xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision bcbe98bcb9496a7881b7a29af3c488d0a855d032)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringSet.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/Demangle/Demangle.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/MachOUniversal.h"
45 #include "llvm/Object/ObjectFile.h"
46 #include "llvm/Object/Wasm.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Errc.h"
51 #include "llvm/Support/FileSystem.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/Host.h"
55 #include "llvm/Support/InitLLVM.h"
56 #include "llvm/Support/MemoryBuffer.h"
57 #include "llvm/Support/SourceMgr.h"
58 #include "llvm/Support/StringSaver.h"
59 #include "llvm/Support/TargetRegistry.h"
60 #include "llvm/Support/TargetSelect.h"
61 #include "llvm/Support/WithColor.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cctype>
65 #include <cstring>
66 #include <system_error>
67 #include <unordered_map>
68 #include <utility>
69 
70 using namespace llvm;
71 using namespace object;
72 
73 cl::opt<bool>
74     llvm::AllHeaders("all-headers",
75                      cl::desc("Display all available header information"));
76 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
77                                  cl::NotHidden, cl::aliasopt(AllHeaders));
78 
79 static cl::list<std::string>
80 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
81 
82 cl::opt<bool>
83 llvm::Disassemble("disassemble",
84   cl::desc("Display assembler mnemonics for the machine instructions"));
85 static cl::alias Disassembled("d", cl::desc("Alias for --disassemble"),
86                               cl::NotHidden, cl::aliasopt(Disassemble));
87 
88 cl::opt<bool>
89 llvm::DisassembleAll("disassemble-all",
90   cl::desc("Display assembler mnemonics for the machine instructions"));
91 static cl::alias DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
92                                  cl::NotHidden, cl::aliasopt(DisassembleAll));
93 
94 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
95                              cl::init(false));
96 
97 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
98                                cl::NotHidden, cl::aliasopt(llvm::Demangle));
99 
100 static cl::list<std::string>
101 DisassembleFunctions("df",
102                      cl::CommaSeparated,
103                      cl::desc("List of functions to disassemble"));
104 static StringSet<> DisasmFuncsSet;
105 
106 cl::opt<bool>
107 llvm::Relocations("reloc",
108                   cl::desc("Display the relocation entries in the file"));
109 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
110                                   cl::NotHidden,
111                                   cl::aliasopt(llvm::Relocations));
112 
113 cl::opt<bool>
114 llvm::DynamicRelocations("dynamic-reloc",
115   cl::desc("Display the dynamic relocation entries in the file"));
116 static cl::alias DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
117                                      cl::NotHidden,
118                                      cl::aliasopt(DynamicRelocations));
119 
120 cl::opt<bool>
121     llvm::SectionContents("full-contents",
122                           cl::desc("Display the content of each section"));
123 static cl::alias SectionContentsShort("s",
124                                       cl::desc("Alias for --full-contents"),
125                                       cl::NotHidden,
126                                       cl::aliasopt(SectionContents));
127 
128 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
129 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
130                                   cl::NotHidden,
131                                   cl::aliasopt(llvm::SymbolTable));
132 
133 cl::opt<bool>
134 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
135 
136 cl::opt<bool>
137 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
138 
139 cl::opt<bool>
140 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
141 
142 cl::opt<bool>
143 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
144 
145 cl::opt<bool>
146 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
147 
148 cl::opt<bool>
149 llvm::RawClangAST("raw-clang-ast",
150     cl::desc("Dump the raw binary contents of the clang AST section"));
151 
152 static cl::opt<bool>
153 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
154 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
155                         cl::aliasopt(MachOOpt));
156 
157 cl::opt<std::string>
158 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
159                                     "see -version for available targets"));
160 
161 cl::opt<std::string>
162 llvm::MCPU("mcpu",
163      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
164      cl::value_desc("cpu-name"),
165      cl::init(""));
166 
167 cl::opt<std::string>
168 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
169                                 "see -version for available targets"));
170 
171 cl::opt<bool>
172 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
173                                                  "headers for each section."));
174 static cl::alias SectionHeadersShort("headers",
175                                      cl::desc("Alias for --section-headers"),
176                                      cl::NotHidden,
177                                      cl::aliasopt(SectionHeaders));
178 static cl::alias SectionHeadersShorter("h",
179                                        cl::desc("Alias for --section-headers"),
180                                        cl::NotHidden,
181                                        cl::aliasopt(SectionHeaders));
182 
183 cl::list<std::string>
184 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
185                                          "With -macho dump segment,section"));
186 cl::alias static FilterSectionsj("j", cl::desc("Alias for --section"),
187                                  cl::NotHidden,
188                                  cl::aliasopt(llvm::FilterSections));
189 
190 cl::list<std::string>
191 llvm::MAttrs("mattr",
192   cl::CommaSeparated,
193   cl::desc("Target specific attributes"),
194   cl::value_desc("a1,+a2,-a3,..."));
195 
196 cl::opt<bool>
197 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
198                                                  "instructions, do not print "
199                                                  "the instruction bytes."));
200 cl::opt<bool>
201 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
202 
203 cl::opt<bool>
204 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
205 
206 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
207                                  cl::NotHidden, cl::aliasopt(UnwindInfo));
208 
209 cl::opt<bool>
210 llvm::PrivateHeaders("private-headers",
211                      cl::desc("Display format specific file headers"));
212 
213 cl::opt<bool>
214 llvm::FirstPrivateHeader("private-header",
215                          cl::desc("Display only the first format specific file "
216                                   "header"));
217 
218 static cl::alias PrivateHeadersShort("p",
219                                      cl::desc("Alias for --private-headers"),
220                                      cl::NotHidden,
221                                      cl::aliasopt(PrivateHeaders));
222 
223 cl::opt<bool> llvm::FileHeaders(
224     "file-headers",
225     cl::desc("Display the contents of the overall file header"));
226 
227 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
228                                   cl::NotHidden, cl::aliasopt(FileHeaders));
229 
230 cl::opt<bool>
231     llvm::ArchiveHeaders("archive-headers",
232                          cl::desc("Display archive header information"));
233 
234 cl::alias ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
235                               cl::NotHidden, cl::aliasopt(ArchiveHeaders));
236 
237 cl::opt<bool>
238     llvm::PrintImmHex("print-imm-hex",
239                       cl::desc("Use hex format for immediate values"));
240 
241 cl::opt<bool> PrintFaultMaps("fault-map-section",
242                              cl::desc("Display contents of faultmap section"));
243 
244 cl::opt<DIDumpType> llvm::DwarfDumpType(
245     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
246     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
247 
248 cl::opt<bool> PrintSource(
249     "source",
250     cl::desc(
251         "Display source inlined with disassembly. Implies disassemble object"));
252 
253 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), cl::NotHidden,
254                            cl::aliasopt(PrintSource));
255 
256 cl::opt<bool> PrintLines("line-numbers",
257                          cl::desc("Display source line numbers with "
258                                   "disassembly. Implies disassemble object"));
259 
260 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
261                           cl::NotHidden, cl::aliasopt(PrintLines));
262 
263 cl::opt<unsigned long long>
264     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
265                  cl::value_desc("address"), cl::init(0));
266 cl::opt<unsigned long long>
267     StopAddress("stop-address",
268                 cl::desc("Stop disassembly at address"),
269                 cl::value_desc("address"), cl::init(UINT64_MAX));
270 
271 cl::opt<bool> DisassembleZeroes(
272                 "disassemble-zeroes",
273                 cl::desc("Do not skip blocks of zeroes when disassembling"));
274 cl::alias DisassembleZeroesShort("z",
275                                  cl::desc("Alias for --disassemble-zeroes"),
276                                  cl::NotHidden,
277                                  cl::aliasopt(DisassembleZeroes));
278 
279 static StringRef ToolName;
280 
281 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
282 
283 SectionFilter llvm::ToolSectionFilter(llvm::object::ObjectFile const &O) {
284   return SectionFilter(
285       [](llvm::object::SectionRef const &S) {
286         if (FilterSections.empty())
287           return true;
288         llvm::StringRef String;
289         std::error_code error = S.getName(String);
290         if (error)
291           return false;
292         return is_contained(FilterSections, String);
293       },
294       O);
295 }
296 
297 void llvm::error(std::error_code EC) {
298   if (!EC)
299     return;
300   WithColor::error(errs(), ToolName)
301       << "reading file: " << EC.message() << ".\n";
302   errs().flush();
303   exit(1);
304 }
305 
306 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
307   WithColor::error(errs(), ToolName) << Message << ".\n";
308   errs().flush();
309   exit(1);
310 }
311 
312 void llvm::warn(StringRef Message) {
313   WithColor::warning(errs(), ToolName) << Message << ".\n";
314   errs().flush();
315 }
316 
317 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
318                                                 Twine Message) {
319   WithColor::error(errs(), ToolName)
320       << "'" << File << "': " << Message << ".\n";
321   exit(1);
322 }
323 
324 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
325                                                 std::error_code EC) {
326   assert(EC);
327   WithColor::error(errs(), ToolName)
328       << "'" << File << "': " << EC.message() << ".\n";
329   exit(1);
330 }
331 
332 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
333                                                 llvm::Error E) {
334   assert(E);
335   std::string Buf;
336   raw_string_ostream OS(Buf);
337   logAllUnhandledErrors(std::move(E), OS);
338   OS.flush();
339   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
340   exit(1);
341 }
342 
343 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
344                                                 StringRef FileName,
345                                                 llvm::Error E,
346                                                 StringRef ArchitectureName) {
347   assert(E);
348   WithColor::error(errs(), ToolName);
349   if (ArchiveName != "")
350     errs() << ArchiveName << "(" << FileName << ")";
351   else
352     errs() << "'" << FileName << "'";
353   if (!ArchitectureName.empty())
354     errs() << " (for architecture " << ArchitectureName << ")";
355   std::string Buf;
356   raw_string_ostream OS(Buf);
357   logAllUnhandledErrors(std::move(E), OS);
358   OS.flush();
359   errs() << ": " << Buf;
360   exit(1);
361 }
362 
363 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
364                                                 const object::Archive::Child &C,
365                                                 llvm::Error E,
366                                                 StringRef ArchitectureName) {
367   Expected<StringRef> NameOrErr = C.getName();
368   // TODO: if we have a error getting the name then it would be nice to print
369   // the index of which archive member this is and or its offset in the
370   // archive instead of "???" as the name.
371   if (!NameOrErr) {
372     consumeError(NameOrErr.takeError());
373     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
374   } else
375     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
376                        ArchitectureName);
377 }
378 
379 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
380   // Figure out the target triple.
381   llvm::Triple TheTriple("unknown-unknown-unknown");
382   if (TripleName.empty()) {
383     if (Obj)
384       TheTriple = Obj->makeTriple();
385   } else {
386     TheTriple.setTriple(Triple::normalize(TripleName));
387 
388     // Use the triple, but also try to combine with ARM build attributes.
389     if (Obj) {
390       auto Arch = Obj->getArch();
391       if (Arch == Triple::arm || Arch == Triple::armeb)
392         Obj->setARMSubArch(TheTriple);
393     }
394   }
395 
396   // Get the target specific parser.
397   std::string Error;
398   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
399                                                          Error);
400   if (!TheTarget) {
401     if (Obj)
402       report_error(Obj->getFileName(), "can't find target: " + Error);
403     else
404       error("can't find target: " + Error);
405   }
406 
407   // Update the triple name and return the found target.
408   TripleName = TheTriple.getTriple();
409   return TheTarget;
410 }
411 
412 bool llvm::isRelocAddressLess(RelocationRef A, RelocationRef B) {
413   return A.getOffset() < B.getOffset();
414 }
415 
416 static std::error_code getRelocationValueString(const RelocationRef &Rel,
417                                                 SmallVectorImpl<char> &Result) {
418   const ObjectFile *Obj = Rel.getObject();
419   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
420     return getELFRelocationValueString(ELF, Rel, Result);
421   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
422     return getCOFFRelocationValueString(COFF, Rel, Result);
423   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
424     return getWasmRelocationValueString(Wasm, Rel, Result);
425   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
426     return getMachORelocationValueString(MachO, Rel, Result);
427   llvm_unreachable("unknown object file format");
428 }
429 
430 /// Indicates whether this relocation should hidden when listing
431 /// relocations, usually because it is the trailing part of a multipart
432 /// relocation that will be printed as part of the leading relocation.
433 static bool getHidden(RelocationRef RelRef) {
434   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
435   if (!MachO)
436     return false;
437 
438   unsigned Arch = MachO->getArch();
439   DataRefImpl Rel = RelRef.getRawDataRefImpl();
440   uint64_t Type = MachO->getRelocationType(Rel);
441 
442   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
443   // is always hidden.
444   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
445     return Type == MachO::GENERIC_RELOC_PAIR;
446 
447   if (Arch == Triple::x86_64) {
448     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
449     // an X86_64_RELOC_SUBTRACTOR.
450     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
451       DataRefImpl RelPrev = Rel;
452       RelPrev.d.a--;
453       uint64_t PrevType = MachO->getRelocationType(RelPrev);
454       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
455         return true;
456     }
457   }
458 
459   return false;
460 }
461 
462 namespace {
463 class SourcePrinter {
464 protected:
465   DILineInfo OldLineInfo;
466   const ObjectFile *Obj = nullptr;
467   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
468   // File name to file contents of source
469   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
470   // Mark the line endings of the cached source
471   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
472 
473 private:
474   bool cacheSource(const DILineInfo& LineInfoFile);
475 
476 public:
477   SourcePrinter() = default;
478   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
479     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
480         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
481         DefaultArch);
482     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
483   }
484   virtual ~SourcePrinter() = default;
485   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
486                                StringRef Delimiter = "; ");
487 };
488 
489 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
490   std::unique_ptr<MemoryBuffer> Buffer;
491   if (LineInfo.Source) {
492     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
493   } else {
494     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
495     if (!BufferOrError)
496       return false;
497     Buffer = std::move(*BufferOrError);
498   }
499   // Chomp the file to get lines
500   size_t BufferSize = Buffer->getBufferSize();
501   const char *BufferStart = Buffer->getBufferStart();
502   for (const char *Start = BufferStart, *End = BufferStart;
503        End < BufferStart + BufferSize; End++)
504     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
505         (*End == '\r' && *(End + 1) == '\n')) {
506       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
507       if (*End == '\r')
508         End++;
509       Start = End + 1;
510     }
511   SourceCache[LineInfo.FileName] = std::move(Buffer);
512   return true;
513 }
514 
515 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
516                                     StringRef Delimiter) {
517   if (!Symbolizer)
518     return;
519   DILineInfo LineInfo = DILineInfo();
520   auto ExpectecLineInfo =
521       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
522   if (!ExpectecLineInfo)
523     consumeError(ExpectecLineInfo.takeError());
524   else
525     LineInfo = *ExpectecLineInfo;
526 
527   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
528       LineInfo.Line == 0)
529     return;
530 
531   if (PrintLines)
532     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
533   if (PrintSource) {
534     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
535       if (!cacheSource(LineInfo))
536         return;
537     auto FileBuffer = SourceCache.find(LineInfo.FileName);
538     if (FileBuffer != SourceCache.end()) {
539       auto LineBuffer = LineCache.find(LineInfo.FileName);
540       if (LineBuffer != LineCache.end()) {
541         if (LineInfo.Line > LineBuffer->second.size())
542           return;
543         // Vector begins at 0, line numbers are non-zero
544         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
545            << "\n";
546       }
547     }
548   }
549   OldLineInfo = LineInfo;
550 }
551 
552 static bool isArmElf(const ObjectFile *Obj) {
553   return (Obj->isELF() &&
554           (Obj->getArch() == Triple::aarch64 ||
555            Obj->getArch() == Triple::aarch64_be ||
556            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
557            Obj->getArch() == Triple::thumb ||
558            Obj->getArch() == Triple::thumbeb));
559 }
560 
561 class PrettyPrinter {
562 public:
563   virtual ~PrettyPrinter() = default;
564   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
565                          ArrayRef<uint8_t> Bytes, uint64_t Address,
566                          raw_ostream &OS, StringRef Annot,
567                          MCSubtargetInfo const &STI, SourcePrinter *SP,
568                          std::vector<RelocationRef> *Rels = nullptr) {
569     if (SP && (PrintSource || PrintLines))
570       SP->printSourceLine(OS, Address);
571     if (!NoLeadingAddr)
572       OS << format("%8" PRIx64 ":", Address);
573     if (!NoShowRawInsn) {
574       OS << "\t";
575       dumpBytes(Bytes, OS);
576     }
577     if (MI)
578       IP.printInst(MI, OS, "", STI);
579     else
580       OS << " <unknown>";
581   }
582 };
583 PrettyPrinter PrettyPrinterInst;
584 class HexagonPrettyPrinter : public PrettyPrinter {
585 public:
586   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
587                  raw_ostream &OS) {
588     uint32_t opcode =
589       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
590     if (!NoLeadingAddr)
591       OS << format("%8" PRIx64 ":", Address);
592     if (!NoShowRawInsn) {
593       OS << "\t";
594       dumpBytes(Bytes.slice(0, 4), OS);
595       OS << format("%08" PRIx32, opcode);
596     }
597   }
598   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
599                  uint64_t Address, raw_ostream &OS, StringRef Annot,
600                  MCSubtargetInfo const &STI, SourcePrinter *SP,
601                  std::vector<RelocationRef> *Rels) override {
602     if (SP && (PrintSource || PrintLines))
603       SP->printSourceLine(OS, Address, "");
604     if (!MI) {
605       printLead(Bytes, Address, OS);
606       OS << " <unknown>";
607       return;
608     }
609     std::string Buffer;
610     {
611       raw_string_ostream TempStream(Buffer);
612       IP.printInst(MI, TempStream, "", STI);
613     }
614     StringRef Contents(Buffer);
615     // Split off bundle attributes
616     auto PacketBundle = Contents.rsplit('\n');
617     // Split off first instruction from the rest
618     auto HeadTail = PacketBundle.first.split('\n');
619     auto Preamble = " { ";
620     auto Separator = "";
621     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
622     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
623     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
624 
625     // Hexagon's packets require relocations to be inline rather than
626     // clustered at the end of the packet.
627     auto PrintReloc = [&]() -> void {
628       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address)) {
629         if (RelCur->getOffset() == Address) {
630           SmallString<16> Name;
631           SmallString<32> Val;
632           RelCur->getTypeName(Name);
633           error(getRelocationValueString(*RelCur, Val));
634           OS << Separator << format(Fmt.data(), Address) << Name << "\t" << Val
635                 << "\n";
636           return;
637         }
638         ++RelCur;
639       }
640     };
641 
642     while (!HeadTail.first.empty()) {
643       OS << Separator;
644       Separator = "\n";
645       if (SP && (PrintSource || PrintLines))
646         SP->printSourceLine(OS, Address, "");
647       printLead(Bytes, Address, OS);
648       OS << Preamble;
649       Preamble = "   ";
650       StringRef Inst;
651       auto Duplex = HeadTail.first.split('\v');
652       if (!Duplex.second.empty()) {
653         OS << Duplex.first;
654         OS << "; ";
655         Inst = Duplex.second;
656       }
657       else
658         Inst = HeadTail.first;
659       OS << Inst;
660       HeadTail = HeadTail.second.split('\n');
661       if (HeadTail.first.empty())
662         OS << " } " << PacketBundle.second;
663       PrintReloc();
664       Bytes = Bytes.slice(4);
665       Address += 4;
666     }
667   }
668 };
669 HexagonPrettyPrinter HexagonPrettyPrinterInst;
670 
671 class AMDGCNPrettyPrinter : public PrettyPrinter {
672 public:
673   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
674                  uint64_t Address, raw_ostream &OS, StringRef Annot,
675                  MCSubtargetInfo const &STI, SourcePrinter *SP,
676                  std::vector<RelocationRef> *Rels) override {
677     if (SP && (PrintSource || PrintLines))
678       SP->printSourceLine(OS, Address);
679 
680     typedef support::ulittle32_t U32;
681 
682     if (MI) {
683       SmallString<40> InstStr;
684       raw_svector_ostream IS(InstStr);
685 
686       IP.printInst(MI, IS, "", STI);
687 
688       OS << left_justify(IS.str(), 60);
689     } else {
690       // an unrecognized encoding - this is probably data so represent it
691       // using the .long directive, or .byte directive if fewer than 4 bytes
692       // remaining
693       if (Bytes.size() >= 4) {
694         OS << format("\t.long 0x%08" PRIx32 " ",
695                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
696         OS.indent(42);
697       } else {
698           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
699           for (unsigned int i = 1; i < Bytes.size(); i++)
700             OS << format(", 0x%02" PRIx8, Bytes[i]);
701           OS.indent(55 - (6 * Bytes.size()));
702       }
703     }
704 
705     OS << format("// %012" PRIX64 ": ", Address);
706     if (Bytes.size() >=4) {
707       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
708                                  Bytes.size() / sizeof(U32)))
709         // D should be explicitly casted to uint32_t here as it is passed
710         // by format to snprintf as vararg.
711         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
712     } else {
713       for (unsigned int i = 0; i < Bytes.size(); i++)
714         OS << format("%02" PRIX8 " ", Bytes[i]);
715     }
716 
717     if (!Annot.empty())
718       OS << "// " << Annot;
719   }
720 };
721 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
722 
723 class BPFPrettyPrinter : public PrettyPrinter {
724 public:
725   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
726                  uint64_t Address, raw_ostream &OS, StringRef Annot,
727                  MCSubtargetInfo const &STI, SourcePrinter *SP,
728                  std::vector<RelocationRef> *Rels) override {
729     if (SP && (PrintSource || PrintLines))
730       SP->printSourceLine(OS, Address);
731     if (!NoLeadingAddr)
732       OS << format("%8" PRId64 ":", Address / 8);
733     if (!NoShowRawInsn) {
734       OS << "\t";
735       dumpBytes(Bytes, OS);
736     }
737     if (MI)
738       IP.printInst(MI, OS, "", STI);
739     else
740       OS << " <unknown>";
741   }
742 };
743 BPFPrettyPrinter BPFPrettyPrinterInst;
744 
745 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
746   switch(Triple.getArch()) {
747   default:
748     return PrettyPrinterInst;
749   case Triple::hexagon:
750     return HexagonPrettyPrinterInst;
751   case Triple::amdgcn:
752     return AMDGCNPrettyPrinterInst;
753   case Triple::bpfel:
754   case Triple::bpfeb:
755     return BPFPrettyPrinterInst;
756   }
757 }
758 }
759 
760 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
761   assert(Obj->isELF());
762   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
763     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
764   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
765     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
766   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
767     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
768   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
769     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
770   llvm_unreachable("Unsupported binary format");
771 }
772 
773 template <class ELFT> static void
774 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
775                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
776   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
777     uint8_t SymbolType = Symbol.getELFType();
778     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
779       continue;
780 
781     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
782     if (!AddressOrErr)
783       report_error(Obj->getFileName(), AddressOrErr.takeError());
784 
785     Expected<StringRef> Name = Symbol.getName();
786     if (!Name)
787       report_error(Obj->getFileName(), Name.takeError());
788     if (Name->empty())
789       continue;
790 
791     Expected<section_iterator> SectionOrErr = Symbol.getSection();
792     if (!SectionOrErr)
793       report_error(Obj->getFileName(), SectionOrErr.takeError());
794     section_iterator SecI = *SectionOrErr;
795     if (SecI == Obj->section_end())
796       continue;
797 
798     AllSymbols[*SecI].emplace_back(*AddressOrErr, *Name, SymbolType);
799   }
800 }
801 
802 static void
803 addDynamicElfSymbols(const ObjectFile *Obj,
804                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
805   assert(Obj->isELF());
806   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
807     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
808   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
809     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
810   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
811     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
812   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
813     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
814   else
815     llvm_unreachable("Unsupported binary format");
816 }
817 
818 static void addPltEntries(const ObjectFile *Obj,
819                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
820                           StringSaver &Saver) {
821   Optional<SectionRef> Plt = None;
822   for (const SectionRef &Section : Obj->sections()) {
823     StringRef Name;
824     if (Section.getName(Name))
825       continue;
826     if (Name == ".plt")
827       Plt = Section;
828   }
829   if (!Plt)
830     return;
831   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
832     for (auto PltEntry : ElfObj->getPltAddresses()) {
833       SymbolRef Symbol(PltEntry.first, ElfObj);
834       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
835 
836       Expected<StringRef> NameOrErr = Symbol.getName();
837       if (!NameOrErr)
838         report_error(Obj->getFileName(), NameOrErr.takeError());
839       if (NameOrErr->empty())
840         continue;
841       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
842 
843       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
844     }
845   }
846 }
847 
848 // Normally the disassembly output will skip blocks of zeroes. This function
849 // returns the number of zero bytes that can be skipped when dumping the
850 // disassembly of the instructions in Buf.
851 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
852   // When -z or --disassemble-zeroes are given we always dissasemble them.
853   if (DisassembleZeroes)
854     return 0;
855 
856   // Find the number of leading zeroes.
857   size_t N = 0;
858   while (N < Buf.size() && !Buf[N])
859     ++N;
860 
861   // We may want to skip blocks of zero bytes, but unless we see
862   // at least 8 of them in a row.
863   if (N < 8)
864     return 0;
865 
866   // We skip zeroes in multiples of 4 because do not want to truncate an
867   // instruction if it starts with a zero byte.
868   return N & ~0x3;
869 }
870 
871 // Returns a map from sections to their relocations.
872 static std::map<SectionRef, std::vector<RelocationRef>>
873 getRelocsMap(llvm::object::ObjectFile const &Obj) {
874   std::map<SectionRef, std::vector<RelocationRef>> Ret;
875   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
876     section_iterator RelSec = Section.getRelocatedSection();
877     if (RelSec == Obj.section_end())
878       continue;
879     std::vector<RelocationRef> &V = Ret[*RelSec];
880     for (const RelocationRef &R : Section.relocations())
881       V.push_back(R);
882     // Sort relocations by address.
883     llvm::sort(V, isRelocAddressLess);
884   }
885   return Ret;
886 }
887 
888 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
889                               MCContext &Ctx, MCDisassembler *DisAsm,
890                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
891                               const MCSubtargetInfo *STI, PrettyPrinter &PIP,
892                               SourcePrinter &SP, bool InlineRelocs) {
893   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  "
894                                                : "\t\t\t%08" PRIx64 ":  ";
895 
896   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
897   if (InlineRelocs)
898     RelocMap = getRelocsMap(*Obj);
899 
900   // Create a mapping from virtual address to symbol name.  This is used to
901   // pretty print the symbols while disassembling.
902   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
903   SectionSymbolsTy AbsoluteSymbols;
904   for (const SymbolRef &Symbol : Obj->symbols()) {
905     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
906     if (!AddressOrErr)
907       report_error(Obj->getFileName(), AddressOrErr.takeError());
908     uint64_t Address = *AddressOrErr;
909 
910     Expected<StringRef> Name = Symbol.getName();
911     if (!Name)
912       report_error(Obj->getFileName(), Name.takeError());
913     if (Name->empty())
914       continue;
915 
916     Expected<section_iterator> SectionOrErr = Symbol.getSection();
917     if (!SectionOrErr)
918       report_error(Obj->getFileName(), SectionOrErr.takeError());
919 
920     uint8_t SymbolType = ELF::STT_NOTYPE;
921     if (Obj->isELF())
922       SymbolType = getElfSymbolType(Obj, Symbol);
923 
924     section_iterator SecI = *SectionOrErr;
925     if (SecI != Obj->section_end())
926       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
927     else
928       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
929 
930 
931   }
932   if (AllSymbols.empty() && Obj->isELF())
933     addDynamicElfSymbols(Obj, AllSymbols);
934 
935   BumpPtrAllocator A;
936   StringSaver Saver(A);
937   addPltEntries(Obj, AllSymbols, Saver);
938 
939   // Create a mapping from virtual address to section.
940   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
941   for (SectionRef Sec : Obj->sections())
942     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
943   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
944 
945   // Linked executables (.exe and .dll files) typically don't include a real
946   // symbol table but they might contain an export table.
947   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
948     for (const auto &ExportEntry : COFFObj->export_directories()) {
949       StringRef Name;
950       error(ExportEntry.getSymbolName(Name));
951       if (Name.empty())
952         continue;
953       uint32_t RVA;
954       error(ExportEntry.getExportRVA(RVA));
955 
956       uint64_t VA = COFFObj->getImageBase() + RVA;
957       auto Sec = std::upper_bound(
958           SectionAddresses.begin(), SectionAddresses.end(), VA,
959           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
960             return LHS < RHS.first;
961           });
962       if (Sec != SectionAddresses.begin())
963         --Sec;
964       else
965         Sec = SectionAddresses.end();
966 
967       if (Sec != SectionAddresses.end())
968         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
969       else
970         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
971     }
972   }
973 
974   // Sort all the symbols, this allows us to use a simple binary search to find
975   // a symbol near an address.
976   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
977     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
978   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
979 
980   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
981     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
982       continue;
983 
984     uint64_t SectionAddr = Section.getAddress();
985     uint64_t SectSize = Section.getSize();
986     if (!SectSize)
987       continue;
988 
989     // Get the list of all the symbols in this section.
990     SectionSymbolsTy &Symbols = AllSymbols[Section];
991     std::vector<uint64_t> DataMappingSymsAddr;
992     std::vector<uint64_t> TextMappingSymsAddr;
993     if (isArmElf(Obj)) {
994       for (const auto &Symb : Symbols) {
995         uint64_t Address = std::get<0>(Symb);
996         StringRef Name = std::get<1>(Symb);
997         if (Name.startswith("$d"))
998           DataMappingSymsAddr.push_back(Address - SectionAddr);
999         if (Name.startswith("$x"))
1000           TextMappingSymsAddr.push_back(Address - SectionAddr);
1001         if (Name.startswith("$a"))
1002           TextMappingSymsAddr.push_back(Address - SectionAddr);
1003         if (Name.startswith("$t"))
1004           TextMappingSymsAddr.push_back(Address - SectionAddr);
1005       }
1006     }
1007 
1008     llvm::sort(DataMappingSymsAddr);
1009     llvm::sort(TextMappingSymsAddr);
1010 
1011     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1012       // AMDGPU disassembler uses symbolizer for printing labels
1013       std::unique_ptr<MCRelocationInfo> RelInfo(
1014         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1015       if (RelInfo) {
1016         std::unique_ptr<MCSymbolizer> Symbolizer(
1017           TheTarget->createMCSymbolizer(
1018             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1019         DisAsm->setSymbolizer(std::move(Symbolizer));
1020       }
1021     }
1022 
1023     StringRef SegmentName = "";
1024     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1025       DataRefImpl DR = Section.getRawDataRefImpl();
1026       SegmentName = MachO->getSectionFinalSegmentName(DR);
1027     }
1028     StringRef SectionName;
1029     error(Section.getName(SectionName));
1030 
1031     // If the section has no symbol at the start, just insert a dummy one.
1032     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1033       Symbols.insert(
1034           Symbols.begin(),
1035           std::make_tuple(SectionAddr, SectionName,
1036                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1037     }
1038 
1039     SmallString<40> Comments;
1040     raw_svector_ostream CommentStream(Comments);
1041 
1042     StringRef BytesStr;
1043     error(Section.getContents(BytesStr));
1044     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1045                             BytesStr.size());
1046 
1047     uint64_t Size;
1048     uint64_t Index;
1049     bool PrintedSection = false;
1050 
1051     std::vector<RelocationRef> Rels = RelocMap[Section];
1052     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1053     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1054     // Disassemble symbol by symbol.
1055     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1056       uint64_t Start = std::get<0>(Symbols[SI]) - SectionAddr;
1057       // The end is either the section end or the beginning of the next
1058       // symbol.
1059       uint64_t End = (SI == SE - 1)
1060                          ? SectSize
1061                          : std::get<0>(Symbols[SI + 1]) - SectionAddr;
1062       // Don't try to disassemble beyond the end of section contents.
1063       if (End > SectSize)
1064         End = SectSize;
1065       // If this symbol has the same address as the next symbol, then skip it.
1066       if (Start >= End)
1067         continue;
1068 
1069       // Check if we need to skip symbol
1070       // Skip if the symbol's data is not between StartAddress and StopAddress
1071       if (End + SectionAddr < StartAddress ||
1072           Start + SectionAddr > StopAddress) {
1073         continue;
1074       }
1075 
1076       /// Skip if user requested specific symbols and this is not in the list
1077       if (!DisasmFuncsSet.empty() &&
1078           !DisasmFuncsSet.count(std::get<1>(Symbols[SI])))
1079         continue;
1080 
1081       if (!PrintedSection) {
1082         PrintedSection = true;
1083         outs() << "Disassembly of section ";
1084         if (!SegmentName.empty())
1085           outs() << SegmentName << ",";
1086         outs() << SectionName << ':';
1087       }
1088 
1089       // Stop disassembly at the stop address specified
1090       if (End + SectionAddr > StopAddress)
1091         End = StopAddress - SectionAddr;
1092 
1093       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1094         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1095           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1096           Start += 256;
1097         }
1098         if (SI == SE - 1 ||
1099             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1100           // cut trailing zeroes at the end of kernel
1101           // cut up to 256 bytes
1102           const uint64_t EndAlign = 256;
1103           const auto Limit = End - (std::min)(EndAlign, End - Start);
1104           while (End > Limit &&
1105             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1106             End -= 4;
1107         }
1108       }
1109 
1110       outs() << '\n';
1111       if (!NoLeadingAddr)
1112         outs() << format("%016" PRIx64 " ", SectionAddr + Start);
1113 
1114       StringRef SymbolName = std::get<1>(Symbols[SI]);
1115       if (Demangle)
1116         outs() << demangle(SymbolName) << ":\n";
1117       else
1118         outs() << SymbolName << ":\n";
1119 
1120       // Don't print raw contents of a virtual section. A virtual section
1121       // doesn't have any contents in the file.
1122       if (Section.isVirtual()) {
1123         outs() << "...\n";
1124         continue;
1125       }
1126 
1127 #ifndef NDEBUG
1128       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1129 #else
1130       raw_ostream &DebugOut = nulls();
1131 #endif
1132 
1133       // Some targets (like WebAssembly) have a special prelude at the start
1134       // of each symbol.
1135       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1136                             SectionAddr + Start, DebugOut, CommentStream);
1137       Start += Size;
1138 
1139       for (Index = Start; Index < End; Index += Size) {
1140         MCInst Inst;
1141 
1142         if (Index + SectionAddr < StartAddress ||
1143             Index + SectionAddr > StopAddress) {
1144           // skip byte by byte till StartAddress is reached
1145           Size = 1;
1146           continue;
1147         }
1148         // AArch64 ELF binaries can interleave data and text in the
1149         // same section. We rely on the markers introduced to
1150         // understand what we need to dump. If the data marker is within a
1151         // function, it is denoted as a word/short etc
1152         if (isArmElf(Obj) && std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1153             !DisassembleAll) {
1154           uint64_t Stride = 0;
1155 
1156           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1157                                       DataMappingSymsAddr.end(), Index);
1158           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1159             // Switch to data.
1160             while (Index < End) {
1161               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1162               outs() << "\t";
1163               if (Index + 4 <= End) {
1164                 Stride = 4;
1165                 dumpBytes(Bytes.slice(Index, 4), outs());
1166                 outs() << "\t.word\t";
1167                 uint32_t Data = 0;
1168                 if (Obj->isLittleEndian()) {
1169                   const auto Word =
1170                       reinterpret_cast<const support::ulittle32_t *>(
1171                           Bytes.data() + Index);
1172                   Data = *Word;
1173                 } else {
1174                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1175                       Bytes.data() + Index);
1176                   Data = *Word;
1177                 }
1178                 outs() << "0x" << format("%08" PRIx32, Data);
1179               } else if (Index + 2 <= End) {
1180                 Stride = 2;
1181                 dumpBytes(Bytes.slice(Index, 2), outs());
1182                 outs() << "\t\t.short\t";
1183                 uint16_t Data = 0;
1184                 if (Obj->isLittleEndian()) {
1185                   const auto Short =
1186                       reinterpret_cast<const support::ulittle16_t *>(
1187                           Bytes.data() + Index);
1188                   Data = *Short;
1189                 } else {
1190                   const auto Short =
1191                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1192                                                                   Index);
1193                   Data = *Short;
1194                 }
1195                 outs() << "0x" << format("%04" PRIx16, Data);
1196               } else {
1197                 Stride = 1;
1198                 dumpBytes(Bytes.slice(Index, 1), outs());
1199                 outs() << "\t\t.byte\t";
1200                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1201               }
1202               Index += Stride;
1203               outs() << "\n";
1204               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1205                                           TextMappingSymsAddr.end(), Index);
1206               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1207                 break;
1208             }
1209           }
1210         }
1211 
1212         // If there is a data symbol inside an ELF text section and we are only
1213         // disassembling text (applicable all architectures),
1214         // we are in a situation where we must print the data and not
1215         // disassemble it.
1216         if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT &&
1217             !DisassembleAll && Section.isText()) {
1218           // print out data up to 8 bytes at a time in hex and ascii
1219           uint8_t AsciiData[9] = {'\0'};
1220           uint8_t Byte;
1221           int NumBytes = 0;
1222 
1223           for (Index = Start; Index < End; Index += 1) {
1224             if (((SectionAddr + Index) < StartAddress) ||
1225                 ((SectionAddr + Index) > StopAddress))
1226               continue;
1227             if (NumBytes == 0) {
1228               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1229               outs() << "\t";
1230             }
1231             Byte = Bytes.slice(Index)[0];
1232             outs() << format(" %02x", Byte);
1233             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1234 
1235             uint8_t IndentOffset = 0;
1236             NumBytes++;
1237             if (Index == End - 1 || NumBytes > 8) {
1238               // Indent the space for less than 8 bytes data.
1239               // 2 spaces for byte and one for space between bytes
1240               IndentOffset = 3 * (8 - NumBytes);
1241               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1242                 AsciiData[Excess] = '\0';
1243               NumBytes = 8;
1244             }
1245             if (NumBytes == 8) {
1246               AsciiData[8] = '\0';
1247               outs() << std::string(IndentOffset, ' ') << "         ";
1248               outs() << reinterpret_cast<char *>(AsciiData);
1249               outs() << '\n';
1250               NumBytes = 0;
1251             }
1252           }
1253         }
1254         if (Index >= End)
1255           break;
1256 
1257         if (size_t N =
1258                 countSkippableZeroBytes(Bytes.slice(Index, End - Index))) {
1259           outs() << "\t\t..." << '\n';
1260           Index += N;
1261           if (Index >= End)
1262             break;
1263         }
1264 
1265         // Disassemble a real instruction or a data when disassemble all is
1266         // provided
1267         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1268                                                    SectionAddr + Index, DebugOut,
1269                                                    CommentStream);
1270         if (Size == 0)
1271           Size = 1;
1272 
1273         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1274                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1275                       *STI, &SP, &Rels);
1276         outs() << CommentStream.str();
1277         Comments.clear();
1278 
1279         // Try to resolve the target of a call, tail call, etc. to a specific
1280         // symbol.
1281         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1282                     MIA->isConditionalBranch(Inst))) {
1283           uint64_t Target;
1284           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1285             // In a relocatable object, the target's section must reside in
1286             // the same section as the call instruction or it is accessed
1287             // through a relocation.
1288             //
1289             // In a non-relocatable object, the target may be in any section.
1290             //
1291             // N.B. We don't walk the relocations in the relocatable case yet.
1292             auto *TargetSectionSymbols = &Symbols;
1293             if (!Obj->isRelocatableObject()) {
1294               auto SectionAddress = std::upper_bound(
1295                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1296                   [](uint64_t LHS,
1297                       const std::pair<uint64_t, SectionRef> &RHS) {
1298                     return LHS < RHS.first;
1299                   });
1300               if (SectionAddress != SectionAddresses.begin()) {
1301                 --SectionAddress;
1302                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1303               } else {
1304                 TargetSectionSymbols = &AbsoluteSymbols;
1305               }
1306             }
1307 
1308             // Find the first symbol in the section whose offset is less than
1309             // or equal to the target. If there isn't a section that contains
1310             // the target, find the nearest preceding absolute symbol.
1311             auto TargetSym = std::upper_bound(
1312                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1313                 Target, [](uint64_t LHS,
1314                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1315                   return LHS < std::get<0>(RHS);
1316                 });
1317             if (TargetSym == TargetSectionSymbols->begin()) {
1318               TargetSectionSymbols = &AbsoluteSymbols;
1319               TargetSym = std::upper_bound(
1320                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1321                   Target, [](uint64_t LHS,
1322                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1323                             return LHS < std::get<0>(RHS);
1324                           });
1325             }
1326             if (TargetSym != TargetSectionSymbols->begin()) {
1327               --TargetSym;
1328               uint64_t TargetAddress = std::get<0>(*TargetSym);
1329               StringRef TargetName = std::get<1>(*TargetSym);
1330               outs() << " <" << TargetName;
1331               uint64_t Disp = Target - TargetAddress;
1332               if (Disp)
1333                 outs() << "+0x" << Twine::utohexstr(Disp);
1334               outs() << '>';
1335             }
1336           }
1337         }
1338         outs() << "\n";
1339 
1340         // Hexagon does this in pretty printer
1341         if (Obj->getArch() != Triple::hexagon)
1342           // Print relocation for instruction.
1343           while (RelCur != RelEnd) {
1344             uint64_t Addr = RelCur->getOffset();
1345             SmallString<16> Name;
1346             SmallString<32> Val;
1347 
1348             // If this relocation is hidden, skip it.
1349             if (getHidden(*RelCur) || ((SectionAddr + Addr) < StartAddress)) {
1350               ++RelCur;
1351               continue;
1352             }
1353 
1354             // Stop when rel_cur's address is past the current instruction.
1355             if (Addr >= Index + Size)
1356               break;
1357             RelCur->getTypeName(Name);
1358             error(getRelocationValueString(*RelCur, Val));
1359             outs() << format(Fmt.data(), SectionAddr + Addr) << Name << "\t"
1360                    << Val << "\n";
1361             ++RelCur;
1362           }
1363       }
1364     }
1365   }
1366 }
1367 
1368 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1369   if (StartAddress > StopAddress)
1370     error("Start address should be less than stop address");
1371 
1372   const Target *TheTarget = getTarget(Obj);
1373 
1374   // Package up features to be passed to target/subtarget
1375   SubtargetFeatures Features = Obj->getFeatures();
1376   if (!MAttrs.empty())
1377     for (unsigned I = 0; I != MAttrs.size(); ++I)
1378       Features.AddFeature(MAttrs[I]);
1379 
1380   std::unique_ptr<const MCRegisterInfo> MRI(
1381       TheTarget->createMCRegInfo(TripleName));
1382   if (!MRI)
1383     report_error(Obj->getFileName(),
1384                  "no register info for target " + TripleName);
1385 
1386   // Set up disassembler.
1387   std::unique_ptr<const MCAsmInfo> AsmInfo(
1388       TheTarget->createMCAsmInfo(*MRI, TripleName));
1389   if (!AsmInfo)
1390     report_error(Obj->getFileName(),
1391                  "no assembly info for target " + TripleName);
1392   std::unique_ptr<const MCSubtargetInfo> STI(
1393       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1394   if (!STI)
1395     report_error(Obj->getFileName(),
1396                  "no subtarget info for target " + TripleName);
1397   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1398   if (!MII)
1399     report_error(Obj->getFileName(),
1400                  "no instruction info for target " + TripleName);
1401   MCObjectFileInfo MOFI;
1402   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1403   // FIXME: for now initialize MCObjectFileInfo with default values
1404   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1405 
1406   std::unique_ptr<MCDisassembler> DisAsm(
1407       TheTarget->createMCDisassembler(*STI, Ctx));
1408   if (!DisAsm)
1409     report_error(Obj->getFileName(),
1410                  "no disassembler for target " + TripleName);
1411 
1412   std::unique_ptr<const MCInstrAnalysis> MIA(
1413       TheTarget->createMCInstrAnalysis(MII.get()));
1414 
1415   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1416   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1417       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1418   if (!IP)
1419     report_error(Obj->getFileName(),
1420                  "no instruction printer for target " + TripleName);
1421   IP->setPrintImmHex(PrintImmHex);
1422 
1423   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1424   SourcePrinter SP(Obj, TheTarget->getName());
1425 
1426   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), MIA.get(), IP.get(),
1427                     STI.get(), PIP, SP, InlineRelocs);
1428 }
1429 
1430 void llvm::printRelocations(const ObjectFile *Obj) {
1431   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1432                                                  "%08" PRIx64;
1433   // Regular objdump doesn't print relocations in non-relocatable object
1434   // files.
1435   if (!Obj->isRelocatableObject())
1436     return;
1437 
1438   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1439     if (Section.relocation_begin() == Section.relocation_end())
1440       continue;
1441     StringRef SecName;
1442     error(Section.getName(SecName));
1443     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1444     for (const RelocationRef &Reloc : Section.relocations()) {
1445       uint64_t Address = Reloc.getOffset();
1446       SmallString<32> RelocName;
1447       SmallString<32> ValueStr;
1448       if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1449         continue;
1450       Reloc.getTypeName(RelocName);
1451       error(getRelocationValueString(Reloc, ValueStr));
1452       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1453              << ValueStr << "\n";
1454     }
1455     outs() << "\n";
1456   }
1457 }
1458 
1459 void llvm::printDynamicRelocations(const ObjectFile *Obj) {
1460   // For the moment, this option is for ELF only
1461   if (!Obj->isELF())
1462     return;
1463 
1464   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1465   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1466     error("not a dynamic object");
1467     return;
1468   }
1469 
1470   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1471   if (DynRelSec.empty())
1472     return;
1473 
1474   outs() << "DYNAMIC RELOCATION RECORDS\n";
1475   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1476   for (const SectionRef &Section : DynRelSec) {
1477     if (Section.relocation_begin() == Section.relocation_end())
1478       continue;
1479     for (const RelocationRef &Reloc : Section.relocations()) {
1480       uint64_t Address = Reloc.getOffset();
1481       SmallString<32> RelocName;
1482       SmallString<32> ValueStr;
1483       Reloc.getTypeName(RelocName);
1484       error(getRelocationValueString(Reloc, ValueStr));
1485       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1486              << ValueStr << "\n";
1487     }
1488   }
1489 }
1490 
1491 void llvm::printSectionHeaders(const ObjectFile *Obj) {
1492   outs() << "Sections:\n"
1493             "Idx Name          Size      Address          Type\n";
1494   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1495     StringRef Name;
1496     error(Section.getName(Name));
1497     uint64_t Address = Section.getAddress();
1498     uint64_t Size = Section.getSize();
1499     bool Text = Section.isText();
1500     bool Data = Section.isData();
1501     bool BSS = Section.isBSS();
1502     std::string Type = (std::string(Text ? "TEXT " : "") +
1503                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1504     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1505                      (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1506                      Address, Type.c_str());
1507   }
1508   outs() << "\n";
1509 }
1510 
1511 void llvm::printSectionContents(const ObjectFile *Obj) {
1512   std::error_code EC;
1513   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1514     StringRef Name;
1515     StringRef Contents;
1516     error(Section.getName(Name));
1517     uint64_t BaseAddr = Section.getAddress();
1518     uint64_t Size = Section.getSize();
1519     if (!Size)
1520       continue;
1521 
1522     outs() << "Contents of section " << Name << ":\n";
1523     if (Section.isBSS()) {
1524       outs() << format("<skipping contents of bss section at [%04" PRIx64
1525                        ", %04" PRIx64 ")>\n",
1526                        BaseAddr, BaseAddr + Size);
1527       continue;
1528     }
1529 
1530     error(Section.getContents(Contents));
1531 
1532     // Dump out the content as hex and printable ascii characters.
1533     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1534       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1535       // Dump line of hex.
1536       for (std::size_t I = 0; I < 16; ++I) {
1537         if (I != 0 && I % 4 == 0)
1538           outs() << ' ';
1539         if (Addr + I < End)
1540           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1541                  << hexdigit(Contents[Addr + I] & 0xF, true);
1542         else
1543           outs() << "  ";
1544       }
1545       // Print ascii.
1546       outs() << "  ";
1547       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1548         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1549           outs() << Contents[Addr + I];
1550         else
1551           outs() << ".";
1552       }
1553       outs() << "\n";
1554     }
1555   }
1556 }
1557 
1558 void llvm::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1559                             StringRef ArchitectureName) {
1560   outs() << "SYMBOL TABLE:\n";
1561 
1562   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1563     printCOFFSymbolTable(Coff);
1564     return;
1565   }
1566 
1567   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1568     // Skip printing the special zero symbol when dumping an ELF file.
1569     // This makes the output consistent with the GNU objdump.
1570     if (I == O->symbol_begin() && isa<ELFObjectFileBase>(O))
1571       continue;
1572 
1573     const SymbolRef &Symbol = *I;
1574     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1575     if (!AddressOrError)
1576       report_error(ArchiveName, O->getFileName(), AddressOrError.takeError(),
1577                    ArchitectureName);
1578     uint64_t Address = *AddressOrError;
1579     if ((Address < StartAddress) || (Address > StopAddress))
1580       continue;
1581     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1582     if (!TypeOrError)
1583       report_error(ArchiveName, O->getFileName(), TypeOrError.takeError(),
1584                    ArchitectureName);
1585     SymbolRef::Type Type = *TypeOrError;
1586     uint32_t Flags = Symbol.getFlags();
1587     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1588     if (!SectionOrErr)
1589       report_error(ArchiveName, O->getFileName(), SectionOrErr.takeError(),
1590                    ArchitectureName);
1591     section_iterator Section = *SectionOrErr;
1592     StringRef Name;
1593     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1594       Section->getName(Name);
1595     } else {
1596       Expected<StringRef> NameOrErr = Symbol.getName();
1597       if (!NameOrErr)
1598         report_error(ArchiveName, O->getFileName(), NameOrErr.takeError(),
1599                      ArchitectureName);
1600       Name = *NameOrErr;
1601     }
1602 
1603     bool Global = Flags & SymbolRef::SF_Global;
1604     bool Weak = Flags & SymbolRef::SF_Weak;
1605     bool Absolute = Flags & SymbolRef::SF_Absolute;
1606     bool Common = Flags & SymbolRef::SF_Common;
1607     bool Hidden = Flags & SymbolRef::SF_Hidden;
1608 
1609     char GlobLoc = ' ';
1610     if (Type != SymbolRef::ST_Unknown)
1611       GlobLoc = Global ? 'g' : 'l';
1612     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1613                  ? 'd' : ' ';
1614     char FileFunc = ' ';
1615     if (Type == SymbolRef::ST_File)
1616       FileFunc = 'f';
1617     else if (Type == SymbolRef::ST_Function)
1618       FileFunc = 'F';
1619     else if (Type == SymbolRef::ST_Data)
1620       FileFunc = 'O';
1621 
1622     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1623                                                    "%08" PRIx64;
1624 
1625     outs() << format(Fmt, Address) << " "
1626            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1627            << (Weak ? 'w' : ' ') // Weak?
1628            << ' ' // Constructor. Not supported yet.
1629            << ' ' // Warning. Not supported yet.
1630            << ' ' // Indirect reference to another symbol.
1631            << Debug // Debugging (d) or dynamic (D) symbol.
1632            << FileFunc // Name of function (F), file (f) or object (O).
1633            << ' ';
1634     if (Absolute) {
1635       outs() << "*ABS*";
1636     } else if (Common) {
1637       outs() << "*COM*";
1638     } else if (Section == O->section_end()) {
1639       outs() << "*UND*";
1640     } else {
1641       if (const MachOObjectFile *MachO =
1642           dyn_cast<const MachOObjectFile>(O)) {
1643         DataRefImpl DR = Section->getRawDataRefImpl();
1644         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1645         outs() << SegmentName << ",";
1646       }
1647       StringRef SectionName;
1648       error(Section->getName(SectionName));
1649       outs() << SectionName;
1650     }
1651 
1652     outs() << '\t';
1653     if (Common || isa<ELFObjectFileBase>(O)) {
1654       uint64_t Val =
1655           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1656       outs() << format("\t %08" PRIx64 " ", Val);
1657     }
1658 
1659     if (Hidden)
1660       outs() << ".hidden ";
1661 
1662     if (Demangle)
1663       outs() << demangle(Name) << '\n';
1664     else
1665       outs() << Name << '\n';
1666   }
1667 }
1668 
1669 static void printUnwindInfo(const ObjectFile *O) {
1670   outs() << "Unwind info:\n\n";
1671 
1672   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1673     printCOFFUnwindInfo(Coff);
1674   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1675     printMachOUnwindInfo(MachO);
1676   else
1677     // TODO: Extract DWARF dump tool to objdump.
1678     WithColor::error(errs(), ToolName)
1679         << "This operation is only currently supported "
1680            "for COFF and MachO object files.\n";
1681 }
1682 
1683 void llvm::printExportsTrie(const ObjectFile *o) {
1684   outs() << "Exports trie:\n";
1685   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1686     printMachOExportsTrie(MachO);
1687   else
1688     WithColor::error(errs(), ToolName)
1689         << "This operation is only currently supported "
1690            "for Mach-O executable files.\n";
1691 }
1692 
1693 void llvm::printRebaseTable(ObjectFile *o) {
1694   outs() << "Rebase table:\n";
1695   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1696     printMachORebaseTable(MachO);
1697   else
1698     WithColor::error(errs(), ToolName)
1699         << "This operation is only currently supported "
1700            "for Mach-O executable files.\n";
1701 }
1702 
1703 void llvm::printBindTable(ObjectFile *o) {
1704   outs() << "Bind table:\n";
1705   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1706     printMachOBindTable(MachO);
1707   else
1708     WithColor::error(errs(), ToolName)
1709         << "This operation is only currently supported "
1710            "for Mach-O executable files.\n";
1711 }
1712 
1713 void llvm::printLazyBindTable(ObjectFile *o) {
1714   outs() << "Lazy bind table:\n";
1715   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1716     printMachOLazyBindTable(MachO);
1717   else
1718     WithColor::error(errs(), ToolName)
1719         << "This operation is only currently supported "
1720            "for Mach-O executable files.\n";
1721 }
1722 
1723 void llvm::printWeakBindTable(ObjectFile *o) {
1724   outs() << "Weak bind table:\n";
1725   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1726     printMachOWeakBindTable(MachO);
1727   else
1728     WithColor::error(errs(), ToolName)
1729         << "This operation is only currently supported "
1730            "for Mach-O executable files.\n";
1731 }
1732 
1733 /// Dump the raw contents of the __clangast section so the output can be piped
1734 /// into llvm-bcanalyzer.
1735 void llvm::printRawClangAST(const ObjectFile *Obj) {
1736   if (outs().is_displayed()) {
1737     WithColor::error(errs(), ToolName)
1738         << "The -raw-clang-ast option will dump the raw binary contents of "
1739            "the clang ast section.\n"
1740            "Please redirect the output to a file or another program such as "
1741            "llvm-bcanalyzer.\n";
1742     return;
1743   }
1744 
1745   StringRef ClangASTSectionName("__clangast");
1746   if (isa<COFFObjectFile>(Obj)) {
1747     ClangASTSectionName = "clangast";
1748   }
1749 
1750   Optional<object::SectionRef> ClangASTSection;
1751   for (auto Sec : ToolSectionFilter(*Obj)) {
1752     StringRef Name;
1753     Sec.getName(Name);
1754     if (Name == ClangASTSectionName) {
1755       ClangASTSection = Sec;
1756       break;
1757     }
1758   }
1759   if (!ClangASTSection)
1760     return;
1761 
1762   StringRef ClangASTContents;
1763   error(ClangASTSection.getValue().getContents(ClangASTContents));
1764   outs().write(ClangASTContents.data(), ClangASTContents.size());
1765 }
1766 
1767 static void printFaultMaps(const ObjectFile *Obj) {
1768   StringRef FaultMapSectionName;
1769 
1770   if (isa<ELFObjectFileBase>(Obj)) {
1771     FaultMapSectionName = ".llvm_faultmaps";
1772   } else if (isa<MachOObjectFile>(Obj)) {
1773     FaultMapSectionName = "__llvm_faultmaps";
1774   } else {
1775     WithColor::error(errs(), ToolName)
1776         << "This operation is only currently supported "
1777            "for ELF and Mach-O executable files.\n";
1778     return;
1779   }
1780 
1781   Optional<object::SectionRef> FaultMapSection;
1782 
1783   for (auto Sec : ToolSectionFilter(*Obj)) {
1784     StringRef Name;
1785     Sec.getName(Name);
1786     if (Name == FaultMapSectionName) {
1787       FaultMapSection = Sec;
1788       break;
1789     }
1790   }
1791 
1792   outs() << "FaultMap table:\n";
1793 
1794   if (!FaultMapSection.hasValue()) {
1795     outs() << "<not found>\n";
1796     return;
1797   }
1798 
1799   StringRef FaultMapContents;
1800   error(FaultMapSection.getValue().getContents(FaultMapContents));
1801 
1802   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1803                      FaultMapContents.bytes_end());
1804 
1805   outs() << FMP;
1806 }
1807 
1808 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1809   if (O->isELF()) {
1810     printELFFileHeader(O);
1811     return printELFDynamicSection(O);
1812   }
1813   if (O->isCOFF())
1814     return printCOFFFileHeader(O);
1815   if (O->isWasm())
1816     return printWasmFileHeader(O);
1817   if (O->isMachO()) {
1818     printMachOFileHeader(O);
1819     if (!OnlyFirst)
1820       printMachOLoadCommands(O);
1821     return;
1822   }
1823   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1824 }
1825 
1826 static void printFileHeaders(const ObjectFile *O) {
1827   if (!O->isELF() && !O->isCOFF())
1828     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1829 
1830   Triple::ArchType AT = O->getArch();
1831   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1832   Expected<uint64_t> StartAddrOrErr = O->getStartAddress();
1833   if (!StartAddrOrErr)
1834     report_error(O->getFileName(), StartAddrOrErr.takeError());
1835 
1836   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1837   uint64_t Address = StartAddrOrErr.get();
1838   outs() << "start address: "
1839          << "0x" << format(Fmt.data(), Address) << "\n\n";
1840 }
1841 
1842 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1843   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1844   if (!ModeOrErr) {
1845     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1846     consumeError(ModeOrErr.takeError());
1847     return;
1848   }
1849   sys::fs::perms Mode = ModeOrErr.get();
1850   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1851   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1852   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1853   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1854   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1855   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1856   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1857   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1858   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1859 
1860   outs() << " ";
1861 
1862   Expected<unsigned> UIDOrErr = C.getUID();
1863   if (!UIDOrErr)
1864     report_error(Filename, UIDOrErr.takeError());
1865   unsigned UID = UIDOrErr.get();
1866   outs() << format("%d/", UID);
1867 
1868   Expected<unsigned> GIDOrErr = C.getGID();
1869   if (!GIDOrErr)
1870     report_error(Filename, GIDOrErr.takeError());
1871   unsigned GID = GIDOrErr.get();
1872   outs() << format("%-d ", GID);
1873 
1874   Expected<uint64_t> Size = C.getRawSize();
1875   if (!Size)
1876     report_error(Filename, Size.takeError());
1877   outs() << format("%6" PRId64, Size.get()) << " ";
1878 
1879   StringRef RawLastModified = C.getRawLastModified();
1880   unsigned Seconds;
1881   if (RawLastModified.getAsInteger(10, Seconds))
1882     outs() << "(date: \"" << RawLastModified
1883            << "\" contains non-decimal chars) ";
1884   else {
1885     // Since ctime(3) returns a 26 character string of the form:
1886     // "Sun Sep 16 01:03:52 1973\n\0"
1887     // just print 24 characters.
1888     time_t t = Seconds;
1889     outs() << format("%.24s ", ctime(&t));
1890   }
1891 
1892   StringRef Name = "";
1893   Expected<StringRef> NameOrErr = C.getName();
1894   if (!NameOrErr) {
1895     consumeError(NameOrErr.takeError());
1896     Expected<StringRef> RawNameOrErr = C.getRawName();
1897     if (!RawNameOrErr)
1898       report_error(Filename, NameOrErr.takeError());
1899     Name = RawNameOrErr.get();
1900   } else {
1901     Name = NameOrErr.get();
1902   }
1903   outs() << Name << "\n";
1904 }
1905 
1906 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
1907                        const Archive::Child *C = nullptr) {
1908   // Avoid other output when using a raw option.
1909   if (!RawClangAST) {
1910     outs() << '\n';
1911     if (A)
1912       outs() << A->getFileName() << "(" << O->getFileName() << ")";
1913     else
1914       outs() << O->getFileName();
1915     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
1916   }
1917 
1918   StringRef ArchiveName = A ? A->getFileName() : "";
1919   if (FileHeaders)
1920     printFileHeaders(O);
1921   if (ArchiveHeaders && !MachOOpt && C)
1922     printArchiveChild(ArchiveName, *C);
1923   if (Disassemble)
1924     disassembleObject(O, Relocations);
1925   if (Relocations && !Disassemble)
1926     printRelocations(O);
1927   if (DynamicRelocations)
1928     printDynamicRelocations(O);
1929   if (SectionHeaders)
1930     printSectionHeaders(O);
1931   if (SectionContents)
1932     printSectionContents(O);
1933   if (SymbolTable)
1934     printSymbolTable(O, ArchiveName);
1935   if (UnwindInfo)
1936     printUnwindInfo(O);
1937   if (PrivateHeaders || FirstPrivateHeader)
1938     printPrivateFileHeaders(O, FirstPrivateHeader);
1939   if (ExportsTrie)
1940     printExportsTrie(O);
1941   if (Rebase)
1942     printRebaseTable(O);
1943   if (Bind)
1944     printBindTable(O);
1945   if (LazyBind)
1946     printLazyBindTable(O);
1947   if (WeakBind)
1948     printWeakBindTable(O);
1949   if (RawClangAST)
1950     printRawClangAST(O);
1951   if (PrintFaultMaps)
1952     printFaultMaps(O);
1953   if (DwarfDumpType != DIDT_Null) {
1954     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
1955     // Dump the complete DWARF structure.
1956     DIDumpOptions DumpOpts;
1957     DumpOpts.DumpType = DwarfDumpType;
1958     DICtx->dump(outs(), DumpOpts);
1959   }
1960 }
1961 
1962 static void dumpObject(const COFFImportFile *I, const Archive *A,
1963                        const Archive::Child *C = nullptr) {
1964   StringRef ArchiveName = A ? A->getFileName() : "";
1965 
1966   // Avoid other output when using a raw option.
1967   if (!RawClangAST)
1968     outs() << '\n'
1969            << ArchiveName << "(" << I->getFileName() << ")"
1970            << ":\tfile format COFF-import-file"
1971            << "\n\n";
1972 
1973   if (ArchiveHeaders && !MachOOpt && C)
1974     printArchiveChild(ArchiveName, *C);
1975   if (SymbolTable)
1976     printCOFFSymbolTable(I);
1977 }
1978 
1979 /// Dump each object file in \a a;
1980 static void dumpArchive(const Archive *A) {
1981   Error Err = Error::success();
1982   for (auto &C : A->children(Err)) {
1983     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1984     if (!ChildOrErr) {
1985       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1986         report_error(A->getFileName(), C, std::move(E));
1987       continue;
1988     }
1989     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
1990       dumpObject(O, A, &C);
1991     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
1992       dumpObject(I, A, &C);
1993     else
1994       report_error(A->getFileName(), object_error::invalid_file_type);
1995   }
1996   if (Err)
1997     report_error(A->getFileName(), std::move(Err));
1998 }
1999 
2000 /// Open file and figure out how to dump it.
2001 static void dumpInput(StringRef file) {
2002   // If we are using the Mach-O specific object file parser, then let it parse
2003   // the file and process the command line options.  So the -arch flags can
2004   // be used to select specific slices, etc.
2005   if (MachOOpt) {
2006     parseInputMachO(file);
2007     return;
2008   }
2009 
2010   // Attempt to open the binary.
2011   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2012   if (!BinaryOrErr)
2013     report_error(file, BinaryOrErr.takeError());
2014   Binary &Binary = *BinaryOrErr.get().getBinary();
2015 
2016   if (Archive *A = dyn_cast<Archive>(&Binary))
2017     dumpArchive(A);
2018   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2019     dumpObject(O);
2020   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2021     parseInputMachO(UB);
2022   else
2023     report_error(file, object_error::invalid_file_type);
2024 }
2025 
2026 int main(int argc, char **argv) {
2027   InitLLVM X(argc, argv);
2028 
2029   // Initialize targets and assembly printers/parsers.
2030   llvm::InitializeAllTargetInfos();
2031   llvm::InitializeAllTargetMCs();
2032   llvm::InitializeAllDisassemblers();
2033 
2034   // Register the target printer for --version.
2035   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2036 
2037   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2038 
2039   ToolName = argv[0];
2040 
2041   // Defaults to a.out if no filenames specified.
2042   if (InputFilenames.empty())
2043     InputFilenames.push_back("a.out");
2044 
2045   if (AllHeaders)
2046     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2047         SectionHeaders = SymbolTable = true;
2048 
2049   if (DisassembleAll || PrintSource || PrintLines)
2050     Disassemble = true;
2051 
2052   if (!Disassemble
2053       && !Relocations
2054       && !DynamicRelocations
2055       && !SectionHeaders
2056       && !SectionContents
2057       && !SymbolTable
2058       && !UnwindInfo
2059       && !PrivateHeaders
2060       && !FileHeaders
2061       && !FirstPrivateHeader
2062       && !ExportsTrie
2063       && !Rebase
2064       && !Bind
2065       && !LazyBind
2066       && !WeakBind
2067       && !RawClangAST
2068       && !(UniversalHeaders && MachOOpt)
2069       && !ArchiveHeaders
2070       && !(IndirectSymbols && MachOOpt)
2071       && !(DataInCode && MachOOpt)
2072       && !(LinkOptHints && MachOOpt)
2073       && !(InfoPlist && MachOOpt)
2074       && !(DylibsUsed && MachOOpt)
2075       && !(DylibId && MachOOpt)
2076       && !(ObjcMetaData && MachOOpt)
2077       && !(!FilterSections.empty() && MachOOpt)
2078       && !PrintFaultMaps
2079       && DwarfDumpType == DIDT_Null) {
2080     cl::PrintHelpMessage();
2081     return 2;
2082   }
2083 
2084   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2085                         DisassembleFunctions.end());
2086 
2087   llvm::for_each(InputFilenames, dumpInput);
2088 
2089   return EXIT_SUCCESS;
2090 }
2091