xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision ce5b5b486a71939913b1a0909498f216b5528401)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/WithColor.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cctype>
66 #include <cstring>
67 #include <system_error>
68 #include <unordered_map>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace object;
73 
74 cl::opt<bool>
75     llvm::AllHeaders("all-headers",
76                      cl::desc("Display all available header information"));
77 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
78                                  cl::aliasopt(AllHeaders));
79 
80 static cl::list<std::string>
81 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
82 
83 cl::opt<bool>
84 llvm::Disassemble("disassemble",
85   cl::desc("Display assembler mnemonics for the machine instructions"));
86 static cl::alias
87 Disassembled("d", cl::desc("Alias for --disassemble"),
88              cl::aliasopt(Disassemble));
89 
90 cl::opt<bool>
91 llvm::DisassembleAll("disassemble-all",
92   cl::desc("Display assembler mnemonics for the machine instructions"));
93 static cl::alias
94 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
95              cl::aliasopt(DisassembleAll));
96 
97 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
98                              cl::init(false));
99 
100 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
101                                cl::aliasopt(llvm::Demangle));
102 
103 static cl::list<std::string>
104 DisassembleFunctions("df",
105                      cl::CommaSeparated,
106                      cl::desc("List of functions to disassemble"));
107 static StringSet<> DisasmFuncsSet;
108 
109 cl::opt<bool>
110 llvm::Relocations("reloc",
111                   cl::desc("Display the relocation entries in the file"));
112 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
113                                   cl::NotHidden,
114                                   cl::aliasopt(llvm::Relocations));
115 
116 cl::opt<bool>
117 llvm::DynamicRelocations("dynamic-reloc",
118   cl::desc("Display the dynamic relocation entries in the file"));
119 static cl::alias
120 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
121              cl::aliasopt(DynamicRelocations));
122 
123 cl::opt<bool>
124     llvm::SectionContents("full-contents",
125                           cl::desc("Display the content of each section"));
126 static cl::alias SectionContentsShort("s",
127                                       cl::desc("Alias for --full-contents"),
128                                       cl::aliasopt(SectionContents));
129 
130 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
131 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
132                                   cl::NotHidden,
133                                   cl::aliasopt(llvm::SymbolTable));
134 
135 cl::opt<bool>
136 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
137 
138 cl::opt<bool>
139 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
140 
141 cl::opt<bool>
142 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
143 
144 cl::opt<bool>
145 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
146 
147 cl::opt<bool>
148 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
149 
150 cl::opt<bool>
151 llvm::RawClangAST("raw-clang-ast",
152     cl::desc("Dump the raw binary contents of the clang AST section"));
153 
154 static cl::opt<bool>
155 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
156 static cl::alias
157 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
158 
159 cl::opt<std::string>
160 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
161                                     "see -version for available targets"));
162 
163 cl::opt<std::string>
164 llvm::MCPU("mcpu",
165      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
166      cl::value_desc("cpu-name"),
167      cl::init(""));
168 
169 cl::opt<std::string>
170 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
171                                 "see -version for available targets"));
172 
173 cl::opt<bool>
174 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
175                                                  "headers for each section."));
176 static cl::alias
177 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
178                     cl::aliasopt(SectionHeaders));
179 static cl::alias
180 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
181                       cl::aliasopt(SectionHeaders));
182 
183 cl::list<std::string>
184 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
185                                          "With -macho dump segment,section"));
186 cl::alias
187 static FilterSectionsj("j", cl::desc("Alias for --section"),
188                  cl::aliasopt(llvm::FilterSections));
189 
190 cl::list<std::string>
191 llvm::MAttrs("mattr",
192   cl::CommaSeparated,
193   cl::desc("Target specific attributes"),
194   cl::value_desc("a1,+a2,-a3,..."));
195 
196 cl::opt<bool>
197 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
198                                                  "instructions, do not print "
199                                                  "the instruction bytes."));
200 cl::opt<bool>
201 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
202 
203 cl::opt<bool>
204 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
205 
206 static cl::alias
207 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
208                 cl::aliasopt(UnwindInfo));
209 
210 cl::opt<bool>
211 llvm::PrivateHeaders("private-headers",
212                      cl::desc("Display format specific file headers"));
213 
214 cl::opt<bool>
215 llvm::FirstPrivateHeader("private-header",
216                          cl::desc("Display only the first format specific file "
217                                   "header"));
218 
219 static cl::alias
220 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
221                     cl::aliasopt(PrivateHeaders));
222 
223 cl::opt<bool> llvm::FileHeaders(
224     "file-headers",
225     cl::desc("Display the contents of the overall file header"));
226 
227 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
228                                   cl::aliasopt(FileHeaders));
229 
230 cl::opt<bool>
231     llvm::ArchiveHeaders("archive-headers",
232                          cl::desc("Display archive header information"));
233 
234 cl::alias
235 ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
236                     cl::aliasopt(ArchiveHeaders));
237 
238 cl::opt<bool>
239     llvm::PrintImmHex("print-imm-hex",
240                       cl::desc("Use hex format for immediate values"));
241 
242 cl::opt<bool> PrintFaultMaps("fault-map-section",
243                              cl::desc("Display contents of faultmap section"));
244 
245 cl::opt<DIDumpType> llvm::DwarfDumpType(
246     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
247     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
248 
249 cl::opt<bool> PrintSource(
250     "source",
251     cl::desc(
252         "Display source inlined with disassembly. Implies disassemble object"));
253 
254 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
255                            cl::aliasopt(PrintSource));
256 
257 cl::opt<bool> PrintLines("line-numbers",
258                          cl::desc("Display source line numbers with "
259                                   "disassembly. Implies disassemble object"));
260 
261 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
262                           cl::aliasopt(PrintLines));
263 
264 cl::opt<unsigned long long>
265     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
266                  cl::value_desc("address"), cl::init(0));
267 cl::opt<unsigned long long>
268     StopAddress("stop-address",
269                 cl::desc("Stop disassembly at address"),
270                 cl::value_desc("address"), cl::init(UINT64_MAX));
271 
272 cl::opt<bool> DisassembleZeroes(
273                 "disassemble-zeroes",
274                 cl::desc("Do not skip blocks of zeroes when disassembling"));
275 cl::alias DisassembleZeroesShort("z",
276                                  cl::desc("Alias for --disassemble-zeroes"),
277                                  cl::aliasopt(DisassembleZeroes));
278 
279 static StringRef ToolName;
280 
281 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
282 
283 namespace {
284 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
285 
286 class SectionFilterIterator {
287 public:
288   SectionFilterIterator(FilterPredicate P,
289                         llvm::object::section_iterator const &I,
290                         llvm::object::section_iterator const &E)
291       : Predicate(std::move(P)), Iterator(I), End(E) {
292     ScanPredicate();
293   }
294   const llvm::object::SectionRef &operator*() const { return *Iterator; }
295   SectionFilterIterator &operator++() {
296     ++Iterator;
297     ScanPredicate();
298     return *this;
299   }
300   bool operator!=(SectionFilterIterator const &Other) const {
301     return Iterator != Other.Iterator;
302   }
303 
304 private:
305   void ScanPredicate() {
306     while (Iterator != End && !Predicate(*Iterator)) {
307       ++Iterator;
308     }
309   }
310   FilterPredicate Predicate;
311   llvm::object::section_iterator Iterator;
312   llvm::object::section_iterator End;
313 };
314 
315 class SectionFilter {
316 public:
317   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
318       : Predicate(std::move(P)), Object(O) {}
319   SectionFilterIterator begin() {
320     return SectionFilterIterator(Predicate, Object.section_begin(),
321                                  Object.section_end());
322   }
323   SectionFilterIterator end() {
324     return SectionFilterIterator(Predicate, Object.section_end(),
325                                  Object.section_end());
326   }
327 
328 private:
329   FilterPredicate Predicate;
330   llvm::object::ObjectFile const &Object;
331 };
332 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
333   return SectionFilter(
334       [](llvm::object::SectionRef const &S) {
335         if (FilterSections.empty())
336           return true;
337         llvm::StringRef String;
338         std::error_code error = S.getName(String);
339         if (error)
340           return false;
341         return is_contained(FilterSections, String);
342       },
343       O);
344 }
345 }
346 
347 void llvm::error(std::error_code EC) {
348   if (!EC)
349     return;
350   WithColor::error(errs(), ToolName)
351       << "reading file: " << EC.message() << ".\n";
352   errs().flush();
353   exit(1);
354 }
355 
356 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
357   WithColor::error(errs(), ToolName) << Message << ".\n";
358   errs().flush();
359   exit(1);
360 }
361 
362 void llvm::warn(StringRef Message) {
363   WithColor::warning(errs(), ToolName) << Message << ".\n";
364   errs().flush();
365 }
366 
367 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
368                                                 Twine Message) {
369   WithColor::error(errs(), ToolName)
370       << "'" << File << "': " << Message << ".\n";
371   exit(1);
372 }
373 
374 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
375                                                 std::error_code EC) {
376   assert(EC);
377   WithColor::error(errs(), ToolName)
378       << "'" << File << "': " << EC.message() << ".\n";
379   exit(1);
380 }
381 
382 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
383                                                 llvm::Error E) {
384   assert(E);
385   std::string Buf;
386   raw_string_ostream OS(Buf);
387   logAllUnhandledErrors(std::move(E), OS);
388   OS.flush();
389   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
390   exit(1);
391 }
392 
393 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
394                                                 StringRef FileName,
395                                                 llvm::Error E,
396                                                 StringRef ArchitectureName) {
397   assert(E);
398   WithColor::error(errs(), ToolName);
399   if (ArchiveName != "")
400     errs() << ArchiveName << "(" << FileName << ")";
401   else
402     errs() << "'" << FileName << "'";
403   if (!ArchitectureName.empty())
404     errs() << " (for architecture " << ArchitectureName << ")";
405   std::string Buf;
406   raw_string_ostream OS(Buf);
407   logAllUnhandledErrors(std::move(E), OS);
408   OS.flush();
409   errs() << ": " << Buf;
410   exit(1);
411 }
412 
413 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
414                                                 const object::Archive::Child &C,
415                                                 llvm::Error E,
416                                                 StringRef ArchitectureName) {
417   Expected<StringRef> NameOrErr = C.getName();
418   // TODO: if we have a error getting the name then it would be nice to print
419   // the index of which archive member this is and or its offset in the
420   // archive instead of "???" as the name.
421   if (!NameOrErr) {
422     consumeError(NameOrErr.takeError());
423     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
424   } else
425     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
426                        ArchitectureName);
427 }
428 
429 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
430   // Figure out the target triple.
431   llvm::Triple TheTriple("unknown-unknown-unknown");
432   if (TripleName.empty()) {
433     if (Obj)
434       TheTriple = Obj->makeTriple();
435   } else {
436     TheTriple.setTriple(Triple::normalize(TripleName));
437 
438     // Use the triple, but also try to combine with ARM build attributes.
439     if (Obj) {
440       auto Arch = Obj->getArch();
441       if (Arch == Triple::arm || Arch == Triple::armeb)
442         Obj->setARMSubArch(TheTriple);
443     }
444   }
445 
446   // Get the target specific parser.
447   std::string Error;
448   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
449                                                          Error);
450   if (!TheTarget) {
451     if (Obj)
452       report_error(Obj->getFileName(), "can't find target: " + Error);
453     else
454       error("can't find target: " + Error);
455   }
456 
457   // Update the triple name and return the found target.
458   TripleName = TheTriple.getTriple();
459   return TheTarget;
460 }
461 
462 bool llvm::isRelocAddressLess(RelocationRef A, RelocationRef B) {
463   return A.getOffset() < B.getOffset();
464 }
465 
466 template <class ELFT>
467 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
468                                                 const RelocationRef &RelRef,
469                                                 SmallVectorImpl<char> &Result) {
470   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
471   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
472   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
473 
474   const ELFFile<ELFT> &EF = *Obj->getELFFile();
475   DataRefImpl Rel = RelRef.getRawDataRefImpl();
476   auto SecOrErr = EF.getSection(Rel.d.a);
477   if (!SecOrErr)
478     return errorToErrorCode(SecOrErr.takeError());
479 
480   int64_t Addend = 0;
481   // If there is no Symbol associated with the relocation, we set the undef
482   // boolean value to 'true'. This will prevent us from calling functions that
483   // requires the relocation to be associated with a symbol.
484   //
485   // In SHT_REL case we would need to read the addend from section data.
486   // GNU objdump does not do that and we just follow for simplicity.
487   bool Undef = false;
488   if ((*SecOrErr)->sh_type == ELF::SHT_RELA) {
489     const Elf_Rela *ERela = Obj->getRela(Rel);
490     Addend = ERela->r_addend;
491     Undef = ERela->getSymbol(false) == 0;
492   } else if ((*SecOrErr)->sh_type != ELF::SHT_REL) {
493     return object_error::parse_failed;
494   }
495 
496   // Default scheme is to print Target, as well as "+ <addend>" for nonzero
497   // addend. Should be acceptable for all normal purposes.
498   std::string FmtBuf;
499   raw_string_ostream Fmt(FmtBuf);
500 
501   if (!Undef) {
502     symbol_iterator SI = RelRef.getSymbol();
503     const Elf_Sym *Sym = Obj->getSymbol(SI->getRawDataRefImpl());
504     if (Sym->getType() == ELF::STT_SECTION) {
505       Expected<section_iterator> SymSI = SI->getSection();
506       if (!SymSI)
507         return errorToErrorCode(SymSI.takeError());
508       const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
509       auto SecName = EF.getSectionName(SymSec);
510       if (!SecName)
511         return errorToErrorCode(SecName.takeError());
512       Fmt << *SecName;
513     } else {
514       Expected<StringRef> SymName = SI->getName();
515       if (!SymName)
516         return errorToErrorCode(SymName.takeError());
517       if (Demangle)
518         Fmt << demangle(*SymName);
519       else
520         Fmt << *SymName;
521     }
522   } else {
523     Fmt << "*ABS*";
524   }
525 
526   if (Addend != 0)
527     Fmt << (Addend < 0 ? "" : "+") << Addend;
528   Fmt.flush();
529   Result.append(FmtBuf.begin(), FmtBuf.end());
530   return std::error_code();
531 }
532 
533 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
534                                                 const RelocationRef &Rel,
535                                                 SmallVectorImpl<char> &Result) {
536   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
537     return getRelocationValueString(ELF32LE, Rel, Result);
538   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
539     return getRelocationValueString(ELF64LE, Rel, Result);
540   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
541     return getRelocationValueString(ELF32BE, Rel, Result);
542   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
543   return getRelocationValueString(ELF64BE, Rel, Result);
544 }
545 
546 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
547                                                 const RelocationRef &Rel,
548                                                 SmallVectorImpl<char> &Result) {
549   symbol_iterator SymI = Rel.getSymbol();
550   Expected<StringRef> SymNameOrErr = SymI->getName();
551   if (!SymNameOrErr)
552     return errorToErrorCode(SymNameOrErr.takeError());
553   StringRef SymName = *SymNameOrErr;
554   Result.append(SymName.begin(), SymName.end());
555   return std::error_code();
556 }
557 
558 static void printRelocationTargetName(const MachOObjectFile *O,
559                                       const MachO::any_relocation_info &RE,
560                                       raw_string_ostream &Fmt) {
561   // Target of a scattered relocation is an address.  In the interest of
562   // generating pretty output, scan through the symbol table looking for a
563   // symbol that aligns with that address.  If we find one, print it.
564   // Otherwise, we just print the hex address of the target.
565   if (O->isRelocationScattered(RE)) {
566     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
567 
568     for (const SymbolRef &Symbol : O->symbols()) {
569       Expected<uint64_t> Addr = Symbol.getAddress();
570       if (!Addr)
571         report_error(O->getFileName(), Addr.takeError());
572       if (*Addr != Val)
573         continue;
574       Expected<StringRef> Name = Symbol.getName();
575       if (!Name)
576         report_error(O->getFileName(), Name.takeError());
577       Fmt << *Name;
578       return;
579     }
580 
581     // If we couldn't find a symbol that this relocation refers to, try
582     // to find a section beginning instead.
583     for (const SectionRef &Section : ToolSectionFilter(*O)) {
584       std::error_code ec;
585 
586       StringRef Name;
587       uint64_t Addr = Section.getAddress();
588       if (Addr != Val)
589         continue;
590       if ((ec = Section.getName(Name)))
591         report_error(O->getFileName(), ec);
592       Fmt << Name;
593       return;
594     }
595 
596     Fmt << format("0x%x", Val);
597     return;
598   }
599 
600   StringRef S;
601   bool isExtern = O->getPlainRelocationExternal(RE);
602   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
603 
604   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
605     Fmt << format("0x%0" PRIx64, Val);
606     return;
607   }
608 
609   if (isExtern) {
610     symbol_iterator SI = O->symbol_begin();
611     advance(SI, Val);
612     Expected<StringRef> SOrErr = SI->getName();
613     if (!SOrErr)
614       report_error(O->getFileName(), SOrErr.takeError());
615     S = *SOrErr;
616   } else {
617     section_iterator SI = O->section_begin();
618     // Adjust for the fact that sections are 1-indexed.
619     if (Val == 0) {
620       Fmt << "0 (?,?)";
621       return;
622     }
623     uint32_t I = Val - 1;
624     while (I != 0 && SI != O->section_end()) {
625       --I;
626       advance(SI, 1);
627     }
628     if (SI == O->section_end())
629       Fmt << Val << " (?,?)";
630     else
631       SI->getName(S);
632   }
633 
634   Fmt << S;
635 }
636 
637 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
638                                                 const RelocationRef &RelRef,
639                                                 SmallVectorImpl<char> &Result) {
640   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
641   symbol_iterator SI = RelRef.getSymbol();
642   std::string FmtBuf;
643   raw_string_ostream Fmt(FmtBuf);
644   if (SI == Obj->symbol_end()) {
645     // Not all wasm relocations have symbols associated with them.
646     // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
647     Fmt << Rel.Index;
648   } else {
649     Expected<StringRef> SymNameOrErr = SI->getName();
650     if (!SymNameOrErr)
651       return errorToErrorCode(SymNameOrErr.takeError());
652     StringRef SymName = *SymNameOrErr;
653     Result.append(SymName.begin(), SymName.end());
654   }
655   Fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
656   Fmt.flush();
657   Result.append(FmtBuf.begin(), FmtBuf.end());
658   return std::error_code();
659 }
660 
661 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
662                                                 const RelocationRef &RelRef,
663                                                 SmallVectorImpl<char> &Result) {
664   DataRefImpl Rel = RelRef.getRawDataRefImpl();
665   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
666 
667   unsigned Arch = Obj->getArch();
668 
669   std::string FmtBuf;
670   raw_string_ostream Fmt(FmtBuf);
671   unsigned Type = Obj->getAnyRelocationType(RE);
672   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
673 
674   // Determine any addends that should be displayed with the relocation.
675   // These require decoding the relocation type, which is triple-specific.
676 
677   // X86_64 has entirely custom relocation types.
678   if (Arch == Triple::x86_64) {
679     switch (Type) {
680     case MachO::X86_64_RELOC_GOT_LOAD:
681     case MachO::X86_64_RELOC_GOT: {
682       printRelocationTargetName(Obj, RE, Fmt);
683       Fmt << "@GOT";
684       if (IsPCRel)
685         Fmt << "PCREL";
686       break;
687     }
688     case MachO::X86_64_RELOC_SUBTRACTOR: {
689       DataRefImpl RelNext = Rel;
690       Obj->moveRelocationNext(RelNext);
691       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
692 
693       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
694       // X86_64_RELOC_UNSIGNED.
695       // NOTE: Scattered relocations don't exist on x86_64.
696       unsigned RType = Obj->getAnyRelocationType(RENext);
697       if (RType != MachO::X86_64_RELOC_UNSIGNED)
698         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
699                      "X86_64_RELOC_SUBTRACTOR.");
700 
701       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
702       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
703       printRelocationTargetName(Obj, RENext, Fmt);
704       Fmt << "-";
705       printRelocationTargetName(Obj, RE, Fmt);
706       break;
707     }
708     case MachO::X86_64_RELOC_TLV:
709       printRelocationTargetName(Obj, RE, Fmt);
710       Fmt << "@TLV";
711       if (IsPCRel)
712         Fmt << "P";
713       break;
714     case MachO::X86_64_RELOC_SIGNED_1:
715       printRelocationTargetName(Obj, RE, Fmt);
716       Fmt << "-1";
717       break;
718     case MachO::X86_64_RELOC_SIGNED_2:
719       printRelocationTargetName(Obj, RE, Fmt);
720       Fmt << "-2";
721       break;
722     case MachO::X86_64_RELOC_SIGNED_4:
723       printRelocationTargetName(Obj, RE, Fmt);
724       Fmt << "-4";
725       break;
726     default:
727       printRelocationTargetName(Obj, RE, Fmt);
728       break;
729     }
730     // X86 and ARM share some relocation types in common.
731   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
732              Arch == Triple::ppc) {
733     // Generic relocation types...
734     switch (Type) {
735     case MachO::GENERIC_RELOC_PAIR: // prints no info
736       return std::error_code();
737     case MachO::GENERIC_RELOC_SECTDIFF: {
738       DataRefImpl RelNext = Rel;
739       Obj->moveRelocationNext(RelNext);
740       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
741 
742       // X86 sect diff's must be followed by a relocation of type
743       // GENERIC_RELOC_PAIR.
744       unsigned RType = Obj->getAnyRelocationType(RENext);
745 
746       if (RType != MachO::GENERIC_RELOC_PAIR)
747         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
748                      "GENERIC_RELOC_SECTDIFF.");
749 
750       printRelocationTargetName(Obj, RE, Fmt);
751       Fmt << "-";
752       printRelocationTargetName(Obj, RENext, Fmt);
753       break;
754     }
755     }
756 
757     if (Arch == Triple::x86 || Arch == Triple::ppc) {
758       switch (Type) {
759       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
760         DataRefImpl RelNext = Rel;
761         Obj->moveRelocationNext(RelNext);
762         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
763 
764         // X86 sect diff's must be followed by a relocation of type
765         // GENERIC_RELOC_PAIR.
766         unsigned RType = Obj->getAnyRelocationType(RENext);
767         if (RType != MachO::GENERIC_RELOC_PAIR)
768           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
769                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
770 
771         printRelocationTargetName(Obj, RE, Fmt);
772         Fmt << "-";
773         printRelocationTargetName(Obj, RENext, Fmt);
774         break;
775       }
776       case MachO::GENERIC_RELOC_TLV: {
777         printRelocationTargetName(Obj, RE, Fmt);
778         Fmt << "@TLV";
779         if (IsPCRel)
780           Fmt << "P";
781         break;
782       }
783       default:
784         printRelocationTargetName(Obj, RE, Fmt);
785       }
786     } else { // ARM-specific relocations
787       switch (Type) {
788       case MachO::ARM_RELOC_HALF:
789       case MachO::ARM_RELOC_HALF_SECTDIFF: {
790         // Half relocations steal a bit from the length field to encode
791         // whether this is an upper16 or a lower16 relocation.
792         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
793 
794         if (isUpper)
795           Fmt << ":upper16:(";
796         else
797           Fmt << ":lower16:(";
798         printRelocationTargetName(Obj, RE, Fmt);
799 
800         DataRefImpl RelNext = Rel;
801         Obj->moveRelocationNext(RelNext);
802         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
803 
804         // ARM half relocs must be followed by a relocation of type
805         // ARM_RELOC_PAIR.
806         unsigned RType = Obj->getAnyRelocationType(RENext);
807         if (RType != MachO::ARM_RELOC_PAIR)
808           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
809                        "ARM_RELOC_HALF");
810 
811         // NOTE: The half of the target virtual address is stashed in the
812         // address field of the secondary relocation, but we can't reverse
813         // engineer the constant offset from it without decoding the movw/movt
814         // instruction to find the other half in its immediate field.
815 
816         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
817         // symbol/section pointer of the follow-on relocation.
818         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
819           Fmt << "-";
820           printRelocationTargetName(Obj, RENext, Fmt);
821         }
822 
823         Fmt << ")";
824         break;
825       }
826       default: { printRelocationTargetName(Obj, RE, Fmt); }
827       }
828     }
829   } else
830     printRelocationTargetName(Obj, RE, Fmt);
831 
832   Fmt.flush();
833   Result.append(FmtBuf.begin(), FmtBuf.end());
834   return std::error_code();
835 }
836 
837 static std::error_code getRelocationValueString(const RelocationRef &Rel,
838                                                 SmallVectorImpl<char> &Result) {
839   const ObjectFile *Obj = Rel.getObject();
840   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
841     return getRelocationValueString(ELF, Rel, Result);
842   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
843     return getRelocationValueString(COFF, Rel, Result);
844   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
845     return getRelocationValueString(Wasm, Rel, Result);
846   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
847     return getRelocationValueString(MachO, Rel, Result);
848   llvm_unreachable("unknown object file format");
849 }
850 
851 /// Indicates whether this relocation should hidden when listing
852 /// relocations, usually because it is the trailing part of a multipart
853 /// relocation that will be printed as part of the leading relocation.
854 static bool getHidden(RelocationRef RelRef) {
855   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
856   if (!MachO)
857     return false;
858 
859   unsigned Arch = MachO->getArch();
860   DataRefImpl Rel = RelRef.getRawDataRefImpl();
861   uint64_t Type = MachO->getRelocationType(Rel);
862 
863   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
864   // is always hidden.
865   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
866     return Type == MachO::GENERIC_RELOC_PAIR;
867 
868   if (Arch == Triple::x86_64) {
869     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
870     // an X86_64_RELOC_SUBTRACTOR.
871     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
872       DataRefImpl RelPrev = Rel;
873       RelPrev.d.a--;
874       uint64_t PrevType = MachO->getRelocationType(RelPrev);
875       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
876         return true;
877     }
878   }
879 
880   return false;
881 }
882 
883 namespace {
884 class SourcePrinter {
885 protected:
886   DILineInfo OldLineInfo;
887   const ObjectFile *Obj = nullptr;
888   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
889   // File name to file contents of source
890   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
891   // Mark the line endings of the cached source
892   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
893 
894 private:
895   bool cacheSource(const DILineInfo& LineInfoFile);
896 
897 public:
898   SourcePrinter() = default;
899   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
900     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
901         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
902         DefaultArch);
903     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
904   }
905   virtual ~SourcePrinter() = default;
906   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
907                                StringRef Delimiter = "; ");
908 };
909 
910 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
911   std::unique_ptr<MemoryBuffer> Buffer;
912   if (LineInfo.Source) {
913     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
914   } else {
915     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
916     if (!BufferOrError)
917       return false;
918     Buffer = std::move(*BufferOrError);
919   }
920   // Chomp the file to get lines
921   size_t BufferSize = Buffer->getBufferSize();
922   const char *BufferStart = Buffer->getBufferStart();
923   for (const char *Start = BufferStart, *End = BufferStart;
924        End < BufferStart + BufferSize; End++)
925     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
926         (*End == '\r' && *(End + 1) == '\n')) {
927       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
928       if (*End == '\r')
929         End++;
930       Start = End + 1;
931     }
932   SourceCache[LineInfo.FileName] = std::move(Buffer);
933   return true;
934 }
935 
936 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
937                                     StringRef Delimiter) {
938   if (!Symbolizer)
939     return;
940   DILineInfo LineInfo = DILineInfo();
941   auto ExpectecLineInfo =
942       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
943   if (!ExpectecLineInfo)
944     consumeError(ExpectecLineInfo.takeError());
945   else
946     LineInfo = *ExpectecLineInfo;
947 
948   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
949       LineInfo.Line == 0)
950     return;
951 
952   if (PrintLines)
953     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
954   if (PrintSource) {
955     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
956       if (!cacheSource(LineInfo))
957         return;
958     auto FileBuffer = SourceCache.find(LineInfo.FileName);
959     if (FileBuffer != SourceCache.end()) {
960       auto LineBuffer = LineCache.find(LineInfo.FileName);
961       if (LineBuffer != LineCache.end()) {
962         if (LineInfo.Line > LineBuffer->second.size())
963           return;
964         // Vector begins at 0, line numbers are non-zero
965         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
966            << "\n";
967       }
968     }
969   }
970   OldLineInfo = LineInfo;
971 }
972 
973 static bool isArmElf(const ObjectFile *Obj) {
974   return (Obj->isELF() &&
975           (Obj->getArch() == Triple::aarch64 ||
976            Obj->getArch() == Triple::aarch64_be ||
977            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
978            Obj->getArch() == Triple::thumb ||
979            Obj->getArch() == Triple::thumbeb));
980 }
981 
982 class PrettyPrinter {
983 public:
984   virtual ~PrettyPrinter() = default;
985   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
986                          ArrayRef<uint8_t> Bytes, uint64_t Address,
987                          raw_ostream &OS, StringRef Annot,
988                          MCSubtargetInfo const &STI, SourcePrinter *SP,
989                          std::vector<RelocationRef> *Rels = nullptr) {
990     if (SP && (PrintSource || PrintLines))
991       SP->printSourceLine(OS, Address);
992     if (!NoLeadingAddr)
993       OS << format("%8" PRIx64 ":", Address);
994     if (!NoShowRawInsn) {
995       OS << "\t";
996       dumpBytes(Bytes, OS);
997     }
998     if (MI)
999       IP.printInst(MI, OS, "", STI);
1000     else
1001       OS << " <unknown>";
1002   }
1003 };
1004 PrettyPrinter PrettyPrinterInst;
1005 class HexagonPrettyPrinter : public PrettyPrinter {
1006 public:
1007   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1008                  raw_ostream &OS) {
1009     uint32_t opcode =
1010       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1011     if (!NoLeadingAddr)
1012       OS << format("%8" PRIx64 ":", Address);
1013     if (!NoShowRawInsn) {
1014       OS << "\t";
1015       dumpBytes(Bytes.slice(0, 4), OS);
1016       OS << format("%08" PRIx32, opcode);
1017     }
1018   }
1019   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1020                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1021                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1022                  std::vector<RelocationRef> *Rels) override {
1023     if (SP && (PrintSource || PrintLines))
1024       SP->printSourceLine(OS, Address, "");
1025     if (!MI) {
1026       printLead(Bytes, Address, OS);
1027       OS << " <unknown>";
1028       return;
1029     }
1030     std::string Buffer;
1031     {
1032       raw_string_ostream TempStream(Buffer);
1033       IP.printInst(MI, TempStream, "", STI);
1034     }
1035     StringRef Contents(Buffer);
1036     // Split off bundle attributes
1037     auto PacketBundle = Contents.rsplit('\n');
1038     // Split off first instruction from the rest
1039     auto HeadTail = PacketBundle.first.split('\n');
1040     auto Preamble = " { ";
1041     auto Separator = "";
1042     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
1043     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
1044     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
1045 
1046     // Hexagon's packets require relocations to be inline rather than
1047     // clustered at the end of the packet.
1048     auto PrintReloc = [&]() -> void {
1049       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address)) {
1050         if (RelCur->getOffset() == Address) {
1051           SmallString<16> Name;
1052           SmallString<32> Val;
1053           RelCur->getTypeName(Name);
1054           error(getRelocationValueString(*RelCur, Val));
1055           OS << Separator << format(Fmt.data(), Address) << Name << "\t" << Val
1056                 << "\n";
1057           return;
1058         }
1059         ++RelCur;
1060       }
1061     };
1062 
1063     while (!HeadTail.first.empty()) {
1064       OS << Separator;
1065       Separator = "\n";
1066       if (SP && (PrintSource || PrintLines))
1067         SP->printSourceLine(OS, Address, "");
1068       printLead(Bytes, Address, OS);
1069       OS << Preamble;
1070       Preamble = "   ";
1071       StringRef Inst;
1072       auto Duplex = HeadTail.first.split('\v');
1073       if (!Duplex.second.empty()) {
1074         OS << Duplex.first;
1075         OS << "; ";
1076         Inst = Duplex.second;
1077       }
1078       else
1079         Inst = HeadTail.first;
1080       OS << Inst;
1081       HeadTail = HeadTail.second.split('\n');
1082       if (HeadTail.first.empty())
1083         OS << " } " << PacketBundle.second;
1084       PrintReloc();
1085       Bytes = Bytes.slice(4);
1086       Address += 4;
1087     }
1088   }
1089 };
1090 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1091 
1092 class AMDGCNPrettyPrinter : public PrettyPrinter {
1093 public:
1094   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1095                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1096                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1097                  std::vector<RelocationRef> *Rels) override {
1098     if (SP && (PrintSource || PrintLines))
1099       SP->printSourceLine(OS, Address);
1100 
1101     typedef support::ulittle32_t U32;
1102 
1103     if (MI) {
1104       SmallString<40> InstStr;
1105       raw_svector_ostream IS(InstStr);
1106 
1107       IP.printInst(MI, IS, "", STI);
1108 
1109       OS << left_justify(IS.str(), 60);
1110     } else {
1111       // an unrecognized encoding - this is probably data so represent it
1112       // using the .long directive, or .byte directive if fewer than 4 bytes
1113       // remaining
1114       if (Bytes.size() >= 4) {
1115         OS << format("\t.long 0x%08" PRIx32 " ",
1116                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
1117         OS.indent(42);
1118       } else {
1119           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1120           for (unsigned int i = 1; i < Bytes.size(); i++)
1121             OS << format(", 0x%02" PRIx8, Bytes[i]);
1122           OS.indent(55 - (6 * Bytes.size()));
1123       }
1124     }
1125 
1126     OS << format("// %012" PRIX64 ": ", Address);
1127     if (Bytes.size() >=4) {
1128       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
1129                                  Bytes.size() / sizeof(U32)))
1130         // D should be explicitly casted to uint32_t here as it is passed
1131         // by format to snprintf as vararg.
1132         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
1133     } else {
1134       for (unsigned int i = 0; i < Bytes.size(); i++)
1135         OS << format("%02" PRIX8 " ", Bytes[i]);
1136     }
1137 
1138     if (!Annot.empty())
1139       OS << "// " << Annot;
1140   }
1141 };
1142 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1143 
1144 class BPFPrettyPrinter : public PrettyPrinter {
1145 public:
1146   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1147                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1148                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1149                  std::vector<RelocationRef> *Rels) override {
1150     if (SP && (PrintSource || PrintLines))
1151       SP->printSourceLine(OS, Address);
1152     if (!NoLeadingAddr)
1153       OS << format("%8" PRId64 ":", Address / 8);
1154     if (!NoShowRawInsn) {
1155       OS << "\t";
1156       dumpBytes(Bytes, OS);
1157     }
1158     if (MI)
1159       IP.printInst(MI, OS, "", STI);
1160     else
1161       OS << " <unknown>";
1162   }
1163 };
1164 BPFPrettyPrinter BPFPrettyPrinterInst;
1165 
1166 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1167   switch(Triple.getArch()) {
1168   default:
1169     return PrettyPrinterInst;
1170   case Triple::hexagon:
1171     return HexagonPrettyPrinterInst;
1172   case Triple::amdgcn:
1173     return AMDGCNPrettyPrinterInst;
1174   case Triple::bpfel:
1175   case Triple::bpfeb:
1176     return BPFPrettyPrinterInst;
1177   }
1178 }
1179 }
1180 
1181 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1182   assert(Obj->isELF());
1183   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1184     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1185   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1186     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1187   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1188     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1189   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1190     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1191   llvm_unreachable("Unsupported binary format");
1192 }
1193 
1194 template <class ELFT> static void
1195 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1196                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1197   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1198     uint8_t SymbolType = Symbol.getELFType();
1199     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1200       continue;
1201 
1202     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1203     if (!AddressOrErr)
1204       report_error(Obj->getFileName(), AddressOrErr.takeError());
1205 
1206     Expected<StringRef> Name = Symbol.getName();
1207     if (!Name)
1208       report_error(Obj->getFileName(), Name.takeError());
1209     if (Name->empty())
1210       continue;
1211 
1212     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1213     if (!SectionOrErr)
1214       report_error(Obj->getFileName(), SectionOrErr.takeError());
1215     section_iterator SecI = *SectionOrErr;
1216     if (SecI == Obj->section_end())
1217       continue;
1218 
1219     AllSymbols[*SecI].emplace_back(*AddressOrErr, *Name, SymbolType);
1220   }
1221 }
1222 
1223 static void
1224 addDynamicElfSymbols(const ObjectFile *Obj,
1225                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1226   assert(Obj->isELF());
1227   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1228     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1229   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1230     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1231   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1232     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1233   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1234     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1235   else
1236     llvm_unreachable("Unsupported binary format");
1237 }
1238 
1239 static void addPltEntries(const ObjectFile *Obj,
1240                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1241                           StringSaver &Saver) {
1242   Optional<SectionRef> Plt = None;
1243   for (const SectionRef &Section : Obj->sections()) {
1244     StringRef Name;
1245     if (Section.getName(Name))
1246       continue;
1247     if (Name == ".plt")
1248       Plt = Section;
1249   }
1250   if (!Plt)
1251     return;
1252   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1253     for (auto PltEntry : ElfObj->getPltAddresses()) {
1254       SymbolRef Symbol(PltEntry.first, ElfObj);
1255       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1256 
1257       Expected<StringRef> NameOrErr = Symbol.getName();
1258       if (!NameOrErr)
1259         report_error(Obj->getFileName(), NameOrErr.takeError());
1260       if (NameOrErr->empty())
1261         continue;
1262       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
1263 
1264       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
1265     }
1266   }
1267 }
1268 
1269 // Normally the disassembly output will skip blocks of zeroes. This function
1270 // returns the number of zero bytes that can be skipped when dumping the
1271 // disassembly of the instructions in Buf.
1272 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1273   // When -z or --disassemble-zeroes are given we always dissasemble them.
1274   if (DisassembleZeroes)
1275     return 0;
1276 
1277   // Find the number of leading zeroes.
1278   size_t N = 0;
1279   while (N < Buf.size() && !Buf[N])
1280     ++N;
1281 
1282   // We may want to skip blocks of zero bytes, but unless we see
1283   // at least 8 of them in a row.
1284   if (N < 8)
1285     return 0;
1286 
1287   // We skip zeroes in multiples of 4 because do not want to truncate an
1288   // instruction if it starts with a zero byte.
1289   return N & ~0x3;
1290 }
1291 
1292 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1293   if (StartAddress > StopAddress)
1294     error("Start address should be less than stop address");
1295 
1296   const Target *TheTarget = getTarget(Obj);
1297 
1298   // Package up features to be passed to target/subtarget
1299   SubtargetFeatures Features = Obj->getFeatures();
1300   if (!MAttrs.empty())
1301     for (unsigned I = 0; I != MAttrs.size(); ++I)
1302       Features.AddFeature(MAttrs[I]);
1303 
1304   std::unique_ptr<const MCRegisterInfo> MRI(
1305       TheTarget->createMCRegInfo(TripleName));
1306   if (!MRI)
1307     report_error(Obj->getFileName(), "no register info for target " +
1308                  TripleName);
1309 
1310   // Set up disassembler.
1311   std::unique_ptr<const MCAsmInfo> AsmInfo(
1312       TheTarget->createMCAsmInfo(*MRI, TripleName));
1313   if (!AsmInfo)
1314     report_error(Obj->getFileName(), "no assembly info for target " +
1315                  TripleName);
1316   std::unique_ptr<const MCSubtargetInfo> STI(
1317       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1318   if (!STI)
1319     report_error(Obj->getFileName(), "no subtarget info for target " +
1320                  TripleName);
1321   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1322   if (!MII)
1323     report_error(Obj->getFileName(), "no instruction info for target " +
1324                  TripleName);
1325   MCObjectFileInfo MOFI;
1326   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1327   // FIXME: for now initialize MCObjectFileInfo with default values
1328   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1329 
1330   std::unique_ptr<MCDisassembler> DisAsm(
1331     TheTarget->createMCDisassembler(*STI, Ctx));
1332   if (!DisAsm)
1333     report_error(Obj->getFileName(), "no disassembler for target " +
1334                  TripleName);
1335 
1336   std::unique_ptr<const MCInstrAnalysis> MIA(
1337       TheTarget->createMCInstrAnalysis(MII.get()));
1338 
1339   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1340   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1341       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1342   if (!IP)
1343     report_error(Obj->getFileName(), "no instruction printer for target " +
1344                  TripleName);
1345   IP->setPrintImmHex(PrintImmHex);
1346   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1347 
1348   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1349                                                  "\t\t\t%08" PRIx64 ":  ";
1350 
1351   SourcePrinter SP(Obj, TheTarget->getName());
1352 
1353   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1354   // in RelocSecs contain the relocations for section S.
1355   std::error_code EC;
1356   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1357   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1358     section_iterator Sec2 = Section.getRelocatedSection();
1359     if (Sec2 != Obj->section_end())
1360       SectionRelocMap[*Sec2].push_back(Section);
1361   }
1362 
1363   // Create a mapping from virtual address to symbol name.  This is used to
1364   // pretty print the symbols while disassembling.
1365   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1366   SectionSymbolsTy AbsoluteSymbols;
1367   for (const SymbolRef &Symbol : Obj->symbols()) {
1368     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1369     if (!AddressOrErr)
1370       report_error(Obj->getFileName(), AddressOrErr.takeError());
1371     uint64_t Address = *AddressOrErr;
1372 
1373     Expected<StringRef> Name = Symbol.getName();
1374     if (!Name)
1375       report_error(Obj->getFileName(), Name.takeError());
1376     if (Name->empty())
1377       continue;
1378 
1379     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1380     if (!SectionOrErr)
1381       report_error(Obj->getFileName(), SectionOrErr.takeError());
1382 
1383     uint8_t SymbolType = ELF::STT_NOTYPE;
1384     if (Obj->isELF())
1385       SymbolType = getElfSymbolType(Obj, Symbol);
1386 
1387     section_iterator SecI = *SectionOrErr;
1388     if (SecI != Obj->section_end())
1389       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1390     else
1391       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
1392 
1393 
1394   }
1395   if (AllSymbols.empty() && Obj->isELF())
1396     addDynamicElfSymbols(Obj, AllSymbols);
1397 
1398   BumpPtrAllocator A;
1399   StringSaver Saver(A);
1400   addPltEntries(Obj, AllSymbols, Saver);
1401 
1402   // Create a mapping from virtual address to section.
1403   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1404   for (SectionRef Sec : Obj->sections())
1405     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1406   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1407 
1408   // Linked executables (.exe and .dll files) typically don't include a real
1409   // symbol table but they might contain an export table.
1410   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1411     for (const auto &ExportEntry : COFFObj->export_directories()) {
1412       StringRef Name;
1413       error(ExportEntry.getSymbolName(Name));
1414       if (Name.empty())
1415         continue;
1416       uint32_t RVA;
1417       error(ExportEntry.getExportRVA(RVA));
1418 
1419       uint64_t VA = COFFObj->getImageBase() + RVA;
1420       auto Sec = std::upper_bound(
1421           SectionAddresses.begin(), SectionAddresses.end(), VA,
1422           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1423             return LHS < RHS.first;
1424           });
1425       if (Sec != SectionAddresses.begin())
1426         --Sec;
1427       else
1428         Sec = SectionAddresses.end();
1429 
1430       if (Sec != SectionAddresses.end())
1431         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1432       else
1433         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1434     }
1435   }
1436 
1437   // Sort all the symbols, this allows us to use a simple binary search to find
1438   // a symbol near an address.
1439   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1440     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1441   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1442 
1443   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1444     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1445       continue;
1446 
1447     uint64_t SectionAddr = Section.getAddress();
1448     uint64_t SectSize = Section.getSize();
1449     if (!SectSize)
1450       continue;
1451 
1452     // Get the list of all the symbols in this section.
1453     SectionSymbolsTy &Symbols = AllSymbols[Section];
1454     std::vector<uint64_t> DataMappingSymsAddr;
1455     std::vector<uint64_t> TextMappingSymsAddr;
1456     if (isArmElf(Obj)) {
1457       for (const auto &Symb : Symbols) {
1458         uint64_t Address = std::get<0>(Symb);
1459         StringRef Name = std::get<1>(Symb);
1460         if (Name.startswith("$d"))
1461           DataMappingSymsAddr.push_back(Address - SectionAddr);
1462         if (Name.startswith("$x"))
1463           TextMappingSymsAddr.push_back(Address - SectionAddr);
1464         if (Name.startswith("$a"))
1465           TextMappingSymsAddr.push_back(Address - SectionAddr);
1466         if (Name.startswith("$t"))
1467           TextMappingSymsAddr.push_back(Address - SectionAddr);
1468       }
1469     }
1470 
1471     llvm::sort(DataMappingSymsAddr);
1472     llvm::sort(TextMappingSymsAddr);
1473 
1474     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1475       // AMDGPU disassembler uses symbolizer for printing labels
1476       std::unique_ptr<MCRelocationInfo> RelInfo(
1477         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1478       if (RelInfo) {
1479         std::unique_ptr<MCSymbolizer> Symbolizer(
1480           TheTarget->createMCSymbolizer(
1481             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1482         DisAsm->setSymbolizer(std::move(Symbolizer));
1483       }
1484     }
1485 
1486     // Make a list of all the relocations for this section.
1487     std::vector<RelocationRef> Rels;
1488     if (InlineRelocs) {
1489       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1490         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1491           Rels.push_back(Reloc);
1492         }
1493       }
1494     }
1495 
1496     // Sort relocations by address.
1497     llvm::sort(Rels, isRelocAddressLess);
1498 
1499     StringRef SegmentName = "";
1500     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1501       DataRefImpl DR = Section.getRawDataRefImpl();
1502       SegmentName = MachO->getSectionFinalSegmentName(DR);
1503     }
1504     StringRef SectionName;
1505     error(Section.getName(SectionName));
1506 
1507     // If the section has no symbol at the start, just insert a dummy one.
1508     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1509       Symbols.insert(
1510           Symbols.begin(),
1511           std::make_tuple(SectionAddr, SectionName,
1512                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1513     }
1514 
1515     SmallString<40> Comments;
1516     raw_svector_ostream CommentStream(Comments);
1517 
1518     StringRef BytesStr;
1519     error(Section.getContents(BytesStr));
1520     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1521                             BytesStr.size());
1522 
1523     uint64_t Size;
1524     uint64_t Index;
1525     bool PrintedSection = false;
1526 
1527     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1528     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1529     // Disassemble symbol by symbol.
1530     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1531       uint64_t Start = std::get<0>(Symbols[SI]) - SectionAddr;
1532       // The end is either the section end or the beginning of the next
1533       // symbol.
1534       uint64_t End = (SI == SE - 1)
1535                          ? SectSize
1536                          : std::get<0>(Symbols[SI + 1]) - SectionAddr;
1537       // Don't try to disassemble beyond the end of section contents.
1538       if (End > SectSize)
1539         End = SectSize;
1540       // If this symbol has the same address as the next symbol, then skip it.
1541       if (Start >= End)
1542         continue;
1543 
1544       // Check if we need to skip symbol
1545       // Skip if the symbol's data is not between StartAddress and StopAddress
1546       if (End + SectionAddr < StartAddress ||
1547           Start + SectionAddr > StopAddress) {
1548         continue;
1549       }
1550 
1551       /// Skip if user requested specific symbols and this is not in the list
1552       if (!DisasmFuncsSet.empty() &&
1553           !DisasmFuncsSet.count(std::get<1>(Symbols[SI])))
1554         continue;
1555 
1556       if (!PrintedSection) {
1557         PrintedSection = true;
1558         outs() << "Disassembly of section ";
1559         if (!SegmentName.empty())
1560           outs() << SegmentName << ",";
1561         outs() << SectionName << ':';
1562       }
1563 
1564       // Stop disassembly at the stop address specified
1565       if (End + SectionAddr > StopAddress)
1566         End = StopAddress - SectionAddr;
1567 
1568       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1569         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1570           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1571           Start += 256;
1572         }
1573         if (SI == SE - 1 ||
1574             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1575           // cut trailing zeroes at the end of kernel
1576           // cut up to 256 bytes
1577           const uint64_t EndAlign = 256;
1578           const auto Limit = End - (std::min)(EndAlign, End - Start);
1579           while (End > Limit &&
1580             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1581             End -= 4;
1582         }
1583       }
1584 
1585       outs() << '\n';
1586       if (!NoLeadingAddr)
1587         outs() << format("%016" PRIx64 " ", SectionAddr + Start);
1588 
1589       StringRef SymbolName = std::get<1>(Symbols[SI]);
1590       if (Demangle)
1591         outs() << demangle(SymbolName) << ":\n";
1592       else
1593         outs() << SymbolName << ":\n";
1594 
1595       // Don't print raw contents of a virtual section. A virtual section
1596       // doesn't have any contents in the file.
1597       if (Section.isVirtual()) {
1598         outs() << "...\n";
1599         continue;
1600       }
1601 
1602 #ifndef NDEBUG
1603       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1604 #else
1605       raw_ostream &DebugOut = nulls();
1606 #endif
1607 
1608       for (Index = Start; Index < End; Index += Size) {
1609         MCInst Inst;
1610 
1611         if (Index + SectionAddr < StartAddress ||
1612             Index + SectionAddr > StopAddress) {
1613           // skip byte by byte till StartAddress is reached
1614           Size = 1;
1615           continue;
1616         }
1617         // AArch64 ELF binaries can interleave data and text in the
1618         // same section. We rely on the markers introduced to
1619         // understand what we need to dump. If the data marker is within a
1620         // function, it is denoted as a word/short etc
1621         if (isArmElf(Obj) && std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1622             !DisassembleAll) {
1623           uint64_t Stride = 0;
1624 
1625           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1626                                       DataMappingSymsAddr.end(), Index);
1627           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1628             // Switch to data.
1629             while (Index < End) {
1630               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1631               outs() << "\t";
1632               if (Index + 4 <= End) {
1633                 Stride = 4;
1634                 dumpBytes(Bytes.slice(Index, 4), outs());
1635                 outs() << "\t.word\t";
1636                 uint32_t Data = 0;
1637                 if (Obj->isLittleEndian()) {
1638                   const auto Word =
1639                       reinterpret_cast<const support::ulittle32_t *>(
1640                           Bytes.data() + Index);
1641                   Data = *Word;
1642                 } else {
1643                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1644                       Bytes.data() + Index);
1645                   Data = *Word;
1646                 }
1647                 outs() << "0x" << format("%08" PRIx32, Data);
1648               } else if (Index + 2 <= End) {
1649                 Stride = 2;
1650                 dumpBytes(Bytes.slice(Index, 2), outs());
1651                 outs() << "\t\t.short\t";
1652                 uint16_t Data = 0;
1653                 if (Obj->isLittleEndian()) {
1654                   const auto Short =
1655                       reinterpret_cast<const support::ulittle16_t *>(
1656                           Bytes.data() + Index);
1657                   Data = *Short;
1658                 } else {
1659                   const auto Short =
1660                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1661                                                                   Index);
1662                   Data = *Short;
1663                 }
1664                 outs() << "0x" << format("%04" PRIx16, Data);
1665               } else {
1666                 Stride = 1;
1667                 dumpBytes(Bytes.slice(Index, 1), outs());
1668                 outs() << "\t\t.byte\t";
1669                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1670               }
1671               Index += Stride;
1672               outs() << "\n";
1673               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1674                                           TextMappingSymsAddr.end(), Index);
1675               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1676                 break;
1677             }
1678           }
1679         }
1680 
1681         // If there is a data symbol inside an ELF text section and we are only
1682         // disassembling text (applicable all architectures),
1683         // we are in a situation where we must print the data and not
1684         // disassemble it.
1685         if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT &&
1686             !DisassembleAll && Section.isText()) {
1687           // print out data up to 8 bytes at a time in hex and ascii
1688           uint8_t AsciiData[9] = {'\0'};
1689           uint8_t Byte;
1690           int NumBytes = 0;
1691 
1692           for (Index = Start; Index < End; Index += 1) {
1693             if (((SectionAddr + Index) < StartAddress) ||
1694                 ((SectionAddr + Index) > StopAddress))
1695               continue;
1696             if (NumBytes == 0) {
1697               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1698               outs() << "\t";
1699             }
1700             Byte = Bytes.slice(Index)[0];
1701             outs() << format(" %02x", Byte);
1702             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1703 
1704             uint8_t IndentOffset = 0;
1705             NumBytes++;
1706             if (Index == End - 1 || NumBytes > 8) {
1707               // Indent the space for less than 8 bytes data.
1708               // 2 spaces for byte and one for space between bytes
1709               IndentOffset = 3 * (8 - NumBytes);
1710               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1711                 AsciiData[Excess] = '\0';
1712               NumBytes = 8;
1713             }
1714             if (NumBytes == 8) {
1715               AsciiData[8] = '\0';
1716               outs() << std::string(IndentOffset, ' ') << "         ";
1717               outs() << reinterpret_cast<char *>(AsciiData);
1718               outs() << '\n';
1719               NumBytes = 0;
1720             }
1721           }
1722         }
1723         if (Index >= End)
1724           break;
1725 
1726         if (size_t N =
1727                 countSkippableZeroBytes(Bytes.slice(Index, End - Index))) {
1728           outs() << "\t\t..." << '\n';
1729           Index += N;
1730           if (Index >= End)
1731             break;
1732         }
1733 
1734         // Disassemble a real instruction or a data when disassemble all is
1735         // provided
1736         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1737                                                    SectionAddr + Index, DebugOut,
1738                                                    CommentStream);
1739         if (Size == 0)
1740           Size = 1;
1741 
1742         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1743                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1744                       *STI, &SP, &Rels);
1745         outs() << CommentStream.str();
1746         Comments.clear();
1747 
1748         // Try to resolve the target of a call, tail call, etc. to a specific
1749         // symbol.
1750         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1751                     MIA->isConditionalBranch(Inst))) {
1752           uint64_t Target;
1753           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1754             // In a relocatable object, the target's section must reside in
1755             // the same section as the call instruction or it is accessed
1756             // through a relocation.
1757             //
1758             // In a non-relocatable object, the target may be in any section.
1759             //
1760             // N.B. We don't walk the relocations in the relocatable case yet.
1761             auto *TargetSectionSymbols = &Symbols;
1762             if (!Obj->isRelocatableObject()) {
1763               auto SectionAddress = std::upper_bound(
1764                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1765                   [](uint64_t LHS,
1766                       const std::pair<uint64_t, SectionRef> &RHS) {
1767                     return LHS < RHS.first;
1768                   });
1769               if (SectionAddress != SectionAddresses.begin()) {
1770                 --SectionAddress;
1771                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1772               } else {
1773                 TargetSectionSymbols = &AbsoluteSymbols;
1774               }
1775             }
1776 
1777             // Find the first symbol in the section whose offset is less than
1778             // or equal to the target. If there isn't a section that contains
1779             // the target, find the nearest preceding absolute symbol.
1780             auto TargetSym = std::upper_bound(
1781                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1782                 Target, [](uint64_t LHS,
1783                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1784                   return LHS < std::get<0>(RHS);
1785                 });
1786             if (TargetSym == TargetSectionSymbols->begin()) {
1787               TargetSectionSymbols = &AbsoluteSymbols;
1788               TargetSym = std::upper_bound(
1789                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1790                   Target, [](uint64_t LHS,
1791                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1792                             return LHS < std::get<0>(RHS);
1793                           });
1794             }
1795             if (TargetSym != TargetSectionSymbols->begin()) {
1796               --TargetSym;
1797               uint64_t TargetAddress = std::get<0>(*TargetSym);
1798               StringRef TargetName = std::get<1>(*TargetSym);
1799               outs() << " <" << TargetName;
1800               uint64_t Disp = Target - TargetAddress;
1801               if (Disp)
1802                 outs() << "+0x" << Twine::utohexstr(Disp);
1803               outs() << '>';
1804             }
1805           }
1806         }
1807         outs() << "\n";
1808 
1809         // Hexagon does this in pretty printer
1810         if (Obj->getArch() != Triple::hexagon)
1811           // Print relocation for instruction.
1812           while (RelCur != RelEnd) {
1813             uint64_t Addr = RelCur->getOffset();
1814             SmallString<16> Name;
1815             SmallString<32> Val;
1816 
1817             // If this relocation is hidden, skip it.
1818             if (getHidden(*RelCur) || ((SectionAddr + Addr) < StartAddress)) {
1819               ++RelCur;
1820               continue;
1821             }
1822 
1823             // Stop when rel_cur's address is past the current instruction.
1824             if (Addr >= Index + Size)
1825               break;
1826             RelCur->getTypeName(Name);
1827             error(getRelocationValueString(*RelCur, Val));
1828             outs() << format(Fmt.data(), SectionAddr + Addr) << Name << "\t"
1829                    << Val << "\n";
1830             ++RelCur;
1831           }
1832       }
1833     }
1834   }
1835 }
1836 
1837 void llvm::printRelocations(const ObjectFile *Obj) {
1838   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1839                                                  "%08" PRIx64;
1840   // Regular objdump doesn't print relocations in non-relocatable object
1841   // files.
1842   if (!Obj->isRelocatableObject())
1843     return;
1844 
1845   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1846     if (Section.relocation_begin() == Section.relocation_end())
1847       continue;
1848     StringRef SecName;
1849     error(Section.getName(SecName));
1850     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1851     for (const RelocationRef &Reloc : Section.relocations()) {
1852       uint64_t Address = Reloc.getOffset();
1853       SmallString<32> RelocName;
1854       SmallString<32> ValueStr;
1855       if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1856         continue;
1857       Reloc.getTypeName(RelocName);
1858       error(getRelocationValueString(Reloc, ValueStr));
1859       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1860              << ValueStr << "\n";
1861     }
1862     outs() << "\n";
1863   }
1864 }
1865 
1866 void llvm::printDynamicRelocations(const ObjectFile *Obj) {
1867   // For the moment, this option is for ELF only
1868   if (!Obj->isELF())
1869     return;
1870 
1871   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1872   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1873     error("not a dynamic object");
1874     return;
1875   }
1876 
1877   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1878   if (DynRelSec.empty())
1879     return;
1880 
1881   outs() << "DYNAMIC RELOCATION RECORDS\n";
1882   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1883   for (const SectionRef &Section : DynRelSec) {
1884     if (Section.relocation_begin() == Section.relocation_end())
1885       continue;
1886     for (const RelocationRef &Reloc : Section.relocations()) {
1887       uint64_t Address = Reloc.getOffset();
1888       SmallString<32> RelocName;
1889       SmallString<32> ValueStr;
1890       Reloc.getTypeName(RelocName);
1891       error(getRelocationValueString(Reloc, ValueStr));
1892       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1893              << ValueStr << "\n";
1894     }
1895   }
1896 }
1897 
1898 void llvm::printSectionHeaders(const ObjectFile *Obj) {
1899   outs() << "Sections:\n"
1900             "Idx Name          Size      Address          Type\n";
1901   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1902     StringRef Name;
1903     error(Section.getName(Name));
1904     uint64_t Address = Section.getAddress();
1905     uint64_t Size = Section.getSize();
1906     bool Text = Section.isText();
1907     bool Data = Section.isData();
1908     bool BSS = Section.isBSS();
1909     std::string Type = (std::string(Text ? "TEXT " : "") +
1910                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1911     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1912                      (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1913                      Address, Type.c_str());
1914   }
1915   outs() << "\n";
1916 }
1917 
1918 void llvm::printSectionContents(const ObjectFile *Obj) {
1919   std::error_code EC;
1920   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1921     StringRef Name;
1922     StringRef Contents;
1923     error(Section.getName(Name));
1924     uint64_t BaseAddr = Section.getAddress();
1925     uint64_t Size = Section.getSize();
1926     if (!Size)
1927       continue;
1928 
1929     outs() << "Contents of section " << Name << ":\n";
1930     if (Section.isBSS()) {
1931       outs() << format("<skipping contents of bss section at [%04" PRIx64
1932                        ", %04" PRIx64 ")>\n",
1933                        BaseAddr, BaseAddr + Size);
1934       continue;
1935     }
1936 
1937     error(Section.getContents(Contents));
1938 
1939     // Dump out the content as hex and printable ascii characters.
1940     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1941       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1942       // Dump line of hex.
1943       for (std::size_t I = 0; I < 16; ++I) {
1944         if (I != 0 && I % 4 == 0)
1945           outs() << ' ';
1946         if (Addr + I < End)
1947           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1948                  << hexdigit(Contents[Addr + I] & 0xF, true);
1949         else
1950           outs() << "  ";
1951       }
1952       // Print ascii.
1953       outs() << "  ";
1954       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1955         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1956           outs() << Contents[Addr + I];
1957         else
1958           outs() << ".";
1959       }
1960       outs() << "\n";
1961     }
1962   }
1963 }
1964 
1965 void llvm::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1966                             StringRef ArchitectureName) {
1967   outs() << "SYMBOL TABLE:\n";
1968 
1969   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1970     printCOFFSymbolTable(Coff);
1971     return;
1972   }
1973 
1974   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1975     // Skip printing the special zero symbol when dumping an ELF file.
1976     // This makes the output consistent with the GNU objdump.
1977     if (I == O->symbol_begin() && isa<ELFObjectFileBase>(O))
1978       continue;
1979 
1980     const SymbolRef &Symbol = *I;
1981     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1982     if (!AddressOrError)
1983       report_error(ArchiveName, O->getFileName(), AddressOrError.takeError(),
1984                    ArchitectureName);
1985     uint64_t Address = *AddressOrError;
1986     if ((Address < StartAddress) || (Address > StopAddress))
1987       continue;
1988     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1989     if (!TypeOrError)
1990       report_error(ArchiveName, O->getFileName(), TypeOrError.takeError(),
1991                    ArchitectureName);
1992     SymbolRef::Type Type = *TypeOrError;
1993     uint32_t Flags = Symbol.getFlags();
1994     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1995     if (!SectionOrErr)
1996       report_error(ArchiveName, O->getFileName(), SectionOrErr.takeError(),
1997                    ArchitectureName);
1998     section_iterator Section = *SectionOrErr;
1999     StringRef Name;
2000     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
2001       Section->getName(Name);
2002     } else {
2003       Expected<StringRef> NameOrErr = Symbol.getName();
2004       if (!NameOrErr)
2005         report_error(ArchiveName, O->getFileName(), NameOrErr.takeError(),
2006                      ArchitectureName);
2007       Name = *NameOrErr;
2008     }
2009 
2010     bool Global = Flags & SymbolRef::SF_Global;
2011     bool Weak = Flags & SymbolRef::SF_Weak;
2012     bool Absolute = Flags & SymbolRef::SF_Absolute;
2013     bool Common = Flags & SymbolRef::SF_Common;
2014     bool Hidden = Flags & SymbolRef::SF_Hidden;
2015 
2016     char GlobLoc = ' ';
2017     if (Type != SymbolRef::ST_Unknown)
2018       GlobLoc = Global ? 'g' : 'l';
2019     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2020                  ? 'd' : ' ';
2021     char FileFunc = ' ';
2022     if (Type == SymbolRef::ST_File)
2023       FileFunc = 'f';
2024     else if (Type == SymbolRef::ST_Function)
2025       FileFunc = 'F';
2026     else if (Type == SymbolRef::ST_Data)
2027       FileFunc = 'O';
2028 
2029     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
2030                                                    "%08" PRIx64;
2031 
2032     outs() << format(Fmt, Address) << " "
2033            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2034            << (Weak ? 'w' : ' ') // Weak?
2035            << ' ' // Constructor. Not supported yet.
2036            << ' ' // Warning. Not supported yet.
2037            << ' ' // Indirect reference to another symbol.
2038            << Debug // Debugging (d) or dynamic (D) symbol.
2039            << FileFunc // Name of function (F), file (f) or object (O).
2040            << ' ';
2041     if (Absolute) {
2042       outs() << "*ABS*";
2043     } else if (Common) {
2044       outs() << "*COM*";
2045     } else if (Section == O->section_end()) {
2046       outs() << "*UND*";
2047     } else {
2048       if (const MachOObjectFile *MachO =
2049           dyn_cast<const MachOObjectFile>(O)) {
2050         DataRefImpl DR = Section->getRawDataRefImpl();
2051         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
2052         outs() << SegmentName << ",";
2053       }
2054       StringRef SectionName;
2055       error(Section->getName(SectionName));
2056       outs() << SectionName;
2057     }
2058 
2059     outs() << '\t';
2060     if (Common || isa<ELFObjectFileBase>(O)) {
2061       uint64_t Val =
2062           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2063       outs() << format("\t %08" PRIx64 " ", Val);
2064     }
2065 
2066     if (Hidden)
2067       outs() << ".hidden ";
2068 
2069     if (Demangle)
2070       outs() << demangle(Name) << '\n';
2071     else
2072       outs() << Name << '\n';
2073   }
2074 }
2075 
2076 static void printUnwindInfo(const ObjectFile *O) {
2077   outs() << "Unwind info:\n\n";
2078 
2079   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2080     printCOFFUnwindInfo(Coff);
2081   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2082     printMachOUnwindInfo(MachO);
2083   else
2084     // TODO: Extract DWARF dump tool to objdump.
2085     WithColor::error(errs(), ToolName)
2086         << "This operation is only currently supported "
2087            "for COFF and MachO object files.\n";
2088 }
2089 
2090 void llvm::printExportsTrie(const ObjectFile *o) {
2091   outs() << "Exports trie:\n";
2092   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2093     printMachOExportsTrie(MachO);
2094   else
2095     WithColor::error(errs(), ToolName)
2096         << "This operation is only currently supported "
2097            "for Mach-O executable files.\n";
2098 }
2099 
2100 void llvm::printRebaseTable(ObjectFile *o) {
2101   outs() << "Rebase table:\n";
2102   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2103     printMachORebaseTable(MachO);
2104   else
2105     WithColor::error(errs(), ToolName)
2106         << "This operation is only currently supported "
2107            "for Mach-O executable files.\n";
2108 }
2109 
2110 void llvm::printBindTable(ObjectFile *o) {
2111   outs() << "Bind table:\n";
2112   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2113     printMachOBindTable(MachO);
2114   else
2115     WithColor::error(errs(), ToolName)
2116         << "This operation is only currently supported "
2117            "for Mach-O executable files.\n";
2118 }
2119 
2120 void llvm::printLazyBindTable(ObjectFile *o) {
2121   outs() << "Lazy bind table:\n";
2122   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2123     printMachOLazyBindTable(MachO);
2124   else
2125     WithColor::error(errs(), ToolName)
2126         << "This operation is only currently supported "
2127            "for Mach-O executable files.\n";
2128 }
2129 
2130 void llvm::printWeakBindTable(ObjectFile *o) {
2131   outs() << "Weak bind table:\n";
2132   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2133     printMachOWeakBindTable(MachO);
2134   else
2135     WithColor::error(errs(), ToolName)
2136         << "This operation is only currently supported "
2137            "for Mach-O executable files.\n";
2138 }
2139 
2140 /// Dump the raw contents of the __clangast section so the output can be piped
2141 /// into llvm-bcanalyzer.
2142 void llvm::printRawClangAST(const ObjectFile *Obj) {
2143   if (outs().is_displayed()) {
2144     WithColor::error(errs(), ToolName)
2145         << "The -raw-clang-ast option will dump the raw binary contents of "
2146            "the clang ast section.\n"
2147            "Please redirect the output to a file or another program such as "
2148            "llvm-bcanalyzer.\n";
2149     return;
2150   }
2151 
2152   StringRef ClangASTSectionName("__clangast");
2153   if (isa<COFFObjectFile>(Obj)) {
2154     ClangASTSectionName = "clangast";
2155   }
2156 
2157   Optional<object::SectionRef> ClangASTSection;
2158   for (auto Sec : ToolSectionFilter(*Obj)) {
2159     StringRef Name;
2160     Sec.getName(Name);
2161     if (Name == ClangASTSectionName) {
2162       ClangASTSection = Sec;
2163       break;
2164     }
2165   }
2166   if (!ClangASTSection)
2167     return;
2168 
2169   StringRef ClangASTContents;
2170   error(ClangASTSection.getValue().getContents(ClangASTContents));
2171   outs().write(ClangASTContents.data(), ClangASTContents.size());
2172 }
2173 
2174 static void printFaultMaps(const ObjectFile *Obj) {
2175   StringRef FaultMapSectionName;
2176 
2177   if (isa<ELFObjectFileBase>(Obj)) {
2178     FaultMapSectionName = ".llvm_faultmaps";
2179   } else if (isa<MachOObjectFile>(Obj)) {
2180     FaultMapSectionName = "__llvm_faultmaps";
2181   } else {
2182     WithColor::error(errs(), ToolName)
2183         << "This operation is only currently supported "
2184            "for ELF and Mach-O executable files.\n";
2185     return;
2186   }
2187 
2188   Optional<object::SectionRef> FaultMapSection;
2189 
2190   for (auto Sec : ToolSectionFilter(*Obj)) {
2191     StringRef Name;
2192     Sec.getName(Name);
2193     if (Name == FaultMapSectionName) {
2194       FaultMapSection = Sec;
2195       break;
2196     }
2197   }
2198 
2199   outs() << "FaultMap table:\n";
2200 
2201   if (!FaultMapSection.hasValue()) {
2202     outs() << "<not found>\n";
2203     return;
2204   }
2205 
2206   StringRef FaultMapContents;
2207   error(FaultMapSection.getValue().getContents(FaultMapContents));
2208 
2209   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2210                      FaultMapContents.bytes_end());
2211 
2212   outs() << FMP;
2213 }
2214 
2215 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2216   if (O->isELF()) {
2217     printELFFileHeader(O);
2218     return printELFDynamicSection(O);
2219   }
2220   if (O->isCOFF())
2221     return printCOFFFileHeader(O);
2222   if (O->isWasm())
2223     return printWasmFileHeader(O);
2224   if (O->isMachO()) {
2225     printMachOFileHeader(O);
2226     if (!OnlyFirst)
2227       printMachOLoadCommands(O);
2228     return;
2229   }
2230   report_error(O->getFileName(), "Invalid/Unsupported object file format");
2231 }
2232 
2233 static void printFileHeaders(const ObjectFile *O) {
2234   if (!O->isELF() && !O->isCOFF())
2235     report_error(O->getFileName(), "Invalid/Unsupported object file format");
2236 
2237   Triple::ArchType AT = O->getArch();
2238   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2239   Expected<uint64_t> StartAddrOrErr = O->getStartAddress();
2240   if (!StartAddrOrErr)
2241     report_error(O->getFileName(), StartAddrOrErr.takeError());
2242 
2243   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2244   uint64_t Address = StartAddrOrErr.get();
2245   outs() << "start address: "
2246          << "0x" << format(Fmt.data(), Address) << "\n\n";
2247 }
2248 
2249 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2250   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2251   if (!ModeOrErr) {
2252     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2253     consumeError(ModeOrErr.takeError());
2254     return;
2255   }
2256   sys::fs::perms Mode = ModeOrErr.get();
2257   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2258   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2259   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2260   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2261   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2262   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2263   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2264   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2265   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2266 
2267   outs() << " ";
2268 
2269   Expected<unsigned> UIDOrErr = C.getUID();
2270   if (!UIDOrErr)
2271     report_error(Filename, UIDOrErr.takeError());
2272   unsigned UID = UIDOrErr.get();
2273   outs() << format("%d/", UID);
2274 
2275   Expected<unsigned> GIDOrErr = C.getGID();
2276   if (!GIDOrErr)
2277     report_error(Filename, GIDOrErr.takeError());
2278   unsigned GID = GIDOrErr.get();
2279   outs() << format("%-d ", GID);
2280 
2281   Expected<uint64_t> Size = C.getRawSize();
2282   if (!Size)
2283     report_error(Filename, Size.takeError());
2284   outs() << format("%6" PRId64, Size.get()) << " ";
2285 
2286   StringRef RawLastModified = C.getRawLastModified();
2287   unsigned Seconds;
2288   if (RawLastModified.getAsInteger(10, Seconds))
2289     outs() << "(date: \"" << RawLastModified
2290            << "\" contains non-decimal chars) ";
2291   else {
2292     // Since ctime(3) returns a 26 character string of the form:
2293     // "Sun Sep 16 01:03:52 1973\n\0"
2294     // just print 24 characters.
2295     time_t t = Seconds;
2296     outs() << format("%.24s ", ctime(&t));
2297   }
2298 
2299   StringRef Name = "";
2300   Expected<StringRef> NameOrErr = C.getName();
2301   if (!NameOrErr) {
2302     consumeError(NameOrErr.takeError());
2303     Expected<StringRef> RawNameOrErr = C.getRawName();
2304     if (!RawNameOrErr)
2305       report_error(Filename, NameOrErr.takeError());
2306     Name = RawNameOrErr.get();
2307   } else {
2308     Name = NameOrErr.get();
2309   }
2310   outs() << Name << "\n";
2311 }
2312 
2313 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2314                        const Archive::Child *C = nullptr) {
2315   // Avoid other output when using a raw option.
2316   if (!RawClangAST) {
2317     outs() << '\n';
2318     if (A)
2319       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2320     else
2321       outs() << O->getFileName();
2322     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
2323   }
2324 
2325   StringRef ArchiveName = A ? A->getFileName() : "";
2326   if (FileHeaders)
2327     printFileHeaders(O);
2328   if (ArchiveHeaders && !MachOOpt && C)
2329     printArchiveChild(ArchiveName, *C);
2330   if (Disassemble)
2331     disassembleObject(O, Relocations);
2332   if (Relocations && !Disassemble)
2333     printRelocations(O);
2334   if (DynamicRelocations)
2335     printDynamicRelocations(O);
2336   if (SectionHeaders)
2337     printSectionHeaders(O);
2338   if (SectionContents)
2339     printSectionContents(O);
2340   if (SymbolTable)
2341     printSymbolTable(O, ArchiveName);
2342   if (UnwindInfo)
2343     printUnwindInfo(O);
2344   if (PrivateHeaders || FirstPrivateHeader)
2345     printPrivateFileHeaders(O, FirstPrivateHeader);
2346   if (ExportsTrie)
2347     printExportsTrie(O);
2348   if (Rebase)
2349     printRebaseTable(O);
2350   if (Bind)
2351     printBindTable(O);
2352   if (LazyBind)
2353     printLazyBindTable(O);
2354   if (WeakBind)
2355     printWeakBindTable(O);
2356   if (RawClangAST)
2357     printRawClangAST(O);
2358   if (PrintFaultMaps)
2359     printFaultMaps(O);
2360   if (DwarfDumpType != DIDT_Null) {
2361     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2362     // Dump the complete DWARF structure.
2363     DIDumpOptions DumpOpts;
2364     DumpOpts.DumpType = DwarfDumpType;
2365     DICtx->dump(outs(), DumpOpts);
2366   }
2367 }
2368 
2369 static void dumpObject(const COFFImportFile *I, const Archive *A,
2370                        const Archive::Child *C = nullptr) {
2371   StringRef ArchiveName = A ? A->getFileName() : "";
2372 
2373   // Avoid other output when using a raw option.
2374   if (!RawClangAST)
2375     outs() << '\n'
2376            << ArchiveName << "(" << I->getFileName() << ")"
2377            << ":\tfile format COFF-import-file"
2378            << "\n\n";
2379 
2380   if (ArchiveHeaders && !MachOOpt && C)
2381     printArchiveChild(ArchiveName, *C);
2382   if (SymbolTable)
2383     printCOFFSymbolTable(I);
2384 }
2385 
2386 /// Dump each object file in \a a;
2387 static void dumpArchive(const Archive *A) {
2388   Error Err = Error::success();
2389   for (auto &C : A->children(Err)) {
2390     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2391     if (!ChildOrErr) {
2392       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2393         report_error(A->getFileName(), C, std::move(E));
2394       continue;
2395     }
2396     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2397       dumpObject(O, A, &C);
2398     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2399       dumpObject(I, A, &C);
2400     else
2401       report_error(A->getFileName(), object_error::invalid_file_type);
2402   }
2403   if (Err)
2404     report_error(A->getFileName(), std::move(Err));
2405 }
2406 
2407 /// Open file and figure out how to dump it.
2408 static void dumpInput(StringRef file) {
2409   // If we are using the Mach-O specific object file parser, then let it parse
2410   // the file and process the command line options.  So the -arch flags can
2411   // be used to select specific slices, etc.
2412   if (MachOOpt) {
2413     parseInputMachO(file);
2414     return;
2415   }
2416 
2417   // Attempt to open the binary.
2418   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2419   if (!BinaryOrErr)
2420     report_error(file, BinaryOrErr.takeError());
2421   Binary &Binary = *BinaryOrErr.get().getBinary();
2422 
2423   if (Archive *A = dyn_cast<Archive>(&Binary))
2424     dumpArchive(A);
2425   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2426     dumpObject(O);
2427   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2428     parseInputMachO(UB);
2429   else
2430     report_error(file, object_error::invalid_file_type);
2431 }
2432 
2433 int main(int argc, char **argv) {
2434   InitLLVM X(argc, argv);
2435 
2436   // Initialize targets and assembly printers/parsers.
2437   llvm::InitializeAllTargetInfos();
2438   llvm::InitializeAllTargetMCs();
2439   llvm::InitializeAllDisassemblers();
2440 
2441   // Register the target printer for --version.
2442   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2443 
2444   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2445 
2446   ToolName = argv[0];
2447 
2448   // Defaults to a.out if no filenames specified.
2449   if (InputFilenames.empty())
2450     InputFilenames.push_back("a.out");
2451 
2452   if (AllHeaders)
2453     FileHeaders = PrivateHeaders = Relocations = SectionHeaders = SymbolTable =
2454         true;
2455 
2456   if (DisassembleAll || PrintSource || PrintLines)
2457     Disassemble = true;
2458 
2459   if (!Disassemble
2460       && !Relocations
2461       && !DynamicRelocations
2462       && !SectionHeaders
2463       && !SectionContents
2464       && !SymbolTable
2465       && !UnwindInfo
2466       && !PrivateHeaders
2467       && !FileHeaders
2468       && !FirstPrivateHeader
2469       && !ExportsTrie
2470       && !Rebase
2471       && !Bind
2472       && !LazyBind
2473       && !WeakBind
2474       && !RawClangAST
2475       && !(UniversalHeaders && MachOOpt)
2476       && !ArchiveHeaders
2477       && !(IndirectSymbols && MachOOpt)
2478       && !(DataInCode && MachOOpt)
2479       && !(LinkOptHints && MachOOpt)
2480       && !(InfoPlist && MachOOpt)
2481       && !(DylibsUsed && MachOOpt)
2482       && !(DylibId && MachOOpt)
2483       && !(ObjcMetaData && MachOOpt)
2484       && !(!FilterSections.empty() && MachOOpt)
2485       && !PrintFaultMaps
2486       && DwarfDumpType == DIDT_Null) {
2487     cl::PrintHelpMessage();
2488     return 2;
2489   }
2490 
2491   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2492                         DisassembleFunctions.end());
2493 
2494   llvm::for_each(InputFilenames, dumpInput);
2495 
2496   return EXIT_SUCCESS;
2497 }
2498