1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/FaultMaps.h" 26 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 27 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 28 #include "llvm/Demangle/Demangle.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCInstrAnalysis.h" 36 #include "llvm/MC/MCInstrInfo.h" 37 #include "llvm/MC/MCObjectFileInfo.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/MC/MCSubtargetInfo.h" 40 #include "llvm/MC/MCTargetOptions.h" 41 #include "llvm/Object/Archive.h" 42 #include "llvm/Object/COFF.h" 43 #include "llvm/Object/COFFImportFile.h" 44 #include "llvm/Object/ELFObjectFile.h" 45 #include "llvm/Object/MachO.h" 46 #include "llvm/Object/MachOUniversal.h" 47 #include "llvm/Object/ObjectFile.h" 48 #include "llvm/Object/Wasm.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/Errc.h" 53 #include "llvm/Support/FileSystem.h" 54 #include "llvm/Support/Format.h" 55 #include "llvm/Support/FormatVariadic.h" 56 #include "llvm/Support/GraphWriter.h" 57 #include "llvm/Support/Host.h" 58 #include "llvm/Support/InitLLVM.h" 59 #include "llvm/Support/MemoryBuffer.h" 60 #include "llvm/Support/SourceMgr.h" 61 #include "llvm/Support/StringSaver.h" 62 #include "llvm/Support/TargetRegistry.h" 63 #include "llvm/Support/TargetSelect.h" 64 #include "llvm/Support/WithColor.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include <algorithm> 67 #include <cctype> 68 #include <cstring> 69 #include <system_error> 70 #include <unordered_map> 71 #include <utility> 72 73 using namespace llvm::object; 74 75 namespace llvm { 76 77 cl::OptionCategory ObjdumpCat("llvm-objdump Options"); 78 79 // MachO specific 80 extern cl::OptionCategory MachOCat; 81 extern cl::opt<bool> Bind; 82 extern cl::opt<bool> DataInCode; 83 extern cl::opt<bool> DylibsUsed; 84 extern cl::opt<bool> DylibId; 85 extern cl::opt<bool> ExportsTrie; 86 extern cl::opt<bool> FirstPrivateHeader; 87 extern cl::opt<bool> IndirectSymbols; 88 extern cl::opt<bool> InfoPlist; 89 extern cl::opt<bool> LazyBind; 90 extern cl::opt<bool> LinkOptHints; 91 extern cl::opt<bool> ObjcMetaData; 92 extern cl::opt<bool> Rebase; 93 extern cl::opt<bool> UniversalHeaders; 94 extern cl::opt<bool> WeakBind; 95 96 static cl::opt<uint64_t> AdjustVMA( 97 "adjust-vma", 98 cl::desc("Increase the displayed address by the specified offset"), 99 cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat)); 100 101 static cl::opt<bool> 102 AllHeaders("all-headers", 103 cl::desc("Display all available header information"), 104 cl::cat(ObjdumpCat)); 105 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"), 106 cl::NotHidden, cl::Grouping, 107 cl::aliasopt(AllHeaders)); 108 109 static cl::opt<std::string> 110 ArchName("arch-name", 111 cl::desc("Target arch to disassemble for, " 112 "see -version for available targets"), 113 cl::cat(ObjdumpCat)); 114 115 cl::opt<bool> ArchiveHeaders("archive-headers", 116 cl::desc("Display archive header information"), 117 cl::cat(ObjdumpCat)); 118 static cl::alias ArchiveHeadersShort("a", 119 cl::desc("Alias for --archive-headers"), 120 cl::NotHidden, cl::Grouping, 121 cl::aliasopt(ArchiveHeaders)); 122 123 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"), 124 cl::init(false), cl::cat(ObjdumpCat)); 125 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"), 126 cl::NotHidden, cl::Grouping, 127 cl::aliasopt(Demangle)); 128 129 cl::opt<bool> Disassemble( 130 "disassemble", 131 cl::desc("Display assembler mnemonics for the machine instructions"), 132 cl::cat(ObjdumpCat)); 133 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"), 134 cl::NotHidden, cl::Grouping, 135 cl::aliasopt(Disassemble)); 136 137 cl::opt<bool> DisassembleAll( 138 "disassemble-all", 139 cl::desc("Display assembler mnemonics for the machine instructions"), 140 cl::cat(ObjdumpCat)); 141 static cl::alias DisassembleAllShort("D", 142 cl::desc("Alias for --disassemble-all"), 143 cl::NotHidden, cl::Grouping, 144 cl::aliasopt(DisassembleAll)); 145 146 static cl::list<std::string> 147 DisassembleFunctions("disassemble-functions", cl::CommaSeparated, 148 cl::desc("List of functions to disassemble. " 149 "Accept demangled names when --demangle is " 150 "specified, otherwise accept mangled names"), 151 cl::cat(ObjdumpCat)); 152 153 static cl::opt<bool> DisassembleZeroes( 154 "disassemble-zeroes", 155 cl::desc("Do not skip blocks of zeroes when disassembling"), 156 cl::cat(ObjdumpCat)); 157 static cl::alias 158 DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"), 159 cl::NotHidden, cl::Grouping, 160 cl::aliasopt(DisassembleZeroes)); 161 162 static cl::list<std::string> 163 DisassemblerOptions("disassembler-options", 164 cl::desc("Pass target specific disassembler options"), 165 cl::value_desc("options"), cl::CommaSeparated, 166 cl::cat(ObjdumpCat)); 167 static cl::alias 168 DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"), 169 cl::NotHidden, cl::Grouping, cl::Prefix, 170 cl::CommaSeparated, 171 cl::aliasopt(DisassemblerOptions)); 172 173 cl::opt<DIDumpType> DwarfDumpType( 174 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), 175 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")), 176 cl::cat(ObjdumpCat)); 177 178 static cl::opt<bool> DynamicRelocations( 179 "dynamic-reloc", 180 cl::desc("Display the dynamic relocation entries in the file"), 181 cl::cat(ObjdumpCat)); 182 static cl::alias DynamicRelocationShort("R", 183 cl::desc("Alias for --dynamic-reloc"), 184 cl::NotHidden, cl::Grouping, 185 cl::aliasopt(DynamicRelocations)); 186 187 static cl::opt<bool> 188 FaultMapSection("fault-map-section", 189 cl::desc("Display contents of faultmap section"), 190 cl::cat(ObjdumpCat)); 191 192 static cl::opt<bool> 193 FileHeaders("file-headers", 194 cl::desc("Display the contents of the overall file header"), 195 cl::cat(ObjdumpCat)); 196 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"), 197 cl::NotHidden, cl::Grouping, 198 cl::aliasopt(FileHeaders)); 199 200 cl::opt<bool> SectionContents("full-contents", 201 cl::desc("Display the content of each section"), 202 cl::cat(ObjdumpCat)); 203 static cl::alias SectionContentsShort("s", 204 cl::desc("Alias for --full-contents"), 205 cl::NotHidden, cl::Grouping, 206 cl::aliasopt(SectionContents)); 207 208 static cl::list<std::string> InputFilenames(cl::Positional, 209 cl::desc("<input object files>"), 210 cl::ZeroOrMore, 211 cl::cat(ObjdumpCat)); 212 213 static cl::opt<bool> 214 PrintLines("line-numbers", 215 cl::desc("Display source line numbers with " 216 "disassembly. Implies disassemble object"), 217 cl::cat(ObjdumpCat)); 218 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"), 219 cl::NotHidden, cl::Grouping, 220 cl::aliasopt(PrintLines)); 221 222 static cl::opt<bool> MachOOpt("macho", 223 cl::desc("Use MachO specific object file parser"), 224 cl::cat(ObjdumpCat)); 225 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden, 226 cl::Grouping, cl::aliasopt(MachOOpt)); 227 228 cl::opt<std::string> 229 MCPU("mcpu", 230 cl::desc("Target a specific cpu type (-mcpu=help for details)"), 231 cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat)); 232 233 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated, 234 cl::desc("Target specific attributes"), 235 cl::value_desc("a1,+a2,-a3,..."), 236 cl::cat(ObjdumpCat)); 237 238 cl::opt<bool> NoShowRawInsn("no-show-raw-insn", 239 cl::desc("When disassembling " 240 "instructions, do not print " 241 "the instruction bytes."), 242 cl::cat(ObjdumpCat)); 243 cl::opt<bool> NoLeadingAddr("no-leading-addr", 244 cl::desc("Print no leading address"), 245 cl::cat(ObjdumpCat)); 246 247 static cl::opt<bool> RawClangAST( 248 "raw-clang-ast", 249 cl::desc("Dump the raw binary contents of the clang AST section"), 250 cl::cat(ObjdumpCat)); 251 252 cl::opt<bool> 253 Relocations("reloc", cl::desc("Display the relocation entries in the file"), 254 cl::cat(ObjdumpCat)); 255 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"), 256 cl::NotHidden, cl::Grouping, 257 cl::aliasopt(Relocations)); 258 259 cl::opt<bool> PrintImmHex("print-imm-hex", 260 cl::desc("Use hex format for immediate values"), 261 cl::cat(ObjdumpCat)); 262 263 cl::opt<bool> PrivateHeaders("private-headers", 264 cl::desc("Display format specific file headers"), 265 cl::cat(ObjdumpCat)); 266 static cl::alias PrivateHeadersShort("p", 267 cl::desc("Alias for --private-headers"), 268 cl::NotHidden, cl::Grouping, 269 cl::aliasopt(PrivateHeaders)); 270 271 cl::list<std::string> 272 FilterSections("section", 273 cl::desc("Operate on the specified sections only. " 274 "With -macho dump segment,section"), 275 cl::cat(ObjdumpCat)); 276 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"), 277 cl::NotHidden, cl::Grouping, cl::Prefix, 278 cl::aliasopt(FilterSections)); 279 280 cl::opt<bool> SectionHeaders("section-headers", 281 cl::desc("Display summaries of the " 282 "headers for each section."), 283 cl::cat(ObjdumpCat)); 284 static cl::alias SectionHeadersShort("headers", 285 cl::desc("Alias for --section-headers"), 286 cl::NotHidden, 287 cl::aliasopt(SectionHeaders)); 288 static cl::alias SectionHeadersShorter("h", 289 cl::desc("Alias for --section-headers"), 290 cl::NotHidden, cl::Grouping, 291 cl::aliasopt(SectionHeaders)); 292 293 static cl::opt<bool> 294 ShowLMA("show-lma", 295 cl::desc("Display LMA column when dumping ELF section headers"), 296 cl::cat(ObjdumpCat)); 297 298 static cl::opt<bool> PrintSource( 299 "source", 300 cl::desc( 301 "Display source inlined with disassembly. Implies disassemble object"), 302 cl::cat(ObjdumpCat)); 303 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), 304 cl::NotHidden, cl::Grouping, 305 cl::aliasopt(PrintSource)); 306 307 static cl::opt<uint64_t> 308 StartAddress("start-address", cl::desc("Disassemble beginning at address"), 309 cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat)); 310 static cl::opt<uint64_t> StopAddress("stop-address", 311 cl::desc("Stop disassembly at address"), 312 cl::value_desc("address"), 313 cl::init(UINT64_MAX), cl::cat(ObjdumpCat)); 314 315 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"), 316 cl::cat(ObjdumpCat)); 317 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"), 318 cl::NotHidden, cl::Grouping, 319 cl::aliasopt(SymbolTable)); 320 321 cl::opt<std::string> TripleName("triple", 322 cl::desc("Target triple to disassemble for, " 323 "see -version for available targets"), 324 cl::cat(ObjdumpCat)); 325 326 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"), 327 cl::cat(ObjdumpCat)); 328 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), 329 cl::NotHidden, cl::Grouping, 330 cl::aliasopt(UnwindInfo)); 331 332 static cl::opt<bool> 333 Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"), 334 cl::cat(ObjdumpCat)); 335 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide)); 336 337 static cl::extrahelp 338 HelpResponse("\nPass @FILE as argument to read options from FILE.\n"); 339 340 static StringSet<> DisasmFuncsSet; 341 static StringSet<> FoundSectionSet; 342 static StringRef ToolName; 343 344 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy; 345 346 namespace { 347 struct FilterResult { 348 // True if the section should not be skipped. 349 bool Keep; 350 351 // True if the index counter should be incremented, even if the section should 352 // be skipped. For example, sections may be skipped if they are not included 353 // in the --section flag, but we still want those to count toward the section 354 // count. 355 bool IncrementIndex; 356 }; 357 } // namespace 358 359 static FilterResult checkSectionFilter(object::SectionRef S) { 360 if (FilterSections.empty()) 361 return {/*Keep=*/true, /*IncrementIndex=*/true}; 362 363 Expected<StringRef> SecNameOrErr = S.getName(); 364 if (!SecNameOrErr) { 365 consumeError(SecNameOrErr.takeError()); 366 return {/*Keep=*/false, /*IncrementIndex=*/false}; 367 } 368 StringRef SecName = *SecNameOrErr; 369 370 // StringSet does not allow empty key so avoid adding sections with 371 // no name (such as the section with index 0) here. 372 if (!SecName.empty()) 373 FoundSectionSet.insert(SecName); 374 375 // Only show the section if it's in the FilterSections list, but always 376 // increment so the indexing is stable. 377 return {/*Keep=*/is_contained(FilterSections, SecName), 378 /*IncrementIndex=*/true}; 379 } 380 381 SectionFilter ToolSectionFilter(object::ObjectFile const &O, uint64_t *Idx) { 382 // Start at UINT64_MAX so that the first index returned after an increment is 383 // zero (after the unsigned wrap). 384 if (Idx) 385 *Idx = UINT64_MAX; 386 return SectionFilter( 387 [Idx](object::SectionRef S) { 388 FilterResult Result = checkSectionFilter(S); 389 if (Idx != nullptr && Result.IncrementIndex) 390 *Idx += 1; 391 return Result.Keep; 392 }, 393 O); 394 } 395 396 std::string getFileNameForError(const object::Archive::Child &C, 397 unsigned Index) { 398 Expected<StringRef> NameOrErr = C.getName(); 399 if (NameOrErr) 400 return NameOrErr.get(); 401 // If we have an error getting the name then we print the index of the archive 402 // member. Since we are already in an error state, we just ignore this error. 403 consumeError(NameOrErr.takeError()); 404 return "<file index: " + std::to_string(Index) + ">"; 405 } 406 407 void reportWarning(Twine Message, StringRef File) { 408 // Output order between errs() and outs() matters especially for archive 409 // files where the output is per member object. 410 outs().flush(); 411 WithColor::warning(errs(), ToolName) 412 << "'" << File << "': " << Message << "\n"; 413 errs().flush(); 414 } 415 416 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) { 417 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 418 exit(1); 419 } 420 421 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName, 422 StringRef ArchiveName, 423 StringRef ArchitectureName) { 424 assert(E); 425 WithColor::error(errs(), ToolName); 426 if (ArchiveName != "") 427 errs() << ArchiveName << "(" << FileName << ")"; 428 else 429 errs() << "'" << FileName << "'"; 430 if (!ArchitectureName.empty()) 431 errs() << " (for architecture " << ArchitectureName << ")"; 432 std::string Buf; 433 raw_string_ostream OS(Buf); 434 logAllUnhandledErrors(std::move(E), OS); 435 OS.flush(); 436 errs() << ": " << Buf; 437 exit(1); 438 } 439 440 static void reportCmdLineWarning(Twine Message) { 441 WithColor::warning(errs(), ToolName) << Message << "\n"; 442 } 443 444 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) { 445 WithColor::error(errs(), ToolName) << Message << "\n"; 446 exit(1); 447 } 448 449 static void warnOnNoMatchForSections() { 450 SetVector<StringRef> MissingSections; 451 for (StringRef S : FilterSections) { 452 if (FoundSectionSet.count(S)) 453 return; 454 // User may specify a unnamed section. Don't warn for it. 455 if (!S.empty()) 456 MissingSections.insert(S); 457 } 458 459 // Warn only if no section in FilterSections is matched. 460 for (StringRef S : MissingSections) 461 reportCmdLineWarning("section '" + S + 462 "' mentioned in a -j/--section option, but not " 463 "found in any input file"); 464 } 465 466 static const Target *getTarget(const ObjectFile *Obj) { 467 // Figure out the target triple. 468 Triple TheTriple("unknown-unknown-unknown"); 469 if (TripleName.empty()) { 470 TheTriple = Obj->makeTriple(); 471 } else { 472 TheTriple.setTriple(Triple::normalize(TripleName)); 473 auto Arch = Obj->getArch(); 474 if (Arch == Triple::arm || Arch == Triple::armeb) 475 Obj->setARMSubArch(TheTriple); 476 } 477 478 // Get the target specific parser. 479 std::string Error; 480 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 481 Error); 482 if (!TheTarget) 483 reportError(Obj->getFileName(), "can't find target: " + Error); 484 485 // Update the triple name and return the found target. 486 TripleName = TheTriple.getTriple(); 487 return TheTarget; 488 } 489 490 bool isRelocAddressLess(RelocationRef A, RelocationRef B) { 491 return A.getOffset() < B.getOffset(); 492 } 493 494 static Error getRelocationValueString(const RelocationRef &Rel, 495 SmallVectorImpl<char> &Result) { 496 const ObjectFile *Obj = Rel.getObject(); 497 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 498 return getELFRelocationValueString(ELF, Rel, Result); 499 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 500 return getCOFFRelocationValueString(COFF, Rel, Result); 501 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 502 return getWasmRelocationValueString(Wasm, Rel, Result); 503 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 504 return getMachORelocationValueString(MachO, Rel, Result); 505 llvm_unreachable("unknown object file format"); 506 } 507 508 /// Indicates whether this relocation should hidden when listing 509 /// relocations, usually because it is the trailing part of a multipart 510 /// relocation that will be printed as part of the leading relocation. 511 static bool getHidden(RelocationRef RelRef) { 512 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 513 if (!MachO) 514 return false; 515 516 unsigned Arch = MachO->getArch(); 517 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 518 uint64_t Type = MachO->getRelocationType(Rel); 519 520 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 521 // is always hidden. 522 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 523 return Type == MachO::GENERIC_RELOC_PAIR; 524 525 if (Arch == Triple::x86_64) { 526 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 527 // an X86_64_RELOC_SUBTRACTOR. 528 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 529 DataRefImpl RelPrev = Rel; 530 RelPrev.d.a--; 531 uint64_t PrevType = MachO->getRelocationType(RelPrev); 532 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 533 return true; 534 } 535 } 536 537 return false; 538 } 539 540 namespace { 541 class SourcePrinter { 542 protected: 543 DILineInfo OldLineInfo; 544 const ObjectFile *Obj = nullptr; 545 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer; 546 // File name to file contents of source. 547 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache; 548 // Mark the line endings of the cached source. 549 std::unordered_map<std::string, std::vector<StringRef>> LineCache; 550 // Keep track of missing sources. 551 StringSet<> MissingSources; 552 // Only emit 'no debug info' warning once. 553 bool WarnedNoDebugInfo; 554 555 private: 556 bool cacheSource(const DILineInfo& LineInfoFile); 557 558 public: 559 SourcePrinter() = default; 560 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) 561 : Obj(Obj), WarnedNoDebugInfo(false) { 562 symbolize::LLVMSymbolizer::Options SymbolizerOpts; 563 SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None; 564 SymbolizerOpts.Demangle = false; 565 SymbolizerOpts.DefaultArch = DefaultArch; 566 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); 567 } 568 virtual ~SourcePrinter() = default; 569 virtual void printSourceLine(raw_ostream &OS, 570 object::SectionedAddress Address, 571 StringRef ObjectFilename, 572 StringRef Delimiter = "; "); 573 }; 574 575 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) { 576 std::unique_ptr<MemoryBuffer> Buffer; 577 if (LineInfo.Source) { 578 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source); 579 } else { 580 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName); 581 if (!BufferOrError) { 582 if (MissingSources.insert(LineInfo.FileName).second) 583 reportWarning("failed to find source " + LineInfo.FileName, 584 Obj->getFileName()); 585 return false; 586 } 587 Buffer = std::move(*BufferOrError); 588 } 589 // Chomp the file to get lines 590 const char *BufferStart = Buffer->getBufferStart(), 591 *BufferEnd = Buffer->getBufferEnd(); 592 std::vector<StringRef> &Lines = LineCache[LineInfo.FileName]; 593 const char *Start = BufferStart; 594 for (const char *I = BufferStart; I != BufferEnd; ++I) 595 if (*I == '\n') { 596 Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r')); 597 Start = I + 1; 598 } 599 if (Start < BufferEnd) 600 Lines.emplace_back(Start, BufferEnd - Start); 601 SourceCache[LineInfo.FileName] = std::move(Buffer); 602 return true; 603 } 604 605 void SourcePrinter::printSourceLine(raw_ostream &OS, 606 object::SectionedAddress Address, 607 StringRef ObjectFilename, 608 StringRef Delimiter) { 609 if (!Symbolizer) 610 return; 611 612 DILineInfo LineInfo = DILineInfo(); 613 auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address); 614 std::string ErrorMessage; 615 if (!ExpectedLineInfo) 616 ErrorMessage = toString(ExpectedLineInfo.takeError()); 617 else 618 LineInfo = *ExpectedLineInfo; 619 620 if (LineInfo.FileName == DILineInfo::BadString) { 621 if (!WarnedNoDebugInfo) { 622 std::string Warning = 623 "failed to parse debug information for " + ObjectFilename.str(); 624 if (!ErrorMessage.empty()) 625 Warning += ": " + ErrorMessage; 626 reportWarning(Warning, ObjectFilename); 627 WarnedNoDebugInfo = true; 628 } 629 return; 630 } 631 632 if (LineInfo.Line == 0 || ((OldLineInfo.Line == LineInfo.Line) && 633 (OldLineInfo.FileName == LineInfo.FileName))) 634 return; 635 636 if (PrintLines) 637 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n"; 638 if (PrintSource) { 639 if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) 640 if (!cacheSource(LineInfo)) 641 return; 642 auto LineBuffer = LineCache.find(LineInfo.FileName); 643 if (LineBuffer != LineCache.end()) { 644 if (LineInfo.Line > LineBuffer->second.size()) { 645 reportWarning( 646 formatv( 647 "debug info line number {0} exceeds the number of lines in {1}", 648 LineInfo.Line, LineInfo.FileName), 649 ObjectFilename); 650 return; 651 } 652 // Vector begins at 0, line numbers are non-zero 653 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n'; 654 } 655 } 656 OldLineInfo = LineInfo; 657 } 658 659 static bool isAArch64Elf(const ObjectFile *Obj) { 660 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 661 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 662 } 663 664 static bool isArmElf(const ObjectFile *Obj) { 665 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 666 return Elf && Elf->getEMachine() == ELF::EM_ARM; 667 } 668 669 static bool hasMappingSymbols(const ObjectFile *Obj) { 670 return isArmElf(Obj) || isAArch64Elf(Obj); 671 } 672 673 static void printRelocation(StringRef FileName, const RelocationRef &Rel, 674 uint64_t Address, bool Is64Bits) { 675 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; 676 SmallString<16> Name; 677 SmallString<32> Val; 678 Rel.getTypeName(Name); 679 if (Error E = getRelocationValueString(Rel, Val)) 680 reportError(std::move(E), FileName); 681 outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n"; 682 } 683 684 class PrettyPrinter { 685 public: 686 virtual ~PrettyPrinter() = default; 687 virtual void printInst(MCInstPrinter &IP, const MCInst *MI, 688 ArrayRef<uint8_t> Bytes, 689 object::SectionedAddress Address, raw_ostream &OS, 690 StringRef Annot, MCSubtargetInfo const &STI, 691 SourcePrinter *SP, StringRef ObjectFilename, 692 std::vector<RelocationRef> *Rels = nullptr) { 693 if (SP && (PrintSource || PrintLines)) 694 SP->printSourceLine(OS, Address, ObjectFilename); 695 696 size_t Start = OS.tell(); 697 if (!NoLeadingAddr) 698 OS << format("%8" PRIx64 ":", Address.Address); 699 if (!NoShowRawInsn) { 700 OS << ' '; 701 dumpBytes(Bytes, OS); 702 } 703 704 // The output of printInst starts with a tab. Print some spaces so that 705 // the tab has 1 column and advances to the target tab stop. 706 unsigned TabStop = NoShowRawInsn ? 16 : 40; 707 unsigned Column = OS.tell() - Start; 708 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 709 710 if (MI) 711 IP.printInst(MI, Address.Address, "", STI, OS); 712 else 713 OS << "\t<unknown>"; 714 } 715 }; 716 PrettyPrinter PrettyPrinterInst; 717 718 class HexagonPrettyPrinter : public PrettyPrinter { 719 public: 720 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 721 raw_ostream &OS) { 722 uint32_t opcode = 723 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 724 if (!NoLeadingAddr) 725 OS << format("%8" PRIx64 ":", Address); 726 if (!NoShowRawInsn) { 727 OS << "\t"; 728 dumpBytes(Bytes.slice(0, 4), OS); 729 OS << format("\t%08" PRIx32, opcode); 730 } 731 } 732 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 733 object::SectionedAddress Address, raw_ostream &OS, 734 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 735 StringRef ObjectFilename, 736 std::vector<RelocationRef> *Rels) override { 737 if (SP && (PrintSource || PrintLines)) 738 SP->printSourceLine(OS, Address, ObjectFilename, ""); 739 if (!MI) { 740 printLead(Bytes, Address.Address, OS); 741 OS << " <unknown>"; 742 return; 743 } 744 std::string Buffer; 745 { 746 raw_string_ostream TempStream(Buffer); 747 IP.printInst(MI, Address.Address, "", STI, TempStream); 748 } 749 StringRef Contents(Buffer); 750 // Split off bundle attributes 751 auto PacketBundle = Contents.rsplit('\n'); 752 // Split off first instruction from the rest 753 auto HeadTail = PacketBundle.first.split('\n'); 754 auto Preamble = " { "; 755 auto Separator = ""; 756 757 // Hexagon's packets require relocations to be inline rather than 758 // clustered at the end of the packet. 759 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 760 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 761 auto PrintReloc = [&]() -> void { 762 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 763 if (RelCur->getOffset() == Address.Address) { 764 printRelocation(ObjectFilename, *RelCur, Address.Address, false); 765 return; 766 } 767 ++RelCur; 768 } 769 }; 770 771 while (!HeadTail.first.empty()) { 772 OS << Separator; 773 Separator = "\n"; 774 if (SP && (PrintSource || PrintLines)) 775 SP->printSourceLine(OS, Address, ObjectFilename, ""); 776 printLead(Bytes, Address.Address, OS); 777 OS << Preamble; 778 Preamble = " "; 779 StringRef Inst; 780 auto Duplex = HeadTail.first.split('\v'); 781 if (!Duplex.second.empty()) { 782 OS << Duplex.first; 783 OS << "; "; 784 Inst = Duplex.second; 785 } 786 else 787 Inst = HeadTail.first; 788 OS << Inst; 789 HeadTail = HeadTail.second.split('\n'); 790 if (HeadTail.first.empty()) 791 OS << " } " << PacketBundle.second; 792 PrintReloc(); 793 Bytes = Bytes.slice(4); 794 Address.Address += 4; 795 } 796 } 797 }; 798 HexagonPrettyPrinter HexagonPrettyPrinterInst; 799 800 class AMDGCNPrettyPrinter : public PrettyPrinter { 801 public: 802 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 803 object::SectionedAddress Address, raw_ostream &OS, 804 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 805 StringRef ObjectFilename, 806 std::vector<RelocationRef> *Rels) override { 807 if (SP && (PrintSource || PrintLines)) 808 SP->printSourceLine(OS, Address, ObjectFilename); 809 810 if (MI) { 811 SmallString<40> InstStr; 812 raw_svector_ostream IS(InstStr); 813 814 IP.printInst(MI, Address.Address, "", STI, IS); 815 816 OS << left_justify(IS.str(), 60); 817 } else { 818 // an unrecognized encoding - this is probably data so represent it 819 // using the .long directive, or .byte directive if fewer than 4 bytes 820 // remaining 821 if (Bytes.size() >= 4) { 822 OS << format("\t.long 0x%08" PRIx32 " ", 823 support::endian::read32<support::little>(Bytes.data())); 824 OS.indent(42); 825 } else { 826 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 827 for (unsigned int i = 1; i < Bytes.size(); i++) 828 OS << format(", 0x%02" PRIx8, Bytes[i]); 829 OS.indent(55 - (6 * Bytes.size())); 830 } 831 } 832 833 OS << format("// %012" PRIX64 ":", Address.Address); 834 if (Bytes.size() >= 4) { 835 // D should be casted to uint32_t here as it is passed by format to 836 // snprintf as vararg. 837 for (uint32_t D : makeArrayRef( 838 reinterpret_cast<const support::little32_t *>(Bytes.data()), 839 Bytes.size() / 4)) 840 OS << format(" %08" PRIX32, D); 841 } else { 842 for (unsigned char B : Bytes) 843 OS << format(" %02" PRIX8, B); 844 } 845 846 if (!Annot.empty()) 847 OS << " // " << Annot; 848 } 849 }; 850 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 851 852 class BPFPrettyPrinter : public PrettyPrinter { 853 public: 854 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 855 object::SectionedAddress Address, raw_ostream &OS, 856 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 857 StringRef ObjectFilename, 858 std::vector<RelocationRef> *Rels) override { 859 if (SP && (PrintSource || PrintLines)) 860 SP->printSourceLine(OS, Address, ObjectFilename); 861 if (!NoLeadingAddr) 862 OS << format("%8" PRId64 ":", Address.Address / 8); 863 if (!NoShowRawInsn) { 864 OS << "\t"; 865 dumpBytes(Bytes, OS); 866 } 867 if (MI) 868 IP.printInst(MI, Address.Address, "", STI, OS); 869 else 870 OS << "\t<unknown>"; 871 } 872 }; 873 BPFPrettyPrinter BPFPrettyPrinterInst; 874 875 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 876 switch(Triple.getArch()) { 877 default: 878 return PrettyPrinterInst; 879 case Triple::hexagon: 880 return HexagonPrettyPrinterInst; 881 case Triple::amdgcn: 882 return AMDGCNPrettyPrinterInst; 883 case Triple::bpfel: 884 case Triple::bpfeb: 885 return BPFPrettyPrinterInst; 886 } 887 } 888 } 889 890 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 891 assert(Obj->isELF()); 892 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 893 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 894 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 895 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 896 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 897 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 898 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 899 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 900 llvm_unreachable("Unsupported binary format"); 901 } 902 903 template <class ELFT> static void 904 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 905 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 906 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 907 uint8_t SymbolType = Symbol.getELFType(); 908 if (SymbolType == ELF::STT_SECTION) 909 continue; 910 911 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName()); 912 // ELFSymbolRef::getAddress() returns size instead of value for common 913 // symbols which is not desirable for disassembly output. Overriding. 914 if (SymbolType == ELF::STT_COMMON) 915 Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value; 916 917 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 918 if (Name.empty()) 919 continue; 920 921 section_iterator SecI = 922 unwrapOrError(Symbol.getSection(), Obj->getFileName()); 923 if (SecI == Obj->section_end()) 924 continue; 925 926 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 927 } 928 } 929 930 static void 931 addDynamicElfSymbols(const ObjectFile *Obj, 932 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 933 assert(Obj->isELF()); 934 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 935 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 936 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 937 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 938 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 939 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 940 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 941 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 942 else 943 llvm_unreachable("Unsupported binary format"); 944 } 945 946 static void addPltEntries(const ObjectFile *Obj, 947 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 948 StringSaver &Saver) { 949 Optional<SectionRef> Plt = None; 950 for (const SectionRef &Section : Obj->sections()) { 951 Expected<StringRef> SecNameOrErr = Section.getName(); 952 if (!SecNameOrErr) { 953 consumeError(SecNameOrErr.takeError()); 954 continue; 955 } 956 if (*SecNameOrErr == ".plt") 957 Plt = Section; 958 } 959 if (!Plt) 960 return; 961 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 962 for (auto PltEntry : ElfObj->getPltAddresses()) { 963 SymbolRef Symbol(PltEntry.first, ElfObj); 964 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 965 966 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 967 if (!Name.empty()) 968 AllSymbols[*Plt].emplace_back( 969 PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType); 970 } 971 } 972 } 973 974 // Normally the disassembly output will skip blocks of zeroes. This function 975 // returns the number of zero bytes that can be skipped when dumping the 976 // disassembly of the instructions in Buf. 977 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 978 // Find the number of leading zeroes. 979 size_t N = 0; 980 while (N < Buf.size() && !Buf[N]) 981 ++N; 982 983 // We may want to skip blocks of zero bytes, but unless we see 984 // at least 8 of them in a row. 985 if (N < 8) 986 return 0; 987 988 // We skip zeroes in multiples of 4 because do not want to truncate an 989 // instruction if it starts with a zero byte. 990 return N & ~0x3; 991 } 992 993 // Returns a map from sections to their relocations. 994 static std::map<SectionRef, std::vector<RelocationRef>> 995 getRelocsMap(object::ObjectFile const &Obj) { 996 std::map<SectionRef, std::vector<RelocationRef>> Ret; 997 uint64_t I = (uint64_t)-1; 998 for (SectionRef Sec : Obj.sections()) { 999 ++I; 1000 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 1001 if (!RelocatedOrErr) 1002 reportError(Obj.getFileName(), 1003 "section (" + Twine(I) + 1004 "): failed to get a relocated section: " + 1005 toString(RelocatedOrErr.takeError())); 1006 1007 section_iterator Relocated = *RelocatedOrErr; 1008 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 1009 continue; 1010 std::vector<RelocationRef> &V = Ret[*Relocated]; 1011 for (const RelocationRef &R : Sec.relocations()) 1012 V.push_back(R); 1013 // Sort relocations by address. 1014 llvm::stable_sort(V, isRelocAddressLess); 1015 } 1016 return Ret; 1017 } 1018 1019 // Used for --adjust-vma to check if address should be adjusted by the 1020 // specified value for a given section. 1021 // For ELF we do not adjust non-allocatable sections like debug ones, 1022 // because they are not loadable. 1023 // TODO: implement for other file formats. 1024 static bool shouldAdjustVA(const SectionRef &Section) { 1025 const ObjectFile *Obj = Section.getObject(); 1026 if (isa<object::ELFObjectFileBase>(Obj)) 1027 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1028 return false; 1029 } 1030 1031 1032 typedef std::pair<uint64_t, char> MappingSymbolPair; 1033 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1034 uint64_t Address) { 1035 auto It = 1036 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1037 return Val.first <= Address; 1038 }); 1039 // Return zero for any address before the first mapping symbol; this means 1040 // we should use the default disassembly mode, depending on the target. 1041 if (It == MappingSymbols.begin()) 1042 return '\x00'; 1043 return (It - 1)->second; 1044 } 1045 1046 static uint64_t 1047 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1048 const ObjectFile *Obj, ArrayRef<uint8_t> Bytes, 1049 ArrayRef<MappingSymbolPair> MappingSymbols) { 1050 support::endianness Endian = 1051 Obj->isLittleEndian() ? support::little : support::big; 1052 while (Index < End) { 1053 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1054 outs() << "\t"; 1055 if (Index + 4 <= End) { 1056 dumpBytes(Bytes.slice(Index, 4), outs()); 1057 outs() << "\t.word\t" 1058 << format_hex( 1059 support::endian::read32(Bytes.data() + Index, Endian), 10); 1060 Index += 4; 1061 } else if (Index + 2 <= End) { 1062 dumpBytes(Bytes.slice(Index, 2), outs()); 1063 outs() << "\t\t.short\t" 1064 << format_hex( 1065 support::endian::read16(Bytes.data() + Index, Endian), 6); 1066 Index += 2; 1067 } else { 1068 dumpBytes(Bytes.slice(Index, 1), outs()); 1069 outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4); 1070 ++Index; 1071 } 1072 outs() << "\n"; 1073 if (getMappingSymbolKind(MappingSymbols, Index) != 'd') 1074 break; 1075 } 1076 return Index; 1077 } 1078 1079 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1080 ArrayRef<uint8_t> Bytes) { 1081 // print out data up to 8 bytes at a time in hex and ascii 1082 uint8_t AsciiData[9] = {'\0'}; 1083 uint8_t Byte; 1084 int NumBytes = 0; 1085 1086 for (; Index < End; ++Index) { 1087 if (NumBytes == 0) 1088 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1089 Byte = Bytes.slice(Index)[0]; 1090 outs() << format(" %02x", Byte); 1091 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1092 1093 uint8_t IndentOffset = 0; 1094 NumBytes++; 1095 if (Index == End - 1 || NumBytes > 8) { 1096 // Indent the space for less than 8 bytes data. 1097 // 2 spaces for byte and one for space between bytes 1098 IndentOffset = 3 * (8 - NumBytes); 1099 for (int Excess = NumBytes; Excess < 8; Excess++) 1100 AsciiData[Excess] = '\0'; 1101 NumBytes = 8; 1102 } 1103 if (NumBytes == 8) { 1104 AsciiData[8] = '\0'; 1105 outs() << std::string(IndentOffset, ' ') << " "; 1106 outs() << reinterpret_cast<char *>(AsciiData); 1107 outs() << '\n'; 1108 NumBytes = 0; 1109 } 1110 } 1111 } 1112 1113 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, 1114 MCContext &Ctx, MCDisassembler *PrimaryDisAsm, 1115 MCDisassembler *SecondaryDisAsm, 1116 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1117 const MCSubtargetInfo *PrimarySTI, 1118 const MCSubtargetInfo *SecondarySTI, 1119 PrettyPrinter &PIP, 1120 SourcePrinter &SP, bool InlineRelocs) { 1121 const MCSubtargetInfo *STI = PrimarySTI; 1122 MCDisassembler *DisAsm = PrimaryDisAsm; 1123 bool PrimaryIsThumb = false; 1124 if (isArmElf(Obj)) 1125 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1126 1127 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1128 if (InlineRelocs) 1129 RelocMap = getRelocsMap(*Obj); 1130 bool Is64Bits = Obj->getBytesInAddress() > 4; 1131 1132 // Create a mapping from virtual address to symbol name. This is used to 1133 // pretty print the symbols while disassembling. 1134 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1135 SectionSymbolsTy AbsoluteSymbols; 1136 const StringRef FileName = Obj->getFileName(); 1137 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1138 for (const SymbolRef &Symbol : Obj->symbols()) { 1139 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName); 1140 1141 StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1142 if (Name.empty()) 1143 continue; 1144 1145 uint8_t SymbolType = ELF::STT_NOTYPE; 1146 if (Obj->isELF()) { 1147 SymbolType = getElfSymbolType(Obj, Symbol); 1148 if (SymbolType == ELF::STT_SECTION) 1149 continue; 1150 } 1151 1152 // Don't ask a Mach-O STAB symbol for its section unless you know that 1153 // STAB symbol's section field refers to a valid section index. Otherwise 1154 // the symbol may error trying to load a section that does not exist. 1155 if (MachO) { 1156 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1157 uint8_t NType = (MachO->is64Bit() ? 1158 MachO->getSymbol64TableEntry(SymDRI).n_type: 1159 MachO->getSymbolTableEntry(SymDRI).n_type); 1160 if (NType & MachO::N_STAB) 1161 continue; 1162 } 1163 1164 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1165 if (SecI != Obj->section_end()) 1166 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1167 else 1168 AbsoluteSymbols.emplace_back(Address, Name, SymbolType); 1169 } 1170 if (AllSymbols.empty() && Obj->isELF()) 1171 addDynamicElfSymbols(Obj, AllSymbols); 1172 1173 BumpPtrAllocator A; 1174 StringSaver Saver(A); 1175 addPltEntries(Obj, AllSymbols, Saver); 1176 1177 // Create a mapping from virtual address to section. 1178 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1179 for (SectionRef Sec : Obj->sections()) 1180 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1181 array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); 1182 1183 // Linked executables (.exe and .dll files) typically don't include a real 1184 // symbol table but they might contain an export table. 1185 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1186 for (const auto &ExportEntry : COFFObj->export_directories()) { 1187 StringRef Name; 1188 if (std::error_code EC = ExportEntry.getSymbolName(Name)) 1189 reportError(errorCodeToError(EC), Obj->getFileName()); 1190 if (Name.empty()) 1191 continue; 1192 1193 uint32_t RVA; 1194 if (std::error_code EC = ExportEntry.getExportRVA(RVA)) 1195 reportError(errorCodeToError(EC), Obj->getFileName()); 1196 1197 uint64_t VA = COFFObj->getImageBase() + RVA; 1198 auto Sec = partition_point( 1199 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1200 return O.first <= VA; 1201 }); 1202 if (Sec != SectionAddresses.begin()) { 1203 --Sec; 1204 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1205 } else 1206 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1207 } 1208 } 1209 1210 // Sort all the symbols, this allows us to use a simple binary search to find 1211 // a symbol near an address. 1212 StringSet<> FoundDisasmFuncsSet; 1213 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1214 array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); 1215 array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); 1216 1217 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1218 if (FilterSections.empty() && !DisassembleAll && 1219 (!Section.isText() || Section.isVirtual())) 1220 continue; 1221 1222 uint64_t SectionAddr = Section.getAddress(); 1223 uint64_t SectSize = Section.getSize(); 1224 if (!SectSize) 1225 continue; 1226 1227 // Get the list of all the symbols in this section. 1228 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1229 std::vector<MappingSymbolPair> MappingSymbols; 1230 if (hasMappingSymbols(Obj)) { 1231 for (const auto &Symb : Symbols) { 1232 uint64_t Address = std::get<0>(Symb); 1233 StringRef Name = std::get<1>(Symb); 1234 if (Name.startswith("$d")) 1235 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1236 if (Name.startswith("$x")) 1237 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1238 if (Name.startswith("$a")) 1239 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1240 if (Name.startswith("$t")) 1241 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1242 } 1243 } 1244 1245 llvm::sort(MappingSymbols); 1246 1247 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1248 // AMDGPU disassembler uses symbolizer for printing labels 1249 std::unique_ptr<MCRelocationInfo> RelInfo( 1250 TheTarget->createMCRelocationInfo(TripleName, Ctx)); 1251 if (RelInfo) { 1252 std::unique_ptr<MCSymbolizer> Symbolizer( 1253 TheTarget->createMCSymbolizer( 1254 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1255 DisAsm->setSymbolizer(std::move(Symbolizer)); 1256 } 1257 } 1258 1259 StringRef SegmentName = ""; 1260 if (MachO) { 1261 DataRefImpl DR = Section.getRawDataRefImpl(); 1262 SegmentName = MachO->getSectionFinalSegmentName(DR); 1263 } 1264 1265 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName()); 1266 // If the section has no symbol at the start, just insert a dummy one. 1267 if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) { 1268 Symbols.insert( 1269 Symbols.begin(), 1270 std::make_tuple(SectionAddr, SectionName, 1271 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); 1272 } 1273 1274 SmallString<40> Comments; 1275 raw_svector_ostream CommentStream(Comments); 1276 1277 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1278 unwrapOrError(Section.getContents(), Obj->getFileName())); 1279 1280 uint64_t VMAAdjustment = 0; 1281 if (shouldAdjustVA(Section)) 1282 VMAAdjustment = AdjustVMA; 1283 1284 uint64_t Size; 1285 uint64_t Index; 1286 bool PrintedSection = false; 1287 std::vector<RelocationRef> Rels = RelocMap[Section]; 1288 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1289 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1290 // Disassemble symbol by symbol. 1291 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { 1292 std::string SymbolName = std::get<1>(Symbols[SI]).str(); 1293 if (Demangle) 1294 SymbolName = demangle(SymbolName); 1295 1296 // Skip if --disassemble-functions is not empty and the symbol is not in 1297 // the list. 1298 if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName)) 1299 continue; 1300 1301 uint64_t Start = std::get<0>(Symbols[SI]); 1302 if (Start < SectionAddr || StopAddress <= Start) 1303 continue; 1304 else 1305 FoundDisasmFuncsSet.insert(SymbolName); 1306 1307 // The end is the section end, the beginning of the next symbol, or 1308 // --stop-address. 1309 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1310 if (SI + 1 < SE) 1311 End = std::min(End, std::get<0>(Symbols[SI + 1])); 1312 if (Start >= End || End <= StartAddress) 1313 continue; 1314 Start -= SectionAddr; 1315 End -= SectionAddr; 1316 1317 if (!PrintedSection) { 1318 PrintedSection = true; 1319 outs() << "\nDisassembly of section "; 1320 if (!SegmentName.empty()) 1321 outs() << SegmentName << ","; 1322 outs() << SectionName << ":\n"; 1323 } 1324 1325 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1326 if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1327 // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) 1328 Start += 256; 1329 } 1330 if (SI == SE - 1 || 1331 std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1332 // cut trailing zeroes at the end of kernel 1333 // cut up to 256 bytes 1334 const uint64_t EndAlign = 256; 1335 const auto Limit = End - (std::min)(EndAlign, End - Start); 1336 while (End > Limit && 1337 *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0) 1338 End -= 4; 1339 } 1340 } 1341 1342 outs() << '\n'; 1343 if (!NoLeadingAddr) 1344 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1345 SectionAddr + Start + VMAAdjustment); 1346 1347 outs() << SymbolName << ":\n"; 1348 1349 // Don't print raw contents of a virtual section. A virtual section 1350 // doesn't have any contents in the file. 1351 if (Section.isVirtual()) { 1352 outs() << "...\n"; 1353 continue; 1354 } 1355 1356 #ifndef NDEBUG 1357 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); 1358 #else 1359 raw_ostream &DebugOut = nulls(); 1360 #endif 1361 1362 // Some targets (like WebAssembly) have a special prelude at the start 1363 // of each symbol. 1364 DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start), 1365 SectionAddr + Start, DebugOut, CommentStream); 1366 Start += Size; 1367 1368 Index = Start; 1369 if (SectionAddr < StartAddress) 1370 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1371 1372 // If there is a data/common symbol inside an ELF text section and we are 1373 // only disassembling text (applicable all architectures), we are in a 1374 // situation where we must print the data and not disassemble it. 1375 if (Obj->isELF() && !DisassembleAll && Section.isText()) { 1376 uint8_t SymTy = std::get<2>(Symbols[SI]); 1377 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) { 1378 dumpELFData(SectionAddr, Index, End, Bytes); 1379 Index = End; 1380 } 1381 } 1382 1383 bool CheckARMELFData = hasMappingSymbols(Obj) && 1384 std::get<2>(Symbols[SI]) != ELF::STT_OBJECT && 1385 !DisassembleAll; 1386 while (Index < End) { 1387 // ARM and AArch64 ELF binaries can interleave data and text in the 1388 // same section. We rely on the markers introduced to understand what 1389 // we need to dump. If the data marker is within a function, it is 1390 // denoted as a word/short etc. 1391 if (CheckARMELFData && 1392 getMappingSymbolKind(MappingSymbols, Index) == 'd') { 1393 Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1394 MappingSymbols); 1395 continue; 1396 } 1397 1398 // When -z or --disassemble-zeroes are given we always dissasemble 1399 // them. Otherwise we might want to skip zero bytes we see. 1400 if (!DisassembleZeroes) { 1401 uint64_t MaxOffset = End - Index; 1402 // For -reloc: print zero blocks patched by relocations, so that 1403 // relocations can be shown in the dump. 1404 if (RelCur != RelEnd) 1405 MaxOffset = RelCur->getOffset() - Index; 1406 1407 if (size_t N = 1408 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1409 outs() << "\t\t..." << '\n'; 1410 Index += N; 1411 continue; 1412 } 1413 } 1414 1415 if (SecondarySTI) { 1416 if (getMappingSymbolKind(MappingSymbols, Index) == 'a') { 1417 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1418 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1419 } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') { 1420 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1421 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1422 } 1423 } 1424 1425 // Disassemble a real instruction or a data when disassemble all is 1426 // provided 1427 MCInst Inst; 1428 bool Disassembled = DisAsm->getInstruction( 1429 Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut, 1430 CommentStream); 1431 if (Size == 0) 1432 Size = 1; 1433 1434 PIP.printInst(*IP, Disassembled ? &Inst : nullptr, 1435 Bytes.slice(Index, Size), 1436 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, 1437 outs(), "", *STI, &SP, Obj->getFileName(), &Rels); 1438 outs() << CommentStream.str(); 1439 Comments.clear(); 1440 1441 // Try to resolve the target of a call, tail call, etc. to a specific 1442 // symbol. 1443 if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || 1444 MIA->isConditionalBranch(Inst))) { 1445 uint64_t Target; 1446 if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { 1447 // In a relocatable object, the target's section must reside in 1448 // the same section as the call instruction or it is accessed 1449 // through a relocation. 1450 // 1451 // In a non-relocatable object, the target may be in any section. 1452 // 1453 // N.B. We don't walk the relocations in the relocatable case yet. 1454 auto *TargetSectionSymbols = &Symbols; 1455 if (!Obj->isRelocatableObject()) { 1456 auto It = partition_point( 1457 SectionAddresses, 1458 [=](const std::pair<uint64_t, SectionRef> &O) { 1459 return O.first <= Target; 1460 }); 1461 if (It != SectionAddresses.begin()) { 1462 --It; 1463 TargetSectionSymbols = &AllSymbols[It->second]; 1464 } else { 1465 TargetSectionSymbols = &AbsoluteSymbols; 1466 } 1467 } 1468 1469 // Find the last symbol in the section whose offset is less than 1470 // or equal to the target. If there isn't a section that contains 1471 // the target, find the nearest preceding absolute symbol. 1472 auto TargetSym = partition_point( 1473 *TargetSectionSymbols, 1474 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) { 1475 return std::get<0>(O) <= Target; 1476 }); 1477 if (TargetSym == TargetSectionSymbols->begin()) { 1478 TargetSectionSymbols = &AbsoluteSymbols; 1479 TargetSym = partition_point( 1480 AbsoluteSymbols, 1481 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) { 1482 return std::get<0>(O) <= Target; 1483 }); 1484 } 1485 if (TargetSym != TargetSectionSymbols->begin()) { 1486 --TargetSym; 1487 uint64_t TargetAddress = std::get<0>(*TargetSym); 1488 StringRef TargetName = std::get<1>(*TargetSym); 1489 outs() << " <" << TargetName; 1490 uint64_t Disp = Target - TargetAddress; 1491 if (Disp) 1492 outs() << "+0x" << Twine::utohexstr(Disp); 1493 outs() << '>'; 1494 } 1495 } 1496 } 1497 outs() << "\n"; 1498 1499 // Hexagon does this in pretty printer 1500 if (Obj->getArch() != Triple::hexagon) { 1501 // Print relocation for instruction. 1502 while (RelCur != RelEnd) { 1503 uint64_t Offset = RelCur->getOffset(); 1504 // If this relocation is hidden, skip it. 1505 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1506 ++RelCur; 1507 continue; 1508 } 1509 1510 // Stop when RelCur's offset is past the current instruction. 1511 if (Offset >= Index + Size) 1512 break; 1513 1514 // When --adjust-vma is used, update the address printed. 1515 if (RelCur->getSymbol() != Obj->symbol_end()) { 1516 Expected<section_iterator> SymSI = 1517 RelCur->getSymbol()->getSection(); 1518 if (SymSI && *SymSI != Obj->section_end() && 1519 shouldAdjustVA(**SymSI)) 1520 Offset += AdjustVMA; 1521 } 1522 1523 printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset, 1524 Is64Bits); 1525 ++RelCur; 1526 } 1527 } 1528 1529 Index += Size; 1530 } 1531 } 1532 } 1533 StringSet<> MissingDisasmFuncsSet = 1534 set_difference(DisasmFuncsSet, FoundDisasmFuncsSet); 1535 for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys()) 1536 reportWarning("failed to disassemble missing function " + MissingDisasmFunc, 1537 FileName); 1538 } 1539 1540 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1541 const Target *TheTarget = getTarget(Obj); 1542 1543 // Package up features to be passed to target/subtarget 1544 SubtargetFeatures Features = Obj->getFeatures(); 1545 if (!MAttrs.empty()) 1546 for (unsigned I = 0; I != MAttrs.size(); ++I) 1547 Features.AddFeature(MAttrs[I]); 1548 1549 std::unique_ptr<const MCRegisterInfo> MRI( 1550 TheTarget->createMCRegInfo(TripleName)); 1551 if (!MRI) 1552 reportError(Obj->getFileName(), 1553 "no register info for target " + TripleName); 1554 1555 // Set up disassembler. 1556 MCTargetOptions MCOptions; 1557 std::unique_ptr<const MCAsmInfo> AsmInfo( 1558 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 1559 if (!AsmInfo) 1560 reportError(Obj->getFileName(), 1561 "no assembly info for target " + TripleName); 1562 std::unique_ptr<const MCSubtargetInfo> STI( 1563 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1564 if (!STI) 1565 reportError(Obj->getFileName(), 1566 "no subtarget info for target " + TripleName); 1567 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1568 if (!MII) 1569 reportError(Obj->getFileName(), 1570 "no instruction info for target " + TripleName); 1571 MCObjectFileInfo MOFI; 1572 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); 1573 // FIXME: for now initialize MCObjectFileInfo with default values 1574 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); 1575 1576 std::unique_ptr<MCDisassembler> DisAsm( 1577 TheTarget->createMCDisassembler(*STI, Ctx)); 1578 if (!DisAsm) 1579 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 1580 1581 // If we have an ARM object file, we need a second disassembler, because 1582 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 1583 // We use mapping symbols to switch between the two assemblers, where 1584 // appropriate. 1585 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 1586 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 1587 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) { 1588 if (STI->checkFeatures("+thumb-mode")) 1589 Features.AddFeature("-thumb-mode"); 1590 else 1591 Features.AddFeature("+thumb-mode"); 1592 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 1593 Features.getString())); 1594 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 1595 } 1596 1597 std::unique_ptr<const MCInstrAnalysis> MIA( 1598 TheTarget->createMCInstrAnalysis(MII.get())); 1599 1600 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1601 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1602 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1603 if (!IP) 1604 reportError(Obj->getFileName(), 1605 "no instruction printer for target " + TripleName); 1606 IP->setPrintImmHex(PrintImmHex); 1607 1608 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1609 SourcePrinter SP(Obj, TheTarget->getName()); 1610 1611 for (StringRef Opt : DisassemblerOptions) 1612 if (!IP->applyTargetSpecificCLOption(Opt)) 1613 reportError(Obj->getFileName(), 1614 "Unrecognized disassembler option: " + Opt); 1615 1616 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(), 1617 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, 1618 SP, InlineRelocs); 1619 } 1620 1621 void printRelocations(const ObjectFile *Obj) { 1622 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1623 "%08" PRIx64; 1624 // Regular objdump doesn't print relocations in non-relocatable object 1625 // files. 1626 if (!Obj->isRelocatableObject()) 1627 return; 1628 1629 // Build a mapping from relocation target to a vector of relocation 1630 // sections. Usually, there is an only one relocation section for 1631 // each relocated section. 1632 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 1633 uint64_t Ndx; 1634 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 1635 if (Section.relocation_begin() == Section.relocation_end()) 1636 continue; 1637 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 1638 if (!SecOrErr) 1639 reportError(Obj->getFileName(), 1640 "section (" + Twine(Ndx) + 1641 "): unable to get a relocation target: " + 1642 toString(SecOrErr.takeError())); 1643 SecToRelSec[**SecOrErr].push_back(Section); 1644 } 1645 1646 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 1647 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 1648 outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n"; 1649 1650 for (SectionRef Section : P.second) { 1651 for (const RelocationRef &Reloc : Section.relocations()) { 1652 uint64_t Address = Reloc.getOffset(); 1653 SmallString<32> RelocName; 1654 SmallString<32> ValueStr; 1655 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 1656 continue; 1657 Reloc.getTypeName(RelocName); 1658 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1659 reportError(std::move(E), Obj->getFileName()); 1660 1661 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 1662 << ValueStr << "\n"; 1663 } 1664 } 1665 outs() << "\n"; 1666 } 1667 } 1668 1669 void printDynamicRelocations(const ObjectFile *Obj) { 1670 // For the moment, this option is for ELF only 1671 if (!Obj->isELF()) 1672 return; 1673 1674 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1675 if (!Elf || Elf->getEType() != ELF::ET_DYN) { 1676 reportError(Obj->getFileName(), "not a dynamic object"); 1677 return; 1678 } 1679 1680 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1681 if (DynRelSec.empty()) 1682 return; 1683 1684 outs() << "DYNAMIC RELOCATION RECORDS\n"; 1685 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1686 for (const SectionRef &Section : DynRelSec) 1687 for (const RelocationRef &Reloc : Section.relocations()) { 1688 uint64_t Address = Reloc.getOffset(); 1689 SmallString<32> RelocName; 1690 SmallString<32> ValueStr; 1691 Reloc.getTypeName(RelocName); 1692 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1693 reportError(std::move(E), Obj->getFileName()); 1694 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 1695 << ValueStr << "\n"; 1696 } 1697 } 1698 1699 // Returns true if we need to show LMA column when dumping section headers. We 1700 // show it only when the platform is ELF and either we have at least one section 1701 // whose VMA and LMA are different and/or when --show-lma flag is used. 1702 static bool shouldDisplayLMA(const ObjectFile *Obj) { 1703 if (!Obj->isELF()) 1704 return false; 1705 for (const SectionRef &S : ToolSectionFilter(*Obj)) 1706 if (S.getAddress() != getELFSectionLMA(S)) 1707 return true; 1708 return ShowLMA; 1709 } 1710 1711 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) { 1712 // Default column width for names is 13 even if no names are that long. 1713 size_t MaxWidth = 13; 1714 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1715 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1716 MaxWidth = std::max(MaxWidth, Name.size()); 1717 } 1718 return MaxWidth; 1719 } 1720 1721 void printSectionHeaders(const ObjectFile *Obj) { 1722 size_t NameWidth = getMaxSectionNameWidth(Obj); 1723 size_t AddressWidth = 2 * Obj->getBytesInAddress(); 1724 bool HasLMAColumn = shouldDisplayLMA(Obj); 1725 if (HasLMAColumn) 1726 outs() << "Sections:\n" 1727 "Idx " 1728 << left_justify("Name", NameWidth) << " Size " 1729 << left_justify("VMA", AddressWidth) << " " 1730 << left_justify("LMA", AddressWidth) << " Type\n"; 1731 else 1732 outs() << "Sections:\n" 1733 "Idx " 1734 << left_justify("Name", NameWidth) << " Size " 1735 << left_justify("VMA", AddressWidth) << " Type\n"; 1736 1737 uint64_t Idx; 1738 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) { 1739 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1740 uint64_t VMA = Section.getAddress(); 1741 if (shouldAdjustVA(Section)) 1742 VMA += AdjustVMA; 1743 1744 uint64_t Size = Section.getSize(); 1745 1746 std::string Type = Section.isText() ? "TEXT" : ""; 1747 if (Section.isData()) 1748 Type += Type.empty() ? "DATA" : " DATA"; 1749 if (Section.isBSS()) 1750 Type += Type.empty() ? "BSS" : " BSS"; 1751 1752 if (HasLMAColumn) 1753 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1754 Name.str().c_str(), Size) 1755 << format_hex_no_prefix(VMA, AddressWidth) << " " 1756 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 1757 << " " << Type << "\n"; 1758 else 1759 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1760 Name.str().c_str(), Size) 1761 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 1762 } 1763 outs() << "\n"; 1764 } 1765 1766 void printSectionContents(const ObjectFile *Obj) { 1767 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1768 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1769 uint64_t BaseAddr = Section.getAddress(); 1770 uint64_t Size = Section.getSize(); 1771 if (!Size) 1772 continue; 1773 1774 outs() << "Contents of section " << Name << ":\n"; 1775 if (Section.isBSS()) { 1776 outs() << format("<skipping contents of bss section at [%04" PRIx64 1777 ", %04" PRIx64 ")>\n", 1778 BaseAddr, BaseAddr + Size); 1779 continue; 1780 } 1781 1782 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 1783 1784 // Dump out the content as hex and printable ascii characters. 1785 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 1786 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 1787 // Dump line of hex. 1788 for (std::size_t I = 0; I < 16; ++I) { 1789 if (I != 0 && I % 4 == 0) 1790 outs() << ' '; 1791 if (Addr + I < End) 1792 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 1793 << hexdigit(Contents[Addr + I] & 0xF, true); 1794 else 1795 outs() << " "; 1796 } 1797 // Print ascii. 1798 outs() << " "; 1799 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 1800 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 1801 outs() << Contents[Addr + I]; 1802 else 1803 outs() << "."; 1804 } 1805 outs() << "\n"; 1806 } 1807 } 1808 } 1809 1810 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName, 1811 StringRef ArchitectureName) { 1812 outs() << "SYMBOL TABLE:\n"; 1813 1814 if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) { 1815 printCOFFSymbolTable(Coff); 1816 return; 1817 } 1818 1819 const StringRef FileName = O->getFileName(); 1820 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O); 1821 for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) { 1822 const SymbolRef &Symbol = *I; 1823 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 1824 ArchitectureName); 1825 if ((Address < StartAddress) || (Address > StopAddress)) 1826 continue; 1827 SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName, 1828 ArchiveName, ArchitectureName); 1829 uint32_t Flags = Symbol.getFlags(); 1830 1831 // Don't ask a Mach-O STAB symbol for its section unless you know that 1832 // STAB symbol's section field refers to a valid section index. Otherwise 1833 // the symbol may error trying to load a section that does not exist. 1834 bool isSTAB = false; 1835 if (MachO) { 1836 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1837 uint8_t NType = (MachO->is64Bit() ? 1838 MachO->getSymbol64TableEntry(SymDRI).n_type: 1839 MachO->getSymbolTableEntry(SymDRI).n_type); 1840 if (NType & MachO::N_STAB) 1841 isSTAB = true; 1842 } 1843 section_iterator Section = isSTAB ? O->section_end() : 1844 unwrapOrError(Symbol.getSection(), FileName, 1845 ArchiveName, ArchitectureName); 1846 1847 StringRef Name; 1848 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { 1849 if (Expected<StringRef> NameOrErr = Section->getName()) 1850 Name = *NameOrErr; 1851 else 1852 consumeError(NameOrErr.takeError()); 1853 1854 } else { 1855 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 1856 ArchitectureName); 1857 } 1858 1859 bool Global = Flags & SymbolRef::SF_Global; 1860 bool Weak = Flags & SymbolRef::SF_Weak; 1861 bool Absolute = Flags & SymbolRef::SF_Absolute; 1862 bool Common = Flags & SymbolRef::SF_Common; 1863 bool Hidden = Flags & SymbolRef::SF_Hidden; 1864 1865 char GlobLoc = ' '; 1866 if (Type != SymbolRef::ST_Unknown) 1867 GlobLoc = Global ? 'g' : 'l'; 1868 char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 1869 ? 'd' : ' '; 1870 char FileFunc = ' '; 1871 if (Type == SymbolRef::ST_File) 1872 FileFunc = 'f'; 1873 else if (Type == SymbolRef::ST_Function) 1874 FileFunc = 'F'; 1875 else if (Type == SymbolRef::ST_Data) 1876 FileFunc = 'O'; 1877 1878 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : 1879 "%08" PRIx64; 1880 1881 outs() << format(Fmt, Address) << " " 1882 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 1883 << (Weak ? 'w' : ' ') // Weak? 1884 << ' ' // Constructor. Not supported yet. 1885 << ' ' // Warning. Not supported yet. 1886 << ' ' // Indirect reference to another symbol. 1887 << Debug // Debugging (d) or dynamic (D) symbol. 1888 << FileFunc // Name of function (F), file (f) or object (O). 1889 << ' '; 1890 if (Absolute) { 1891 outs() << "*ABS*"; 1892 } else if (Common) { 1893 outs() << "*COM*"; 1894 } else if (Section == O->section_end()) { 1895 outs() << "*UND*"; 1896 } else { 1897 if (const MachOObjectFile *MachO = 1898 dyn_cast<const MachOObjectFile>(O)) { 1899 DataRefImpl DR = Section->getRawDataRefImpl(); 1900 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1901 outs() << SegmentName << ","; 1902 } 1903 StringRef SectionName = 1904 unwrapOrError(Section->getName(), O->getFileName()); 1905 outs() << SectionName; 1906 } 1907 1908 if (Common || isa<ELFObjectFileBase>(O)) { 1909 uint64_t Val = 1910 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); 1911 outs() << format("\t%08" PRIx64, Val); 1912 } 1913 1914 if (isa<ELFObjectFileBase>(O)) { 1915 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 1916 switch (Other) { 1917 case ELF::STV_DEFAULT: 1918 break; 1919 case ELF::STV_INTERNAL: 1920 outs() << " .internal"; 1921 break; 1922 case ELF::STV_HIDDEN: 1923 outs() << " .hidden"; 1924 break; 1925 case ELF::STV_PROTECTED: 1926 outs() << " .protected"; 1927 break; 1928 default: 1929 outs() << format(" 0x%02x", Other); 1930 break; 1931 } 1932 } else if (Hidden) { 1933 outs() << " .hidden"; 1934 } 1935 1936 if (Demangle) 1937 outs() << ' ' << demangle(Name) << '\n'; 1938 else 1939 outs() << ' ' << Name << '\n'; 1940 } 1941 } 1942 1943 static void printUnwindInfo(const ObjectFile *O) { 1944 outs() << "Unwind info:\n\n"; 1945 1946 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 1947 printCOFFUnwindInfo(Coff); 1948 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 1949 printMachOUnwindInfo(MachO); 1950 else 1951 // TODO: Extract DWARF dump tool to objdump. 1952 WithColor::error(errs(), ToolName) 1953 << "This operation is only currently supported " 1954 "for COFF and MachO object files.\n"; 1955 } 1956 1957 /// Dump the raw contents of the __clangast section so the output can be piped 1958 /// into llvm-bcanalyzer. 1959 void printRawClangAST(const ObjectFile *Obj) { 1960 if (outs().is_displayed()) { 1961 WithColor::error(errs(), ToolName) 1962 << "The -raw-clang-ast option will dump the raw binary contents of " 1963 "the clang ast section.\n" 1964 "Please redirect the output to a file or another program such as " 1965 "llvm-bcanalyzer.\n"; 1966 return; 1967 } 1968 1969 StringRef ClangASTSectionName("__clangast"); 1970 if (isa<COFFObjectFile>(Obj)) { 1971 ClangASTSectionName = "clangast"; 1972 } 1973 1974 Optional<object::SectionRef> ClangASTSection; 1975 for (auto Sec : ToolSectionFilter(*Obj)) { 1976 StringRef Name; 1977 if (Expected<StringRef> NameOrErr = Sec.getName()) 1978 Name = *NameOrErr; 1979 else 1980 consumeError(NameOrErr.takeError()); 1981 1982 if (Name == ClangASTSectionName) { 1983 ClangASTSection = Sec; 1984 break; 1985 } 1986 } 1987 if (!ClangASTSection) 1988 return; 1989 1990 StringRef ClangASTContents = unwrapOrError( 1991 ClangASTSection.getValue().getContents(), Obj->getFileName()); 1992 outs().write(ClangASTContents.data(), ClangASTContents.size()); 1993 } 1994 1995 static void printFaultMaps(const ObjectFile *Obj) { 1996 StringRef FaultMapSectionName; 1997 1998 if (isa<ELFObjectFileBase>(Obj)) { 1999 FaultMapSectionName = ".llvm_faultmaps"; 2000 } else if (isa<MachOObjectFile>(Obj)) { 2001 FaultMapSectionName = "__llvm_faultmaps"; 2002 } else { 2003 WithColor::error(errs(), ToolName) 2004 << "This operation is only currently supported " 2005 "for ELF and Mach-O executable files.\n"; 2006 return; 2007 } 2008 2009 Optional<object::SectionRef> FaultMapSection; 2010 2011 for (auto Sec : ToolSectionFilter(*Obj)) { 2012 StringRef Name; 2013 if (Expected<StringRef> NameOrErr = Sec.getName()) 2014 Name = *NameOrErr; 2015 else 2016 consumeError(NameOrErr.takeError()); 2017 2018 if (Name == FaultMapSectionName) { 2019 FaultMapSection = Sec; 2020 break; 2021 } 2022 } 2023 2024 outs() << "FaultMap table:\n"; 2025 2026 if (!FaultMapSection.hasValue()) { 2027 outs() << "<not found>\n"; 2028 return; 2029 } 2030 2031 StringRef FaultMapContents = 2032 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName()); 2033 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2034 FaultMapContents.bytes_end()); 2035 2036 outs() << FMP; 2037 } 2038 2039 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2040 if (O->isELF()) { 2041 printELFFileHeader(O); 2042 printELFDynamicSection(O); 2043 printELFSymbolVersionInfo(O); 2044 return; 2045 } 2046 if (O->isCOFF()) 2047 return printCOFFFileHeader(O); 2048 if (O->isWasm()) 2049 return printWasmFileHeader(O); 2050 if (O->isMachO()) { 2051 printMachOFileHeader(O); 2052 if (!OnlyFirst) 2053 printMachOLoadCommands(O); 2054 return; 2055 } 2056 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2057 } 2058 2059 static void printFileHeaders(const ObjectFile *O) { 2060 if (!O->isELF() && !O->isCOFF()) 2061 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2062 2063 Triple::ArchType AT = O->getArch(); 2064 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2065 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2066 2067 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2068 outs() << "start address: " 2069 << "0x" << format(Fmt.data(), Address) << "\n\n"; 2070 } 2071 2072 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2073 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2074 if (!ModeOrErr) { 2075 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2076 consumeError(ModeOrErr.takeError()); 2077 return; 2078 } 2079 sys::fs::perms Mode = ModeOrErr.get(); 2080 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2081 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2082 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2083 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2084 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2085 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2086 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2087 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2088 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2089 2090 outs() << " "; 2091 2092 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2093 unwrapOrError(C.getGID(), Filename), 2094 unwrapOrError(C.getRawSize(), Filename)); 2095 2096 StringRef RawLastModified = C.getRawLastModified(); 2097 unsigned Seconds; 2098 if (RawLastModified.getAsInteger(10, Seconds)) 2099 outs() << "(date: \"" << RawLastModified 2100 << "\" contains non-decimal chars) "; 2101 else { 2102 // Since ctime(3) returns a 26 character string of the form: 2103 // "Sun Sep 16 01:03:52 1973\n\0" 2104 // just print 24 characters. 2105 time_t t = Seconds; 2106 outs() << format("%.24s ", ctime(&t)); 2107 } 2108 2109 StringRef Name = ""; 2110 Expected<StringRef> NameOrErr = C.getName(); 2111 if (!NameOrErr) { 2112 consumeError(NameOrErr.takeError()); 2113 Name = unwrapOrError(C.getRawName(), Filename); 2114 } else { 2115 Name = NameOrErr.get(); 2116 } 2117 outs() << Name << "\n"; 2118 } 2119 2120 // For ELF only now. 2121 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2122 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2123 if (Elf->getEType() != ELF::ET_REL) 2124 return true; 2125 } 2126 return false; 2127 } 2128 2129 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2130 uint64_t Start, uint64_t Stop) { 2131 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2132 return; 2133 2134 for (const SectionRef &Section : Obj->sections()) 2135 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2136 uint64_t BaseAddr = Section.getAddress(); 2137 uint64_t Size = Section.getSize(); 2138 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2139 return; 2140 } 2141 2142 if (StartAddress.getNumOccurrences() == 0) 2143 reportWarning("no section has address less than 0x" + 2144 Twine::utohexstr(Stop) + " specified by --stop-address", 2145 Obj->getFileName()); 2146 else if (StopAddress.getNumOccurrences() == 0) 2147 reportWarning("no section has address greater than or equal to 0x" + 2148 Twine::utohexstr(Start) + " specified by --start-address", 2149 Obj->getFileName()); 2150 else 2151 reportWarning("no section overlaps the range [0x" + 2152 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2153 ") specified by --start-address/--stop-address", 2154 Obj->getFileName()); 2155 } 2156 2157 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2158 const Archive::Child *C = nullptr) { 2159 // Avoid other output when using a raw option. 2160 if (!RawClangAST) { 2161 outs() << '\n'; 2162 if (A) 2163 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2164 else 2165 outs() << O->getFileName(); 2166 outs() << ":\tfile format " << O->getFileFormatName() << "\n\n"; 2167 } 2168 2169 if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences()) 2170 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2171 2172 // Note: the order here matches GNU objdump for compatability. 2173 StringRef ArchiveName = A ? A->getFileName() : ""; 2174 if (ArchiveHeaders && !MachOOpt && C) 2175 printArchiveChild(ArchiveName, *C); 2176 if (FileHeaders) 2177 printFileHeaders(O); 2178 if (PrivateHeaders || FirstPrivateHeader) 2179 printPrivateFileHeaders(O, FirstPrivateHeader); 2180 if (SectionHeaders) 2181 printSectionHeaders(O); 2182 if (SymbolTable) 2183 printSymbolTable(O, ArchiveName); 2184 if (DwarfDumpType != DIDT_Null) { 2185 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2186 // Dump the complete DWARF structure. 2187 DIDumpOptions DumpOpts; 2188 DumpOpts.DumpType = DwarfDumpType; 2189 DICtx->dump(outs(), DumpOpts); 2190 } 2191 if (Relocations && !Disassemble) 2192 printRelocations(O); 2193 if (DynamicRelocations) 2194 printDynamicRelocations(O); 2195 if (SectionContents) 2196 printSectionContents(O); 2197 if (Disassemble) 2198 disassembleObject(O, Relocations); 2199 if (UnwindInfo) 2200 printUnwindInfo(O); 2201 2202 // Mach-O specific options: 2203 if (ExportsTrie) 2204 printExportsTrie(O); 2205 if (Rebase) 2206 printRebaseTable(O); 2207 if (Bind) 2208 printBindTable(O); 2209 if (LazyBind) 2210 printLazyBindTable(O); 2211 if (WeakBind) 2212 printWeakBindTable(O); 2213 2214 // Other special sections: 2215 if (RawClangAST) 2216 printRawClangAST(O); 2217 if (FaultMapSection) 2218 printFaultMaps(O); 2219 } 2220 2221 static void dumpObject(const COFFImportFile *I, const Archive *A, 2222 const Archive::Child *C = nullptr) { 2223 StringRef ArchiveName = A ? A->getFileName() : ""; 2224 2225 // Avoid other output when using a raw option. 2226 if (!RawClangAST) 2227 outs() << '\n' 2228 << ArchiveName << "(" << I->getFileName() << ")" 2229 << ":\tfile format COFF-import-file" 2230 << "\n\n"; 2231 2232 if (ArchiveHeaders && !MachOOpt && C) 2233 printArchiveChild(ArchiveName, *C); 2234 if (SymbolTable) 2235 printCOFFSymbolTable(I); 2236 } 2237 2238 /// Dump each object file in \a a; 2239 static void dumpArchive(const Archive *A) { 2240 Error Err = Error::success(); 2241 unsigned I = -1; 2242 for (auto &C : A->children(Err)) { 2243 ++I; 2244 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2245 if (!ChildOrErr) { 2246 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2247 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2248 continue; 2249 } 2250 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2251 dumpObject(O, A, &C); 2252 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2253 dumpObject(I, A, &C); 2254 else 2255 reportError(errorCodeToError(object_error::invalid_file_type), 2256 A->getFileName()); 2257 } 2258 if (Err) 2259 reportError(std::move(Err), A->getFileName()); 2260 } 2261 2262 /// Open file and figure out how to dump it. 2263 static void dumpInput(StringRef file) { 2264 // If we are using the Mach-O specific object file parser, then let it parse 2265 // the file and process the command line options. So the -arch flags can 2266 // be used to select specific slices, etc. 2267 if (MachOOpt) { 2268 parseInputMachO(file); 2269 return; 2270 } 2271 2272 // Attempt to open the binary. 2273 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2274 Binary &Binary = *OBinary.getBinary(); 2275 2276 if (Archive *A = dyn_cast<Archive>(&Binary)) 2277 dumpArchive(A); 2278 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2279 dumpObject(O); 2280 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2281 parseInputMachO(UB); 2282 else 2283 reportError(errorCodeToError(object_error::invalid_file_type), file); 2284 } 2285 } // namespace llvm 2286 2287 int main(int argc, char **argv) { 2288 using namespace llvm; 2289 InitLLVM X(argc, argv); 2290 const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat}; 2291 cl::HideUnrelatedOptions(OptionFilters); 2292 2293 // Initialize targets and assembly printers/parsers. 2294 InitializeAllTargetInfos(); 2295 InitializeAllTargetMCs(); 2296 InitializeAllDisassemblers(); 2297 2298 // Register the target printer for --version. 2299 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); 2300 2301 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); 2302 2303 if (StartAddress >= StopAddress) 2304 reportCmdLineError("start address should be less than stop address"); 2305 2306 ToolName = argv[0]; 2307 2308 // Defaults to a.out if no filenames specified. 2309 if (InputFilenames.empty()) 2310 InputFilenames.push_back("a.out"); 2311 2312 if (AllHeaders) 2313 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 2314 SectionHeaders = SymbolTable = true; 2315 2316 if (DisassembleAll || PrintSource || PrintLines || 2317 (!DisassembleFunctions.empty())) 2318 Disassemble = true; 2319 2320 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 2321 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 2322 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 2323 !UnwindInfo && !FaultMapSection && 2324 !(MachOOpt && 2325 (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie || 2326 FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind || 2327 LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders || 2328 WeakBind || !FilterSections.empty()))) { 2329 cl::PrintHelpMessage(); 2330 return 2; 2331 } 2332 2333 DisasmFuncsSet.insert(DisassembleFunctions.begin(), 2334 DisassembleFunctions.end()); 2335 2336 llvm::for_each(InputFilenames, dumpInput); 2337 2338 warnOnNoMatchForSections(); 2339 2340 return EXIT_SUCCESS; 2341 } 2342