1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/FaultMaps.h" 26 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 27 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 28 #include "llvm/Demangle/Demangle.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCInstrAnalysis.h" 36 #include "llvm/MC/MCInstrInfo.h" 37 #include "llvm/MC/MCObjectFileInfo.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/MC/MCSubtargetInfo.h" 40 #include "llvm/Object/Archive.h" 41 #include "llvm/Object/COFF.h" 42 #include "llvm/Object/COFFImportFile.h" 43 #include "llvm/Object/ELFObjectFile.h" 44 #include "llvm/Object/MachO.h" 45 #include "llvm/Object/MachOUniversal.h" 46 #include "llvm/Object/ObjectFile.h" 47 #include "llvm/Object/Wasm.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/Errc.h" 52 #include "llvm/Support/FileSystem.h" 53 #include "llvm/Support/Format.h" 54 #include "llvm/Support/FormatVariadic.h" 55 #include "llvm/Support/GraphWriter.h" 56 #include "llvm/Support/Host.h" 57 #include "llvm/Support/InitLLVM.h" 58 #include "llvm/Support/MemoryBuffer.h" 59 #include "llvm/Support/SourceMgr.h" 60 #include "llvm/Support/StringSaver.h" 61 #include "llvm/Support/TargetRegistry.h" 62 #include "llvm/Support/TargetSelect.h" 63 #include "llvm/Support/WithColor.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cctype> 67 #include <cstring> 68 #include <system_error> 69 #include <unordered_map> 70 #include <utility> 71 72 using namespace llvm::object; 73 74 namespace llvm { 75 76 cl::OptionCategory ObjdumpCat("llvm-objdump Options"); 77 78 // MachO specific 79 extern cl::OptionCategory MachOCat; 80 extern cl::opt<bool> Bind; 81 extern cl::opt<bool> DataInCode; 82 extern cl::opt<bool> DylibsUsed; 83 extern cl::opt<bool> DylibId; 84 extern cl::opt<bool> ExportsTrie; 85 extern cl::opt<bool> FirstPrivateHeader; 86 extern cl::opt<bool> IndirectSymbols; 87 extern cl::opt<bool> InfoPlist; 88 extern cl::opt<bool> LazyBind; 89 extern cl::opt<bool> LinkOptHints; 90 extern cl::opt<bool> ObjcMetaData; 91 extern cl::opt<bool> Rebase; 92 extern cl::opt<bool> UniversalHeaders; 93 extern cl::opt<bool> WeakBind; 94 95 static cl::opt<uint64_t> AdjustVMA( 96 "adjust-vma", 97 cl::desc("Increase the displayed address by the specified offset"), 98 cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat)); 99 100 static cl::opt<bool> 101 AllHeaders("all-headers", 102 cl::desc("Display all available header information"), 103 cl::cat(ObjdumpCat)); 104 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"), 105 cl::NotHidden, cl::Grouping, 106 cl::aliasopt(AllHeaders)); 107 108 static cl::opt<std::string> 109 ArchName("arch-name", 110 cl::desc("Target arch to disassemble for, " 111 "see -version for available targets"), 112 cl::cat(ObjdumpCat)); 113 114 cl::opt<bool> ArchiveHeaders("archive-headers", 115 cl::desc("Display archive header information"), 116 cl::cat(ObjdumpCat)); 117 static cl::alias ArchiveHeadersShort("a", 118 cl::desc("Alias for --archive-headers"), 119 cl::NotHidden, cl::Grouping, 120 cl::aliasopt(ArchiveHeaders)); 121 122 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"), 123 cl::init(false), cl::cat(ObjdumpCat)); 124 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"), 125 cl::NotHidden, cl::Grouping, 126 cl::aliasopt(Demangle)); 127 128 cl::opt<bool> Disassemble( 129 "disassemble", 130 cl::desc("Display assembler mnemonics for the machine instructions"), 131 cl::cat(ObjdumpCat)); 132 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"), 133 cl::NotHidden, cl::Grouping, 134 cl::aliasopt(Disassemble)); 135 136 cl::opt<bool> DisassembleAll( 137 "disassemble-all", 138 cl::desc("Display assembler mnemonics for the machine instructions"), 139 cl::cat(ObjdumpCat)); 140 static cl::alias DisassembleAllShort("D", 141 cl::desc("Alias for --disassemble-all"), 142 cl::NotHidden, cl::Grouping, 143 cl::aliasopt(DisassembleAll)); 144 145 static cl::list<std::string> 146 DisassembleFunctions("disassemble-functions", cl::CommaSeparated, 147 cl::desc("List of functions to disassemble. " 148 "Accept demangled names when --demangle is " 149 "specified, otherwise accept mangled names"), 150 cl::cat(ObjdumpCat)); 151 152 static cl::opt<bool> DisassembleZeroes( 153 "disassemble-zeroes", 154 cl::desc("Do not skip blocks of zeroes when disassembling"), 155 cl::cat(ObjdumpCat)); 156 static cl::alias 157 DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"), 158 cl::NotHidden, cl::Grouping, 159 cl::aliasopt(DisassembleZeroes)); 160 161 static cl::list<std::string> 162 DisassemblerOptions("disassembler-options", 163 cl::desc("Pass target specific disassembler options"), 164 cl::value_desc("options"), cl::CommaSeparated, 165 cl::cat(ObjdumpCat)); 166 static cl::alias 167 DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"), 168 cl::NotHidden, cl::Grouping, cl::Prefix, 169 cl::CommaSeparated, 170 cl::aliasopt(DisassemblerOptions)); 171 172 cl::opt<DIDumpType> DwarfDumpType( 173 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), 174 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")), 175 cl::cat(ObjdumpCat)); 176 177 static cl::opt<bool> DynamicRelocations( 178 "dynamic-reloc", 179 cl::desc("Display the dynamic relocation entries in the file"), 180 cl::cat(ObjdumpCat)); 181 static cl::alias DynamicRelocationShort("R", 182 cl::desc("Alias for --dynamic-reloc"), 183 cl::NotHidden, cl::Grouping, 184 cl::aliasopt(DynamicRelocations)); 185 186 static cl::opt<bool> 187 FaultMapSection("fault-map-section", 188 cl::desc("Display contents of faultmap section"), 189 cl::cat(ObjdumpCat)); 190 191 static cl::opt<bool> 192 FileHeaders("file-headers", 193 cl::desc("Display the contents of the overall file header"), 194 cl::cat(ObjdumpCat)); 195 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"), 196 cl::NotHidden, cl::Grouping, 197 cl::aliasopt(FileHeaders)); 198 199 cl::opt<bool> SectionContents("full-contents", 200 cl::desc("Display the content of each section"), 201 cl::cat(ObjdumpCat)); 202 static cl::alias SectionContentsShort("s", 203 cl::desc("Alias for --full-contents"), 204 cl::NotHidden, cl::Grouping, 205 cl::aliasopt(SectionContents)); 206 207 static cl::list<std::string> InputFilenames(cl::Positional, 208 cl::desc("<input object files>"), 209 cl::ZeroOrMore, 210 cl::cat(ObjdumpCat)); 211 212 static cl::opt<bool> 213 PrintLines("line-numbers", 214 cl::desc("Display source line numbers with " 215 "disassembly. Implies disassemble object"), 216 cl::cat(ObjdumpCat)); 217 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"), 218 cl::NotHidden, cl::Grouping, 219 cl::aliasopt(PrintLines)); 220 221 static cl::opt<bool> MachOOpt("macho", 222 cl::desc("Use MachO specific object file parser"), 223 cl::cat(ObjdumpCat)); 224 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden, 225 cl::Grouping, cl::aliasopt(MachOOpt)); 226 227 cl::opt<std::string> 228 MCPU("mcpu", 229 cl::desc("Target a specific cpu type (-mcpu=help for details)"), 230 cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat)); 231 232 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated, 233 cl::desc("Target specific attributes"), 234 cl::value_desc("a1,+a2,-a3,..."), 235 cl::cat(ObjdumpCat)); 236 237 cl::opt<bool> NoShowRawInsn("no-show-raw-insn", 238 cl::desc("When disassembling " 239 "instructions, do not print " 240 "the instruction bytes."), 241 cl::cat(ObjdumpCat)); 242 cl::opt<bool> NoLeadingAddr("no-leading-addr", 243 cl::desc("Print no leading address"), 244 cl::cat(ObjdumpCat)); 245 246 static cl::opt<bool> RawClangAST( 247 "raw-clang-ast", 248 cl::desc("Dump the raw binary contents of the clang AST section"), 249 cl::cat(ObjdumpCat)); 250 251 cl::opt<bool> 252 Relocations("reloc", cl::desc("Display the relocation entries in the file"), 253 cl::cat(ObjdumpCat)); 254 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"), 255 cl::NotHidden, cl::Grouping, 256 cl::aliasopt(Relocations)); 257 258 cl::opt<bool> PrintImmHex("print-imm-hex", 259 cl::desc("Use hex format for immediate values"), 260 cl::cat(ObjdumpCat)); 261 262 cl::opt<bool> PrivateHeaders("private-headers", 263 cl::desc("Display format specific file headers"), 264 cl::cat(ObjdumpCat)); 265 static cl::alias PrivateHeadersShort("p", 266 cl::desc("Alias for --private-headers"), 267 cl::NotHidden, cl::Grouping, 268 cl::aliasopt(PrivateHeaders)); 269 270 cl::list<std::string> 271 FilterSections("section", 272 cl::desc("Operate on the specified sections only. " 273 "With -macho dump segment,section"), 274 cl::cat(ObjdumpCat)); 275 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"), 276 cl::NotHidden, cl::Grouping, cl::Prefix, 277 cl::aliasopt(FilterSections)); 278 279 cl::opt<bool> SectionHeaders("section-headers", 280 cl::desc("Display summaries of the " 281 "headers for each section."), 282 cl::cat(ObjdumpCat)); 283 static cl::alias SectionHeadersShort("headers", 284 cl::desc("Alias for --section-headers"), 285 cl::NotHidden, 286 cl::aliasopt(SectionHeaders)); 287 static cl::alias SectionHeadersShorter("h", 288 cl::desc("Alias for --section-headers"), 289 cl::NotHidden, cl::Grouping, 290 cl::aliasopt(SectionHeaders)); 291 292 static cl::opt<bool> 293 ShowLMA("show-lma", 294 cl::desc("Display LMA column when dumping ELF section headers"), 295 cl::cat(ObjdumpCat)); 296 297 static cl::opt<bool> PrintSource( 298 "source", 299 cl::desc( 300 "Display source inlined with disassembly. Implies disassemble object"), 301 cl::cat(ObjdumpCat)); 302 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), 303 cl::NotHidden, cl::Grouping, 304 cl::aliasopt(PrintSource)); 305 306 static cl::opt<uint64_t> 307 StartAddress("start-address", cl::desc("Disassemble beginning at address"), 308 cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat)); 309 static cl::opt<uint64_t> StopAddress("stop-address", 310 cl::desc("Stop disassembly at address"), 311 cl::value_desc("address"), 312 cl::init(UINT64_MAX), cl::cat(ObjdumpCat)); 313 314 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"), 315 cl::cat(ObjdumpCat)); 316 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"), 317 cl::NotHidden, cl::Grouping, 318 cl::aliasopt(SymbolTable)); 319 320 cl::opt<std::string> TripleName("triple", 321 cl::desc("Target triple to disassemble for, " 322 "see -version for available targets"), 323 cl::cat(ObjdumpCat)); 324 325 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"), 326 cl::cat(ObjdumpCat)); 327 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), 328 cl::NotHidden, cl::Grouping, 329 cl::aliasopt(UnwindInfo)); 330 331 static cl::opt<bool> 332 Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"), 333 cl::cat(ObjdumpCat)); 334 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide)); 335 336 static cl::extrahelp 337 HelpResponse("\nPass @FILE as argument to read options from FILE.\n"); 338 339 static StringSet<> DisasmFuncsSet; 340 static StringSet<> FoundSectionSet; 341 static StringRef ToolName; 342 343 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy; 344 345 static bool shouldKeep(object::SectionRef S) { 346 if (FilterSections.empty()) 347 return true; 348 349 Expected<StringRef> SecNameOrErr = S.getName(); 350 if (!SecNameOrErr) { 351 consumeError(SecNameOrErr.takeError()); 352 return false; 353 } 354 StringRef SecName = *SecNameOrErr; 355 356 // StringSet does not allow empty key so avoid adding sections with 357 // no name (such as the section with index 0) here. 358 if (!SecName.empty()) 359 FoundSectionSet.insert(SecName); 360 return is_contained(FilterSections, SecName); 361 } 362 363 SectionFilter ToolSectionFilter(object::ObjectFile const &O) { 364 return SectionFilter([](object::SectionRef S) { return shouldKeep(S); }, O); 365 } 366 367 std::string getFileNameForError(const object::Archive::Child &C, 368 unsigned Index) { 369 Expected<StringRef> NameOrErr = C.getName(); 370 if (NameOrErr) 371 return NameOrErr.get(); 372 // If we have an error getting the name then we print the index of the archive 373 // member. Since we are already in an error state, we just ignore this error. 374 consumeError(NameOrErr.takeError()); 375 return "<file index: " + std::to_string(Index) + ">"; 376 } 377 378 void reportWarning(Twine Message, StringRef File) { 379 // Output order between errs() and outs() matters especially for archive 380 // files where the output is per member object. 381 outs().flush(); 382 WithColor::warning(errs(), ToolName) 383 << "'" << File << "': " << Message << "\n"; 384 errs().flush(); 385 } 386 387 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) { 388 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 389 exit(1); 390 } 391 392 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName, 393 StringRef ArchiveName, 394 StringRef ArchitectureName) { 395 assert(E); 396 WithColor::error(errs(), ToolName); 397 if (ArchiveName != "") 398 errs() << ArchiveName << "(" << FileName << ")"; 399 else 400 errs() << "'" << FileName << "'"; 401 if (!ArchitectureName.empty()) 402 errs() << " (for architecture " << ArchitectureName << ")"; 403 std::string Buf; 404 raw_string_ostream OS(Buf); 405 logAllUnhandledErrors(std::move(E), OS); 406 OS.flush(); 407 errs() << ": " << Buf; 408 exit(1); 409 } 410 411 static void reportCmdLineWarning(Twine Message) { 412 WithColor::warning(errs(), ToolName) << Message << "\n"; 413 } 414 415 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) { 416 WithColor::error(errs(), ToolName) << Message << "\n"; 417 exit(1); 418 } 419 420 static void warnOnNoMatchForSections() { 421 SetVector<StringRef> MissingSections; 422 for (StringRef S : FilterSections) { 423 if (FoundSectionSet.count(S)) 424 return; 425 // User may specify a unnamed section. Don't warn for it. 426 if (!S.empty()) 427 MissingSections.insert(S); 428 } 429 430 // Warn only if no section in FilterSections is matched. 431 for (StringRef S : MissingSections) 432 reportCmdLineWarning("section '" + S + 433 "' mentioned in a -j/--section option, but not " 434 "found in any input file"); 435 } 436 437 static const Target *getTarget(const ObjectFile *Obj) { 438 // Figure out the target triple. 439 Triple TheTriple("unknown-unknown-unknown"); 440 if (TripleName.empty()) { 441 TheTriple = Obj->makeTriple(); 442 } else { 443 TheTriple.setTriple(Triple::normalize(TripleName)); 444 auto Arch = Obj->getArch(); 445 if (Arch == Triple::arm || Arch == Triple::armeb) 446 Obj->setARMSubArch(TheTriple); 447 } 448 449 // Get the target specific parser. 450 std::string Error; 451 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 452 Error); 453 if (!TheTarget) 454 reportError(Obj->getFileName(), "can't find target: " + Error); 455 456 // Update the triple name and return the found target. 457 TripleName = TheTriple.getTriple(); 458 return TheTarget; 459 } 460 461 bool isRelocAddressLess(RelocationRef A, RelocationRef B) { 462 return A.getOffset() < B.getOffset(); 463 } 464 465 static Error getRelocationValueString(const RelocationRef &Rel, 466 SmallVectorImpl<char> &Result) { 467 const ObjectFile *Obj = Rel.getObject(); 468 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 469 return getELFRelocationValueString(ELF, Rel, Result); 470 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 471 return getCOFFRelocationValueString(COFF, Rel, Result); 472 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 473 return getWasmRelocationValueString(Wasm, Rel, Result); 474 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 475 return getMachORelocationValueString(MachO, Rel, Result); 476 llvm_unreachable("unknown object file format"); 477 } 478 479 /// Indicates whether this relocation should hidden when listing 480 /// relocations, usually because it is the trailing part of a multipart 481 /// relocation that will be printed as part of the leading relocation. 482 static bool getHidden(RelocationRef RelRef) { 483 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 484 if (!MachO) 485 return false; 486 487 unsigned Arch = MachO->getArch(); 488 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 489 uint64_t Type = MachO->getRelocationType(Rel); 490 491 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 492 // is always hidden. 493 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 494 return Type == MachO::GENERIC_RELOC_PAIR; 495 496 if (Arch == Triple::x86_64) { 497 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 498 // an X86_64_RELOC_SUBTRACTOR. 499 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 500 DataRefImpl RelPrev = Rel; 501 RelPrev.d.a--; 502 uint64_t PrevType = MachO->getRelocationType(RelPrev); 503 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 504 return true; 505 } 506 } 507 508 return false; 509 } 510 511 namespace { 512 class SourcePrinter { 513 protected: 514 DILineInfo OldLineInfo; 515 const ObjectFile *Obj = nullptr; 516 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer; 517 // File name to file contents of source. 518 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache; 519 // Mark the line endings of the cached source. 520 std::unordered_map<std::string, std::vector<StringRef>> LineCache; 521 // Keep track of missing sources. 522 StringSet<> MissingSources; 523 // Only emit 'no debug info' warning once. 524 bool WarnedNoDebugInfo; 525 526 private: 527 bool cacheSource(const DILineInfo& LineInfoFile); 528 529 public: 530 SourcePrinter() = default; 531 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) 532 : Obj(Obj), WarnedNoDebugInfo(false) { 533 symbolize::LLVMSymbolizer::Options SymbolizerOpts; 534 SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None; 535 SymbolizerOpts.Demangle = false; 536 SymbolizerOpts.DefaultArch = DefaultArch; 537 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); 538 } 539 virtual ~SourcePrinter() = default; 540 virtual void printSourceLine(raw_ostream &OS, 541 object::SectionedAddress Address, 542 StringRef ObjectFilename, 543 StringRef Delimiter = "; "); 544 }; 545 546 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) { 547 std::unique_ptr<MemoryBuffer> Buffer; 548 if (LineInfo.Source) { 549 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source); 550 } else { 551 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName); 552 if (!BufferOrError) { 553 if (MissingSources.insert(LineInfo.FileName).second) 554 reportWarning("failed to find source " + LineInfo.FileName, 555 Obj->getFileName()); 556 return false; 557 } 558 Buffer = std::move(*BufferOrError); 559 } 560 // Chomp the file to get lines 561 const char *BufferStart = Buffer->getBufferStart(), 562 *BufferEnd = Buffer->getBufferEnd(); 563 std::vector<StringRef> &Lines = LineCache[LineInfo.FileName]; 564 const char *Start = BufferStart; 565 for (const char *I = BufferStart; I != BufferEnd; ++I) 566 if (*I == '\n') { 567 Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r')); 568 Start = I + 1; 569 } 570 if (Start < BufferEnd) 571 Lines.emplace_back(Start, BufferEnd - Start); 572 SourceCache[LineInfo.FileName] = std::move(Buffer); 573 return true; 574 } 575 576 void SourcePrinter::printSourceLine(raw_ostream &OS, 577 object::SectionedAddress Address, 578 StringRef ObjectFilename, 579 StringRef Delimiter) { 580 if (!Symbolizer) 581 return; 582 583 DILineInfo LineInfo = DILineInfo(); 584 auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address); 585 std::string ErrorMessage; 586 if (!ExpectedLineInfo) 587 ErrorMessage = toString(ExpectedLineInfo.takeError()); 588 else 589 LineInfo = *ExpectedLineInfo; 590 591 if (LineInfo.FileName == DILineInfo::BadString) { 592 if (!WarnedNoDebugInfo) { 593 std::string Warning = 594 "failed to parse debug information for " + ObjectFilename.str(); 595 if (!ErrorMessage.empty()) 596 Warning += ": " + ErrorMessage; 597 reportWarning(Warning, ObjectFilename); 598 WarnedNoDebugInfo = true; 599 } 600 return; 601 } 602 603 if (LineInfo.Line == 0 || ((OldLineInfo.Line == LineInfo.Line) && 604 (OldLineInfo.FileName == LineInfo.FileName))) 605 return; 606 607 if (PrintLines) 608 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n"; 609 if (PrintSource) { 610 if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) 611 if (!cacheSource(LineInfo)) 612 return; 613 auto LineBuffer = LineCache.find(LineInfo.FileName); 614 if (LineBuffer != LineCache.end()) { 615 if (LineInfo.Line > LineBuffer->second.size()) { 616 reportWarning( 617 formatv( 618 "debug info line number {0} exceeds the number of lines in {1}", 619 LineInfo.Line, LineInfo.FileName), 620 ObjectFilename); 621 return; 622 } 623 // Vector begins at 0, line numbers are non-zero 624 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n'; 625 } 626 } 627 OldLineInfo = LineInfo; 628 } 629 630 static bool isAArch64Elf(const ObjectFile *Obj) { 631 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 632 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 633 } 634 635 static bool isArmElf(const ObjectFile *Obj) { 636 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 637 return Elf && Elf->getEMachine() == ELF::EM_ARM; 638 } 639 640 static bool hasMappingSymbols(const ObjectFile *Obj) { 641 return isArmElf(Obj) || isAArch64Elf(Obj); 642 } 643 644 static void printRelocation(StringRef FileName, const RelocationRef &Rel, 645 uint64_t Address, bool Is64Bits) { 646 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; 647 SmallString<16> Name; 648 SmallString<32> Val; 649 Rel.getTypeName(Name); 650 if (Error E = getRelocationValueString(Rel, Val)) 651 reportError(std::move(E), FileName); 652 outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n"; 653 } 654 655 class PrettyPrinter { 656 public: 657 virtual ~PrettyPrinter() = default; 658 virtual void printInst(MCInstPrinter &IP, const MCInst *MI, 659 ArrayRef<uint8_t> Bytes, 660 object::SectionedAddress Address, raw_ostream &OS, 661 StringRef Annot, MCSubtargetInfo const &STI, 662 SourcePrinter *SP, StringRef ObjectFilename, 663 std::vector<RelocationRef> *Rels = nullptr) { 664 if (SP && (PrintSource || PrintLines)) 665 SP->printSourceLine(OS, Address, ObjectFilename); 666 667 size_t Start = OS.tell(); 668 if (!NoLeadingAddr) 669 OS << format("%8" PRIx64 ":", Address.Address); 670 if (!NoShowRawInsn) { 671 OS << ' '; 672 dumpBytes(Bytes, OS); 673 } 674 675 // The output of printInst starts with a tab. Print some spaces so that 676 // the tab has 1 column and advances to the target tab stop. 677 unsigned TabStop = NoShowRawInsn ? 16 : 40; 678 unsigned Column = OS.tell() - Start; 679 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 680 681 if (MI) 682 IP.printInst(MI, OS, "", STI); 683 else 684 OS << "\t<unknown>"; 685 } 686 }; 687 PrettyPrinter PrettyPrinterInst; 688 689 class HexagonPrettyPrinter : public PrettyPrinter { 690 public: 691 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 692 raw_ostream &OS) { 693 uint32_t opcode = 694 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 695 if (!NoLeadingAddr) 696 OS << format("%8" PRIx64 ":", Address); 697 if (!NoShowRawInsn) { 698 OS << "\t"; 699 dumpBytes(Bytes.slice(0, 4), OS); 700 OS << format("\t%08" PRIx32, opcode); 701 } 702 } 703 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 704 object::SectionedAddress Address, raw_ostream &OS, 705 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 706 StringRef ObjectFilename, 707 std::vector<RelocationRef> *Rels) override { 708 if (SP && (PrintSource || PrintLines)) 709 SP->printSourceLine(OS, Address, ObjectFilename, ""); 710 if (!MI) { 711 printLead(Bytes, Address.Address, OS); 712 OS << " <unknown>"; 713 return; 714 } 715 std::string Buffer; 716 { 717 raw_string_ostream TempStream(Buffer); 718 IP.printInst(MI, TempStream, "", STI); 719 } 720 StringRef Contents(Buffer); 721 // Split off bundle attributes 722 auto PacketBundle = Contents.rsplit('\n'); 723 // Split off first instruction from the rest 724 auto HeadTail = PacketBundle.first.split('\n'); 725 auto Preamble = " { "; 726 auto Separator = ""; 727 728 // Hexagon's packets require relocations to be inline rather than 729 // clustered at the end of the packet. 730 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 731 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 732 auto PrintReloc = [&]() -> void { 733 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 734 if (RelCur->getOffset() == Address.Address) { 735 printRelocation(ObjectFilename, *RelCur, Address.Address, false); 736 return; 737 } 738 ++RelCur; 739 } 740 }; 741 742 while (!HeadTail.first.empty()) { 743 OS << Separator; 744 Separator = "\n"; 745 if (SP && (PrintSource || PrintLines)) 746 SP->printSourceLine(OS, Address, ObjectFilename, ""); 747 printLead(Bytes, Address.Address, OS); 748 OS << Preamble; 749 Preamble = " "; 750 StringRef Inst; 751 auto Duplex = HeadTail.first.split('\v'); 752 if (!Duplex.second.empty()) { 753 OS << Duplex.first; 754 OS << "; "; 755 Inst = Duplex.second; 756 } 757 else 758 Inst = HeadTail.first; 759 OS << Inst; 760 HeadTail = HeadTail.second.split('\n'); 761 if (HeadTail.first.empty()) 762 OS << " } " << PacketBundle.second; 763 PrintReloc(); 764 Bytes = Bytes.slice(4); 765 Address.Address += 4; 766 } 767 } 768 }; 769 HexagonPrettyPrinter HexagonPrettyPrinterInst; 770 771 class AMDGCNPrettyPrinter : public PrettyPrinter { 772 public: 773 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 774 object::SectionedAddress Address, raw_ostream &OS, 775 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 776 StringRef ObjectFilename, 777 std::vector<RelocationRef> *Rels) override { 778 if (SP && (PrintSource || PrintLines)) 779 SP->printSourceLine(OS, Address, ObjectFilename); 780 781 if (MI) { 782 SmallString<40> InstStr; 783 raw_svector_ostream IS(InstStr); 784 785 IP.printInst(MI, IS, "", STI); 786 787 OS << left_justify(IS.str(), 60); 788 } else { 789 // an unrecognized encoding - this is probably data so represent it 790 // using the .long directive, or .byte directive if fewer than 4 bytes 791 // remaining 792 if (Bytes.size() >= 4) { 793 OS << format("\t.long 0x%08" PRIx32 " ", 794 support::endian::read32<support::little>(Bytes.data())); 795 OS.indent(42); 796 } else { 797 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 798 for (unsigned int i = 1; i < Bytes.size(); i++) 799 OS << format(", 0x%02" PRIx8, Bytes[i]); 800 OS.indent(55 - (6 * Bytes.size())); 801 } 802 } 803 804 OS << format("// %012" PRIX64 ":", Address.Address); 805 if (Bytes.size() >= 4) { 806 // D should be casted to uint32_t here as it is passed by format to 807 // snprintf as vararg. 808 for (uint32_t D : makeArrayRef( 809 reinterpret_cast<const support::little32_t *>(Bytes.data()), 810 Bytes.size() / 4)) 811 OS << format(" %08" PRIX32, D); 812 } else { 813 for (unsigned char B : Bytes) 814 OS << format(" %02" PRIX8, B); 815 } 816 817 if (!Annot.empty()) 818 OS << " // " << Annot; 819 } 820 }; 821 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 822 823 class BPFPrettyPrinter : public PrettyPrinter { 824 public: 825 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 826 object::SectionedAddress Address, raw_ostream &OS, 827 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 828 StringRef ObjectFilename, 829 std::vector<RelocationRef> *Rels) override { 830 if (SP && (PrintSource || PrintLines)) 831 SP->printSourceLine(OS, Address, ObjectFilename); 832 if (!NoLeadingAddr) 833 OS << format("%8" PRId64 ":", Address.Address / 8); 834 if (!NoShowRawInsn) { 835 OS << "\t"; 836 dumpBytes(Bytes, OS); 837 } 838 if (MI) 839 IP.printInst(MI, OS, "", STI); 840 else 841 OS << "\t<unknown>"; 842 } 843 }; 844 BPFPrettyPrinter BPFPrettyPrinterInst; 845 846 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 847 switch(Triple.getArch()) { 848 default: 849 return PrettyPrinterInst; 850 case Triple::hexagon: 851 return HexagonPrettyPrinterInst; 852 case Triple::amdgcn: 853 return AMDGCNPrettyPrinterInst; 854 case Triple::bpfel: 855 case Triple::bpfeb: 856 return BPFPrettyPrinterInst; 857 } 858 } 859 } 860 861 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 862 assert(Obj->isELF()); 863 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 864 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 865 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 866 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 867 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 868 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 869 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 870 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 871 llvm_unreachable("Unsupported binary format"); 872 } 873 874 template <class ELFT> static void 875 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 876 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 877 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 878 uint8_t SymbolType = Symbol.getELFType(); 879 if (SymbolType == ELF::STT_SECTION) 880 continue; 881 882 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName()); 883 // ELFSymbolRef::getAddress() returns size instead of value for common 884 // symbols which is not desirable for disassembly output. Overriding. 885 if (SymbolType == ELF::STT_COMMON) 886 Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value; 887 888 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 889 if (Name.empty()) 890 continue; 891 892 section_iterator SecI = 893 unwrapOrError(Symbol.getSection(), Obj->getFileName()); 894 if (SecI == Obj->section_end()) 895 continue; 896 897 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 898 } 899 } 900 901 static void 902 addDynamicElfSymbols(const ObjectFile *Obj, 903 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 904 assert(Obj->isELF()); 905 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 906 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 907 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 908 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 909 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 910 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 911 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 912 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 913 else 914 llvm_unreachable("Unsupported binary format"); 915 } 916 917 static void addPltEntries(const ObjectFile *Obj, 918 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 919 StringSaver &Saver) { 920 Optional<SectionRef> Plt = None; 921 for (const SectionRef &Section : Obj->sections()) { 922 Expected<StringRef> SecNameOrErr = Section.getName(); 923 if (!SecNameOrErr) { 924 consumeError(SecNameOrErr.takeError()); 925 continue; 926 } 927 if (*SecNameOrErr == ".plt") 928 Plt = Section; 929 } 930 if (!Plt) 931 return; 932 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 933 for (auto PltEntry : ElfObj->getPltAddresses()) { 934 SymbolRef Symbol(PltEntry.first, ElfObj); 935 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 936 937 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 938 if (!Name.empty()) 939 AllSymbols[*Plt].emplace_back( 940 PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType); 941 } 942 } 943 } 944 945 // Normally the disassembly output will skip blocks of zeroes. This function 946 // returns the number of zero bytes that can be skipped when dumping the 947 // disassembly of the instructions in Buf. 948 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 949 // Find the number of leading zeroes. 950 size_t N = 0; 951 while (N < Buf.size() && !Buf[N]) 952 ++N; 953 954 // We may want to skip blocks of zero bytes, but unless we see 955 // at least 8 of them in a row. 956 if (N < 8) 957 return 0; 958 959 // We skip zeroes in multiples of 4 because do not want to truncate an 960 // instruction if it starts with a zero byte. 961 return N & ~0x3; 962 } 963 964 // Returns a map from sections to their relocations. 965 static std::map<SectionRef, std::vector<RelocationRef>> 966 getRelocsMap(object::ObjectFile const &Obj) { 967 std::map<SectionRef, std::vector<RelocationRef>> Ret; 968 for (SectionRef Sec : Obj.sections()) { 969 section_iterator Relocated = Sec.getRelocatedSection(); 970 if (Relocated == Obj.section_end() || !shouldKeep(*Relocated)) 971 continue; 972 std::vector<RelocationRef> &V = Ret[*Relocated]; 973 for (const RelocationRef &R : Sec.relocations()) 974 V.push_back(R); 975 // Sort relocations by address. 976 llvm::stable_sort(V, isRelocAddressLess); 977 } 978 return Ret; 979 } 980 981 // Used for --adjust-vma to check if address should be adjusted by the 982 // specified value for a given section. 983 // For ELF we do not adjust non-allocatable sections like debug ones, 984 // because they are not loadable. 985 // TODO: implement for other file formats. 986 static bool shouldAdjustVA(const SectionRef &Section) { 987 const ObjectFile *Obj = Section.getObject(); 988 if (isa<object::ELFObjectFileBase>(Obj)) 989 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 990 return false; 991 } 992 993 994 typedef std::pair<uint64_t, char> MappingSymbolPair; 995 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 996 uint64_t Address) { 997 auto It = 998 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 999 return Val.first <= Address; 1000 }); 1001 // Return zero for any address before the first mapping symbol; this means 1002 // we should use the default disassembly mode, depending on the target. 1003 if (It == MappingSymbols.begin()) 1004 return '\x00'; 1005 return (It - 1)->second; 1006 } 1007 1008 static uint64_t 1009 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1010 const ObjectFile *Obj, ArrayRef<uint8_t> Bytes, 1011 ArrayRef<MappingSymbolPair> MappingSymbols) { 1012 support::endianness Endian = 1013 Obj->isLittleEndian() ? support::little : support::big; 1014 while (Index < End) { 1015 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1016 outs() << "\t"; 1017 if (Index + 4 <= End) { 1018 dumpBytes(Bytes.slice(Index, 4), outs()); 1019 outs() << "\t.word\t" 1020 << format_hex( 1021 support::endian::read32(Bytes.data() + Index, Endian), 10); 1022 Index += 4; 1023 } else if (Index + 2 <= End) { 1024 dumpBytes(Bytes.slice(Index, 2), outs()); 1025 outs() << "\t\t.short\t" 1026 << format_hex( 1027 support::endian::read16(Bytes.data() + Index, Endian), 6); 1028 Index += 2; 1029 } else { 1030 dumpBytes(Bytes.slice(Index, 1), outs()); 1031 outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4); 1032 ++Index; 1033 } 1034 outs() << "\n"; 1035 if (getMappingSymbolKind(MappingSymbols, Index) != 'd') 1036 break; 1037 } 1038 return Index; 1039 } 1040 1041 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1042 ArrayRef<uint8_t> Bytes) { 1043 // print out data up to 8 bytes at a time in hex and ascii 1044 uint8_t AsciiData[9] = {'\0'}; 1045 uint8_t Byte; 1046 int NumBytes = 0; 1047 1048 for (; Index < End; ++Index) { 1049 if (NumBytes == 0) 1050 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1051 Byte = Bytes.slice(Index)[0]; 1052 outs() << format(" %02x", Byte); 1053 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1054 1055 uint8_t IndentOffset = 0; 1056 NumBytes++; 1057 if (Index == End - 1 || NumBytes > 8) { 1058 // Indent the space for less than 8 bytes data. 1059 // 2 spaces for byte and one for space between bytes 1060 IndentOffset = 3 * (8 - NumBytes); 1061 for (int Excess = NumBytes; Excess < 8; Excess++) 1062 AsciiData[Excess] = '\0'; 1063 NumBytes = 8; 1064 } 1065 if (NumBytes == 8) { 1066 AsciiData[8] = '\0'; 1067 outs() << std::string(IndentOffset, ' ') << " "; 1068 outs() << reinterpret_cast<char *>(AsciiData); 1069 outs() << '\n'; 1070 NumBytes = 0; 1071 } 1072 } 1073 } 1074 1075 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, 1076 MCContext &Ctx, MCDisassembler *PrimaryDisAsm, 1077 MCDisassembler *SecondaryDisAsm, 1078 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1079 const MCSubtargetInfo *PrimarySTI, 1080 const MCSubtargetInfo *SecondarySTI, 1081 PrettyPrinter &PIP, 1082 SourcePrinter &SP, bool InlineRelocs) { 1083 const MCSubtargetInfo *STI = PrimarySTI; 1084 MCDisassembler *DisAsm = PrimaryDisAsm; 1085 bool PrimaryIsThumb = false; 1086 if (isArmElf(Obj)) 1087 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1088 1089 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1090 if (InlineRelocs) 1091 RelocMap = getRelocsMap(*Obj); 1092 bool Is64Bits = Obj->getBytesInAddress() > 4; 1093 1094 // Create a mapping from virtual address to symbol name. This is used to 1095 // pretty print the symbols while disassembling. 1096 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1097 SectionSymbolsTy AbsoluteSymbols; 1098 const StringRef FileName = Obj->getFileName(); 1099 for (const SymbolRef &Symbol : Obj->symbols()) { 1100 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName); 1101 1102 StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1103 if (Name.empty()) 1104 continue; 1105 1106 uint8_t SymbolType = ELF::STT_NOTYPE; 1107 if (Obj->isELF()) { 1108 SymbolType = getElfSymbolType(Obj, Symbol); 1109 if (SymbolType == ELF::STT_SECTION) 1110 continue; 1111 } 1112 1113 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1114 if (SecI != Obj->section_end()) 1115 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1116 else 1117 AbsoluteSymbols.emplace_back(Address, Name, SymbolType); 1118 } 1119 if (AllSymbols.empty() && Obj->isELF()) 1120 addDynamicElfSymbols(Obj, AllSymbols); 1121 1122 BumpPtrAllocator A; 1123 StringSaver Saver(A); 1124 addPltEntries(Obj, AllSymbols, Saver); 1125 1126 // Create a mapping from virtual address to section. 1127 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1128 for (SectionRef Sec : Obj->sections()) 1129 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1130 array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); 1131 1132 // Linked executables (.exe and .dll files) typically don't include a real 1133 // symbol table but they might contain an export table. 1134 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1135 for (const auto &ExportEntry : COFFObj->export_directories()) { 1136 StringRef Name; 1137 if (std::error_code EC = ExportEntry.getSymbolName(Name)) 1138 reportError(errorCodeToError(EC), Obj->getFileName()); 1139 if (Name.empty()) 1140 continue; 1141 1142 uint32_t RVA; 1143 if (std::error_code EC = ExportEntry.getExportRVA(RVA)) 1144 reportError(errorCodeToError(EC), Obj->getFileName()); 1145 1146 uint64_t VA = COFFObj->getImageBase() + RVA; 1147 auto Sec = partition_point( 1148 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1149 return O.first <= VA; 1150 }); 1151 if (Sec != SectionAddresses.begin()) { 1152 --Sec; 1153 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1154 } else 1155 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1156 } 1157 } 1158 1159 // Sort all the symbols, this allows us to use a simple binary search to find 1160 // a symbol near an address. 1161 StringSet<> FoundDisasmFuncsSet; 1162 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1163 array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); 1164 array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); 1165 1166 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1167 if (FilterSections.empty() && !DisassembleAll && 1168 (!Section.isText() || Section.isVirtual())) 1169 continue; 1170 1171 uint64_t SectionAddr = Section.getAddress(); 1172 uint64_t SectSize = Section.getSize(); 1173 if (!SectSize) 1174 continue; 1175 1176 // Get the list of all the symbols in this section. 1177 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1178 std::vector<MappingSymbolPair> MappingSymbols; 1179 if (hasMappingSymbols(Obj)) { 1180 for (const auto &Symb : Symbols) { 1181 uint64_t Address = std::get<0>(Symb); 1182 StringRef Name = std::get<1>(Symb); 1183 if (Name.startswith("$d")) 1184 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1185 if (Name.startswith("$x")) 1186 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1187 if (Name.startswith("$a")) 1188 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1189 if (Name.startswith("$t")) 1190 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1191 } 1192 } 1193 1194 llvm::sort(MappingSymbols); 1195 1196 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1197 // AMDGPU disassembler uses symbolizer for printing labels 1198 std::unique_ptr<MCRelocationInfo> RelInfo( 1199 TheTarget->createMCRelocationInfo(TripleName, Ctx)); 1200 if (RelInfo) { 1201 std::unique_ptr<MCSymbolizer> Symbolizer( 1202 TheTarget->createMCSymbolizer( 1203 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1204 DisAsm->setSymbolizer(std::move(Symbolizer)); 1205 } 1206 } 1207 1208 StringRef SegmentName = ""; 1209 if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) { 1210 DataRefImpl DR = Section.getRawDataRefImpl(); 1211 SegmentName = MachO->getSectionFinalSegmentName(DR); 1212 } 1213 1214 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName()); 1215 // If the section has no symbol at the start, just insert a dummy one. 1216 if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) { 1217 Symbols.insert( 1218 Symbols.begin(), 1219 std::make_tuple(SectionAddr, SectionName, 1220 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); 1221 } 1222 1223 SmallString<40> Comments; 1224 raw_svector_ostream CommentStream(Comments); 1225 1226 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1227 unwrapOrError(Section.getContents(), Obj->getFileName())); 1228 1229 uint64_t VMAAdjustment = 0; 1230 if (shouldAdjustVA(Section)) 1231 VMAAdjustment = AdjustVMA; 1232 1233 uint64_t Size; 1234 uint64_t Index; 1235 bool PrintedSection = false; 1236 std::vector<RelocationRef> Rels = RelocMap[Section]; 1237 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1238 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1239 // Disassemble symbol by symbol. 1240 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { 1241 std::string SymbolName = std::get<1>(Symbols[SI]).str(); 1242 if (Demangle) 1243 SymbolName = demangle(SymbolName); 1244 1245 // Skip if --disassemble-functions is not empty and the symbol is not in 1246 // the list. 1247 if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName)) 1248 continue; 1249 1250 uint64_t Start = std::get<0>(Symbols[SI]); 1251 if (Start < SectionAddr || StopAddress <= Start) 1252 continue; 1253 else 1254 FoundDisasmFuncsSet.insert(SymbolName); 1255 1256 // The end is the section end, the beginning of the next symbol, or 1257 // --stop-address. 1258 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1259 if (SI + 1 < SE) 1260 End = std::min(End, std::get<0>(Symbols[SI + 1])); 1261 if (Start >= End || End <= StartAddress) 1262 continue; 1263 Start -= SectionAddr; 1264 End -= SectionAddr; 1265 1266 if (!PrintedSection) { 1267 PrintedSection = true; 1268 outs() << "\nDisassembly of section "; 1269 if (!SegmentName.empty()) 1270 outs() << SegmentName << ","; 1271 outs() << SectionName << ":\n"; 1272 } 1273 1274 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1275 if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1276 // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) 1277 Start += 256; 1278 } 1279 if (SI == SE - 1 || 1280 std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1281 // cut trailing zeroes at the end of kernel 1282 // cut up to 256 bytes 1283 const uint64_t EndAlign = 256; 1284 const auto Limit = End - (std::min)(EndAlign, End - Start); 1285 while (End > Limit && 1286 *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0) 1287 End -= 4; 1288 } 1289 } 1290 1291 outs() << '\n'; 1292 if (!NoLeadingAddr) 1293 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1294 SectionAddr + Start + VMAAdjustment); 1295 1296 outs() << SymbolName << ":\n"; 1297 1298 // Don't print raw contents of a virtual section. A virtual section 1299 // doesn't have any contents in the file. 1300 if (Section.isVirtual()) { 1301 outs() << "...\n"; 1302 continue; 1303 } 1304 1305 #ifndef NDEBUG 1306 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); 1307 #else 1308 raw_ostream &DebugOut = nulls(); 1309 #endif 1310 1311 // Some targets (like WebAssembly) have a special prelude at the start 1312 // of each symbol. 1313 DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start), 1314 SectionAddr + Start, DebugOut, CommentStream); 1315 Start += Size; 1316 1317 Index = Start; 1318 if (SectionAddr < StartAddress) 1319 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1320 1321 // If there is a data/common symbol inside an ELF text section and we are 1322 // only disassembling text (applicable all architectures), we are in a 1323 // situation where we must print the data and not disassemble it. 1324 if (Obj->isELF() && !DisassembleAll && Section.isText()) { 1325 uint8_t SymTy = std::get<2>(Symbols[SI]); 1326 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) { 1327 dumpELFData(SectionAddr, Index, End, Bytes); 1328 Index = End; 1329 } 1330 } 1331 1332 bool CheckARMELFData = hasMappingSymbols(Obj) && 1333 std::get<2>(Symbols[SI]) != ELF::STT_OBJECT && 1334 !DisassembleAll; 1335 while (Index < End) { 1336 // ARM and AArch64 ELF binaries can interleave data and text in the 1337 // same section. We rely on the markers introduced to understand what 1338 // we need to dump. If the data marker is within a function, it is 1339 // denoted as a word/short etc. 1340 if (CheckARMELFData && 1341 getMappingSymbolKind(MappingSymbols, Index) == 'd') { 1342 Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1343 MappingSymbols); 1344 continue; 1345 } 1346 1347 // When -z or --disassemble-zeroes are given we always dissasemble 1348 // them. Otherwise we might want to skip zero bytes we see. 1349 if (!DisassembleZeroes) { 1350 uint64_t MaxOffset = End - Index; 1351 // For -reloc: print zero blocks patched by relocations, so that 1352 // relocations can be shown in the dump. 1353 if (RelCur != RelEnd) 1354 MaxOffset = RelCur->getOffset() - Index; 1355 1356 if (size_t N = 1357 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1358 outs() << "\t\t..." << '\n'; 1359 Index += N; 1360 continue; 1361 } 1362 } 1363 1364 if (SecondarySTI) { 1365 if (getMappingSymbolKind(MappingSymbols, Index) == 'a') { 1366 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1367 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1368 } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') { 1369 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1370 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1371 } 1372 } 1373 1374 // Disassemble a real instruction or a data when disassemble all is 1375 // provided 1376 MCInst Inst; 1377 bool Disassembled = DisAsm->getInstruction( 1378 Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut, 1379 CommentStream); 1380 if (Size == 0) 1381 Size = 1; 1382 1383 PIP.printInst(*IP, Disassembled ? &Inst : nullptr, 1384 Bytes.slice(Index, Size), 1385 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, 1386 outs(), "", *STI, &SP, Obj->getFileName(), &Rels); 1387 outs() << CommentStream.str(); 1388 Comments.clear(); 1389 1390 // Try to resolve the target of a call, tail call, etc. to a specific 1391 // symbol. 1392 if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || 1393 MIA->isConditionalBranch(Inst))) { 1394 uint64_t Target; 1395 if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { 1396 // In a relocatable object, the target's section must reside in 1397 // the same section as the call instruction or it is accessed 1398 // through a relocation. 1399 // 1400 // In a non-relocatable object, the target may be in any section. 1401 // 1402 // N.B. We don't walk the relocations in the relocatable case yet. 1403 auto *TargetSectionSymbols = &Symbols; 1404 if (!Obj->isRelocatableObject()) { 1405 auto It = partition_point( 1406 SectionAddresses, 1407 [=](const std::pair<uint64_t, SectionRef> &O) { 1408 return O.first <= Target; 1409 }); 1410 if (It != SectionAddresses.begin()) { 1411 --It; 1412 TargetSectionSymbols = &AllSymbols[It->second]; 1413 } else { 1414 TargetSectionSymbols = &AbsoluteSymbols; 1415 } 1416 } 1417 1418 // Find the last symbol in the section whose offset is less than 1419 // or equal to the target. If there isn't a section that contains 1420 // the target, find the nearest preceding absolute symbol. 1421 auto TargetSym = partition_point( 1422 *TargetSectionSymbols, 1423 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) { 1424 return std::get<0>(O) <= Target; 1425 }); 1426 if (TargetSym == TargetSectionSymbols->begin()) { 1427 TargetSectionSymbols = &AbsoluteSymbols; 1428 TargetSym = partition_point( 1429 AbsoluteSymbols, 1430 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) { 1431 return std::get<0>(O) <= Target; 1432 }); 1433 } 1434 if (TargetSym != TargetSectionSymbols->begin()) { 1435 --TargetSym; 1436 uint64_t TargetAddress = std::get<0>(*TargetSym); 1437 StringRef TargetName = std::get<1>(*TargetSym); 1438 outs() << " <" << TargetName; 1439 uint64_t Disp = Target - TargetAddress; 1440 if (Disp) 1441 outs() << "+0x" << Twine::utohexstr(Disp); 1442 outs() << '>'; 1443 } 1444 } 1445 } 1446 outs() << "\n"; 1447 1448 // Hexagon does this in pretty printer 1449 if (Obj->getArch() != Triple::hexagon) { 1450 // Print relocation for instruction. 1451 while (RelCur != RelEnd) { 1452 uint64_t Offset = RelCur->getOffset(); 1453 // If this relocation is hidden, skip it. 1454 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1455 ++RelCur; 1456 continue; 1457 } 1458 1459 // Stop when RelCur's offset is past the current instruction. 1460 if (Offset >= Index + Size) 1461 break; 1462 1463 // When --adjust-vma is used, update the address printed. 1464 if (RelCur->getSymbol() != Obj->symbol_end()) { 1465 Expected<section_iterator> SymSI = 1466 RelCur->getSymbol()->getSection(); 1467 if (SymSI && *SymSI != Obj->section_end() && 1468 shouldAdjustVA(**SymSI)) 1469 Offset += AdjustVMA; 1470 } 1471 1472 printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset, 1473 Is64Bits); 1474 ++RelCur; 1475 } 1476 } 1477 1478 Index += Size; 1479 } 1480 } 1481 } 1482 StringSet<> MissingDisasmFuncsSet = 1483 set_difference(DisasmFuncsSet, FoundDisasmFuncsSet); 1484 for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys()) 1485 reportWarning("failed to disassemble missing function " + MissingDisasmFunc, 1486 FileName); 1487 } 1488 1489 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1490 const Target *TheTarget = getTarget(Obj); 1491 1492 // Package up features to be passed to target/subtarget 1493 SubtargetFeatures Features = Obj->getFeatures(); 1494 if (!MAttrs.empty()) 1495 for (unsigned I = 0; I != MAttrs.size(); ++I) 1496 Features.AddFeature(MAttrs[I]); 1497 1498 std::unique_ptr<const MCRegisterInfo> MRI( 1499 TheTarget->createMCRegInfo(TripleName)); 1500 if (!MRI) 1501 reportError(Obj->getFileName(), 1502 "no register info for target " + TripleName); 1503 1504 // Set up disassembler. 1505 std::unique_ptr<const MCAsmInfo> AsmInfo( 1506 TheTarget->createMCAsmInfo(*MRI, TripleName)); 1507 if (!AsmInfo) 1508 reportError(Obj->getFileName(), 1509 "no assembly info for target " + TripleName); 1510 std::unique_ptr<const MCSubtargetInfo> STI( 1511 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1512 if (!STI) 1513 reportError(Obj->getFileName(), 1514 "no subtarget info for target " + TripleName); 1515 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1516 if (!MII) 1517 reportError(Obj->getFileName(), 1518 "no instruction info for target " + TripleName); 1519 MCObjectFileInfo MOFI; 1520 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); 1521 // FIXME: for now initialize MCObjectFileInfo with default values 1522 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); 1523 1524 std::unique_ptr<MCDisassembler> DisAsm( 1525 TheTarget->createMCDisassembler(*STI, Ctx)); 1526 if (!DisAsm) 1527 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 1528 1529 // If we have an ARM object file, we need a second disassembler, because 1530 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 1531 // We use mapping symbols to switch between the two assemblers, where 1532 // appropriate. 1533 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 1534 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 1535 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) { 1536 if (STI->checkFeatures("+thumb-mode")) 1537 Features.AddFeature("-thumb-mode"); 1538 else 1539 Features.AddFeature("+thumb-mode"); 1540 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 1541 Features.getString())); 1542 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 1543 } 1544 1545 std::unique_ptr<const MCInstrAnalysis> MIA( 1546 TheTarget->createMCInstrAnalysis(MII.get())); 1547 1548 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1549 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1550 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1551 if (!IP) 1552 reportError(Obj->getFileName(), 1553 "no instruction printer for target " + TripleName); 1554 IP->setPrintImmHex(PrintImmHex); 1555 1556 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1557 SourcePrinter SP(Obj, TheTarget->getName()); 1558 1559 for (StringRef Opt : DisassemblerOptions) 1560 if (!IP->applyTargetSpecificCLOption(Opt)) 1561 reportError(Obj->getFileName(), 1562 "Unrecognized disassembler option: " + Opt); 1563 1564 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(), 1565 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, 1566 SP, InlineRelocs); 1567 } 1568 1569 void printRelocations(const ObjectFile *Obj) { 1570 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1571 "%08" PRIx64; 1572 // Regular objdump doesn't print relocations in non-relocatable object 1573 // files. 1574 if (!Obj->isRelocatableObject()) 1575 return; 1576 1577 // Build a mapping from relocation target to a vector of relocation 1578 // sections. Usually, there is an only one relocation section for 1579 // each relocated section. 1580 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 1581 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1582 if (Section.relocation_begin() == Section.relocation_end()) 1583 continue; 1584 const SectionRef TargetSec = *Section.getRelocatedSection(); 1585 SecToRelSec[TargetSec].push_back(Section); 1586 } 1587 1588 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 1589 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 1590 outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n"; 1591 1592 for (SectionRef Section : P.second) { 1593 for (const RelocationRef &Reloc : Section.relocations()) { 1594 uint64_t Address = Reloc.getOffset(); 1595 SmallString<32> RelocName; 1596 SmallString<32> ValueStr; 1597 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 1598 continue; 1599 Reloc.getTypeName(RelocName); 1600 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1601 reportError(std::move(E), Obj->getFileName()); 1602 1603 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 1604 << ValueStr << "\n"; 1605 } 1606 } 1607 outs() << "\n"; 1608 } 1609 } 1610 1611 void printDynamicRelocations(const ObjectFile *Obj) { 1612 // For the moment, this option is for ELF only 1613 if (!Obj->isELF()) 1614 return; 1615 1616 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1617 if (!Elf || Elf->getEType() != ELF::ET_DYN) { 1618 reportError(Obj->getFileName(), "not a dynamic object"); 1619 return; 1620 } 1621 1622 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1623 if (DynRelSec.empty()) 1624 return; 1625 1626 outs() << "DYNAMIC RELOCATION RECORDS\n"; 1627 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1628 for (const SectionRef &Section : DynRelSec) 1629 for (const RelocationRef &Reloc : Section.relocations()) { 1630 uint64_t Address = Reloc.getOffset(); 1631 SmallString<32> RelocName; 1632 SmallString<32> ValueStr; 1633 Reloc.getTypeName(RelocName); 1634 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1635 reportError(std::move(E), Obj->getFileName()); 1636 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 1637 << ValueStr << "\n"; 1638 } 1639 } 1640 1641 // Returns true if we need to show LMA column when dumping section headers. We 1642 // show it only when the platform is ELF and either we have at least one section 1643 // whose VMA and LMA are different and/or when --show-lma flag is used. 1644 static bool shouldDisplayLMA(const ObjectFile *Obj) { 1645 if (!Obj->isELF()) 1646 return false; 1647 for (const SectionRef &S : ToolSectionFilter(*Obj)) 1648 if (S.getAddress() != getELFSectionLMA(S)) 1649 return true; 1650 return ShowLMA; 1651 } 1652 1653 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) { 1654 // Default column width for names is 13 even if no names are that long. 1655 size_t MaxWidth = 13; 1656 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1657 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1658 MaxWidth = std::max(MaxWidth, Name.size()); 1659 } 1660 return MaxWidth; 1661 } 1662 1663 void printSectionHeaders(const ObjectFile *Obj) { 1664 size_t NameWidth = getMaxSectionNameWidth(Obj); 1665 size_t AddressWidth = 2 * Obj->getBytesInAddress(); 1666 bool HasLMAColumn = shouldDisplayLMA(Obj); 1667 if (HasLMAColumn) 1668 outs() << "Sections:\n" 1669 "Idx " 1670 << left_justify("Name", NameWidth) << " Size " 1671 << left_justify("VMA", AddressWidth) << " " 1672 << left_justify("LMA", AddressWidth) << " Type\n"; 1673 else 1674 outs() << "Sections:\n" 1675 "Idx " 1676 << left_justify("Name", NameWidth) << " Size " 1677 << left_justify("VMA", AddressWidth) << " Type\n"; 1678 1679 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1680 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1681 uint64_t VMA = Section.getAddress(); 1682 if (shouldAdjustVA(Section)) 1683 VMA += AdjustVMA; 1684 1685 uint64_t Size = Section.getSize(); 1686 1687 std::string Type = Section.isText() ? "TEXT" : ""; 1688 if (Section.isData()) 1689 Type += Type.empty() ? "DATA" : " DATA"; 1690 if (Section.isBSS()) 1691 Type += Type.empty() ? "BSS" : " BSS"; 1692 1693 if (HasLMAColumn) 1694 outs() << format("%3d %-*s %08" PRIx64 " ", (unsigned)Section.getIndex(), 1695 NameWidth, Name.str().c_str(), Size) 1696 << format_hex_no_prefix(VMA, AddressWidth) << " " 1697 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 1698 << " " << Type << "\n"; 1699 else 1700 outs() << format("%3d %-*s %08" PRIx64 " ", (unsigned)Section.getIndex(), 1701 NameWidth, Name.str().c_str(), Size) 1702 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 1703 } 1704 outs() << "\n"; 1705 } 1706 1707 void printSectionContents(const ObjectFile *Obj) { 1708 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1709 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1710 uint64_t BaseAddr = Section.getAddress(); 1711 uint64_t Size = Section.getSize(); 1712 if (!Size) 1713 continue; 1714 1715 outs() << "Contents of section " << Name << ":\n"; 1716 if (Section.isBSS()) { 1717 outs() << format("<skipping contents of bss section at [%04" PRIx64 1718 ", %04" PRIx64 ")>\n", 1719 BaseAddr, BaseAddr + Size); 1720 continue; 1721 } 1722 1723 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 1724 1725 // Dump out the content as hex and printable ascii characters. 1726 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 1727 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 1728 // Dump line of hex. 1729 for (std::size_t I = 0; I < 16; ++I) { 1730 if (I != 0 && I % 4 == 0) 1731 outs() << ' '; 1732 if (Addr + I < End) 1733 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 1734 << hexdigit(Contents[Addr + I] & 0xF, true); 1735 else 1736 outs() << " "; 1737 } 1738 // Print ascii. 1739 outs() << " "; 1740 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 1741 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 1742 outs() << Contents[Addr + I]; 1743 else 1744 outs() << "."; 1745 } 1746 outs() << "\n"; 1747 } 1748 } 1749 } 1750 1751 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName, 1752 StringRef ArchitectureName) { 1753 outs() << "SYMBOL TABLE:\n"; 1754 1755 if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) { 1756 printCOFFSymbolTable(Coff); 1757 return; 1758 } 1759 1760 const StringRef FileName = O->getFileName(); 1761 for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) { 1762 const SymbolRef &Symbol = *I; 1763 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 1764 ArchitectureName); 1765 if ((Address < StartAddress) || (Address > StopAddress)) 1766 continue; 1767 SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName, 1768 ArchiveName, ArchitectureName); 1769 uint32_t Flags = Symbol.getFlags(); 1770 section_iterator Section = unwrapOrError(Symbol.getSection(), FileName, 1771 ArchiveName, ArchitectureName); 1772 StringRef Name; 1773 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { 1774 if (Expected<StringRef> NameOrErr = Section->getName()) 1775 Name = *NameOrErr; 1776 else 1777 consumeError(NameOrErr.takeError()); 1778 1779 } else { 1780 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 1781 ArchitectureName); 1782 } 1783 1784 bool Global = Flags & SymbolRef::SF_Global; 1785 bool Weak = Flags & SymbolRef::SF_Weak; 1786 bool Absolute = Flags & SymbolRef::SF_Absolute; 1787 bool Common = Flags & SymbolRef::SF_Common; 1788 bool Hidden = Flags & SymbolRef::SF_Hidden; 1789 1790 char GlobLoc = ' '; 1791 if (Type != SymbolRef::ST_Unknown) 1792 GlobLoc = Global ? 'g' : 'l'; 1793 char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 1794 ? 'd' : ' '; 1795 char FileFunc = ' '; 1796 if (Type == SymbolRef::ST_File) 1797 FileFunc = 'f'; 1798 else if (Type == SymbolRef::ST_Function) 1799 FileFunc = 'F'; 1800 else if (Type == SymbolRef::ST_Data) 1801 FileFunc = 'O'; 1802 1803 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : 1804 "%08" PRIx64; 1805 1806 outs() << format(Fmt, Address) << " " 1807 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 1808 << (Weak ? 'w' : ' ') // Weak? 1809 << ' ' // Constructor. Not supported yet. 1810 << ' ' // Warning. Not supported yet. 1811 << ' ' // Indirect reference to another symbol. 1812 << Debug // Debugging (d) or dynamic (D) symbol. 1813 << FileFunc // Name of function (F), file (f) or object (O). 1814 << ' '; 1815 if (Absolute) { 1816 outs() << "*ABS*"; 1817 } else if (Common) { 1818 outs() << "*COM*"; 1819 } else if (Section == O->section_end()) { 1820 outs() << "*UND*"; 1821 } else { 1822 if (const MachOObjectFile *MachO = 1823 dyn_cast<const MachOObjectFile>(O)) { 1824 DataRefImpl DR = Section->getRawDataRefImpl(); 1825 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1826 outs() << SegmentName << ","; 1827 } 1828 StringRef SectionName = 1829 unwrapOrError(Section->getName(), O->getFileName()); 1830 outs() << SectionName; 1831 } 1832 1833 if (Common || isa<ELFObjectFileBase>(O)) { 1834 uint64_t Val = 1835 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); 1836 outs() << format("\t%08" PRIx64, Val); 1837 } 1838 1839 if (isa<ELFObjectFileBase>(O)) { 1840 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 1841 switch (Other) { 1842 case ELF::STV_DEFAULT: 1843 break; 1844 case ELF::STV_INTERNAL: 1845 outs() << " .internal"; 1846 break; 1847 case ELF::STV_HIDDEN: 1848 outs() << " .hidden"; 1849 break; 1850 case ELF::STV_PROTECTED: 1851 outs() << " .protected"; 1852 break; 1853 default: 1854 outs() << format(" 0x%02x", Other); 1855 break; 1856 } 1857 } else if (Hidden) { 1858 outs() << " .hidden"; 1859 } 1860 1861 if (Demangle) 1862 outs() << ' ' << demangle(Name) << '\n'; 1863 else 1864 outs() << ' ' << Name << '\n'; 1865 } 1866 } 1867 1868 static void printUnwindInfo(const ObjectFile *O) { 1869 outs() << "Unwind info:\n\n"; 1870 1871 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 1872 printCOFFUnwindInfo(Coff); 1873 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 1874 printMachOUnwindInfo(MachO); 1875 else 1876 // TODO: Extract DWARF dump tool to objdump. 1877 WithColor::error(errs(), ToolName) 1878 << "This operation is only currently supported " 1879 "for COFF and MachO object files.\n"; 1880 } 1881 1882 /// Dump the raw contents of the __clangast section so the output can be piped 1883 /// into llvm-bcanalyzer. 1884 void printRawClangAST(const ObjectFile *Obj) { 1885 if (outs().is_displayed()) { 1886 WithColor::error(errs(), ToolName) 1887 << "The -raw-clang-ast option will dump the raw binary contents of " 1888 "the clang ast section.\n" 1889 "Please redirect the output to a file or another program such as " 1890 "llvm-bcanalyzer.\n"; 1891 return; 1892 } 1893 1894 StringRef ClangASTSectionName("__clangast"); 1895 if (isa<COFFObjectFile>(Obj)) { 1896 ClangASTSectionName = "clangast"; 1897 } 1898 1899 Optional<object::SectionRef> ClangASTSection; 1900 for (auto Sec : ToolSectionFilter(*Obj)) { 1901 StringRef Name; 1902 if (Expected<StringRef> NameOrErr = Sec.getName()) 1903 Name = *NameOrErr; 1904 else 1905 consumeError(NameOrErr.takeError()); 1906 1907 if (Name == ClangASTSectionName) { 1908 ClangASTSection = Sec; 1909 break; 1910 } 1911 } 1912 if (!ClangASTSection) 1913 return; 1914 1915 StringRef ClangASTContents = unwrapOrError( 1916 ClangASTSection.getValue().getContents(), Obj->getFileName()); 1917 outs().write(ClangASTContents.data(), ClangASTContents.size()); 1918 } 1919 1920 static void printFaultMaps(const ObjectFile *Obj) { 1921 StringRef FaultMapSectionName; 1922 1923 if (isa<ELFObjectFileBase>(Obj)) { 1924 FaultMapSectionName = ".llvm_faultmaps"; 1925 } else if (isa<MachOObjectFile>(Obj)) { 1926 FaultMapSectionName = "__llvm_faultmaps"; 1927 } else { 1928 WithColor::error(errs(), ToolName) 1929 << "This operation is only currently supported " 1930 "for ELF and Mach-O executable files.\n"; 1931 return; 1932 } 1933 1934 Optional<object::SectionRef> FaultMapSection; 1935 1936 for (auto Sec : ToolSectionFilter(*Obj)) { 1937 StringRef Name; 1938 if (Expected<StringRef> NameOrErr = Sec.getName()) 1939 Name = *NameOrErr; 1940 else 1941 consumeError(NameOrErr.takeError()); 1942 1943 if (Name == FaultMapSectionName) { 1944 FaultMapSection = Sec; 1945 break; 1946 } 1947 } 1948 1949 outs() << "FaultMap table:\n"; 1950 1951 if (!FaultMapSection.hasValue()) { 1952 outs() << "<not found>\n"; 1953 return; 1954 } 1955 1956 StringRef FaultMapContents = 1957 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName()); 1958 FaultMapParser FMP(FaultMapContents.bytes_begin(), 1959 FaultMapContents.bytes_end()); 1960 1961 outs() << FMP; 1962 } 1963 1964 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 1965 if (O->isELF()) { 1966 printELFFileHeader(O); 1967 printELFDynamicSection(O); 1968 printELFSymbolVersionInfo(O); 1969 return; 1970 } 1971 if (O->isCOFF()) 1972 return printCOFFFileHeader(O); 1973 if (O->isWasm()) 1974 return printWasmFileHeader(O); 1975 if (O->isMachO()) { 1976 printMachOFileHeader(O); 1977 if (!OnlyFirst) 1978 printMachOLoadCommands(O); 1979 return; 1980 } 1981 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 1982 } 1983 1984 static void printFileHeaders(const ObjectFile *O) { 1985 if (!O->isELF() && !O->isCOFF()) 1986 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 1987 1988 Triple::ArchType AT = O->getArch(); 1989 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 1990 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 1991 1992 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1993 outs() << "start address: " 1994 << "0x" << format(Fmt.data(), Address) << "\n\n"; 1995 } 1996 1997 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 1998 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 1999 if (!ModeOrErr) { 2000 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2001 consumeError(ModeOrErr.takeError()); 2002 return; 2003 } 2004 sys::fs::perms Mode = ModeOrErr.get(); 2005 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2006 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2007 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2008 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2009 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2010 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2011 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2012 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2013 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2014 2015 outs() << " "; 2016 2017 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2018 unwrapOrError(C.getGID(), Filename), 2019 unwrapOrError(C.getRawSize(), Filename)); 2020 2021 StringRef RawLastModified = C.getRawLastModified(); 2022 unsigned Seconds; 2023 if (RawLastModified.getAsInteger(10, Seconds)) 2024 outs() << "(date: \"" << RawLastModified 2025 << "\" contains non-decimal chars) "; 2026 else { 2027 // Since ctime(3) returns a 26 character string of the form: 2028 // "Sun Sep 16 01:03:52 1973\n\0" 2029 // just print 24 characters. 2030 time_t t = Seconds; 2031 outs() << format("%.24s ", ctime(&t)); 2032 } 2033 2034 StringRef Name = ""; 2035 Expected<StringRef> NameOrErr = C.getName(); 2036 if (!NameOrErr) { 2037 consumeError(NameOrErr.takeError()); 2038 Name = unwrapOrError(C.getRawName(), Filename); 2039 } else { 2040 Name = NameOrErr.get(); 2041 } 2042 outs() << Name << "\n"; 2043 } 2044 2045 // For ELF only now. 2046 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2047 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2048 if (Elf->getEType() != ELF::ET_REL) 2049 return true; 2050 } 2051 return false; 2052 } 2053 2054 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2055 uint64_t Start, uint64_t Stop) { 2056 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2057 return; 2058 2059 for (const SectionRef &Section : Obj->sections()) 2060 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2061 uint64_t BaseAddr = Section.getAddress(); 2062 uint64_t Size = Section.getSize(); 2063 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2064 return; 2065 } 2066 2067 if (StartAddress.getNumOccurrences() == 0) 2068 reportWarning("no section has address less than 0x" + 2069 Twine::utohexstr(Stop) + " specified by --stop-address", 2070 Obj->getFileName()); 2071 else if (StopAddress.getNumOccurrences() == 0) 2072 reportWarning("no section has address greater than or equal to 0x" + 2073 Twine::utohexstr(Start) + " specified by --start-address", 2074 Obj->getFileName()); 2075 else 2076 reportWarning("no section overlaps the range [0x" + 2077 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2078 ") specified by --start-address/--stop-address", 2079 Obj->getFileName()); 2080 } 2081 2082 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2083 const Archive::Child *C = nullptr) { 2084 // Avoid other output when using a raw option. 2085 if (!RawClangAST) { 2086 outs() << '\n'; 2087 if (A) 2088 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2089 else 2090 outs() << O->getFileName(); 2091 outs() << ":\tfile format " << O->getFileFormatName() << "\n\n"; 2092 } 2093 2094 if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences()) 2095 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2096 2097 // Note: the order here matches GNU objdump for compatability. 2098 StringRef ArchiveName = A ? A->getFileName() : ""; 2099 if (ArchiveHeaders && !MachOOpt && C) 2100 printArchiveChild(ArchiveName, *C); 2101 if (FileHeaders) 2102 printFileHeaders(O); 2103 if (PrivateHeaders || FirstPrivateHeader) 2104 printPrivateFileHeaders(O, FirstPrivateHeader); 2105 if (SectionHeaders) 2106 printSectionHeaders(O); 2107 if (SymbolTable) 2108 printSymbolTable(O, ArchiveName); 2109 if (DwarfDumpType != DIDT_Null) { 2110 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2111 // Dump the complete DWARF structure. 2112 DIDumpOptions DumpOpts; 2113 DumpOpts.DumpType = DwarfDumpType; 2114 DICtx->dump(outs(), DumpOpts); 2115 } 2116 if (Relocations && !Disassemble) 2117 printRelocations(O); 2118 if (DynamicRelocations) 2119 printDynamicRelocations(O); 2120 if (SectionContents) 2121 printSectionContents(O); 2122 if (Disassemble) 2123 disassembleObject(O, Relocations); 2124 if (UnwindInfo) 2125 printUnwindInfo(O); 2126 2127 // Mach-O specific options: 2128 if (ExportsTrie) 2129 printExportsTrie(O); 2130 if (Rebase) 2131 printRebaseTable(O); 2132 if (Bind) 2133 printBindTable(O); 2134 if (LazyBind) 2135 printLazyBindTable(O); 2136 if (WeakBind) 2137 printWeakBindTable(O); 2138 2139 // Other special sections: 2140 if (RawClangAST) 2141 printRawClangAST(O); 2142 if (FaultMapSection) 2143 printFaultMaps(O); 2144 } 2145 2146 static void dumpObject(const COFFImportFile *I, const Archive *A, 2147 const Archive::Child *C = nullptr) { 2148 StringRef ArchiveName = A ? A->getFileName() : ""; 2149 2150 // Avoid other output when using a raw option. 2151 if (!RawClangAST) 2152 outs() << '\n' 2153 << ArchiveName << "(" << I->getFileName() << ")" 2154 << ":\tfile format COFF-import-file" 2155 << "\n\n"; 2156 2157 if (ArchiveHeaders && !MachOOpt && C) 2158 printArchiveChild(ArchiveName, *C); 2159 if (SymbolTable) 2160 printCOFFSymbolTable(I); 2161 } 2162 2163 /// Dump each object file in \a a; 2164 static void dumpArchive(const Archive *A) { 2165 Error Err = Error::success(); 2166 unsigned I = -1; 2167 for (auto &C : A->children(Err)) { 2168 ++I; 2169 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2170 if (!ChildOrErr) { 2171 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2172 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2173 continue; 2174 } 2175 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2176 dumpObject(O, A, &C); 2177 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2178 dumpObject(I, A, &C); 2179 else 2180 reportError(errorCodeToError(object_error::invalid_file_type), 2181 A->getFileName()); 2182 } 2183 if (Err) 2184 reportError(std::move(Err), A->getFileName()); 2185 } 2186 2187 /// Open file and figure out how to dump it. 2188 static void dumpInput(StringRef file) { 2189 // If we are using the Mach-O specific object file parser, then let it parse 2190 // the file and process the command line options. So the -arch flags can 2191 // be used to select specific slices, etc. 2192 if (MachOOpt) { 2193 parseInputMachO(file); 2194 return; 2195 } 2196 2197 // Attempt to open the binary. 2198 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2199 Binary &Binary = *OBinary.getBinary(); 2200 2201 if (Archive *A = dyn_cast<Archive>(&Binary)) 2202 dumpArchive(A); 2203 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2204 dumpObject(O); 2205 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2206 parseInputMachO(UB); 2207 else 2208 reportError(errorCodeToError(object_error::invalid_file_type), file); 2209 } 2210 } // namespace llvm 2211 2212 int main(int argc, char **argv) { 2213 using namespace llvm; 2214 InitLLVM X(argc, argv); 2215 const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat}; 2216 cl::HideUnrelatedOptions(OptionFilters); 2217 2218 // Initialize targets and assembly printers/parsers. 2219 InitializeAllTargetInfos(); 2220 InitializeAllTargetMCs(); 2221 InitializeAllDisassemblers(); 2222 2223 // Register the target printer for --version. 2224 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); 2225 2226 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); 2227 2228 if (StartAddress >= StopAddress) 2229 reportCmdLineError("start address should be less than stop address"); 2230 2231 ToolName = argv[0]; 2232 2233 // Defaults to a.out if no filenames specified. 2234 if (InputFilenames.empty()) 2235 InputFilenames.push_back("a.out"); 2236 2237 if (AllHeaders) 2238 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 2239 SectionHeaders = SymbolTable = true; 2240 2241 if (DisassembleAll || PrintSource || PrintLines || 2242 (!DisassembleFunctions.empty())) 2243 Disassemble = true; 2244 2245 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 2246 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 2247 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 2248 !UnwindInfo && !FaultMapSection && 2249 !(MachOOpt && 2250 (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie || 2251 FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind || 2252 LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders || 2253 WeakBind || !FilterSections.empty()))) { 2254 cl::PrintHelpMessage(); 2255 return 2; 2256 } 2257 2258 DisasmFuncsSet.insert(DisassembleFunctions.begin(), 2259 DisassembleFunctions.end()); 2260 2261 llvm::for_each(InputFilenames, dumpInput); 2262 2263 warnOnNoMatchForSections(); 2264 2265 return EXIT_SUCCESS; 2266 } 2267