from virtual address to symbol name.  This is used to
1306   // pretty print the symbols while disassembling.
1307   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1308   SectionSymbolsTy AbsoluteSymbols;
1309   const StringRef FileName = Obj.getFileName();
1310   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1311   for (const SymbolRef &Symbol : Obj.symbols()) {
1312     Expected<StringRef> NameOrErr = Symbol.getName();
1313     if (!NameOrErr) {
1314       reportWarning(toString(NameOrErr.takeError()), FileName);
1315       continue;
1316     }
1317     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1318       continue;
1319 
1320     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1321       continue;
1322 
1323     if (MachO) {
1324       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1325       // symbols that support MachO header introspection. They do not bind to
1326       // code locations and are irrelevant for disassembly.
1327       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1328         continue;
1329       // Don't ask a Mach-O STAB symbol for its section unless you know that
1330       // STAB symbol's section field refers to a valid section index. Otherwise
1331       // the symbol may error trying to load a section that does not exist.
1332       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1333       uint8_t NType = (MachO->is64Bit() ?
1334                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1335                        MachO->getSymbolTableEntry(SymDRI).n_type);
1336       if (NType & MachO::N_STAB)
1337         continue;
1338     }
1339 
1340     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1341     if (SecI != Obj.section_end())
1342       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1343     else
1344       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1345   }
1346 
1347   if (AllSymbols.empty() && Obj.isELF())
1348     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1349 
1350   if (Obj.isWasm())
1351     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1352 
1353   if (Obj.isELF() && Obj.sections().empty())
1354     createFakeELFSections(Obj);
1355 
1356   BumpPtrAllocator A;
1357   StringSaver Saver(A);
1358   addPltEntries(Obj, AllSymbols, Saver);
1359 
1360   // Create a mapping from virtual address to section. An empty section can
1361   // cause more than one section at the same address. Sort such sections to be
1362   // before same-addressed non-empty sections so that symbol lookups prefer the
1363   // non-empty section.
1364   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1365   for (SectionRef Sec : Obj.sections())
1366     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1367   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1368     if (LHS.first != RHS.first)
1369       return LHS.first < RHS.first;
1370     return LHS.second.getSize() < RHS.second.getSize();
1371   });
1372 
1373   // Linked executables (.exe and .dll files) typically don't include a real
1374   // symbol table but they might contain an export table.
1375   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1376     for (const auto &ExportEntry : COFFObj->export_directories()) {
1377       StringRef Name;
1378       if (Error E = ExportEntry.getSymbolName(Name))
1379         reportError(std::move(E), Obj.getFileName());
1380       if (Name.empty())
1381         continue;
1382 
1383       uint32_t RVA;
1384       if (Error E = ExportEntry.getExportRVA(RVA))
1385         reportError(std::move(E), Obj.getFileName());
1386 
1387       uint64_t VA = COFFObj->getImageBase() + RVA;
1388       auto Sec = partition_point(
1389           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1390             return O.first <= VA;
1391           });
1392       if (Sec != SectionAddresses.begin()) {
1393         --Sec;
1394         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1395       } else
1396         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1397     }
1398   }
1399 
1400   // Sort all the symbols, this allows us to use a simple binary search to find
1401   // Multiple symbols can have the same address. Use a stable sort to stabilize
1402   // the output.
1403   StringSet<> FoundDisasmSymbolSet;
1404   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1405     llvm::stable_sort(SecSyms.second);
1406   llvm::stable_sort(AbsoluteSymbols);
1407 
1408   std::unique_ptr<DWARFContext> DICtx;
1409   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1410 
1411   if (DbgVariables != DVDisabled) {
1412     DICtx = DWARFContext::create(Obj);
1413     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1414       LVP.addCompileUnit(CU->getUnitDIE(false));
1415   }
1416 
1417   LLVM_DEBUG(LVP.dump());
1418 
1419   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1420   auto ReadBBAddrMap = [&](Optional<unsigned> SectionIndex = None) {
1421     AddrToBBAddrMap.clear();
1422     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1423       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1424       if (!BBAddrMapsOrErr)
1425           reportWarning(toString(BBAddrMapsOrErr.takeError()),
1426                         Obj.getFileName());
1427       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1428         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1429                                 std::move(FunctionBBAddrMap));
1430     }
1431   };
1432 
1433   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1434   // single mapping, since they don't have any conflicts.
1435   if (SymbolizeOperands && !Obj.isRelocatableObject())
1436     ReadBBAddrMap();
1437 
1438   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1439     if (FilterSections.empty() && !DisassembleAll &&
1440         (!Section.isText() || Section.isVirtual()))
1441       continue;
1442 
1443     uint64_t SectionAddr = Section.getAddress();
1444     uint64_t SectSize = Section.getSize();
1445     if (!SectSize)
1446       continue;
1447 
1448     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1449     // corresponding to this section, if present.
1450     if (SymbolizeOperands && Obj.isRelocatableObject())
1451       ReadBBAddrMap(Section.getIndex());
1452 
1453     // Get the list of all the symbols in this section.
1454     SectionSymbolsTy &Symbols = AllSymbols[Section];
1455     std::vector<MappingSymbolPair> MappingSymbols;
1456     if (hasMappingSymbols(Obj)) {
1457       for (const auto &Symb : Symbols) {
1458         uint64_t Address = Symb.Addr;
1459         StringRef Name = Symb.Name;
1460         if (Name.startswith("$d"))
1461           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1462         if (Name.startswith("$x"))
1463           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1464         if (Name.startswith("$a"))
1465           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1466         if (Name.startswith("$t"))
1467           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1468       }
1469     }
1470 
1471     llvm::sort(MappingSymbols);
1472 
1473     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1474         unwrapOrError(Section.getContents(), Obj.getFileName()));
1475 
1476     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1477     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1478       // AMDGPU disassembler uses symbolizer for printing labels
1479       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1480                     Symbols, SynthesizedLabelNames);
1481     }
1482 
1483     StringRef SegmentName = getSegmentName(MachO, Section);
1484     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1485     // If the section has no symbol at the start, just insert a dummy one.
1486     if (Symbols.empty() || Symbols[0].Addr != 0) {
1487       Symbols.insert(Symbols.begin(),
1488                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1489                                            Section.isText() ? ELF::STT_FUNC
1490                                                             : ELF::STT_OBJECT));
1491     }
1492 
1493     SmallString<40> Comments;
1494     raw_svector_ostream CommentStream(Comments);
1495 
1496     uint64_t VMAAdjustment = 0;
1497     if (shouldAdjustVA(Section))
1498       VMAAdjustment = AdjustVMA;
1499 
1500     // In executable and shared objects, r_offset holds a virtual address.
1501     // Subtract SectionAddr from the r_offset field of a relocation to get
1502     // the section offset.
1503     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1504     uint64_t Size;
1505     uint64_t Index;
1506     bool PrintedSection = false;
1507     std::vector<RelocationRef> Rels = RelocMap[Section];
1508     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1509     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1510 
1511     // Loop over each chunk of code between two points where at least
1512     // one symbol is defined.
1513     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1514       // Advance SI past all the symbols starting at the same address,
1515       // and make an ArrayRef of them.
1516       unsigned FirstSI = SI;
1517       uint64_t Start = Symbols[SI].Addr;
1518       ArrayRef<SymbolInfoTy> SymbolsHere;
1519       while (SI != SE && Symbols[SI].Addr == Start)
1520         ++SI;
1521       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1522 
1523       // Get the demangled names of all those symbols. We end up with a vector
1524       // of StringRef that holds the names we're going to use, and a vector of
1525       // std::string that stores the new strings returned by demangle(), if
1526       // any. If we don't call demangle() then that vector can stay empty.
1527       std::vector<StringRef> SymNamesHere;
1528       std::vector<std::string> DemangledSymNamesHere;
1529       if (Demangle) {
1530         // Fetch the demangled names and store them locally.
1531         for (const SymbolInfoTy &Symbol : SymbolsHere)
1532           DemangledSymNamesHere.push_back(demangle(Symbol.Name.str()));
1533         // Now we've finished modifying that vector, it's safe to make
1534         // a vector of StringRefs pointing into it.
1535         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1536                             DemangledSymNamesHere.end());
1537       } else {
1538         for (const SymbolInfoTy &Symbol : SymbolsHere)
1539           SymNamesHere.push_back(Symbol.Name);
1540       }
1541 
1542       // Distinguish ELF data from code symbols, which will be used later on to
1543       // decide whether to 'disassemble' this chunk as a data declaration via
1544       // dumpELFData(), or whether to treat it as code.
1545       //
1546       // If data _and_ code symbols are defined at the same address, the code
1547       // takes priority, on the grounds that disassembling code is our main
1548       // purpose here, and it would be a worse failure to _not_ interpret
1549       // something that _was_ meaningful as code than vice versa.
1550       //
1551       // Any ELF symbol type that is not clearly data will be regarded as code.
1552       // In particular, one of the uses of STT_NOTYPE is for branch targets
1553       // inside functions, for which STT_FUNC would be inaccurate.
1554       //
1555       // So here, we spot whether there's any non-data symbol present at all,
1556       // and only set the DisassembleAsData flag if there isn't. Also, we use
1557       // this distinction to inform the decision of which symbol to print at
1558       // the head of the section, so that if we're printing code, we print a
1559       // code-related symbol name to go with it.
1560       bool DisassembleAsData = false;
1561       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1562       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1563         DisassembleAsData = true; // unless we find a code symbol below
1564 
1565         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1566           uint8_t SymTy = SymbolsHere[i].Type;
1567           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1568             DisassembleAsData = false;
1569             DisplaySymIndex = i;
1570           }
1571         }
1572       }
1573 
1574       // Decide which symbol(s) from this collection we're going to print.
1575       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1576       // If the user has given the --disassemble-symbols option, then we must
1577       // display every symbol in that set, and no others.
1578       if (!DisasmSymbolSet.empty()) {
1579         bool FoundAny = false;
1580         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1581           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1582             SymsToPrint[i] = true;
1583             FoundAny = true;
1584           }
1585         }
1586 
1587         // And if none of the symbols here is one that the user asked for, skip
1588         // disassembling this entire chunk of code.
1589         if (!FoundAny)
1590           continue;
1591       } else {
1592         // Otherwise, print whichever symbol at this location is last in the
1593         // Symbols array, because that array is pre-sorted in a way intended to
1594         // correlate with priority of which symbol to display.
1595         SymsToPrint[DisplaySymIndex] = true;
1596       }
1597 
1598       // Now that we know we're disassembling this section, override the choice
1599       // of which symbols to display by printing _all_ of them at this address
1600       // if the user asked for all symbols.
1601       //
1602       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1603       // only the chunk of code headed by 'foo', but also show any other
1604       // symbols defined at that address, such as aliases for 'foo', or the ARM
1605       // mapping symbol preceding its code.
1606       if (ShowAllSymbols) {
1607         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1608           SymsToPrint[i] = true;
1609       }
1610 
1611       if (Start < SectionAddr || StopAddress <= Start)
1612         continue;
1613 
1614       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1615         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1616 
1617       // The end is the section end, the beginning of the next symbol, or
1618       // --stop-address.
1619       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1620       if (SI < SE)
1621         End = std::min(End, Symbols[SI].Addr);
1622       if (Start >= End || End <= StartAddress)
1623         continue;
1624       Start -= SectionAddr;
1625       End -= SectionAddr;
1626 
1627       if (!PrintedSection) {
1628         PrintedSection = true;
1629         outs() << "\nDisassembly of section ";
1630         if (!SegmentName.empty())
1631           outs() << SegmentName << ",";
1632         outs() << SectionName << ":\n";
1633       }
1634 
1635       outs() << '\n';
1636 
1637       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1638         if (!SymsToPrint[i])
1639           continue;
1640 
1641         const SymbolInfoTy &Symbol = SymbolsHere[i];
1642         const StringRef SymbolName = SymNamesHere[i];
1643 
1644         if (LeadingAddr)
1645           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1646                            SectionAddr + Start + VMAAdjustment);
1647         if (Obj.isXCOFF() && SymbolDescription) {
1648           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1649         } else
1650           outs() << '<' << SymbolName << ">:\n";
1651       }
1652 
1653       // Don't print raw contents of a virtual section. A virtual section
1654       // doesn't have any contents in the file.
1655       if (Section.isVirtual()) {
1656         outs() << "...\n";
1657         continue;
1658       }
1659 
1660       // See if any of the symbols defined at this location triggers target-
1661       // specific disassembly behavior, e.g. of special descriptors or function
1662       // prelude information.
1663       //
1664       // We stop this loop at the first symbol that triggers some kind of
1665       // interesting behavior (if any), on the assumption that if two symbols
1666       // defined at the same address trigger two conflicting symbol handlers,
1667       // the object file is probably confused anyway, and it would make even
1668       // less sense to present the output of _both_ handlers, because that
1669       // would describe the same data twice.
1670       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1671         SymbolInfoTy Symbol = SymbolsHere[SHI];
1672 
1673         auto Status =
1674             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1675                                   SectionAddr + Start, CommentStream);
1676 
1677         if (!Status) {
1678           // If onSymbolStart returns None, that means it didn't trigger any
1679           // interesting handling for this symbol. Try the other symbols
1680           // defined at this address.
1681           continue;
1682         }
1683 
1684         if (Status.value() == MCDisassembler::Fail) {
1685           // If onSymbolStart returns Fail, that means it identified some kind
1686           // of special data at this address, but wasn't able to disassemble it
1687           // meaningfully. So we fall back to disassembling the failed region
1688           // as bytes, assuming that the target detected the failure before
1689           // printing anything.
1690           //
1691           // Return values Success or SoftFail (i.e no 'real' failure) are
1692           // expected to mean that the target has emitted its own output.
1693           //
1694           // Either way, 'Size' will have been set to the amount of data
1695           // covered by whatever prologue the target identified. So we advance
1696           // our own position to beyond that. Sometimes that will be the entire
1697           // distance to the next symbol, and sometimes it will be just a
1698           // prologue and we should start disassembling instructions from where
1699           // it left off.
1700           outs() << "// Error in decoding " << SymNamesHere[SHI]
1701                  << " : Decoding failed region as bytes.\n";
1702           for (uint64_t I = 0; I < Size; ++I) {
1703             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1704                    << "\n";
1705           }
1706         }
1707         Start += Size;
1708         break;
1709       }
1710 
1711       Index = Start;
1712       if (SectionAddr < StartAddress)
1713         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1714 
1715       if (DisassembleAsData) {
1716         dumpELFData(SectionAddr, Index, End, Bytes);
1717         Index = End;
1718         continue;
1719       }
1720 
1721       bool DumpARMELFData = false;
1722       formatted_raw_ostream FOS(outs());
1723 
1724       std::unordered_map<uint64_t, std::string> AllLabels;
1725       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1726       if (SymbolizeOperands) {
1727         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1728                                   SectionAddr, Index, End, AllLabels);
1729         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1730                                BBAddrMapLabels);
1731       }
1732 
1733       while (Index < End) {
1734         // ARM and AArch64 ELF binaries can interleave data and text in the
1735         // same section. We rely on the markers introduced to understand what
1736         // we need to dump. If the data marker is within a function, it is
1737         // denoted as a word/short etc.
1738         if (!MappingSymbols.empty()) {
1739           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1740           DumpARMELFData = Kind == 'd';
1741           if (SecondarySTI) {
1742             if (Kind == 'a') {
1743               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1744               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1745             } else if (Kind == 't') {
1746               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1747               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1748             }
1749           }
1750         }
1751 
1752         if (DumpARMELFData) {
1753           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1754                                 MappingSymbols, *STI, FOS);
1755         } else {
1756           // When -z or --disassemble-zeroes are given we always dissasemble
1757           // them. Otherwise we might want to skip zero bytes we see.
1758           if (!DisassembleZeroes) {
1759             uint64_t MaxOffset = End - Index;
1760             // For --reloc: print zero blocks patched by relocations, so that
1761             // relocations can be shown in the dump.
1762             if (RelCur != RelEnd)
1763               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1764                                    MaxOffset);
1765 
1766             if (size_t N =
1767                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1768               FOS << "\t\t..." << '\n';
1769               Index += N;
1770               continue;
1771             }
1772           }
1773 
1774           // Print local label if there's any.
1775           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1776           if (Iter1 != BBAddrMapLabels.end()) {
1777             for (StringRef Label : Iter1->second)
1778               FOS << "<" << Label << ">:\n";
1779           } else {
1780             auto Iter2 = AllLabels.find(SectionAddr + Index);
1781             if (Iter2 != AllLabels.end())
1782               FOS << "<" << Iter2->second << ">:\n";
1783           }
1784 
1785           // Disassemble a real instruction or a data when disassemble all is
1786           // provided
1787           MCInst Inst;
1788           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1789           uint64_t ThisAddr = SectionAddr + Index;
1790           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1791                                                      ThisAddr, CommentStream);
1792           if (Size == 0)
1793             Size = std::min<uint64_t>(
1794                 ThisBytes.size(),
1795                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1796 
1797           LVP.update({Index, Section.getIndex()},
1798                      {Index + Size, Section.getIndex()}, Index + Size != End);
1799 
1800           IP->setCommentStream(CommentStream);
1801 
1802           PIP.printInst(
1803               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1804               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1805               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1806 
1807           IP->setCommentStream(llvm::nulls());
1808 
1809           // If disassembly has failed, avoid analysing invalid/incomplete
1810           // instruction information. Otherwise, try to resolve the target
1811           // address (jump target or memory operand address) and print it on the
1812           // right of the instruction.
1813           if (Disassembled && MIA) {
1814             // Branch targets are printed just after the instructions.
1815             llvm::raw_ostream *TargetOS = &FOS;
1816             uint64_t Target;
1817             bool PrintTarget =
1818                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1819             if (!PrintTarget)
1820               if (Optional<uint64_t> MaybeTarget =
1821                       MIA->evaluateMemoryOperandAddress(
1822                           Inst, STI, SectionAddr + Index, Size)) {
1823                 Target = *MaybeTarget;
1824                 PrintTarget = true;
1825                 // Do not print real address when symbolizing.
1826                 if (!SymbolizeOperands) {
1827                   // Memory operand addresses are printed as comments.
1828                   TargetOS = &CommentStream;
1829                   *TargetOS << "0x" << Twine::utohexstr(Target);
1830                 }
1831               }
1832             if (PrintTarget) {
1833               // In a relocatable object, the target's section must reside in
1834               // the same section as the call instruction or it is accessed
1835               // through a relocation.
1836               //
1837               // In a non-relocatable object, the target may be in any section.
1838               // In that case, locate the section(s) containing the target
1839               // address and find the symbol in one of those, if possible.
1840               //
1841               // N.B. We don't walk the relocations in the relocatable case yet.
1842               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1843               if (!Obj.isRelocatableObject()) {
1844                 auto It = llvm::partition_point(
1845                     SectionAddresses,
1846                     [=](const std::pair<uint64_t, SectionRef> &O) {
1847                       return O.first <= Target;
1848                     });
1849                 uint64_t TargetSecAddr = 0;
1850                 while (It != SectionAddresses.begin()) {
1851                   --It;
1852                   if (TargetSecAddr == 0)
1853                     TargetSecAddr = It->first;
1854                   if (It->first != TargetSecAddr)
1855                     break;
1856                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1857                 }
1858               } else {
1859                 TargetSectionSymbols.push_back(&Symbols);
1860               }
1861               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1862 
1863               // Find the last symbol in the first candidate section whose
1864               // offset is less than or equal to the target. If there are no
1865               // such symbols, try in the next section and so on, before finally
1866               // using the nearest preceding absolute symbol (if any), if there
1867               // are no other valid symbols.
1868               const SymbolInfoTy *TargetSym = nullptr;
1869               for (const SectionSymbolsTy *TargetSymbols :
1870                    TargetSectionSymbols) {
1871                 auto It = llvm::partition_point(
1872                     *TargetSymbols,
1873                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1874                 if (It != TargetSymbols->begin()) {
1875                   TargetSym = &*(It - 1);
1876                   break;
1877                 }
1878               }
1879 
1880               // Print the labels corresponding to the target if there's any.
1881               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1882               bool LabelAvailable = AllLabels.count(Target);
1883               if (TargetSym != nullptr) {
1884                 uint64_t TargetAddress = TargetSym->Addr;
1885                 uint64_t Disp = Target - TargetAddress;
1886                 std::string TargetName = TargetSym->Name.str();
1887                 if (Demangle)
1888                   TargetName = demangle(TargetName);
1889 
1890                 *TargetOS << " <";
1891                 if (!Disp) {
1892                   // Always Print the binary symbol precisely corresponding to
1893                   // the target address.
1894                   *TargetOS << TargetName;
1895                 } else if (BBAddrMapLabelAvailable) {
1896                   *TargetOS << BBAddrMapLabels[Target].front();
1897                 } else if (LabelAvailable) {
1898                   *TargetOS << AllLabels[Target];
1899                 } else {
1900                   // Always Print the binary symbol plus an offset if there's no
1901                   // local label corresponding to the target address.
1902                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1903                 }
1904                 *TargetOS << ">";
1905               } else if (BBAddrMapLabelAvailable) {
1906                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1907               } else if (LabelAvailable) {
1908                 *TargetOS << " <" << AllLabels[Target] << ">";
1909               }
1910               // By convention, each record in the comment stream should be
1911               // terminated.
1912               if (TargetOS == &CommentStream)
1913                 *TargetOS << "\n";
1914             }
1915           }
1916         }
1917 
1918         assert(Ctx.getAsmInfo());
1919         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1920                                 CommentStream.str(), LVP);
1921         Comments.clear();
1922 
1923         // Hexagon does this in pretty printer
1924         if (Obj.getArch() != Triple::hexagon) {
1925           // Print relocation for instruction and data.
1926           while (RelCur != RelEnd) {
1927             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1928             // If this relocation is hidden, skip it.
1929             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1930               ++RelCur;
1931               continue;
1932             }
1933 
1934             // Stop when RelCur's offset is past the disassembled
1935             // instruction/data. Note that it's possible the disassembled data
1936             // is not the complete data: we might see the relocation printed in
1937             // the middle of the data, but this matches the binutils objdump
1938             // output.
1939             if (Offset >= Index + Size)
1940               break;
1941 
1942             // When --adjust-vma is used, update the address printed.
1943             if (RelCur->getSymbol() != Obj.symbol_end()) {
1944               Expected<section_iterator> SymSI =
1945                   RelCur->getSymbol()->getSection();
1946               if (SymSI && *SymSI != Obj.section_end() &&
1947                   shouldAdjustVA(**SymSI))
1948                 Offset += AdjustVMA;
1949             }
1950 
1951             printRelocation(FOS, Obj.getFileName(), *RelCur,
1952                             SectionAddr + Offset, Is64Bits);
1953             LVP.printAfterOtherLine(FOS, true);
1954             ++RelCur;
1955           }
1956         }
1957 
1958         Index += Size;
1959       }
1960     }
1961   }
1962   StringSet<> MissingDisasmSymbolSet =
1963       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1964   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1965     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1966 }
1967 
1968 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
1969   const Target *TheTarget = getTarget(Obj);
1970 
1971   // Package up features to be passed to target/subtarget
1972   SubtargetFeatures Features = Obj->getFeatures();
1973   if (!MAttrs.empty()) {
1974     for (unsigned I = 0; I != MAttrs.size(); ++I)
1975       Features.AddFeature(MAttrs[I]);
1976   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
1977     Features.AddFeature("+all");
1978   }
1979 
1980   std::unique_ptr<const MCRegisterInfo> MRI(
1981       TheTarget->createMCRegInfo(TripleName));
1982   if (!MRI)
1983     reportError(Obj->getFileName(),
1984                 "no register info for target " + TripleName);
1985 
1986   // Set up disassembler.
1987   MCTargetOptions MCOptions;
1988   std::unique_ptr<const MCAsmInfo> AsmInfo(
1989       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1990   if (!AsmInfo)
1991     reportError(Obj->getFileName(),
1992                 "no assembly info for target " + TripleName);
1993 
1994   if (MCPU.empty())
1995     MCPU = Obj->tryGetCPUName().value_or("").str();
1996 
1997   if (isArmElf(*Obj)) {
1998     // When disassembling big-endian Arm ELF, the instruction endianness is
1999     // determined in a complex way. In relocatable objects, AAELF32 mandates
2000     // that instruction endianness matches the ELF file endianness; in
2001     // executable images, that's true unless the file header has the EF_ARM_BE8
2002     // flag, in which case instructions are little-endian regardless of data
2003     // endianness.
2004     //
2005     // We must set the big-endian-instructions SubtargetFeature to make the
2006     // disassembler read the instructions the right way round, and also tell
2007     // our own prettyprinter to retrieve the encodings the same way to print in
2008     // hex.
2009     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2010 
2011     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2012                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2013       Features.AddFeature("+big-endian-instructions");
2014       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2015     } else {
2016       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2017     }
2018   }
2019 
2020   std::unique_ptr<const MCSubtargetInfo> STI(
2021       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2022   if (!STI)
2023     reportError(Obj->getFileName(),
2024                 "no subtarget info for target " + TripleName);
2025   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2026   if (!MII)
2027     reportError(Obj->getFileName(),
2028                 "no instruction info for target " + TripleName);
2029   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
2030   // FIXME: for now initialize MCObjectFileInfo with default values
2031   std::unique_ptr<MCObjectFileInfo> MOFI(
2032       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
2033   Ctx.setObjectFileInfo(MOFI.get());
2034 
2035   std::unique_ptr<MCDisassembler> DisAsm(
2036       TheTarget->createMCDisassembler(*STI, Ctx));
2037   if (!DisAsm)
2038     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2039 
2040   // If we have an ARM object file, we need a second disassembler, because
2041   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2042   // We use mapping symbols to switch between the two assemblers, where
2043   // appropriate.
2044   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2045   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2046   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
2047     if (STI->checkFeatures("+thumb-mode"))
2048       Features.AddFeature("-thumb-mode");
2049     else
2050       Features.AddFeature("+thumb-mode");
2051     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2052                                                         Features.getString()));
2053     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2054   }
2055 
2056   std::unique_ptr<const MCInstrAnalysis> MIA(
2057       TheTarget->createMCInstrAnalysis(MII.get()));
2058 
2059   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2060   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2061       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2062   if (!IP)
2063     reportError(Obj->getFileName(),
2064                 "no instruction printer for target " + TripleName);
2065   IP->setPrintImmHex(PrintImmHex);
2066   IP->setPrintBranchImmAsAddress(true);
2067   IP->setSymbolizeOperands(SymbolizeOperands);
2068   IP->setMCInstrAnalysis(MIA.get());
2069 
2070   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2071   ObjectFile *DbgObj = Obj;
2072   OwningBinary<Binary> DebugBinary;
2073   if (!Obj->hasDebugInfo()) {
2074     if (Optional<OwningBinary<Binary>> DebugBinaryOpt =
2075             fetchBinaryByBuildID(*Obj)) {
2076       if (ObjectFile *FetchedObj =
2077               dyn_cast<ObjectFile>(DebugBinaryOpt->getBinary())) {
2078         if (FetchedObj->hasDebugInfo()) {
2079           DebugBinary = std::move(*DebugBinaryOpt);
2080           DbgObj = FetchedObj;
2081         }
2082       }
2083     }
2084   }
2085   SourcePrinter SP(DbgObj, TheTarget->getName());
2086 
2087   for (StringRef Opt : DisassemblerOptions)
2088     if (!IP->applyTargetSpecificCLOption(Opt))
2089       reportError(Obj->getFileName(),
2090                   "Unrecognized disassembler option: " + Opt);
2091 
2092   disassembleObject(TheTarget, *Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
2093                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, SP,
2094                     InlineRelocs);
2095 }
2096 
2097 void objdump::printRelocations(const ObjectFile *Obj) {
2098   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2099                                                  "%08" PRIx64;
2100 
2101   // Build a mapping from relocation target to a vector of relocation
2102   // sections. Usually, there is an only one relocation section for
2103   // each relocated section.
2104   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2105   uint64_t Ndx;
2106   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2107     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2108       continue;
2109     if (Section.relocation_begin() == Section.relocation_end())
2110       continue;
2111     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2112     if (!SecOrErr)
2113       reportError(Obj->getFileName(),
2114                   "section (" + Twine(Ndx) +
2115                       "): unable to get a relocation target: " +
2116                       toString(SecOrErr.takeError()));
2117     SecToRelSec[**SecOrErr].push_back(Section);
2118   }
2119 
2120   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2121     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2122     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2123     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2124     uint32_t TypePadding = 24;
2125     outs() << left_justify("OFFSET", OffsetPadding) << " "
2126            << left_justify("TYPE", TypePadding) << " "
2127            << "VALUE\n";
2128 
2129     for (SectionRef Section : P.second) {
2130       for (const RelocationRef &Reloc : Section.relocations()) {
2131         uint64_t Address = Reloc.getOffset();
2132         SmallString<32> RelocName;
2133         SmallString<32> ValueStr;
2134         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2135           continue;
2136         Reloc.getTypeName(RelocName);
2137         if (Error E = getRelocationValueString(Reloc, ValueStr))
2138           reportError(std::move(E), Obj->getFileName());
2139 
2140         outs() << format(Fmt.data(), Address) << " "
2141                << left_justify(RelocName, TypePadding) << " " << ValueStr
2142                << "\n";
2143       }
2144     }
2145   }
2146 }
2147 
2148 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2149   // For the moment, this option is for ELF only
2150   if (!Obj->isELF())
2151     return;
2152 
2153   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2154   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
2155         return Sec.getType() == ELF::SHT_DYNAMIC;
2156       })) {
2157     reportError(Obj->getFileName(), "not a dynamic object");
2158     return;
2159   }
2160 
2161   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2162   if (DynRelSec.empty())
2163     return;
2164 
2165   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
2166   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2167   const uint32_t TypePadding = 24;
2168   outs() << left_justify("OFFSET", OffsetPadding) << ' '
2169          << left_justify("TYPE", TypePadding) << " VALUE\n";
2170 
2171   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2172   for (const SectionRef &Section : DynRelSec)
2173     for (const RelocationRef &Reloc : Section.relocations()) {
2174       uint64_t Address = Reloc.getOffset();
2175       SmallString<32> RelocName;
2176       SmallString<32> ValueStr;
2177       Reloc.getTypeName(RelocName);
2178       if (Error E = getRelocationValueString(Reloc, ValueStr))
2179         reportError(std::move(E), Obj->getFileName());
2180       outs() << format(Fmt.data(), Address) << ' '
2181              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2182     }
2183 }
2184 
2185 // Returns true if we need to show LMA column when dumping section headers. We
2186 // show it only when the platform is ELF and either we have at least one section
2187 // whose VMA and LMA are different and/or when --show-lma flag is used.
2188 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2189   if (!Obj.isELF())
2190     return false;
2191   for (const SectionRef &S : ToolSectionFilter(Obj))
2192     if (S.getAddress() != getELFSectionLMA(S))
2193       return true;
2194   return ShowLMA;
2195 }
2196 
2197 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2198   // Default column width for names is 13 even if no names are that long.
2199   size_t MaxWidth = 13;
2200   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2201     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2202     MaxWidth = std::max(MaxWidth, Name.size());
2203   }
2204   return MaxWidth;
2205 }
2206 
2207 void objdump::printSectionHeaders(ObjectFile &Obj) {
2208   if (Obj.isELF() && Obj.sections().empty())
2209     createFakeELFSections(Obj);
2210 
2211   size_t NameWidth = getMaxSectionNameWidth(Obj);
2212   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2213   bool HasLMAColumn = shouldDisplayLMA(Obj);
2214   outs() << "\nSections:\n";
2215   if (HasLMAColumn)
2216     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2217            << left_justify("VMA", AddressWidth) << " "
2218            << left_justify("LMA", AddressWidth) << " Type\n";
2219   else
2220     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2221            << left_justify("VMA", AddressWidth) << " Type\n";
2222 
2223   uint64_t Idx;
2224   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2225     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2226     uint64_t VMA = Section.getAddress();
2227     if (shouldAdjustVA(Section))
2228       VMA += AdjustVMA;
2229 
2230     uint64_t Size = Section.getSize();
2231 
2232     std::string Type = Section.isText() ? "TEXT" : "";
2233     if (Section.isData())
2234       Type += Type.empty() ? "DATA" : ", DATA";
2235     if (Section.isBSS())
2236       Type += Type.empty() ? "BSS" : ", BSS";
2237     if (Section.isDebugSection())
2238       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2239 
2240     if (HasLMAColumn)
2241       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2242                        Name.str().c_str(), Size)
2243              << format_hex_no_prefix(VMA, AddressWidth) << " "
2244              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2245              << " " << Type << "\n";
2246     else
2247       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2248                        Name.str().c_str(), Size)
2249              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2250   }
2251 }
2252 
2253 void objdump::printSectionContents(const ObjectFile *Obj) {
2254   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2255 
2256   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2257     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2258     uint64_t BaseAddr = Section.getAddress();
2259     uint64_t Size = Section.getSize();
2260     if (!Size)
2261       continue;
2262 
2263     outs() << "Contents of section ";
2264     StringRef SegmentName = getSegmentName(MachO, Section);
2265     if (!SegmentName.empty())
2266       outs() << SegmentName << ",";
2267     outs() << Name << ":\n";
2268     if (Section.isBSS()) {
2269       outs() << format("<skipping contents of bss section at [%04" PRIx64
2270                        ", %04" PRIx64 ")>\n",
2271                        BaseAddr, BaseAddr + Size);
2272       continue;
2273     }
2274 
2275     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2276 
2277     // Dump out the content as hex and printable ascii characters.
2278     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2279       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2280       // Dump line of hex.
2281       for (std::size_t I = 0; I < 16; ++I) {
2282         if (I != 0 && I % 4 == 0)
2283           outs() << ' ';
2284         if (Addr + I < End)
2285           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2286                  << hexdigit(Contents[Addr + I] & 0xF, true);
2287         else
2288           outs() << "  ";
2289       }
2290       // Print ascii.
2291       outs() << "  ";
2292       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2293         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2294           outs() << Contents[Addr + I];
2295         else
2296           outs() << ".";
2297       }
2298       outs() << "\n";
2299     }
2300   }
2301 }
2302 
2303 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2304                                StringRef ArchitectureName, bool DumpDynamic) {
2305   if (O.isCOFF() && !DumpDynamic) {
2306     outs() << "\nSYMBOL TABLE:\n";
2307     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2308     return;
2309   }
2310 
2311   const StringRef FileName = O.getFileName();
2312 
2313   if (!DumpDynamic) {
2314     outs() << "\nSYMBOL TABLE:\n";
2315     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2316       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2317                   DumpDynamic);
2318     return;
2319   }
2320 
2321   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2322   if (!O.isELF()) {
2323     reportWarning(
2324         "this operation is not currently supported for this file format",
2325         FileName);
2326     return;
2327   }
2328 
2329   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2330   auto Symbols = ELF->getDynamicSymbolIterators();
2331   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2332       ELF->readDynsymVersions();
2333   if (!SymbolVersionsOrErr) {
2334     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2335     SymbolVersionsOrErr = std::vector<VersionEntry>();
2336     (void)!SymbolVersionsOrErr;
2337   }
2338   for (auto &Sym : Symbols)
2339     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2340                 ArchitectureName, DumpDynamic);
2341 }
2342 
2343 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2344                           ArrayRef<VersionEntry> SymbolVersions,
2345                           StringRef FileName, StringRef ArchiveName,
2346                           StringRef ArchitectureName, bool DumpDynamic) {
2347   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2348   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2349                                    ArchitectureName);
2350   if ((Address < StartAddress) || (Address > StopAddress))
2351     return;
2352   SymbolRef::Type Type =
2353       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2354   uint32_t Flags =
2355       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2356 
2357   // Don't ask a Mach-O STAB symbol for its section unless you know that
2358   // STAB symbol's section field refers to a valid section index. Otherwise
2359   // the symbol may error trying to load a section that does not exist.
2360   bool IsSTAB = false;
2361   if (MachO) {
2362     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2363     uint8_t NType =
2364         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2365                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2366     if (NType & MachO::N_STAB)
2367       IsSTAB = true;
2368   }
2369   section_iterator Section = IsSTAB
2370                                  ? O.section_end()
2371                                  : unwrapOrError(Symbol.getSection(), FileName,
2372                                                  ArchiveName, ArchitectureName);
2373 
2374   StringRef Name;
2375   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2376     if (Expected<StringRef> NameOrErr = Section->getName())
2377       Name = *NameOrErr;
2378     else
2379       consumeError(NameOrErr.takeError());
2380 
2381   } else {
2382     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2383                          ArchitectureName);
2384   }
2385 
2386   bool Global = Flags & SymbolRef::SF_Global;
2387   bool Weak = Flags & SymbolRef::SF_Weak;
2388   bool Absolute = Flags & SymbolRef::SF_Absolute;
2389   bool Common = Flags & SymbolRef::SF_Common;
2390   bool Hidden = Flags & SymbolRef::SF_Hidden;
2391 
2392   char GlobLoc = ' ';
2393   if ((Section != O.section_end() || Absolute) && !Weak)
2394     GlobLoc = Global ? 'g' : 'l';
2395   char IFunc = ' ';
2396   if (O.isELF()) {
2397     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2398       IFunc = 'i';
2399     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2400       GlobLoc = 'u';
2401   }
2402 
2403   char Debug = ' ';
2404   if (DumpDynamic)
2405     Debug = 'D';
2406   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2407     Debug = 'd';
2408 
2409   char FileFunc = ' ';
2410   if (Type == SymbolRef::ST_File)
2411     FileFunc = 'f';
2412   else if (Type == SymbolRef::ST_Function)
2413     FileFunc = 'F';
2414   else if (Type == SymbolRef::ST_Data)
2415     FileFunc = 'O';
2416 
2417   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2418 
2419   outs() << format(Fmt, Address) << " "
2420          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2421          << (Weak ? 'w' : ' ') // Weak?
2422          << ' '                // Constructor. Not supported yet.
2423          << ' '                // Warning. Not supported yet.
2424          << IFunc              // Indirect reference to another symbol.
2425          << Debug              // Debugging (d) or dynamic (D) symbol.
2426          << FileFunc           // Name of function (F), file (f) or object (O).
2427          << ' ';
2428   if (Absolute) {
2429     outs() << "*ABS*";
2430   } else if (Common) {
2431     outs() << "*COM*";
2432   } else if (Section == O.section_end()) {
2433     if (O.isXCOFF()) {
2434       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2435           Symbol.getRawDataRefImpl());
2436       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2437         outs() << "*DEBUG*";
2438       else
2439         outs() << "*UND*";
2440     } else
2441       outs() << "*UND*";
2442   } else {
2443     StringRef SegmentName = getSegmentName(MachO, *Section);
2444     if (!SegmentName.empty())
2445       outs() << SegmentName << ",";
2446     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2447     outs() << SectionName;
2448     if (O.isXCOFF()) {
2449       Optional<SymbolRef> SymRef =
2450           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2451       if (SymRef) {
2452 
2453         Expected<StringRef> NameOrErr = SymRef->getName();
2454 
2455         if (NameOrErr) {
2456           outs() << " (csect:";
2457           std::string SymName(NameOrErr.get());
2458 
2459           if (Demangle)
2460             SymName = demangle(SymName);
2461 
2462           if (SymbolDescription)
2463             SymName = getXCOFFSymbolDescription(
2464                 createSymbolInfo(O, SymRef.value()), SymName);
2465 
2466           outs() << ' ' << SymName;
2467           outs() << ") ";
2468         } else
2469           reportWarning(toString(NameOrErr.takeError()), FileName);
2470       }
2471     }
2472   }
2473 
2474   if (Common)
2475     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2476   else if (O.isXCOFF())
2477     outs() << '\t'
2478            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2479                               Symbol.getRawDataRefImpl()));
2480   else if (O.isELF())
2481     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2482 
2483   if (O.isELF()) {
2484     if (!SymbolVersions.empty()) {
2485       const VersionEntry &Ver =
2486           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2487       std::string Str;
2488       if (!Ver.Name.empty())
2489         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2490       outs() << ' ' << left_justify(Str, 12);
2491     }
2492 
2493     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2494     switch (Other) {
2495     case ELF::STV_DEFAULT:
2496       break;
2497     case ELF::STV_INTERNAL:
2498       outs() << " .internal";
2499       break;
2500     case ELF::STV_HIDDEN:
2501       outs() << " .hidden";
2502       break;
2503     case ELF::STV_PROTECTED:
2504       outs() << " .protected";
2505       break;
2506     default:
2507       outs() << format(" 0x%02x", Other);
2508       break;
2509     }
2510   } else if (Hidden) {
2511     outs() << " .hidden";
2512   }
2513 
2514   std::string SymName(Name);
2515   if (Demangle)
2516     SymName = demangle(SymName);
2517 
2518   if (O.isXCOFF() && SymbolDescription)
2519     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2520 
2521   outs() << ' ' << SymName << '\n';
2522 }
2523 
2524 static void printUnwindInfo(const ObjectFile *O) {
2525   outs() << "Unwind info:\n\n";
2526 
2527   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2528     printCOFFUnwindInfo(Coff);
2529   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2530     printMachOUnwindInfo(MachO);
2531   else
2532     // TODO: Extract DWARF dump tool to objdump.
2533     WithColor::error(errs(), ToolName)
2534         << "This operation is only currently supported "
2535            "for COFF and MachO object files.\n";
2536 }
2537 
2538 /// Dump the raw contents of the __clangast section so the output can be piped
2539 /// into llvm-bcanalyzer.
2540 static void printRawClangAST(const ObjectFile *Obj) {
2541   if (outs().is_displayed()) {
2542     WithColor::error(errs(), ToolName)
2543         << "The -raw-clang-ast option will dump the raw binary contents of "
2544            "the clang ast section.\n"
2545            "Please redirect the output to a file or another program such as "
2546            "llvm-bcanalyzer.\n";
2547     return;
2548   }
2549 
2550   StringRef ClangASTSectionName("__clangast");
2551   if (Obj->isCOFF()) {
2552     ClangASTSectionName = "clangast";
2553   }
2554 
2555   Optional<object::SectionRef> ClangASTSection;
2556   for (auto Sec : ToolSectionFilter(*Obj)) {
2557     StringRef Name;
2558     if (Expected<StringRef> NameOrErr = Sec.getName())
2559       Name = *NameOrErr;
2560     else
2561       consumeError(NameOrErr.takeError());
2562 
2563     if (Name == ClangASTSectionName) {
2564       ClangASTSection = Sec;
2565       break;
2566     }
2567   }
2568   if (!ClangASTSection)
2569     return;
2570 
2571   StringRef ClangASTContents =
2572       unwrapOrError(ClangASTSection.value().getContents(), Obj->getFileName());
2573   outs().write(ClangASTContents.data(), ClangASTContents.size());
2574 }
2575 
2576 static void printFaultMaps(const ObjectFile *Obj) {
2577   StringRef FaultMapSectionName;
2578 
2579   if (Obj->isELF()) {
2580     FaultMapSectionName = ".llvm_faultmaps";
2581   } else if (Obj->isMachO()) {
2582     FaultMapSectionName = "__llvm_faultmaps";
2583   } else {
2584     WithColor::error(errs(), ToolName)
2585         << "This operation is only currently supported "
2586            "for ELF and Mach-O executable files.\n";
2587     return;
2588   }
2589 
2590   Optional<object::SectionRef> FaultMapSection;
2591 
2592   for (auto Sec : ToolSectionFilter(*Obj)) {
2593     StringRef Name;
2594     if (Expected<StringRef> NameOrErr = Sec.getName())
2595       Name = *NameOrErr;
2596     else
2597       consumeError(NameOrErr.takeError());
2598 
2599     if (Name == FaultMapSectionName) {
2600       FaultMapSection = Sec;
2601       break;
2602     }
2603   }
2604 
2605   outs() << "FaultMap table:\n";
2606 
2607   if (!FaultMapSection) {
2608     outs() << "<not found>\n";
2609     return;
2610   }
2611 
2612   StringRef FaultMapContents =
2613       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2614   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2615                      FaultMapContents.bytes_end());
2616 
2617   outs() << FMP;
2618 }
2619 
2620 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2621   if (O->isELF()) {
2622     printELFFileHeader(O);
2623     printELFDynamicSection(O);
2624     printELFSymbolVersionInfo(O);
2625     return;
2626   }
2627   if (O->isCOFF())
2628     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2629   if (O->isWasm())
2630     return printWasmFileHeader(O);
2631   if (O->isMachO()) {
2632     printMachOFileHeader(O);
2633     if (!OnlyFirst)
2634       printMachOLoadCommands(O);
2635     return;
2636   }
2637   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2638 }
2639 
2640 static void printFileHeaders(const ObjectFile *O) {
2641   if (!O->isELF() && !O->isCOFF())
2642     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2643 
2644   Triple::ArchType AT = O->getArch();
2645   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2646   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2647 
2648   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2649   outs() << "start address: "
2650          << "0x" << format(Fmt.data(), Address) << "\n";
2651 }
2652 
2653 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2654   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2655   if (!ModeOrErr) {
2656     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2657     consumeError(ModeOrErr.takeError());
2658     return;
2659   }
2660   sys::fs::perms Mode = ModeOrErr.get();
2661   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2662   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2663   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2664   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2665   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2666   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2667   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2668   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2669   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2670 
2671   outs() << " ";
2672 
2673   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2674                    unwrapOrError(C.getGID(), Filename),
2675                    unwrapOrError(C.getRawSize(), Filename));
2676 
2677   StringRef RawLastModified = C.getRawLastModified();
2678   unsigned Seconds;
2679   if (RawLastModified.getAsInteger(10, Seconds))
2680     outs() << "(date: \"" << RawLastModified
2681            << "\" contains non-decimal chars) ";
2682   else {
2683     // Since ctime(3) returns a 26 character string of the form:
2684     // "Sun Sep 16 01:03:52 1973\n\0"
2685     // just print 24 characters.
2686     time_t t = Seconds;
2687     outs() << format("%.24s ", ctime(&t));
2688   }
2689 
2690   StringRef Name = "";
2691   Expected<StringRef> NameOrErr = C.getName();
2692   if (!NameOrErr) {
2693     consumeError(NameOrErr.takeError());
2694     Name = unwrapOrError(C.getRawName(), Filename);
2695   } else {
2696     Name = NameOrErr.get();
2697   }
2698   outs() << Name << "\n";
2699 }
2700 
2701 // For ELF only now.
2702 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2703   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2704     if (Elf->getEType() != ELF::ET_REL)
2705       return true;
2706   }
2707   return false;
2708 }
2709 
2710 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2711                                             uint64_t Start, uint64_t Stop) {
2712   if (!shouldWarnForInvalidStartStopAddress(Obj))
2713     return;
2714 
2715   for (const SectionRef &Section : Obj->sections())
2716     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2717       uint64_t BaseAddr = Section.getAddress();
2718       uint64_t Size = Section.getSize();
2719       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2720         return;
2721     }
2722 
2723   if (!HasStartAddressFlag)
2724     reportWarning("no section has address less than 0x" +
2725                       Twine::utohexstr(Stop) + " specified by --stop-address",
2726                   Obj->getFileName());
2727   else if (!HasStopAddressFlag)
2728     reportWarning("no section has address greater than or equal to 0x" +
2729                       Twine::utohexstr(Start) + " specified by --start-address",
2730                   Obj->getFileName());
2731   else
2732     reportWarning("no section overlaps the range [0x" +
2733                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2734                       ") specified by --start-address/--stop-address",
2735                   Obj->getFileName());
2736 }
2737 
2738 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2739                        const Archive::Child *C = nullptr) {
2740   // Avoid other output when using a raw option.
2741   if (!RawClangAST) {
2742     outs() << '\n';
2743     if (A)
2744       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2745     else
2746       outs() << O->getFileName();
2747     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2748   }
2749 
2750   if (HasStartAddressFlag || HasStopAddressFlag)
2751     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2752 
2753   // Note: the order here matches GNU objdump for compatability.
2754   StringRef ArchiveName = A ? A->getFileName() : "";
2755   if (ArchiveHeaders && !MachOOpt && C)
2756     printArchiveChild(ArchiveName, *C);
2757   if (FileHeaders)
2758     printFileHeaders(O);
2759   if (PrivateHeaders || FirstPrivateHeader)
2760     printPrivateFileHeaders(O, FirstPrivateHeader);
2761   if (SectionHeaders)
2762     printSectionHeaders(*O);
2763   if (SymbolTable)
2764     printSymbolTable(*O, ArchiveName);
2765   if (DynamicSymbolTable)
2766     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2767                      /*DumpDynamic=*/true);
2768   if (DwarfDumpType != DIDT_Null) {
2769     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2770     // Dump the complete DWARF structure.
2771     DIDumpOptions DumpOpts;
2772     DumpOpts.DumpType = DwarfDumpType;
2773     DICtx->dump(outs(), DumpOpts);
2774   }
2775   if (Relocations && !Disassemble)
2776     printRelocations(O);
2777   if (DynamicRelocations)
2778     printDynamicRelocations(O);
2779   if (SectionContents)
2780     printSectionContents(O);
2781   if (Disassemble)
2782     disassembleObject(O, Relocations);
2783   if (UnwindInfo)
2784     printUnwindInfo(O);
2785 
2786   // Mach-O specific options:
2787   if (ExportsTrie)
2788     printExportsTrie(O);
2789   if (Rebase)
2790     printRebaseTable(O);
2791   if (Bind)
2792     printBindTable(O);
2793   if (LazyBind)
2794     printLazyBindTable(O);
2795   if (WeakBind)
2796     printWeakBindTable(O);
2797 
2798   // Other special sections:
2799   if (RawClangAST)
2800     printRawClangAST(O);
2801   if (FaultMapSection)
2802     printFaultMaps(O);
2803   if (Offloading)
2804     dumpOffloadBinary(*O);
2805 }
2806 
2807 static void dumpObject(const COFFImportFile *I, const Archive *A,
2808                        const Archive::Child *C = nullptr) {
2809   StringRef ArchiveName = A ? A->getFileName() : "";
2810 
2811   // Avoid other output when using a raw option.
2812   if (!RawClangAST)
2813     outs() << '\n'
2814            << ArchiveName << "(" << I->getFileName() << ")"
2815            << ":\tfile format COFF-import-file"
2816            << "\n\n";
2817 
2818   if (ArchiveHeaders && !MachOOpt && C)
2819     printArchiveChild(ArchiveName, *C);
2820   if (SymbolTable)
2821     printCOFFSymbolTable(*I);
2822 }
2823 
2824 /// Dump each object file in \a a;
2825 static void dumpArchive(const Archive *A) {
2826   Error Err = Error::success();
2827   unsigned I = -1;
2828   for (auto &C : A->children(Err)) {
2829     ++I;
2830     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2831     if (!ChildOrErr) {
2832       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2833         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2834       continue;
2835     }
2836     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2837       dumpObject(O, A, &C);
2838     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2839       dumpObject(I, A, &C);
2840     else
2841       reportError(errorCodeToError(object_error::invalid_file_type),
2842                   A->getFileName());
2843   }
2844   if (Err)
2845     reportError(std::move(Err), A->getFileName());
2846 }
2847 
2848 /// Open file and figure out how to dump it.
2849 static void dumpInput(StringRef file) {
2850   // If we are using the Mach-O specific object file parser, then let it parse
2851   // the file and process the command line options.  So the -arch flags can
2852   // be used to select specific slices, etc.
2853   if (MachOOpt) {
2854     parseInputMachO(file);
2855     return;
2856   }
2857 
2858   // Attempt to open the binary.
2859   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2860   Binary &Binary = *OBinary.getBinary();
2861 
2862   if (Archive *A = dyn_cast<Archive>(&Binary))
2863     dumpArchive(A);
2864   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2865     dumpObject(O);
2866   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2867     parseInputMachO(UB);
2868   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2869     dumpOffloadSections(*OB);
2870   else
2871     reportError(errorCodeToError(object_error::invalid_file_type), file);
2872 }
2873 
2874 template <typename T>
2875 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2876                         T &Value) {
2877   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2878     StringRef V(A->getValue());
2879     if (!llvm::to_integer(V, Value, 0)) {
2880       reportCmdLineError(A->getSpelling() +
2881                          ": expected a non-negative integer, but got '" + V +
2882                          "'");
2883     }
2884   }
2885 }
2886 
2887 static void invalidArgValue(const opt::Arg *A) {
2888   reportCmdLineError("'" + StringRef(A->getValue()) +
2889                      "' is not a valid value for '" + A->getSpelling() + "'");
2890 }
2891 
2892 static std::vector<std::string>
2893 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2894   std::vector<std::string> Values;
2895   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2896     llvm::SmallVector<StringRef, 2> SplitValues;
2897     llvm::SplitString(Value, SplitValues, ",");
2898     for (StringRef SplitValue : SplitValues)
2899       Values.push_back(SplitValue.str());
2900   }
2901   return Values;
2902 }
2903 
2904 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2905   MachOOpt = true;
2906   FullLeadingAddr = true;
2907   PrintImmHex = true;
2908 
2909   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2910   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2911   if (InputArgs.hasArg(OTOOL_d))
2912     FilterSections.push_back("__DATA,__data");
2913   DylibId = InputArgs.hasArg(OTOOL_D);
2914   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2915   DataInCode = InputArgs.hasArg(OTOOL_G);
2916   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2917   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2918   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2919   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2920   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2921   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2922   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2923   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2924   InfoPlist = InputArgs.hasArg(OTOOL_P);
2925   Relocations = InputArgs.hasArg(OTOOL_r);
2926   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2927     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2928     FilterSections.push_back(Filter);
2929   }
2930   if (InputArgs.hasArg(OTOOL_t))
2931     FilterSections.push_back("__TEXT,__text");
2932   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2933             InputArgs.hasArg(OTOOL_o);
2934   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2935   if (InputArgs.hasArg(OTOOL_x))
2936     FilterSections.push_back(",__text");
2937   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2938 
2939   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
2940   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
2941 
2942   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2943   if (InputFilenames.empty())
2944     reportCmdLineError("no input file");
2945 
2946   for (const Arg *A : InputArgs) {
2947     const Option &O = A->getOption();
2948     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2949       reportCmdLineWarning(O.getPrefixedName() +
2950                            " is obsolete and not implemented");
2951     }
2952   }
2953 }
2954 
2955 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2956   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2957   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2958   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2959   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2960   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2961   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2962   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2963   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2964   DisassembleSymbols =
2965       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2966   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2967   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2968     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
2969                         .Case("frames", DIDT_DebugFrame)
2970                         .Default(DIDT_Null);
2971     if (DwarfDumpType == DIDT_Null)
2972       invalidArgValue(A);
2973   }
2974   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2975   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2976   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
2977   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2978   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2979   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2980   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2981   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2982   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2983   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2984   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2985   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2986   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2987   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2988   PrintImmHex =
2989       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2990   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2991   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2992   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2993   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
2994   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2995   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2996   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2997   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2998   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2999   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3000   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3001   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3002   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3003   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3004   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3005   Wide = InputArgs.hasArg(OBJDUMP_wide);
3006   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3007   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3008   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3009     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3010                        .Case("ascii", DVASCII)
3011                        .Case("unicode", DVUnicode)
3012                        .Default(DVInvalid);
3013     if (DbgVariables == DVInvalid)
3014       invalidArgValue(A);
3015   }
3016   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3017 
3018   parseMachOOptions(InputArgs);
3019 
3020   // Parse -M (--disassembler-options) and deprecated
3021   // --x86-asm-syntax={att,intel}.
3022   //
3023   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3024   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3025   // called too late. For now we have to use the internal cl::opt option.
3026   const char *AsmSyntax = nullptr;
3027   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3028                                           OBJDUMP_x86_asm_syntax_att,
3029                                           OBJDUMP_x86_asm_syntax_intel)) {
3030     switch (A->getOption().getID()) {
3031     case OBJDUMP_x86_asm_syntax_att:
3032       AsmSyntax = "--x86-asm-syntax=att";
3033       continue;
3034     case OBJDUMP_x86_asm_syntax_intel:
3035       AsmSyntax = "--x86-asm-syntax=intel";
3036       continue;
3037     }
3038 
3039     SmallVector<StringRef, 2> Values;
3040     llvm::SplitString(A->getValue(), Values, ",");
3041     for (StringRef V : Values) {
3042       if (V == "att")
3043         AsmSyntax = "--x86-asm-syntax=att";
3044       else if (V == "intel")
3045         AsmSyntax = "--x86-asm-syntax=intel";
3046       else
3047         DisassemblerOptions.push_back(V.str());
3048     }
3049   }
3050   if (AsmSyntax) {
3051     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3052     llvm::cl::ParseCommandLineOptions(2, Argv);
3053   }
3054 
3055   // objdump defaults to a.out if no filenames specified.
3056   if (InputFilenames.empty())
3057     InputFilenames.push_back("a.out");
3058 }
3059 
3060 int main(int argc, char **argv) {
3061   using namespace llvm;
3062   InitLLVM X(argc, argv);
3063 
3064   ToolName = argv[0];
3065   std::unique_ptr<CommonOptTable> T;
3066   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3067 
3068   StringRef Stem = sys::path::stem(ToolName);
3069   auto Is = [=](StringRef Tool) {
3070     // We need to recognize the following filenames:
3071     //
3072     // llvm-objdump -> objdump
3073     // llvm-otool-10.exe -> otool
3074     // powerpc64-unknown-freebsd13-objdump -> objdump
3075     auto I = Stem.rfind_insensitive(Tool);
3076     return I != StringRef::npos &&
3077            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3078   };
3079   if (Is("otool")) {
3080     T = std::make_unique<OtoolOptTable>();
3081     Unknown = OTOOL_UNKNOWN;
3082     HelpFlag = OTOOL_help;
3083     HelpHiddenFlag = OTOOL_help_hidden;
3084     VersionFlag = OTOOL_version;
3085   } else {
3086     T = std::make_unique<ObjdumpOptTable>();
3087     Unknown = OBJDUMP_UNKNOWN;
3088     HelpFlag = OBJDUMP_help;
3089     HelpHiddenFlag = OBJDUMP_help_hidden;
3090     VersionFlag = OBJDUMP_version;
3091   }
3092 
3093   BumpPtrAllocator A;
3094   StringSaver Saver(A);
3095   opt::InputArgList InputArgs =
3096       T->parseArgs(argc, argv, Unknown, Saver,
3097                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3098 
3099   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3100     T->printHelp(ToolName);
3101     return 0;
3102   }
3103   if (InputArgs.hasArg(HelpHiddenFlag)) {
3104     T->printHelp(ToolName, /*ShowHidden=*/true);
3105     return 0;
3106   }
3107 
3108   // Initialize targets and assembly printers/parsers.
3109   InitializeAllTargetInfos();
3110   InitializeAllTargetMCs();
3111   InitializeAllDisassemblers();
3112 
3113   if (InputArgs.hasArg(VersionFlag)) {
3114     cl::PrintVersionMessage();
3115     if (!Is("otool")) {
3116       outs() << '\n';
3117       TargetRegistry::printRegisteredTargetsForVersion(outs());
3118     }
3119     return 0;
3120   }
3121 
3122   // Initialize debuginfod.
3123   const bool ShouldUseDebuginfodByDefault =
3124       HTTPClient::isAvailable() &&
3125       !ExitOnErr(getDefaultDebuginfodUrls()).empty();
3126   std::vector<std::string> DebugFileDirectories =
3127       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3128   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3129                         ShouldUseDebuginfodByDefault)) {
3130     HTTPClient::initialize();
3131     BIDFetcher =
3132         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3133   } else {
3134     BIDFetcher =
3135         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3136   }
3137 
3138   if (Is("otool"))
3139     parseOtoolOptions(InputArgs);
3140   else
3141     parseObjdumpOptions(InputArgs);
3142 
3143   if (StartAddress >= StopAddress)
3144     reportCmdLineError("start address should be less than stop address");
3145 
3146   // Removes trailing separators from prefix.
3147   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3148     Prefix.pop_back();
3149 
3150   if (AllHeaders)
3151     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3152         SectionHeaders = SymbolTable = true;
3153 
3154   if (DisassembleAll || PrintSource || PrintLines ||
3155       !DisassembleSymbols.empty())
3156     Disassemble = true;
3157 
3158   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3159       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3160       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3161       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3162       !(MachOOpt &&
3163         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3164          DylibsUsed || ExportsTrie || FirstPrivateHeader || FunctionStarts ||
3165          IndirectSymbols || InfoPlist || LazyBind || LinkOptHints ||
3166          ObjcMetaData || Rebase || Rpaths || UniversalHeaders || WeakBind ||
3167          !FilterSections.empty()))) {
3168     T->printHelp(ToolName);
3169     return 2;
3170   }
3171 
3172   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3173 
3174   llvm::for_each(InputFilenames, dumpInput);
3175 
3176   warnOnNoMatchForSections();
3177 
3178   return EXIT_SUCCESS;
3179 }
3180