xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision b688a200e4c47bd2915f3fd3f5afcb4928f9a0fb)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringSet.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/Demangle/Demangle.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/MachOUniversal.h"
45 #include "llvm/Object/ObjectFile.h"
46 #include "llvm/Object/Wasm.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Errc.h"
51 #include "llvm/Support/FileSystem.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/Host.h"
55 #include "llvm/Support/InitLLVM.h"
56 #include "llvm/Support/MemoryBuffer.h"
57 #include "llvm/Support/SourceMgr.h"
58 #include "llvm/Support/StringSaver.h"
59 #include "llvm/Support/TargetRegistry.h"
60 #include "llvm/Support/TargetSelect.h"
61 #include "llvm/Support/WithColor.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cctype>
65 #include <cstring>
66 #include <system_error>
67 #include <unordered_map>
68 #include <utility>
69 
70 using namespace llvm;
71 using namespace object;
72 
73 cl::opt<unsigned long long> AdjustVMA(
74     "adjust-vma",
75     cl::desc("Increase the displayed address by the specified offset"),
76     cl::value_desc("offset"), cl::init(0));
77 
78 cl::opt<bool>
79     llvm::AllHeaders("all-headers",
80                      cl::desc("Display all available header information"));
81 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
82                                  cl::NotHidden, cl::Grouping,
83                                  cl::aliasopt(AllHeaders));
84 
85 static cl::list<std::string>
86 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
87 
88 cl::opt<bool>
89 llvm::Disassemble("disassemble",
90   cl::desc("Display assembler mnemonics for the machine instructions"));
91 static cl::alias Disassembled("d", cl::desc("Alias for --disassemble"),
92                               cl::NotHidden, cl::Grouping,
93                               cl::aliasopt(Disassemble));
94 
95 cl::opt<bool>
96 llvm::DisassembleAll("disassemble-all",
97   cl::desc("Display assembler mnemonics for the machine instructions"));
98 static cl::alias DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
99                                  cl::NotHidden, cl::Grouping,
100                                  cl::aliasopt(DisassembleAll));
101 
102 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
103                              cl::init(false));
104 
105 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
106                                cl::NotHidden, cl::Grouping,
107                                cl::aliasopt(llvm::Demangle));
108 
109 static cl::list<std::string>
110 DisassembleFunctions("disassemble-functions",
111                      cl::CommaSeparated,
112                      cl::desc("List of functions to disassemble"));
113 static StringSet<> DisasmFuncsSet;
114 
115 cl::opt<bool>
116 llvm::Relocations("reloc",
117                   cl::desc("Display the relocation entries in the file"));
118 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
119                                   cl::NotHidden, cl::Grouping,
120                                   cl::aliasopt(llvm::Relocations));
121 
122 cl::opt<bool>
123 llvm::DynamicRelocations("dynamic-reloc",
124   cl::desc("Display the dynamic relocation entries in the file"));
125 static cl::alias DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
126                                      cl::NotHidden, cl::Grouping,
127                                      cl::aliasopt(DynamicRelocations));
128 
129 cl::opt<bool>
130     llvm::SectionContents("full-contents",
131                           cl::desc("Display the content of each section"));
132 static cl::alias SectionContentsShort("s",
133                                       cl::desc("Alias for --full-contents"),
134                                       cl::NotHidden, cl::Grouping,
135                                       cl::aliasopt(SectionContents));
136 
137 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
138 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
139                                   cl::NotHidden, cl::Grouping,
140                                   cl::aliasopt(llvm::SymbolTable));
141 
142 cl::opt<bool>
143 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
144 
145 cl::opt<bool>
146 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
147 
148 cl::opt<bool>
149 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
150 
151 cl::opt<bool>
152 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
153 
154 cl::opt<bool>
155 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
156 
157 cl::opt<bool>
158 llvm::RawClangAST("raw-clang-ast",
159     cl::desc("Dump the raw binary contents of the clang AST section"));
160 
161 static cl::opt<bool>
162 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
163 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
164                         cl::Grouping, cl::aliasopt(MachOOpt));
165 
166 cl::opt<std::string>
167 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
168                                     "see -version for available targets"));
169 
170 cl::opt<std::string>
171 llvm::MCPU("mcpu",
172      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
173      cl::value_desc("cpu-name"),
174      cl::init(""));
175 
176 cl::opt<std::string>
177 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
178                                 "see -version for available targets"));
179 
180 cl::opt<bool>
181 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
182                                                  "headers for each section."));
183 static cl::alias SectionHeadersShort("headers",
184                                      cl::desc("Alias for --section-headers"),
185                                      cl::NotHidden,
186                                      cl::aliasopt(SectionHeaders));
187 static cl::alias SectionHeadersShorter("h",
188                                        cl::desc("Alias for --section-headers"),
189                                        cl::NotHidden, cl::Grouping,
190                                        cl::aliasopt(SectionHeaders));
191 
192 static cl::opt<bool>
193     ShowLMA("show-lma",
194             cl::desc("Display LMA column when dumping ELF section headers"));
195 
196 cl::list<std::string>
197 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
198                                          "With -macho dump segment,section"));
199 cl::alias static FilterSectionsj("j", cl::desc("Alias for --section"),
200                                  cl::NotHidden, cl::Grouping, cl::Prefix,
201                                  cl::aliasopt(llvm::FilterSections));
202 
203 cl::list<std::string>
204 llvm::MAttrs("mattr",
205   cl::CommaSeparated,
206   cl::desc("Target specific attributes"),
207   cl::value_desc("a1,+a2,-a3,..."));
208 
209 cl::opt<bool>
210 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
211                                                  "instructions, do not print "
212                                                  "the instruction bytes."));
213 cl::opt<bool>
214 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
215 
216 cl::opt<bool>
217 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
218 
219 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
220                                  cl::NotHidden, cl::Grouping,
221                                  cl::aliasopt(UnwindInfo));
222 
223 cl::opt<bool>
224 llvm::PrivateHeaders("private-headers",
225                      cl::desc("Display format specific file headers"));
226 
227 cl::opt<bool>
228 llvm::FirstPrivateHeader("private-header",
229                          cl::desc("Display only the first format specific file "
230                                   "header"));
231 
232 static cl::alias PrivateHeadersShort("p",
233                                      cl::desc("Alias for --private-headers"),
234                                      cl::NotHidden, cl::Grouping,
235                                      cl::aliasopt(PrivateHeaders));
236 
237 cl::opt<bool> llvm::FileHeaders(
238     "file-headers",
239     cl::desc("Display the contents of the overall file header"));
240 
241 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
242                                   cl::NotHidden, cl::Grouping,
243                                   cl::aliasopt(FileHeaders));
244 
245 cl::opt<bool>
246     llvm::ArchiveHeaders("archive-headers",
247                          cl::desc("Display archive header information"));
248 
249 cl::alias ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
250                               cl::NotHidden, cl::Grouping,
251                               cl::aliasopt(ArchiveHeaders));
252 
253 cl::opt<bool>
254     llvm::PrintImmHex("print-imm-hex",
255                       cl::desc("Use hex format for immediate values"));
256 
257 cl::opt<bool> PrintFaultMaps("fault-map-section",
258                              cl::desc("Display contents of faultmap section"));
259 
260 cl::opt<DIDumpType> llvm::DwarfDumpType(
261     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
262     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
263 
264 cl::opt<bool> PrintSource(
265     "source",
266     cl::desc(
267         "Display source inlined with disassembly. Implies disassemble object"));
268 
269 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), cl::NotHidden,
270                            cl::Grouping, cl::aliasopt(PrintSource));
271 
272 cl::opt<bool> PrintLines("line-numbers",
273                          cl::desc("Display source line numbers with "
274                                   "disassembly. Implies disassemble object"));
275 
276 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
277                           cl::NotHidden, cl::Grouping,
278                           cl::aliasopt(PrintLines));
279 
280 cl::opt<unsigned long long>
281     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
282                  cl::value_desc("address"), cl::init(0));
283 cl::opt<unsigned long long>
284     StopAddress("stop-address",
285                 cl::desc("Stop disassembly at address"),
286                 cl::value_desc("address"), cl::init(UINT64_MAX));
287 
288 cl::opt<bool> DisassembleZeroes(
289                 "disassemble-zeroes",
290                 cl::desc("Do not skip blocks of zeroes when disassembling"));
291 cl::alias DisassembleZeroesShort("z",
292                                  cl::desc("Alias for --disassemble-zeroes"),
293                                  cl::NotHidden, cl::Grouping,
294                                  cl::aliasopt(DisassembleZeroes));
295 
296 static cl::list<std::string>
297     DisassemblerOptions("disassembler-options",
298                         cl::desc("Pass target specific disassembler options"),
299                         cl::value_desc("options"), cl::CommaSeparated);
300 static cl::alias
301     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
302                              cl::NotHidden, cl::Grouping, cl::Prefix,
303                              cl::CommaSeparated,
304                              cl::aliasopt(DisassemblerOptions));
305 
306 static cl::opt<bool>
307     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"));
308 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
309 
310 static StringRef ToolName;
311 
312 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
313 
314 SectionFilter llvm::ToolSectionFilter(llvm::object::ObjectFile const &O) {
315   return SectionFilter(
316       [](llvm::object::SectionRef const &S) {
317         if (FilterSections.empty())
318           return true;
319         llvm::StringRef String;
320         std::error_code error = S.getName(String);
321         if (error)
322           return false;
323         return is_contained(FilterSections, String);
324       },
325       O);
326 }
327 
328 void llvm::error(std::error_code EC) {
329   if (!EC)
330     return;
331   WithColor::error(errs(), ToolName)
332       << "reading file: " << EC.message() << ".\n";
333   errs().flush();
334   exit(1);
335 }
336 
337 void llvm::error(Error E) {
338   if (!E)
339     return;
340   WithColor::error(errs(), ToolName) << toString(std::move(E));
341   exit(1);
342 }
343 
344 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
345   WithColor::error(errs(), ToolName) << Message << ".\n";
346   errs().flush();
347   exit(1);
348 }
349 
350 void llvm::warn(StringRef Message) {
351   WithColor::warning(errs(), ToolName) << Message << ".\n";
352   errs().flush();
353 }
354 
355 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
356                                                 Twine Message) {
357   WithColor::error(errs(), ToolName)
358       << "'" << File << "': " << Message << ".\n";
359   exit(1);
360 }
361 
362 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(Error E, StringRef File) {
363   assert(E);
364   std::string Buf;
365   raw_string_ostream OS(Buf);
366   logAllUnhandledErrors(std::move(E), OS);
367   OS.flush();
368   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
369   exit(1);
370 }
371 
372 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(Error E, StringRef ArchiveName,
373                                                 StringRef FileName,
374                                                 StringRef ArchitectureName) {
375   assert(E);
376   WithColor::error(errs(), ToolName);
377   if (ArchiveName != "")
378     errs() << ArchiveName << "(" << FileName << ")";
379   else
380     errs() << "'" << FileName << "'";
381   if (!ArchitectureName.empty())
382     errs() << " (for architecture " << ArchitectureName << ")";
383   std::string Buf;
384   raw_string_ostream OS(Buf);
385   logAllUnhandledErrors(std::move(E), OS);
386   OS.flush();
387   errs() << ": " << Buf;
388   exit(1);
389 }
390 
391 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(Error E, StringRef ArchiveName,
392                                                 const object::Archive::Child &C,
393                                                 StringRef ArchitectureName) {
394   Expected<StringRef> NameOrErr = C.getName();
395   // TODO: if we have a error getting the name then it would be nice to print
396   // the index of which archive member this is and or its offset in the
397   // archive instead of "???" as the name.
398   if (!NameOrErr) {
399     consumeError(NameOrErr.takeError());
400     llvm::report_error(std::move(E), ArchiveName, "???", ArchitectureName);
401   } else
402     llvm::report_error(std::move(E), ArchiveName, NameOrErr.get(),
403                        ArchitectureName);
404 }
405 
406 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
407   // Figure out the target triple.
408   llvm::Triple TheTriple("unknown-unknown-unknown");
409   if (TripleName.empty()) {
410     if (Obj)
411       TheTriple = Obj->makeTriple();
412   } else {
413     TheTriple.setTriple(Triple::normalize(TripleName));
414 
415     // Use the triple, but also try to combine with ARM build attributes.
416     if (Obj) {
417       auto Arch = Obj->getArch();
418       if (Arch == Triple::arm || Arch == Triple::armeb)
419         Obj->setARMSubArch(TheTriple);
420     }
421   }
422 
423   // Get the target specific parser.
424   std::string Error;
425   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
426                                                          Error);
427   if (!TheTarget) {
428     if (Obj)
429       report_error(Obj->getFileName(), "can't find target: " + Error);
430     else
431       error("can't find target: " + Error);
432   }
433 
434   // Update the triple name and return the found target.
435   TripleName = TheTriple.getTriple();
436   return TheTarget;
437 }
438 
439 bool llvm::isRelocAddressLess(RelocationRef A, RelocationRef B) {
440   return A.getOffset() < B.getOffset();
441 }
442 
443 static Error getRelocationValueString(const RelocationRef &Rel,
444                                       SmallVectorImpl<char> &Result) {
445   const ObjectFile *Obj = Rel.getObject();
446   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
447     return getELFRelocationValueString(ELF, Rel, Result);
448   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
449     return getCOFFRelocationValueString(COFF, Rel, Result);
450   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
451     return getWasmRelocationValueString(Wasm, Rel, Result);
452   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
453     return getMachORelocationValueString(MachO, Rel, Result);
454   llvm_unreachable("unknown object file format");
455 }
456 
457 /// Indicates whether this relocation should hidden when listing
458 /// relocations, usually because it is the trailing part of a multipart
459 /// relocation that will be printed as part of the leading relocation.
460 static bool getHidden(RelocationRef RelRef) {
461   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
462   if (!MachO)
463     return false;
464 
465   unsigned Arch = MachO->getArch();
466   DataRefImpl Rel = RelRef.getRawDataRefImpl();
467   uint64_t Type = MachO->getRelocationType(Rel);
468 
469   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
470   // is always hidden.
471   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
472     return Type == MachO::GENERIC_RELOC_PAIR;
473 
474   if (Arch == Triple::x86_64) {
475     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
476     // an X86_64_RELOC_SUBTRACTOR.
477     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
478       DataRefImpl RelPrev = Rel;
479       RelPrev.d.a--;
480       uint64_t PrevType = MachO->getRelocationType(RelPrev);
481       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
482         return true;
483     }
484   }
485 
486   return false;
487 }
488 
489 namespace {
490 class SourcePrinter {
491 protected:
492   DILineInfo OldLineInfo;
493   const ObjectFile *Obj = nullptr;
494   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
495   // File name to file contents of source
496   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
497   // Mark the line endings of the cached source
498   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
499 
500 private:
501   bool cacheSource(const DILineInfo& LineInfoFile);
502 
503 public:
504   SourcePrinter() = default;
505   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
506     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
507         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
508         DefaultArch);
509     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
510   }
511   virtual ~SourcePrinter() = default;
512   virtual void printSourceLine(raw_ostream &OS,
513                                object::SectionedAddress Address,
514                                StringRef Delimiter = "; ");
515 };
516 
517 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
518   std::unique_ptr<MemoryBuffer> Buffer;
519   if (LineInfo.Source) {
520     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
521   } else {
522     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
523     if (!BufferOrError)
524       return false;
525     Buffer = std::move(*BufferOrError);
526   }
527   // Chomp the file to get lines
528   const char *BufferStart = Buffer->getBufferStart(),
529              *BufferEnd = Buffer->getBufferEnd();
530   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
531   const char *Start = BufferStart;
532   for (const char *I = BufferStart; I != BufferEnd; ++I)
533     if (*I == '\n') {
534       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
535       Start = I + 1;
536     }
537   if (Start < BufferEnd)
538     Lines.emplace_back(Start, BufferEnd - Start);
539   SourceCache[LineInfo.FileName] = std::move(Buffer);
540   return true;
541 }
542 
543 void SourcePrinter::printSourceLine(raw_ostream &OS,
544                                     object::SectionedAddress Address,
545                                     StringRef Delimiter) {
546   if (!Symbolizer)
547     return;
548   DILineInfo LineInfo = DILineInfo();
549   auto ExpectedLineInfo =
550       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
551   if (!ExpectedLineInfo)
552     consumeError(ExpectedLineInfo.takeError());
553   else
554     LineInfo = *ExpectedLineInfo;
555 
556   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
557       LineInfo.Line == 0)
558     return;
559 
560   if (PrintLines)
561     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
562   if (PrintSource) {
563     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
564       if (!cacheSource(LineInfo))
565         return;
566     auto LineBuffer = LineCache.find(LineInfo.FileName);
567     if (LineBuffer != LineCache.end()) {
568       if (LineInfo.Line > LineBuffer->second.size())
569         return;
570       // Vector begins at 0, line numbers are non-zero
571       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
572     }
573   }
574   OldLineInfo = LineInfo;
575 }
576 
577 static bool isArmElf(const ObjectFile *Obj) {
578   return (Obj->isELF() &&
579           (Obj->getArch() == Triple::aarch64 ||
580            Obj->getArch() == Triple::aarch64_be ||
581            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
582            Obj->getArch() == Triple::thumb ||
583            Obj->getArch() == Triple::thumbeb));
584 }
585 
586 static void printRelocation(const RelocationRef &Rel, uint64_t Address,
587                             uint8_t AddrSize) {
588   StringRef Fmt =
589       AddrSize > 4 ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
590   SmallString<16> Name;
591   SmallString<32> Val;
592   Rel.getTypeName(Name);
593   error(getRelocationValueString(Rel, Val));
594   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
595 }
596 
597 class PrettyPrinter {
598 public:
599   virtual ~PrettyPrinter() = default;
600   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
601                          ArrayRef<uint8_t> Bytes,
602                          object::SectionedAddress Address, raw_ostream &OS,
603                          StringRef Annot, MCSubtargetInfo const &STI,
604                          SourcePrinter *SP,
605                          std::vector<RelocationRef> *Rels = nullptr) {
606     if (SP && (PrintSource || PrintLines))
607       SP->printSourceLine(OS, Address);
608 
609     {
610       formatted_raw_ostream FOS(OS);
611       if (!NoLeadingAddr)
612         FOS << format("%8" PRIx64 ":", Address.Address);
613       if (!NoShowRawInsn) {
614         FOS << ' ';
615         dumpBytes(Bytes, FOS);
616       }
617       FOS.flush();
618       // The output of printInst starts with a tab. Print some spaces so that
619       // the tab has 1 column and advances to the target tab stop.
620       unsigned TabStop = NoShowRawInsn ? 16 : 40;
621       unsigned Column = FOS.getColumn();
622       FOS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
623 
624       // The dtor calls flush() to ensure the indent comes before printInst().
625     }
626 
627     if (MI)
628       IP.printInst(MI, OS, "", STI);
629     else
630       OS << "\t<unknown>";
631   }
632 };
633 PrettyPrinter PrettyPrinterInst;
634 class HexagonPrettyPrinter : public PrettyPrinter {
635 public:
636   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
637                  raw_ostream &OS) {
638     uint32_t opcode =
639       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
640     if (!NoLeadingAddr)
641       OS << format("%8" PRIx64 ":", Address);
642     if (!NoShowRawInsn) {
643       OS << "\t";
644       dumpBytes(Bytes.slice(0, 4), OS);
645       OS << format("\t%08" PRIx32, opcode);
646     }
647   }
648   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
649                  object::SectionedAddress Address, raw_ostream &OS,
650                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
651                  std::vector<RelocationRef> *Rels) override {
652     if (SP && (PrintSource || PrintLines))
653       SP->printSourceLine(OS, Address, "");
654     if (!MI) {
655       printLead(Bytes, Address.Address, OS);
656       OS << " <unknown>";
657       return;
658     }
659     std::string Buffer;
660     {
661       raw_string_ostream TempStream(Buffer);
662       IP.printInst(MI, TempStream, "", STI);
663     }
664     StringRef Contents(Buffer);
665     // Split off bundle attributes
666     auto PacketBundle = Contents.rsplit('\n');
667     // Split off first instruction from the rest
668     auto HeadTail = PacketBundle.first.split('\n');
669     auto Preamble = " { ";
670     auto Separator = "";
671 
672     // Hexagon's packets require relocations to be inline rather than
673     // clustered at the end of the packet.
674     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
675     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
676     auto PrintReloc = [&]() -> void {
677       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
678         if (RelCur->getOffset() == Address.Address) {
679           printRelocation(*RelCur, Address.Address, 4);
680           return;
681         }
682         ++RelCur;
683       }
684     };
685 
686     while (!HeadTail.first.empty()) {
687       OS << Separator;
688       Separator = "\n";
689       if (SP && (PrintSource || PrintLines))
690         SP->printSourceLine(OS, Address, "");
691       printLead(Bytes, Address.Address, OS);
692       OS << Preamble;
693       Preamble = "   ";
694       StringRef Inst;
695       auto Duplex = HeadTail.first.split('\v');
696       if (!Duplex.second.empty()) {
697         OS << Duplex.first;
698         OS << "; ";
699         Inst = Duplex.second;
700       }
701       else
702         Inst = HeadTail.first;
703       OS << Inst;
704       HeadTail = HeadTail.second.split('\n');
705       if (HeadTail.first.empty())
706         OS << " } " << PacketBundle.second;
707       PrintReloc();
708       Bytes = Bytes.slice(4);
709       Address.Address += 4;
710     }
711   }
712 };
713 HexagonPrettyPrinter HexagonPrettyPrinterInst;
714 
715 class AMDGCNPrettyPrinter : public PrettyPrinter {
716 public:
717   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
718                  object::SectionedAddress Address, raw_ostream &OS,
719                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
720                  std::vector<RelocationRef> *Rels) override {
721     if (SP && (PrintSource || PrintLines))
722       SP->printSourceLine(OS, Address);
723 
724     typedef support::ulittle32_t U32;
725 
726     if (MI) {
727       SmallString<40> InstStr;
728       raw_svector_ostream IS(InstStr);
729 
730       IP.printInst(MI, IS, "", STI);
731 
732       OS << left_justify(IS.str(), 60);
733     } else {
734       // an unrecognized encoding - this is probably data so represent it
735       // using the .long directive, or .byte directive if fewer than 4 bytes
736       // remaining
737       if (Bytes.size() >= 4) {
738         OS << format("\t.long 0x%08" PRIx32 " ",
739                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
740         OS.indent(42);
741       } else {
742           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
743           for (unsigned int i = 1; i < Bytes.size(); i++)
744             OS << format(", 0x%02" PRIx8, Bytes[i]);
745           OS.indent(55 - (6 * Bytes.size()));
746       }
747     }
748 
749     OS << format("// %012" PRIX64 ": ", Address.Address);
750     if (Bytes.size() >=4) {
751       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
752                                  Bytes.size() / sizeof(U32)))
753         // D should be explicitly casted to uint32_t here as it is passed
754         // by format to snprintf as vararg.
755         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
756     } else {
757       for (unsigned int i = 0; i < Bytes.size(); i++)
758         OS << format("%02" PRIX8 " ", Bytes[i]);
759     }
760 
761     if (!Annot.empty())
762       OS << "// " << Annot;
763   }
764 };
765 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
766 
767 class BPFPrettyPrinter : public PrettyPrinter {
768 public:
769   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
770                  object::SectionedAddress Address, raw_ostream &OS,
771                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
772                  std::vector<RelocationRef> *Rels) override {
773     if (SP && (PrintSource || PrintLines))
774       SP->printSourceLine(OS, Address);
775     if (!NoLeadingAddr)
776       OS << format("%8" PRId64 ":", Address.Address / 8);
777     if (!NoShowRawInsn) {
778       OS << "\t";
779       dumpBytes(Bytes, OS);
780     }
781     if (MI)
782       IP.printInst(MI, OS, "", STI);
783     else
784       OS << "\t<unknown>";
785   }
786 };
787 BPFPrettyPrinter BPFPrettyPrinterInst;
788 
789 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
790   switch(Triple.getArch()) {
791   default:
792     return PrettyPrinterInst;
793   case Triple::hexagon:
794     return HexagonPrettyPrinterInst;
795   case Triple::amdgcn:
796     return AMDGCNPrettyPrinterInst;
797   case Triple::bpfel:
798   case Triple::bpfeb:
799     return BPFPrettyPrinterInst;
800   }
801 }
802 }
803 
804 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
805   assert(Obj->isELF());
806   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
807     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
808   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
809     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
810   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
811     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
812   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
813     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
814   llvm_unreachable("Unsupported binary format");
815 }
816 
817 template <class ELFT> static void
818 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
819                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
820   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
821     uint8_t SymbolType = Symbol.getELFType();
822     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
823       continue;
824 
825     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
826     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
827     if (Name.empty())
828       continue;
829 
830     section_iterator SecI =
831         unwrapOrError(Symbol.getSection(), Obj->getFileName());
832     if (SecI == Obj->section_end())
833       continue;
834 
835     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
836   }
837 }
838 
839 static void
840 addDynamicElfSymbols(const ObjectFile *Obj,
841                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
842   assert(Obj->isELF());
843   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
844     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
845   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
846     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
847   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
848     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
849   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
850     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
851   else
852     llvm_unreachable("Unsupported binary format");
853 }
854 
855 static void addPltEntries(const ObjectFile *Obj,
856                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
857                           StringSaver &Saver) {
858   Optional<SectionRef> Plt = None;
859   for (const SectionRef &Section : Obj->sections()) {
860     StringRef Name;
861     if (Section.getName(Name))
862       continue;
863     if (Name == ".plt")
864       Plt = Section;
865   }
866   if (!Plt)
867     return;
868   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
869     for (auto PltEntry : ElfObj->getPltAddresses()) {
870       SymbolRef Symbol(PltEntry.first, ElfObj);
871       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
872 
873       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
874       if (!Name.empty())
875         AllSymbols[*Plt].emplace_back(
876             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
877     }
878   }
879 }
880 
881 // Normally the disassembly output will skip blocks of zeroes. This function
882 // returns the number of zero bytes that can be skipped when dumping the
883 // disassembly of the instructions in Buf.
884 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
885   // Find the number of leading zeroes.
886   size_t N = 0;
887   while (N < Buf.size() && !Buf[N])
888     ++N;
889 
890   // We may want to skip blocks of zero bytes, but unless we see
891   // at least 8 of them in a row.
892   if (N < 8)
893     return 0;
894 
895   // We skip zeroes in multiples of 4 because do not want to truncate an
896   // instruction if it starts with a zero byte.
897   return N & ~0x3;
898 }
899 
900 // Returns a map from sections to their relocations.
901 static std::map<SectionRef, std::vector<RelocationRef>>
902 getRelocsMap(llvm::object::ObjectFile const &Obj) {
903   std::map<SectionRef, std::vector<RelocationRef>> Ret;
904   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
905     section_iterator RelSec = Section.getRelocatedSection();
906     if (RelSec == Obj.section_end())
907       continue;
908     std::vector<RelocationRef> &V = Ret[*RelSec];
909     for (const RelocationRef &R : Section.relocations())
910       V.push_back(R);
911     // Sort relocations by address.
912     llvm::sort(V, isRelocAddressLess);
913   }
914   return Ret;
915 }
916 
917 // Used for --adjust-vma to check if address should be adjusted by the
918 // specified value for a given section.
919 // For ELF we do not adjust non-allocatable sections like debug ones,
920 // because they are not loadable.
921 // TODO: implement for other file formats.
922 static bool shouldAdjustVA(const SectionRef &Section) {
923   const ObjectFile *Obj = Section.getObject();
924   if (isa<object::ELFObjectFileBase>(Obj))
925     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
926   return false;
927 }
928 
929 static uint64_t
930 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
931                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
932                const std::vector<uint64_t> &TextMappingSymsAddr) {
933   support::endianness Endian =
934       Obj->isLittleEndian() ? support::little : support::big;
935   while (Index < End) {
936     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
937     outs() << "\t";
938     if (Index + 4 <= End) {
939       dumpBytes(Bytes.slice(Index, 4), outs());
940       outs() << "\t.word\t"
941              << format_hex(
942                     support::endian::read32(Bytes.data() + Index, Endian), 10);
943       Index += 4;
944     } else if (Index + 2 <= End) {
945       dumpBytes(Bytes.slice(Index, 2), outs());
946       outs() << "\t\t.short\t"
947              << format_hex(
948                     support::endian::read16(Bytes.data() + Index, Endian), 6);
949       Index += 2;
950     } else {
951       dumpBytes(Bytes.slice(Index, 1), outs());
952       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
953       ++Index;
954     }
955     outs() << "\n";
956     if (std::binary_search(TextMappingSymsAddr.begin(),
957                            TextMappingSymsAddr.end(), Index))
958       break;
959   }
960   return Index;
961 }
962 
963 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
964                         ArrayRef<uint8_t> Bytes) {
965   // print out data up to 8 bytes at a time in hex and ascii
966   uint8_t AsciiData[9] = {'\0'};
967   uint8_t Byte;
968   int NumBytes = 0;
969 
970   for (; Index < End; ++Index) {
971     if (NumBytes == 0) {
972       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
973       outs() << "\t";
974     }
975     Byte = Bytes.slice(Index)[0];
976     outs() << format(" %02x", Byte);
977     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
978 
979     uint8_t IndentOffset = 0;
980     NumBytes++;
981     if (Index == End - 1 || NumBytes > 8) {
982       // Indent the space for less than 8 bytes data.
983       // 2 spaces for byte and one for space between bytes
984       IndentOffset = 3 * (8 - NumBytes);
985       for (int Excess = NumBytes; Excess < 8; Excess++)
986         AsciiData[Excess] = '\0';
987       NumBytes = 8;
988     }
989     if (NumBytes == 8) {
990       AsciiData[8] = '\0';
991       outs() << std::string(IndentOffset, ' ') << "         ";
992       outs() << reinterpret_cast<char *>(AsciiData);
993       outs() << '\n';
994       NumBytes = 0;
995     }
996   }
997 }
998 
999 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1000                               MCContext &Ctx, MCDisassembler *DisAsm,
1001                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1002                               const MCSubtargetInfo *STI, PrettyPrinter &PIP,
1003                               SourcePrinter &SP, bool InlineRelocs) {
1004   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1005   if (InlineRelocs)
1006     RelocMap = getRelocsMap(*Obj);
1007 
1008   // Create a mapping from virtual address to symbol name.  This is used to
1009   // pretty print the symbols while disassembling.
1010   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1011   SectionSymbolsTy AbsoluteSymbols;
1012   const StringRef FileName = Obj->getFileName();
1013   for (const SymbolRef &Symbol : Obj->symbols()) {
1014     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1015 
1016     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1017     if (Name.empty())
1018       continue;
1019 
1020     uint8_t SymbolType = ELF::STT_NOTYPE;
1021     if (Obj->isELF()) {
1022       SymbolType = getElfSymbolType(Obj, Symbol);
1023       if (SymbolType == ELF::STT_SECTION)
1024         continue;
1025     }
1026 
1027     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1028     if (SecI != Obj->section_end())
1029       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1030     else
1031       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1032   }
1033   if (AllSymbols.empty() && Obj->isELF())
1034     addDynamicElfSymbols(Obj, AllSymbols);
1035 
1036   BumpPtrAllocator A;
1037   StringSaver Saver(A);
1038   addPltEntries(Obj, AllSymbols, Saver);
1039 
1040   // Create a mapping from virtual address to section.
1041   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1042   for (SectionRef Sec : Obj->sections())
1043     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1044   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1045 
1046   // Linked executables (.exe and .dll files) typically don't include a real
1047   // symbol table but they might contain an export table.
1048   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1049     for (const auto &ExportEntry : COFFObj->export_directories()) {
1050       StringRef Name;
1051       error(ExportEntry.getSymbolName(Name));
1052       if (Name.empty())
1053         continue;
1054       uint32_t RVA;
1055       error(ExportEntry.getExportRVA(RVA));
1056 
1057       uint64_t VA = COFFObj->getImageBase() + RVA;
1058       auto Sec = llvm::upper_bound(
1059           SectionAddresses, VA,
1060           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1061             return LHS < RHS.first;
1062           });
1063       if (Sec != SectionAddresses.begin()) {
1064         --Sec;
1065         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1066       } else
1067         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1068     }
1069   }
1070 
1071   // Sort all the symbols, this allows us to use a simple binary search to find
1072   // a symbol near an address.
1073   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1074     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1075   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1076 
1077   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1078     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1079       continue;
1080 
1081     uint64_t SectionAddr = Section.getAddress();
1082     uint64_t SectSize = Section.getSize();
1083     if (!SectSize)
1084       continue;
1085 
1086     // Get the list of all the symbols in this section.
1087     SectionSymbolsTy &Symbols = AllSymbols[Section];
1088     std::vector<uint64_t> DataMappingSymsAddr;
1089     std::vector<uint64_t> TextMappingSymsAddr;
1090     if (isArmElf(Obj)) {
1091       for (const auto &Symb : Symbols) {
1092         uint64_t Address = std::get<0>(Symb);
1093         StringRef Name = std::get<1>(Symb);
1094         if (Name.startswith("$d"))
1095           DataMappingSymsAddr.push_back(Address - SectionAddr);
1096         if (Name.startswith("$x"))
1097           TextMappingSymsAddr.push_back(Address - SectionAddr);
1098         if (Name.startswith("$a"))
1099           TextMappingSymsAddr.push_back(Address - SectionAddr);
1100         if (Name.startswith("$t"))
1101           TextMappingSymsAddr.push_back(Address - SectionAddr);
1102       }
1103     }
1104 
1105     llvm::sort(DataMappingSymsAddr);
1106     llvm::sort(TextMappingSymsAddr);
1107 
1108     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1109       // AMDGPU disassembler uses symbolizer for printing labels
1110       std::unique_ptr<MCRelocationInfo> RelInfo(
1111         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1112       if (RelInfo) {
1113         std::unique_ptr<MCSymbolizer> Symbolizer(
1114           TheTarget->createMCSymbolizer(
1115             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1116         DisAsm->setSymbolizer(std::move(Symbolizer));
1117       }
1118     }
1119 
1120     StringRef SegmentName = "";
1121     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1122       DataRefImpl DR = Section.getRawDataRefImpl();
1123       SegmentName = MachO->getSectionFinalSegmentName(DR);
1124     }
1125     StringRef SectionName;
1126     error(Section.getName(SectionName));
1127 
1128     // If the section has no symbol at the start, just insert a dummy one.
1129     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1130       Symbols.insert(
1131           Symbols.begin(),
1132           std::make_tuple(SectionAddr, SectionName,
1133                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1134     }
1135 
1136     SmallString<40> Comments;
1137     raw_svector_ostream CommentStream(Comments);
1138 
1139     StringRef BytesStr;
1140     error(Section.getContents(BytesStr));
1141     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(BytesStr);
1142 
1143     uint64_t VMAAdjustment = 0;
1144     if (shouldAdjustVA(Section))
1145       VMAAdjustment = AdjustVMA;
1146 
1147     uint64_t Size;
1148     uint64_t Index;
1149     bool PrintedSection = false;
1150     std::vector<RelocationRef> Rels = RelocMap[Section];
1151     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1152     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1153     // Disassemble symbol by symbol.
1154     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1155       uint64_t Start = std::get<0>(Symbols[SI]) - SectionAddr;
1156       // The end is either the section end or the beginning of the next
1157       // symbol.
1158       uint64_t End = (SI == SE - 1)
1159                          ? SectSize
1160                          : std::get<0>(Symbols[SI + 1]) - SectionAddr;
1161       // Don't try to disassemble beyond the end of section contents.
1162       if (End > SectSize)
1163         End = SectSize;
1164       // If this symbol has the same address as the next symbol, then skip it.
1165       if (Start >= End)
1166         continue;
1167 
1168       // Check if we need to skip symbol
1169       // Skip if the symbol's data is not between StartAddress and StopAddress
1170       if (End + SectionAddr <= StartAddress ||
1171           Start + SectionAddr >= StopAddress)
1172         continue;
1173 
1174       // Stop disassembly at the stop address specified
1175       if (End + SectionAddr > StopAddress)
1176         End = StopAddress - SectionAddr;
1177 
1178       /// Skip if user requested specific symbols and this is not in the list
1179       if (!DisasmFuncsSet.empty() &&
1180           !DisasmFuncsSet.count(std::get<1>(Symbols[SI])))
1181         continue;
1182 
1183       if (!PrintedSection) {
1184         PrintedSection = true;
1185         outs() << "Disassembly of section ";
1186         if (!SegmentName.empty())
1187           outs() << SegmentName << ",";
1188         outs() << SectionName << ':';
1189       }
1190 
1191       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1192         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1193           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1194           Start += 256;
1195         }
1196         if (SI == SE - 1 ||
1197             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1198           // cut trailing zeroes at the end of kernel
1199           // cut up to 256 bytes
1200           const uint64_t EndAlign = 256;
1201           const auto Limit = End - (std::min)(EndAlign, End - Start);
1202           while (End > Limit &&
1203             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1204             End -= 4;
1205         }
1206       }
1207 
1208       outs() << '\n';
1209       if (!NoLeadingAddr)
1210         outs() << format("%016" PRIx64 " ",
1211                          SectionAddr + Start + VMAAdjustment);
1212 
1213       StringRef SymbolName = std::get<1>(Symbols[SI]);
1214       if (Demangle)
1215         outs() << demangle(SymbolName) << ":\n";
1216       else
1217         outs() << SymbolName << ":\n";
1218 
1219       // Don't print raw contents of a virtual section. A virtual section
1220       // doesn't have any contents in the file.
1221       if (Section.isVirtual()) {
1222         outs() << "...\n";
1223         continue;
1224       }
1225 
1226 #ifndef NDEBUG
1227       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1228 #else
1229       raw_ostream &DebugOut = nulls();
1230 #endif
1231 
1232       // Some targets (like WebAssembly) have a special prelude at the start
1233       // of each symbol.
1234       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1235                             SectionAddr + Start, DebugOut, CommentStream);
1236       Start += Size;
1237 
1238       Index = Start;
1239       if (SectionAddr < StartAddress)
1240         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1241 
1242       // If there is a data symbol inside an ELF text section and we are
1243       // only disassembling text (applicable all architectures), we are in a
1244       // situation where we must print the data and not disassemble it.
1245       if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT &&
1246           !DisassembleAll && Section.isText()) {
1247         dumpELFData(SectionAddr, Index, End, Bytes);
1248         Index = End;
1249       }
1250 
1251       bool CheckARMELFData = isArmElf(Obj) &&
1252                              std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1253                              !DisassembleAll;
1254       while (Index < End) {
1255         // AArch64 ELF binaries can interleave data and text in the same
1256         // section. We rely on the markers introduced to understand what we
1257         // need to dump. If the data marker is within a function, it is
1258         // denoted as a word/short etc.
1259         if (CheckARMELFData &&
1260             std::binary_search(DataMappingSymsAddr.begin(),
1261                                DataMappingSymsAddr.end(), Index)) {
1262           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1263                                  TextMappingSymsAddr);
1264           continue;
1265         }
1266 
1267         // When -z or --disassemble-zeroes are given we always dissasemble
1268         // them. Otherwise we might want to skip zero bytes we see.
1269         if (!DisassembleZeroes) {
1270           uint64_t MaxOffset = End - Index;
1271           // For -reloc: print zero blocks patched by relocations, so that
1272           // relocations can be shown in the dump.
1273           if (RelCur != RelEnd)
1274             MaxOffset = RelCur->getOffset() - Index;
1275 
1276           if (size_t N =
1277                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1278             outs() << "\t\t..." << '\n';
1279             Index += N;
1280             continue;
1281           }
1282         }
1283 
1284         // Disassemble a real instruction or a data when disassemble all is
1285         // provided
1286         MCInst Inst;
1287         bool Disassembled = DisAsm->getInstruction(
1288             Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut,
1289             CommentStream);
1290         if (Size == 0)
1291           Size = 1;
1292 
1293         PIP.printInst(
1294             *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1295             {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, outs(),
1296             "", *STI, &SP, &Rels);
1297         outs() << CommentStream.str();
1298         Comments.clear();
1299 
1300         // Try to resolve the target of a call, tail call, etc. to a specific
1301         // symbol.
1302         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1303                     MIA->isConditionalBranch(Inst))) {
1304           uint64_t Target;
1305           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1306             // In a relocatable object, the target's section must reside in
1307             // the same section as the call instruction or it is accessed
1308             // through a relocation.
1309             //
1310             // In a non-relocatable object, the target may be in any section.
1311             //
1312             // N.B. We don't walk the relocations in the relocatable case yet.
1313             auto *TargetSectionSymbols = &Symbols;
1314             if (!Obj->isRelocatableObject()) {
1315               auto SectionAddress = llvm::upper_bound(
1316                   SectionAddresses, Target,
1317                   [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1318                     return LHS < RHS.first;
1319                   });
1320               if (SectionAddress != SectionAddresses.begin()) {
1321                 --SectionAddress;
1322                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1323               } else {
1324                 TargetSectionSymbols = &AbsoluteSymbols;
1325               }
1326             }
1327 
1328             // Find the first symbol in the section whose offset is less than
1329             // or equal to the target. If there isn't a section that contains
1330             // the target, find the nearest preceding absolute symbol.
1331             auto TargetSym = llvm::upper_bound(
1332                 *TargetSectionSymbols, Target,
1333                 [](uint64_t LHS,
1334                    const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1335                   return LHS < std::get<0>(RHS);
1336                 });
1337             if (TargetSym == TargetSectionSymbols->begin()) {
1338               TargetSectionSymbols = &AbsoluteSymbols;
1339               TargetSym = llvm::upper_bound(
1340                   AbsoluteSymbols, Target,
1341                   [](uint64_t LHS,
1342                      const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1343                     return LHS < std::get<0>(RHS);
1344                   });
1345             }
1346             if (TargetSym != TargetSectionSymbols->begin()) {
1347               --TargetSym;
1348               uint64_t TargetAddress = std::get<0>(*TargetSym);
1349               StringRef TargetName = std::get<1>(*TargetSym);
1350               outs() << " <" << TargetName;
1351               uint64_t Disp = Target - TargetAddress;
1352               if (Disp)
1353                 outs() << "+0x" << Twine::utohexstr(Disp);
1354               outs() << '>';
1355             }
1356           }
1357         }
1358         outs() << "\n";
1359 
1360         // Hexagon does this in pretty printer
1361         if (Obj->getArch() != Triple::hexagon) {
1362           // Print relocation for instruction.
1363           while (RelCur != RelEnd) {
1364             uint64_t Offset = RelCur->getOffset();
1365             // If this relocation is hidden, skip it.
1366             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1367               ++RelCur;
1368               continue;
1369             }
1370 
1371             // Stop when RelCur's offset is past the current instruction.
1372             if (Offset >= Index + Size)
1373               break;
1374 
1375             // When --adjust-vma is used, update the address printed.
1376             if (RelCur->getSymbol() != Obj->symbol_end()) {
1377               Expected<section_iterator> SymSI =
1378                   RelCur->getSymbol()->getSection();
1379               if (SymSI && *SymSI != Obj->section_end() &&
1380                   shouldAdjustVA(**SymSI))
1381                 Offset += AdjustVMA;
1382             }
1383 
1384             printRelocation(*RelCur, SectionAddr + Offset,
1385                             Obj->getBytesInAddress());
1386             ++RelCur;
1387           }
1388         }
1389 
1390         Index += Size;
1391       }
1392     }
1393   }
1394 }
1395 
1396 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1397   if (StartAddress > StopAddress)
1398     error("Start address should be less than stop address");
1399 
1400   const Target *TheTarget = getTarget(Obj);
1401 
1402   // Package up features to be passed to target/subtarget
1403   SubtargetFeatures Features = Obj->getFeatures();
1404   if (!MAttrs.empty())
1405     for (unsigned I = 0; I != MAttrs.size(); ++I)
1406       Features.AddFeature(MAttrs[I]);
1407 
1408   std::unique_ptr<const MCRegisterInfo> MRI(
1409       TheTarget->createMCRegInfo(TripleName));
1410   if (!MRI)
1411     report_error(Obj->getFileName(),
1412                  "no register info for target " + TripleName);
1413 
1414   // Set up disassembler.
1415   std::unique_ptr<const MCAsmInfo> AsmInfo(
1416       TheTarget->createMCAsmInfo(*MRI, TripleName));
1417   if (!AsmInfo)
1418     report_error(Obj->getFileName(),
1419                  "no assembly info for target " + TripleName);
1420   std::unique_ptr<const MCSubtargetInfo> STI(
1421       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1422   if (!STI)
1423     report_error(Obj->getFileName(),
1424                  "no subtarget info for target " + TripleName);
1425   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1426   if (!MII)
1427     report_error(Obj->getFileName(),
1428                  "no instruction info for target " + TripleName);
1429   MCObjectFileInfo MOFI;
1430   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1431   // FIXME: for now initialize MCObjectFileInfo with default values
1432   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1433 
1434   std::unique_ptr<MCDisassembler> DisAsm(
1435       TheTarget->createMCDisassembler(*STI, Ctx));
1436   if (!DisAsm)
1437     report_error(Obj->getFileName(),
1438                  "no disassembler for target " + TripleName);
1439 
1440   std::unique_ptr<const MCInstrAnalysis> MIA(
1441       TheTarget->createMCInstrAnalysis(MII.get()));
1442 
1443   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1444   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1445       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1446   if (!IP)
1447     report_error(Obj->getFileName(),
1448                  "no instruction printer for target " + TripleName);
1449   IP->setPrintImmHex(PrintImmHex);
1450 
1451   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1452   SourcePrinter SP(Obj, TheTarget->getName());
1453 
1454   for (StringRef Opt : DisassemblerOptions)
1455     if (!IP->applyTargetSpecificCLOption(Opt))
1456       error("Unrecognized disassembler option: " + Opt);
1457 
1458   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), MIA.get(), IP.get(),
1459                     STI.get(), PIP, SP, InlineRelocs);
1460 }
1461 
1462 void llvm::printRelocations(const ObjectFile *Obj) {
1463   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1464                                                  "%08" PRIx64;
1465   // Regular objdump doesn't print relocations in non-relocatable object
1466   // files.
1467   if (!Obj->isRelocatableObject())
1468     return;
1469 
1470   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1471     if (Section.relocation_begin() == Section.relocation_end())
1472       continue;
1473     StringRef SecName;
1474     error(Section.getName(SecName));
1475     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1476     for (const RelocationRef &Reloc : Section.relocations()) {
1477       uint64_t Address = Reloc.getOffset();
1478       SmallString<32> RelocName;
1479       SmallString<32> ValueStr;
1480       if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1481         continue;
1482       Reloc.getTypeName(RelocName);
1483       error(getRelocationValueString(Reloc, ValueStr));
1484       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1485              << ValueStr << "\n";
1486     }
1487     outs() << "\n";
1488   }
1489 }
1490 
1491 void llvm::printDynamicRelocations(const ObjectFile *Obj) {
1492   // For the moment, this option is for ELF only
1493   if (!Obj->isELF())
1494     return;
1495 
1496   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1497   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1498     error("not a dynamic object");
1499     return;
1500   }
1501 
1502   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1503   if (DynRelSec.empty())
1504     return;
1505 
1506   outs() << "DYNAMIC RELOCATION RECORDS\n";
1507   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1508   for (const SectionRef &Section : DynRelSec) {
1509     if (Section.relocation_begin() == Section.relocation_end())
1510       continue;
1511     for (const RelocationRef &Reloc : Section.relocations()) {
1512       uint64_t Address = Reloc.getOffset();
1513       SmallString<32> RelocName;
1514       SmallString<32> ValueStr;
1515       Reloc.getTypeName(RelocName);
1516       error(getRelocationValueString(Reloc, ValueStr));
1517       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1518              << ValueStr << "\n";
1519     }
1520   }
1521 }
1522 
1523 // Returns true if we need to show LMA column when dumping section headers. We
1524 // show it only when the platform is ELF and either we have at least one section
1525 // whose VMA and LMA are different and/or when --show-lma flag is used.
1526 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1527   if (!Obj->isELF())
1528     return false;
1529   for (const SectionRef &S : ToolSectionFilter(*Obj))
1530     if (S.getAddress() != getELFSectionLMA(S))
1531       return true;
1532   return ShowLMA;
1533 }
1534 
1535 void llvm::printSectionHeaders(const ObjectFile *Obj) {
1536   bool HasLMAColumn = shouldDisplayLMA(Obj);
1537   if (HasLMAColumn)
1538     outs() << "Sections:\n"
1539               "Idx Name          Size     VMA              LMA              "
1540               "Type\n";
1541   else
1542     outs() << "Sections:\n"
1543               "Idx Name          Size     VMA          Type\n";
1544 
1545   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1546     StringRef Name;
1547     error(Section.getName(Name));
1548     uint64_t VMA = Section.getAddress();
1549     if (shouldAdjustVA(Section))
1550       VMA += AdjustVMA;
1551 
1552     uint64_t Size = Section.getSize();
1553     bool Text = Section.isText();
1554     bool Data = Section.isData();
1555     bool BSS = Section.isBSS();
1556     std::string Type = (std::string(Text ? "TEXT " : "") +
1557                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1558 
1559     if (HasLMAColumn)
1560       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %016" PRIx64
1561                        " %s\n",
1562                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1563                        VMA, getELFSectionLMA(Section), Type.c_str());
1564     else
1565       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1566                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1567                        VMA, Type.c_str());
1568   }
1569   outs() << "\n";
1570 }
1571 
1572 void llvm::printSectionContents(const ObjectFile *Obj) {
1573   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1574     StringRef Name;
1575     StringRef Contents;
1576     error(Section.getName(Name));
1577     uint64_t BaseAddr = Section.getAddress();
1578     uint64_t Size = Section.getSize();
1579     if (!Size)
1580       continue;
1581 
1582     outs() << "Contents of section " << Name << ":\n";
1583     if (Section.isBSS()) {
1584       outs() << format("<skipping contents of bss section at [%04" PRIx64
1585                        ", %04" PRIx64 ")>\n",
1586                        BaseAddr, BaseAddr + Size);
1587       continue;
1588     }
1589 
1590     error(Section.getContents(Contents));
1591 
1592     // Dump out the content as hex and printable ascii characters.
1593     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1594       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1595       // Dump line of hex.
1596       for (std::size_t I = 0; I < 16; ++I) {
1597         if (I != 0 && I % 4 == 0)
1598           outs() << ' ';
1599         if (Addr + I < End)
1600           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1601                  << hexdigit(Contents[Addr + I] & 0xF, true);
1602         else
1603           outs() << "  ";
1604       }
1605       // Print ascii.
1606       outs() << "  ";
1607       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1608         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1609           outs() << Contents[Addr + I];
1610         else
1611           outs() << ".";
1612       }
1613       outs() << "\n";
1614     }
1615   }
1616 }
1617 
1618 void llvm::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1619                             StringRef ArchitectureName) {
1620   outs() << "SYMBOL TABLE:\n";
1621 
1622   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1623     printCOFFSymbolTable(Coff);
1624     return;
1625   }
1626 
1627   const StringRef FileName = O->getFileName();
1628   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1629     // Skip printing the special zero symbol when dumping an ELF file.
1630     // This makes the output consistent with the GNU objdump.
1631     if (I == O->symbol_begin() && isa<ELFObjectFileBase>(O))
1632       continue;
1633 
1634     const SymbolRef &Symbol = *I;
1635     uint64_t Address = unwrapOrError(Symbol.getAddress(), ArchiveName, FileName,
1636                                      ArchitectureName);
1637     if ((Address < StartAddress) || (Address > StopAddress))
1638       continue;
1639     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), ArchiveName,
1640                                          FileName, ArchitectureName);
1641     uint32_t Flags = Symbol.getFlags();
1642     section_iterator Section = unwrapOrError(Symbol.getSection(), ArchiveName,
1643                                              FileName, ArchitectureName);
1644     StringRef Name;
1645     if (Type == SymbolRef::ST_Debug && Section != O->section_end())
1646       Section->getName(Name);
1647     else
1648       Name = unwrapOrError(Symbol.getName(), ArchiveName, FileName,
1649                            ArchitectureName);
1650 
1651     bool Global = Flags & SymbolRef::SF_Global;
1652     bool Weak = Flags & SymbolRef::SF_Weak;
1653     bool Absolute = Flags & SymbolRef::SF_Absolute;
1654     bool Common = Flags & SymbolRef::SF_Common;
1655     bool Hidden = Flags & SymbolRef::SF_Hidden;
1656 
1657     char GlobLoc = ' ';
1658     if (Type != SymbolRef::ST_Unknown)
1659       GlobLoc = Global ? 'g' : 'l';
1660     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1661                  ? 'd' : ' ';
1662     char FileFunc = ' ';
1663     if (Type == SymbolRef::ST_File)
1664       FileFunc = 'f';
1665     else if (Type == SymbolRef::ST_Function)
1666       FileFunc = 'F';
1667     else if (Type == SymbolRef::ST_Data)
1668       FileFunc = 'O';
1669 
1670     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1671                                                    "%08" PRIx64;
1672 
1673     outs() << format(Fmt, Address) << " "
1674            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1675            << (Weak ? 'w' : ' ') // Weak?
1676            << ' ' // Constructor. Not supported yet.
1677            << ' ' // Warning. Not supported yet.
1678            << ' ' // Indirect reference to another symbol.
1679            << Debug // Debugging (d) or dynamic (D) symbol.
1680            << FileFunc // Name of function (F), file (f) or object (O).
1681            << ' ';
1682     if (Absolute) {
1683       outs() << "*ABS*";
1684     } else if (Common) {
1685       outs() << "*COM*";
1686     } else if (Section == O->section_end()) {
1687       outs() << "*UND*";
1688     } else {
1689       if (const MachOObjectFile *MachO =
1690           dyn_cast<const MachOObjectFile>(O)) {
1691         DataRefImpl DR = Section->getRawDataRefImpl();
1692         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1693         outs() << SegmentName << ",";
1694       }
1695       StringRef SectionName;
1696       error(Section->getName(SectionName));
1697       outs() << SectionName;
1698     }
1699 
1700     outs() << '\t';
1701     if (Common || isa<ELFObjectFileBase>(O)) {
1702       uint64_t Val =
1703           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1704       outs() << format("\t %08" PRIx64 " ", Val);
1705     }
1706 
1707     if (Hidden)
1708       outs() << ".hidden ";
1709 
1710     if (Demangle)
1711       outs() << demangle(Name) << '\n';
1712     else
1713       outs() << Name << '\n';
1714   }
1715 }
1716 
1717 static void printUnwindInfo(const ObjectFile *O) {
1718   outs() << "Unwind info:\n\n";
1719 
1720   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1721     printCOFFUnwindInfo(Coff);
1722   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1723     printMachOUnwindInfo(MachO);
1724   else
1725     // TODO: Extract DWARF dump tool to objdump.
1726     WithColor::error(errs(), ToolName)
1727         << "This operation is only currently supported "
1728            "for COFF and MachO object files.\n";
1729 }
1730 
1731 void llvm::printExportsTrie(const ObjectFile *o) {
1732   outs() << "Exports trie:\n";
1733   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1734     printMachOExportsTrie(MachO);
1735   else
1736     WithColor::error(errs(), ToolName)
1737         << "This operation is only currently supported "
1738            "for Mach-O executable files.\n";
1739 }
1740 
1741 void llvm::printRebaseTable(ObjectFile *o) {
1742   outs() << "Rebase table:\n";
1743   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1744     printMachORebaseTable(MachO);
1745   else
1746     WithColor::error(errs(), ToolName)
1747         << "This operation is only currently supported "
1748            "for Mach-O executable files.\n";
1749 }
1750 
1751 void llvm::printBindTable(ObjectFile *o) {
1752   outs() << "Bind table:\n";
1753   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1754     printMachOBindTable(MachO);
1755   else
1756     WithColor::error(errs(), ToolName)
1757         << "This operation is only currently supported "
1758            "for Mach-O executable files.\n";
1759 }
1760 
1761 void llvm::printLazyBindTable(ObjectFile *o) {
1762   outs() << "Lazy bind table:\n";
1763   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1764     printMachOLazyBindTable(MachO);
1765   else
1766     WithColor::error(errs(), ToolName)
1767         << "This operation is only currently supported "
1768            "for Mach-O executable files.\n";
1769 }
1770 
1771 void llvm::printWeakBindTable(ObjectFile *o) {
1772   outs() << "Weak bind table:\n";
1773   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1774     printMachOWeakBindTable(MachO);
1775   else
1776     WithColor::error(errs(), ToolName)
1777         << "This operation is only currently supported "
1778            "for Mach-O executable files.\n";
1779 }
1780 
1781 /// Dump the raw contents of the __clangast section so the output can be piped
1782 /// into llvm-bcanalyzer.
1783 void llvm::printRawClangAST(const ObjectFile *Obj) {
1784   if (outs().is_displayed()) {
1785     WithColor::error(errs(), ToolName)
1786         << "The -raw-clang-ast option will dump the raw binary contents of "
1787            "the clang ast section.\n"
1788            "Please redirect the output to a file or another program such as "
1789            "llvm-bcanalyzer.\n";
1790     return;
1791   }
1792 
1793   StringRef ClangASTSectionName("__clangast");
1794   if (isa<COFFObjectFile>(Obj)) {
1795     ClangASTSectionName = "clangast";
1796   }
1797 
1798   Optional<object::SectionRef> ClangASTSection;
1799   for (auto Sec : ToolSectionFilter(*Obj)) {
1800     StringRef Name;
1801     Sec.getName(Name);
1802     if (Name == ClangASTSectionName) {
1803       ClangASTSection = Sec;
1804       break;
1805     }
1806   }
1807   if (!ClangASTSection)
1808     return;
1809 
1810   StringRef ClangASTContents;
1811   error(ClangASTSection.getValue().getContents(ClangASTContents));
1812   outs().write(ClangASTContents.data(), ClangASTContents.size());
1813 }
1814 
1815 static void printFaultMaps(const ObjectFile *Obj) {
1816   StringRef FaultMapSectionName;
1817 
1818   if (isa<ELFObjectFileBase>(Obj)) {
1819     FaultMapSectionName = ".llvm_faultmaps";
1820   } else if (isa<MachOObjectFile>(Obj)) {
1821     FaultMapSectionName = "__llvm_faultmaps";
1822   } else {
1823     WithColor::error(errs(), ToolName)
1824         << "This operation is only currently supported "
1825            "for ELF and Mach-O executable files.\n";
1826     return;
1827   }
1828 
1829   Optional<object::SectionRef> FaultMapSection;
1830 
1831   for (auto Sec : ToolSectionFilter(*Obj)) {
1832     StringRef Name;
1833     Sec.getName(Name);
1834     if (Name == FaultMapSectionName) {
1835       FaultMapSection = Sec;
1836       break;
1837     }
1838   }
1839 
1840   outs() << "FaultMap table:\n";
1841 
1842   if (!FaultMapSection.hasValue()) {
1843     outs() << "<not found>\n";
1844     return;
1845   }
1846 
1847   StringRef FaultMapContents;
1848   error(FaultMapSection.getValue().getContents(FaultMapContents));
1849 
1850   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1851                      FaultMapContents.bytes_end());
1852 
1853   outs() << FMP;
1854 }
1855 
1856 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1857   if (O->isELF()) {
1858     printELFFileHeader(O);
1859     printELFDynamicSection(O);
1860     printELFSymbolVersionInfo(O);
1861     return;
1862   }
1863   if (O->isCOFF())
1864     return printCOFFFileHeader(O);
1865   if (O->isWasm())
1866     return printWasmFileHeader(O);
1867   if (O->isMachO()) {
1868     printMachOFileHeader(O);
1869     if (!OnlyFirst)
1870       printMachOLoadCommands(O);
1871     return;
1872   }
1873   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1874 }
1875 
1876 static void printFileHeaders(const ObjectFile *O) {
1877   if (!O->isELF() && !O->isCOFF())
1878     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1879 
1880   Triple::ArchType AT = O->getArch();
1881   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1882   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
1883 
1884   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1885   outs() << "start address: "
1886          << "0x" << format(Fmt.data(), Address) << "\n\n";
1887 }
1888 
1889 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1890   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1891   if (!ModeOrErr) {
1892     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1893     consumeError(ModeOrErr.takeError());
1894     return;
1895   }
1896   sys::fs::perms Mode = ModeOrErr.get();
1897   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1898   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1899   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1900   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1901   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1902   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1903   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1904   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1905   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1906 
1907   outs() << " ";
1908 
1909   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
1910                    unwrapOrError(C.getGID(), Filename),
1911                    unwrapOrError(C.getRawSize(), Filename));
1912 
1913   StringRef RawLastModified = C.getRawLastModified();
1914   unsigned Seconds;
1915   if (RawLastModified.getAsInteger(10, Seconds))
1916     outs() << "(date: \"" << RawLastModified
1917            << "\" contains non-decimal chars) ";
1918   else {
1919     // Since ctime(3) returns a 26 character string of the form:
1920     // "Sun Sep 16 01:03:52 1973\n\0"
1921     // just print 24 characters.
1922     time_t t = Seconds;
1923     outs() << format("%.24s ", ctime(&t));
1924   }
1925 
1926   StringRef Name = "";
1927   Expected<StringRef> NameOrErr = C.getName();
1928   if (!NameOrErr) {
1929     consumeError(NameOrErr.takeError());
1930     Name = unwrapOrError(C.getRawName(), Filename);
1931   } else {
1932     Name = NameOrErr.get();
1933   }
1934   outs() << Name << "\n";
1935 }
1936 
1937 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
1938                        const Archive::Child *C = nullptr) {
1939   // Avoid other output when using a raw option.
1940   if (!RawClangAST) {
1941     outs() << '\n';
1942     if (A)
1943       outs() << A->getFileName() << "(" << O->getFileName() << ")";
1944     else
1945       outs() << O->getFileName();
1946     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
1947   }
1948 
1949   StringRef ArchiveName = A ? A->getFileName() : "";
1950   if (FileHeaders)
1951     printFileHeaders(O);
1952   if (ArchiveHeaders && !MachOOpt && C)
1953     printArchiveChild(ArchiveName, *C);
1954   if (Disassemble)
1955     disassembleObject(O, Relocations);
1956   if (Relocations && !Disassemble)
1957     printRelocations(O);
1958   if (DynamicRelocations)
1959     printDynamicRelocations(O);
1960   if (SectionHeaders)
1961     printSectionHeaders(O);
1962   if (SectionContents)
1963     printSectionContents(O);
1964   if (SymbolTable)
1965     printSymbolTable(O, ArchiveName);
1966   if (UnwindInfo)
1967     printUnwindInfo(O);
1968   if (PrivateHeaders || FirstPrivateHeader)
1969     printPrivateFileHeaders(O, FirstPrivateHeader);
1970   if (ExportsTrie)
1971     printExportsTrie(O);
1972   if (Rebase)
1973     printRebaseTable(O);
1974   if (Bind)
1975     printBindTable(O);
1976   if (LazyBind)
1977     printLazyBindTable(O);
1978   if (WeakBind)
1979     printWeakBindTable(O);
1980   if (RawClangAST)
1981     printRawClangAST(O);
1982   if (PrintFaultMaps)
1983     printFaultMaps(O);
1984   if (DwarfDumpType != DIDT_Null) {
1985     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
1986     // Dump the complete DWARF structure.
1987     DIDumpOptions DumpOpts;
1988     DumpOpts.DumpType = DwarfDumpType;
1989     DICtx->dump(outs(), DumpOpts);
1990   }
1991 }
1992 
1993 static void dumpObject(const COFFImportFile *I, const Archive *A,
1994                        const Archive::Child *C = nullptr) {
1995   StringRef ArchiveName = A ? A->getFileName() : "";
1996 
1997   // Avoid other output when using a raw option.
1998   if (!RawClangAST)
1999     outs() << '\n'
2000            << ArchiveName << "(" << I->getFileName() << ")"
2001            << ":\tfile format COFF-import-file"
2002            << "\n\n";
2003 
2004   if (ArchiveHeaders && !MachOOpt && C)
2005     printArchiveChild(ArchiveName, *C);
2006   if (SymbolTable)
2007     printCOFFSymbolTable(I);
2008 }
2009 
2010 /// Dump each object file in \a a;
2011 static void dumpArchive(const Archive *A) {
2012   Error Err = Error::success();
2013   for (auto &C : A->children(Err)) {
2014     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2015     if (!ChildOrErr) {
2016       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2017         report_error(std::move(E), A->getFileName(), C);
2018       continue;
2019     }
2020     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2021       dumpObject(O, A, &C);
2022     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2023       dumpObject(I, A, &C);
2024     else
2025       report_error(errorCodeToError(object_error::invalid_file_type),
2026                    A->getFileName());
2027   }
2028   if (Err)
2029     report_error(std::move(Err), A->getFileName());
2030 }
2031 
2032 /// Open file and figure out how to dump it.
2033 static void dumpInput(StringRef file) {
2034   // If we are using the Mach-O specific object file parser, then let it parse
2035   // the file and process the command line options.  So the -arch flags can
2036   // be used to select specific slices, etc.
2037   if (MachOOpt) {
2038     parseInputMachO(file);
2039     return;
2040   }
2041 
2042   // Attempt to open the binary.
2043   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2044   Binary &Binary = *OBinary.getBinary();
2045 
2046   if (Archive *A = dyn_cast<Archive>(&Binary))
2047     dumpArchive(A);
2048   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2049     dumpObject(O);
2050   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2051     parseInputMachO(UB);
2052   else
2053     report_error(errorCodeToError(object_error::invalid_file_type), file);
2054 }
2055 
2056 int main(int argc, char **argv) {
2057   InitLLVM X(argc, argv);
2058 
2059   // Initialize targets and assembly printers/parsers.
2060   llvm::InitializeAllTargetInfos();
2061   llvm::InitializeAllTargetMCs();
2062   llvm::InitializeAllDisassemblers();
2063 
2064   // Register the target printer for --version.
2065   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2066 
2067   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2068 
2069   ToolName = argv[0];
2070 
2071   // Defaults to a.out if no filenames specified.
2072   if (InputFilenames.empty())
2073     InputFilenames.push_back("a.out");
2074 
2075   if (AllHeaders)
2076     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2077         SectionHeaders = SymbolTable = true;
2078 
2079   if (DisassembleAll || PrintSource || PrintLines)
2080     Disassemble = true;
2081 
2082   if (!Disassemble
2083       && !Relocations
2084       && !DynamicRelocations
2085       && !SectionHeaders
2086       && !SectionContents
2087       && !SymbolTable
2088       && !UnwindInfo
2089       && !PrivateHeaders
2090       && !FileHeaders
2091       && !FirstPrivateHeader
2092       && !ExportsTrie
2093       && !Rebase
2094       && !Bind
2095       && !LazyBind
2096       && !WeakBind
2097       && !RawClangAST
2098       && !(UniversalHeaders && MachOOpt)
2099       && !ArchiveHeaders
2100       && !(IndirectSymbols && MachOOpt)
2101       && !(DataInCode && MachOOpt)
2102       && !(LinkOptHints && MachOOpt)
2103       && !(InfoPlist && MachOOpt)
2104       && !(DylibsUsed && MachOOpt)
2105       && !(DylibId && MachOOpt)
2106       && !(ObjcMetaData && MachOOpt)
2107       && !(!FilterSections.empty() && MachOOpt)
2108       && !PrintFaultMaps
2109       && DwarfDumpType == DIDT_Null) {
2110     cl::PrintHelpMessage();
2111     return 2;
2112   }
2113 
2114   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2115                         DisassembleFunctions.end());
2116 
2117   llvm::for_each(InputFilenames, dumpInput);
2118 
2119   return EXIT_SUCCESS;
2120 }
2121