xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 9ea44c6894270546d6d88ef0d3abcf1e1876acae)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Debuginfod/BuildIDFetcher.h"
38 #include "llvm/Debuginfod/Debuginfod.h"
39 #include "llvm/Debuginfod/HTTPClient.h"
40 #include "llvm/Demangle/Demangle.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/MCContext.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
45 #include "llvm/MC/MCInst.h"
46 #include "llvm/MC/MCInstPrinter.h"
47 #include "llvm/MC/MCInstrAnalysis.h"
48 #include "llvm/MC/MCInstrInfo.h"
49 #include "llvm/MC/MCObjectFileInfo.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/BuildID.h"
55 #include "llvm/Object/COFF.h"
56 #include "llvm/Object/COFFImportFile.h"
57 #include "llvm/Object/ELFObjectFile.h"
58 #include "llvm/Object/ELFTypes.h"
59 #include "llvm/Object/FaultMapParser.h"
60 #include "llvm/Object/MachO.h"
61 #include "llvm/Object/MachOUniversal.h"
62 #include "llvm/Object/ObjectFile.h"
63 #include "llvm/Object/OffloadBinary.h"
64 #include "llvm/Object/Wasm.h"
65 #include "llvm/Option/Arg.h"
66 #include "llvm/Option/ArgList.h"
67 #include "llvm/Option/Option.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Errc.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/Format.h"
73 #include "llvm/Support/FormatVariadic.h"
74 #include "llvm/Support/GraphWriter.h"
75 #include "llvm/Support/InitLLVM.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/TargetParser/Host.h"
83 #include "llvm/TargetParser/Triple.h"
84 #include <algorithm>
85 #include <cctype>
86 #include <cstring>
87 #include <optional>
88 #include <system_error>
89 #include <unordered_map>
90 #include <utility>
91 
92 using namespace llvm;
93 using namespace llvm::object;
94 using namespace llvm::objdump;
95 using namespace llvm::opt;
96 
97 namespace {
98 
99 class CommonOptTable : public opt::GenericOptTable {
100 public:
101   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
102                  const char *Description)
103       : opt::GenericOptTable(OptionInfos), Usage(Usage),
104         Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
111                                     Description, ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 namespace objdump_opt {
123 #define PREFIX(NAME, VALUE)                                                    \
124   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
125   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
126                                                 std::size(NAME##_init) - 1);
127 #include "ObjdumpOpts.inc"
128 #undef PREFIX
129 
130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
131 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
132                HELPTEXT, METAVAR, VALUES)                                      \
133   {PREFIX,          NAME,         HELPTEXT,                                    \
134    METAVAR,         OBJDUMP_##ID, opt::Option::KIND##Class,                    \
135    PARAM,           FLAGS,        OBJDUMP_##GROUP,                             \
136    OBJDUMP_##ALIAS, ALIASARGS,    VALUES},
137 #include "ObjdumpOpts.inc"
138 #undef OPTION
139 };
140 } // namespace objdump_opt
141 
142 class ObjdumpOptTable : public CommonOptTable {
143 public:
144   ObjdumpOptTable()
145       : CommonOptTable(objdump_opt::ObjdumpInfoTable,
146                        " [options] <input object files>",
147                        "llvm object file dumper") {}
148 };
149 
150 enum OtoolOptID {
151   OTOOL_INVALID = 0, // This is not an option ID.
152 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
153                HELPTEXT, METAVAR, VALUES)                                      \
154   OTOOL_##ID,
155 #include "OtoolOpts.inc"
156 #undef OPTION
157 };
158 
159 namespace otool {
160 #define PREFIX(NAME, VALUE)                                                    \
161   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
162   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
163                                                 std::size(NAME##_init) - 1);
164 #include "OtoolOpts.inc"
165 #undef PREFIX
166 
167 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
168 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
169                HELPTEXT, METAVAR, VALUES)                                      \
170   {PREFIX,        NAME,       HELPTEXT,                                        \
171    METAVAR,       OTOOL_##ID, opt::Option::KIND##Class,                        \
172    PARAM,         FLAGS,      OTOOL_##GROUP,                                   \
173    OTOOL_##ALIAS, ALIASARGS,  VALUES},
174 #include "OtoolOpts.inc"
175 #undef OPTION
176 };
177 } // namespace otool
178 
179 class OtoolOptTable : public CommonOptTable {
180 public:
181   OtoolOptTable()
182       : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
183                        "Mach-O object file displaying tool") {}
184 };
185 
186 } // namespace
187 
188 #define DEBUG_TYPE "objdump"
189 
190 static uint64_t AdjustVMA;
191 static bool AllHeaders;
192 static std::string ArchName;
193 bool objdump::ArchiveHeaders;
194 bool objdump::Demangle;
195 bool objdump::Disassemble;
196 bool objdump::DisassembleAll;
197 bool objdump::SymbolDescription;
198 bool objdump::TracebackTable;
199 static std::vector<std::string> DisassembleSymbols;
200 static bool DisassembleZeroes;
201 static std::vector<std::string> DisassemblerOptions;
202 DIDumpType objdump::DwarfDumpType;
203 static bool DynamicRelocations;
204 static bool FaultMapSection;
205 static bool FileHeaders;
206 bool objdump::SectionContents;
207 static std::vector<std::string> InputFilenames;
208 bool objdump::PrintLines;
209 static bool MachOOpt;
210 std::string objdump::MCPU;
211 std::vector<std::string> objdump::MAttrs;
212 bool objdump::ShowRawInsn;
213 bool objdump::LeadingAddr;
214 static bool Offloading;
215 static bool RawClangAST;
216 bool objdump::Relocations;
217 bool objdump::PrintImmHex;
218 bool objdump::PrivateHeaders;
219 std::vector<std::string> objdump::FilterSections;
220 bool objdump::SectionHeaders;
221 static bool ShowAllSymbols;
222 static bool ShowLMA;
223 bool objdump::PrintSource;
224 
225 static uint64_t StartAddress;
226 static bool HasStartAddressFlag;
227 static uint64_t StopAddress = UINT64_MAX;
228 static bool HasStopAddressFlag;
229 
230 bool objdump::SymbolTable;
231 static bool SymbolizeOperands;
232 static bool DynamicSymbolTable;
233 std::string objdump::TripleName;
234 bool objdump::UnwindInfo;
235 static bool Wide;
236 std::string objdump::Prefix;
237 uint32_t objdump::PrefixStrip;
238 
239 DebugVarsFormat objdump::DbgVariables = DVDisabled;
240 
241 int objdump::DbgIndent = 52;
242 
243 static StringSet<> DisasmSymbolSet;
244 StringSet<> objdump::FoundSectionSet;
245 static StringRef ToolName;
246 
247 std::unique_ptr<BuildIDFetcher> BIDFetcher;
248 ExitOnError ExitOnErr;
249 
250 void Dumper::reportUniqueWarning(Error Err) {
251   reportUniqueWarning(toString(std::move(Err)));
252 }
253 
254 void Dumper::reportUniqueWarning(const Twine &Msg) {
255   if (Warnings.insert(StringRef(Msg.str())).second)
256     reportWarning(Msg, O.getFileName());
257 }
258 
259 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) {
260   if (const auto *O = dyn_cast<COFFObjectFile>(&Obj))
261     return createCOFFDumper(*O);
262   if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj))
263     return createELFDumper(*O);
264   if (const auto *O = dyn_cast<MachOObjectFile>(&Obj))
265     return createMachODumper(*O);
266   if (const auto *O = dyn_cast<WasmObjectFile>(&Obj))
267     return createWasmDumper(*O);
268   if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj))
269     return createXCOFFDumper(*O);
270 
271   return createStringError(errc::invalid_argument,
272                            "unsupported object file format");
273 }
274 
275 namespace {
276 struct FilterResult {
277   // True if the section should not be skipped.
278   bool Keep;
279 
280   // True if the index counter should be incremented, even if the section should
281   // be skipped. For example, sections may be skipped if they are not included
282   // in the --section flag, but we still want those to count toward the section
283   // count.
284   bool IncrementIndex;
285 };
286 } // namespace
287 
288 static FilterResult checkSectionFilter(object::SectionRef S) {
289   if (FilterSections.empty())
290     return {/*Keep=*/true, /*IncrementIndex=*/true};
291 
292   Expected<StringRef> SecNameOrErr = S.getName();
293   if (!SecNameOrErr) {
294     consumeError(SecNameOrErr.takeError());
295     return {/*Keep=*/false, /*IncrementIndex=*/false};
296   }
297   StringRef SecName = *SecNameOrErr;
298 
299   // StringSet does not allow empty key so avoid adding sections with
300   // no name (such as the section with index 0) here.
301   if (!SecName.empty())
302     FoundSectionSet.insert(SecName);
303 
304   // Only show the section if it's in the FilterSections list, but always
305   // increment so the indexing is stable.
306   return {/*Keep=*/is_contained(FilterSections, SecName),
307           /*IncrementIndex=*/true};
308 }
309 
310 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
311                                          uint64_t *Idx) {
312   // Start at UINT64_MAX so that the first index returned after an increment is
313   // zero (after the unsigned wrap).
314   if (Idx)
315     *Idx = UINT64_MAX;
316   return SectionFilter(
317       [Idx](object::SectionRef S) {
318         FilterResult Result = checkSectionFilter(S);
319         if (Idx != nullptr && Result.IncrementIndex)
320           *Idx += 1;
321         return Result.Keep;
322       },
323       O);
324 }
325 
326 std::string objdump::getFileNameForError(const object::Archive::Child &C,
327                                          unsigned Index) {
328   Expected<StringRef> NameOrErr = C.getName();
329   if (NameOrErr)
330     return std::string(NameOrErr.get());
331   // If we have an error getting the name then we print the index of the archive
332   // member. Since we are already in an error state, we just ignore this error.
333   consumeError(NameOrErr.takeError());
334   return "<file index: " + std::to_string(Index) + ">";
335 }
336 
337 void objdump::reportWarning(const Twine &Message, StringRef File) {
338   // Output order between errs() and outs() matters especially for archive
339   // files where the output is per member object.
340   outs().flush();
341   WithColor::warning(errs(), ToolName)
342       << "'" << File << "': " << Message << "\n";
343 }
344 
345 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
346   outs().flush();
347   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
348   exit(1);
349 }
350 
351 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
352                                        StringRef ArchiveName,
353                                        StringRef ArchitectureName) {
354   assert(E);
355   outs().flush();
356   WithColor::error(errs(), ToolName);
357   if (ArchiveName != "")
358     errs() << ArchiveName << "(" << FileName << ")";
359   else
360     errs() << "'" << FileName << "'";
361   if (!ArchitectureName.empty())
362     errs() << " (for architecture " << ArchitectureName << ")";
363   errs() << ": ";
364   logAllUnhandledErrors(std::move(E), errs());
365   exit(1);
366 }
367 
368 static void reportCmdLineWarning(const Twine &Message) {
369   WithColor::warning(errs(), ToolName) << Message << "\n";
370 }
371 
372 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
373   WithColor::error(errs(), ToolName) << Message << "\n";
374   exit(1);
375 }
376 
377 static void warnOnNoMatchForSections() {
378   SetVector<StringRef> MissingSections;
379   for (StringRef S : FilterSections) {
380     if (FoundSectionSet.count(S))
381       return;
382     // User may specify a unnamed section. Don't warn for it.
383     if (!S.empty())
384       MissingSections.insert(S);
385   }
386 
387   // Warn only if no section in FilterSections is matched.
388   for (StringRef S : MissingSections)
389     reportCmdLineWarning("section '" + S +
390                          "' mentioned in a -j/--section option, but not "
391                          "found in any input file");
392 }
393 
394 static const Target *getTarget(const ObjectFile *Obj) {
395   // Figure out the target triple.
396   Triple TheTriple("unknown-unknown-unknown");
397   if (TripleName.empty()) {
398     TheTriple = Obj->makeTriple();
399   } else {
400     TheTriple.setTriple(Triple::normalize(TripleName));
401     auto Arch = Obj->getArch();
402     if (Arch == Triple::arm || Arch == Triple::armeb)
403       Obj->setARMSubArch(TheTriple);
404   }
405 
406   // Get the target specific parser.
407   std::string Error;
408   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
409                                                          Error);
410   if (!TheTarget)
411     reportError(Obj->getFileName(), "can't find target: " + Error);
412 
413   // Update the triple name and return the found target.
414   TripleName = TheTriple.getTriple();
415   return TheTarget;
416 }
417 
418 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
419   return A.getOffset() < B.getOffset();
420 }
421 
422 static Error getRelocationValueString(const RelocationRef &Rel,
423                                       SmallVectorImpl<char> &Result) {
424   const ObjectFile *Obj = Rel.getObject();
425   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
426     return getELFRelocationValueString(ELF, Rel, Result);
427   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
428     return getCOFFRelocationValueString(COFF, Rel, Result);
429   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
430     return getWasmRelocationValueString(Wasm, Rel, Result);
431   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
432     return getMachORelocationValueString(MachO, Rel, Result);
433   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
434     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
435   llvm_unreachable("unknown object file format");
436 }
437 
438 /// Indicates whether this relocation should hidden when listing
439 /// relocations, usually because it is the trailing part of a multipart
440 /// relocation that will be printed as part of the leading relocation.
441 static bool getHidden(RelocationRef RelRef) {
442   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
443   if (!MachO)
444     return false;
445 
446   unsigned Arch = MachO->getArch();
447   DataRefImpl Rel = RelRef.getRawDataRefImpl();
448   uint64_t Type = MachO->getRelocationType(Rel);
449 
450   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
451   // is always hidden.
452   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
453     return Type == MachO::GENERIC_RELOC_PAIR;
454 
455   if (Arch == Triple::x86_64) {
456     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
457     // an X86_64_RELOC_SUBTRACTOR.
458     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
459       DataRefImpl RelPrev = Rel;
460       RelPrev.d.a--;
461       uint64_t PrevType = MachO->getRelocationType(RelPrev);
462       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
463         return true;
464     }
465   }
466 
467   return false;
468 }
469 
470 /// Get the column at which we want to start printing the instruction
471 /// disassembly, taking into account anything which appears to the left of it.
472 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
473   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
474 }
475 
476 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
477                                    raw_ostream &OS) {
478   // The output of printInst starts with a tab. Print some spaces so that
479   // the tab has 1 column and advances to the target tab stop.
480   unsigned TabStop = getInstStartColumn(STI);
481   unsigned Column = OS.tell() - Start;
482   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
483 }
484 
485 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
486                            formatted_raw_ostream &OS,
487                            MCSubtargetInfo const &STI) {
488   size_t Start = OS.tell();
489   if (LeadingAddr)
490     OS << format("%8" PRIx64 ":", Address);
491   if (ShowRawInsn) {
492     OS << ' ';
493     dumpBytes(Bytes, OS);
494   }
495   AlignToInstStartColumn(Start, STI, OS);
496 }
497 
498 namespace {
499 
500 static bool isAArch64Elf(const ObjectFile &Obj) {
501   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
502   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
503 }
504 
505 static bool isArmElf(const ObjectFile &Obj) {
506   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
507   return Elf && Elf->getEMachine() == ELF::EM_ARM;
508 }
509 
510 static bool isCSKYElf(const ObjectFile &Obj) {
511   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
512   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
513 }
514 
515 static bool hasMappingSymbols(const ObjectFile &Obj) {
516   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
517 }
518 
519 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
520                             const RelocationRef &Rel, uint64_t Address,
521                             bool Is64Bits) {
522   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
523   SmallString<16> Name;
524   SmallString<32> Val;
525   Rel.getTypeName(Name);
526   if (Error E = getRelocationValueString(Rel, Val))
527     reportError(std::move(E), FileName);
528   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
529   if (LeadingAddr)
530     OS << format(Fmt.data(), Address);
531   OS << Name << "\t" << Val;
532 }
533 
534 class PrettyPrinter {
535 public:
536   virtual ~PrettyPrinter() = default;
537   virtual void
538   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
539             object::SectionedAddress Address, formatted_raw_ostream &OS,
540             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
541             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
542             LiveVariablePrinter &LVP) {
543     if (SP && (PrintSource || PrintLines))
544       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
545     LVP.printBetweenInsts(OS, false);
546 
547     printRawData(Bytes, Address.Address, OS, STI);
548 
549     if (MI) {
550       // See MCInstPrinter::printInst. On targets where a PC relative immediate
551       // is relative to the next instruction and the length of a MCInst is
552       // difficult to measure (x86), this is the address of the next
553       // instruction.
554       uint64_t Addr =
555           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
556       IP.printInst(MI, Addr, "", STI, OS);
557     } else
558       OS << "\t<unknown>";
559   }
560 };
561 PrettyPrinter PrettyPrinterInst;
562 
563 class HexagonPrettyPrinter : public PrettyPrinter {
564 public:
565   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
566                  formatted_raw_ostream &OS) {
567     uint32_t opcode =
568       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
569     if (LeadingAddr)
570       OS << format("%8" PRIx64 ":", Address);
571     if (ShowRawInsn) {
572       OS << "\t";
573       dumpBytes(Bytes.slice(0, 4), OS);
574       OS << format("\t%08" PRIx32, opcode);
575     }
576   }
577   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
578                  object::SectionedAddress Address, formatted_raw_ostream &OS,
579                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
580                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
581                  LiveVariablePrinter &LVP) override {
582     if (SP && (PrintSource || PrintLines))
583       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
584     if (!MI) {
585       printLead(Bytes, Address.Address, OS);
586       OS << " <unknown>";
587       return;
588     }
589     std::string Buffer;
590     {
591       raw_string_ostream TempStream(Buffer);
592       IP.printInst(MI, Address.Address, "", STI, TempStream);
593     }
594     StringRef Contents(Buffer);
595     // Split off bundle attributes
596     auto PacketBundle = Contents.rsplit('\n');
597     // Split off first instruction from the rest
598     auto HeadTail = PacketBundle.first.split('\n');
599     auto Preamble = " { ";
600     auto Separator = "";
601 
602     // Hexagon's packets require relocations to be inline rather than
603     // clustered at the end of the packet.
604     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
605     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
606     auto PrintReloc = [&]() -> void {
607       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
608         if (RelCur->getOffset() == Address.Address) {
609           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
610           return;
611         }
612         ++RelCur;
613       }
614     };
615 
616     while (!HeadTail.first.empty()) {
617       OS << Separator;
618       Separator = "\n";
619       if (SP && (PrintSource || PrintLines))
620         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
621       printLead(Bytes, Address.Address, OS);
622       OS << Preamble;
623       Preamble = "   ";
624       StringRef Inst;
625       auto Duplex = HeadTail.first.split('\v');
626       if (!Duplex.second.empty()) {
627         OS << Duplex.first;
628         OS << "; ";
629         Inst = Duplex.second;
630       }
631       else
632         Inst = HeadTail.first;
633       OS << Inst;
634       HeadTail = HeadTail.second.split('\n');
635       if (HeadTail.first.empty())
636         OS << " } " << PacketBundle.second;
637       PrintReloc();
638       Bytes = Bytes.slice(4);
639       Address.Address += 4;
640     }
641   }
642 };
643 HexagonPrettyPrinter HexagonPrettyPrinterInst;
644 
645 class AMDGCNPrettyPrinter : public PrettyPrinter {
646 public:
647   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
648                  object::SectionedAddress Address, formatted_raw_ostream &OS,
649                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
650                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
651                  LiveVariablePrinter &LVP) override {
652     if (SP && (PrintSource || PrintLines))
653       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
654 
655     if (MI) {
656       SmallString<40> InstStr;
657       raw_svector_ostream IS(InstStr);
658 
659       IP.printInst(MI, Address.Address, "", STI, IS);
660 
661       OS << left_justify(IS.str(), 60);
662     } else {
663       // an unrecognized encoding - this is probably data so represent it
664       // using the .long directive, or .byte directive if fewer than 4 bytes
665       // remaining
666       if (Bytes.size() >= 4) {
667         OS << format("\t.long 0x%08" PRIx32 " ",
668                      support::endian::read32<support::little>(Bytes.data()));
669         OS.indent(42);
670       } else {
671           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
672           for (unsigned int i = 1; i < Bytes.size(); i++)
673             OS << format(", 0x%02" PRIx8, Bytes[i]);
674           OS.indent(55 - (6 * Bytes.size()));
675       }
676     }
677 
678     OS << format("// %012" PRIX64 ":", Address.Address);
679     if (Bytes.size() >= 4) {
680       // D should be casted to uint32_t here as it is passed by format to
681       // snprintf as vararg.
682       for (uint32_t D :
683            ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
684                     Bytes.size() / 4))
685           OS << format(" %08" PRIX32, D);
686     } else {
687       for (unsigned char B : Bytes)
688         OS << format(" %02" PRIX8, B);
689     }
690 
691     if (!Annot.empty())
692       OS << " // " << Annot;
693   }
694 };
695 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
696 
697 class BPFPrettyPrinter : public PrettyPrinter {
698 public:
699   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
700                  object::SectionedAddress Address, formatted_raw_ostream &OS,
701                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
702                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
703                  LiveVariablePrinter &LVP) override {
704     if (SP && (PrintSource || PrintLines))
705       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
706     if (LeadingAddr)
707       OS << format("%8" PRId64 ":", Address.Address / 8);
708     if (ShowRawInsn) {
709       OS << "\t";
710       dumpBytes(Bytes, OS);
711     }
712     if (MI)
713       IP.printInst(MI, Address.Address, "", STI, OS);
714     else
715       OS << "\t<unknown>";
716   }
717 };
718 BPFPrettyPrinter BPFPrettyPrinterInst;
719 
720 class ARMPrettyPrinter : public PrettyPrinter {
721 public:
722   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
723                  object::SectionedAddress Address, formatted_raw_ostream &OS,
724                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
725                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
726                  LiveVariablePrinter &LVP) override {
727     if (SP && (PrintSource || PrintLines))
728       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
729     LVP.printBetweenInsts(OS, false);
730 
731     size_t Start = OS.tell();
732     if (LeadingAddr)
733       OS << format("%8" PRIx64 ":", Address.Address);
734     if (ShowRawInsn) {
735       size_t Pos = 0, End = Bytes.size();
736       if (STI.checkFeatures("+thumb-mode")) {
737         for (; Pos + 2 <= End; Pos += 2)
738           OS << ' '
739              << format_hex_no_prefix(
740                     llvm::support::endian::read<uint16_t>(
741                         Bytes.data() + Pos, InstructionEndianness),
742                     4);
743       } else {
744         for (; Pos + 4 <= End; Pos += 4)
745           OS << ' '
746              << format_hex_no_prefix(
747                     llvm::support::endian::read<uint32_t>(
748                         Bytes.data() + Pos, InstructionEndianness),
749                     8);
750       }
751       if (Pos < End) {
752         OS << ' ';
753         dumpBytes(Bytes.slice(Pos), OS);
754       }
755     }
756 
757     AlignToInstStartColumn(Start, STI, OS);
758 
759     if (MI) {
760       IP.printInst(MI, Address.Address, "", STI, OS);
761     } else
762       OS << "\t<unknown>";
763   }
764 
765   void setInstructionEndianness(llvm::support::endianness Endianness) {
766     InstructionEndianness = Endianness;
767   }
768 
769 private:
770   llvm::support::endianness InstructionEndianness = llvm::support::little;
771 };
772 ARMPrettyPrinter ARMPrettyPrinterInst;
773 
774 class AArch64PrettyPrinter : public PrettyPrinter {
775 public:
776   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
777                  object::SectionedAddress Address, formatted_raw_ostream &OS,
778                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
779                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
780                  LiveVariablePrinter &LVP) override {
781     if (SP && (PrintSource || PrintLines))
782       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
783     LVP.printBetweenInsts(OS, false);
784 
785     size_t Start = OS.tell();
786     if (LeadingAddr)
787       OS << format("%8" PRIx64 ":", Address.Address);
788     if (ShowRawInsn) {
789       size_t Pos = 0, End = Bytes.size();
790       for (; Pos + 4 <= End; Pos += 4)
791         OS << ' '
792            << format_hex_no_prefix(
793                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
794                                                         llvm::support::little),
795                   8);
796       if (Pos < End) {
797         OS << ' ';
798         dumpBytes(Bytes.slice(Pos), OS);
799       }
800     }
801 
802     AlignToInstStartColumn(Start, STI, OS);
803 
804     if (MI) {
805       IP.printInst(MI, Address.Address, "", STI, OS);
806     } else
807       OS << "\t<unknown>";
808   }
809 };
810 AArch64PrettyPrinter AArch64PrettyPrinterInst;
811 
812 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
813   switch(Triple.getArch()) {
814   default:
815     return PrettyPrinterInst;
816   case Triple::hexagon:
817     return HexagonPrettyPrinterInst;
818   case Triple::amdgcn:
819     return AMDGCNPrettyPrinterInst;
820   case Triple::bpfel:
821   case Triple::bpfeb:
822     return BPFPrettyPrinterInst;
823   case Triple::arm:
824   case Triple::armeb:
825   case Triple::thumb:
826   case Triple::thumbeb:
827     return ARMPrettyPrinterInst;
828   case Triple::aarch64:
829   case Triple::aarch64_be:
830   case Triple::aarch64_32:
831     return AArch64PrettyPrinterInst;
832   }
833 }
834 
835 class DisassemblerTarget {
836 public:
837   const Target *TheTarget;
838   std::unique_ptr<const MCSubtargetInfo> SubtargetInfo;
839   std::shared_ptr<MCContext> Context;
840   std::unique_ptr<MCDisassembler> DisAsm;
841   std::shared_ptr<const MCInstrAnalysis> InstrAnalysis;
842   std::shared_ptr<MCInstPrinter> InstPrinter;
843   PrettyPrinter *Printer;
844 
845   DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
846                      StringRef TripleName, StringRef MCPU,
847                      SubtargetFeatures &Features);
848   DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features);
849 
850 private:
851   MCTargetOptions Options;
852   std::shared_ptr<const MCRegisterInfo> RegisterInfo;
853   std::shared_ptr<const MCAsmInfo> AsmInfo;
854   std::shared_ptr<const MCInstrInfo> InstrInfo;
855   std::shared_ptr<MCObjectFileInfo> ObjectFileInfo;
856 };
857 
858 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
859                                        StringRef TripleName, StringRef MCPU,
860                                        SubtargetFeatures &Features)
861     : TheTarget(TheTarget),
862       Printer(&selectPrettyPrinter(Triple(TripleName))),
863       RegisterInfo(TheTarget->createMCRegInfo(TripleName)) {
864   if (!RegisterInfo)
865     reportError(Obj.getFileName(), "no register info for target " + TripleName);
866 
867   // Set up disassembler.
868   AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options));
869   if (!AsmInfo)
870     reportError(Obj.getFileName(), "no assembly info for target " + TripleName);
871 
872   SubtargetInfo.reset(
873       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
874   if (!SubtargetInfo)
875     reportError(Obj.getFileName(),
876                 "no subtarget info for target " + TripleName);
877   InstrInfo.reset(TheTarget->createMCInstrInfo());
878   if (!InstrInfo)
879     reportError(Obj.getFileName(),
880                 "no instruction info for target " + TripleName);
881   Context =
882       std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(),
883                                   RegisterInfo.get(), SubtargetInfo.get());
884 
885   // FIXME: for now initialize MCObjectFileInfo with default values
886   ObjectFileInfo.reset(
887       TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false));
888   Context->setObjectFileInfo(ObjectFileInfo.get());
889 
890   DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context));
891   if (!DisAsm)
892     reportError(Obj.getFileName(), "no disassembler for target " + TripleName);
893 
894   InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
895 
896   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
897   InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName),
898                                                    AsmPrinterVariant, *AsmInfo,
899                                                    *InstrInfo, *RegisterInfo));
900   if (!InstPrinter)
901     reportError(Obj.getFileName(),
902                 "no instruction printer for target " + TripleName);
903   InstPrinter->setPrintImmHex(PrintImmHex);
904   InstPrinter->setPrintBranchImmAsAddress(true);
905   InstPrinter->setSymbolizeOperands(SymbolizeOperands);
906   InstPrinter->setMCInstrAnalysis(InstrAnalysis.get());
907 }
908 
909 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other,
910                                        SubtargetFeatures &Features)
911     : TheTarget(Other.TheTarget),
912       SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
913                                                      Features.getString())),
914       Context(Other.Context),
915       DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)),
916       InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter),
917       Printer(Other.Printer), RegisterInfo(Other.RegisterInfo),
918       AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo),
919       ObjectFileInfo(Other.ObjectFileInfo) {}
920 } // namespace
921 
922 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
923   assert(Obj.isELF());
924   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
925     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
926                          Obj.getFileName())
927         ->getType();
928   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
929     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
930                          Obj.getFileName())
931         ->getType();
932   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
933     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
934                          Obj.getFileName())
935         ->getType();
936   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
937     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
938                          Obj.getFileName())
939         ->getType();
940   llvm_unreachable("Unsupported binary format");
941 }
942 
943 template <class ELFT>
944 static void
945 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
946                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
947   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
948     uint8_t SymbolType = Symbol.getELFType();
949     if (SymbolType == ELF::STT_SECTION)
950       continue;
951 
952     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
953     // ELFSymbolRef::getAddress() returns size instead of value for common
954     // symbols which is not desirable for disassembly output. Overriding.
955     if (SymbolType == ELF::STT_COMMON)
956       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
957                               Obj.getFileName())
958                     ->st_value;
959 
960     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
961     if (Name.empty())
962       continue;
963 
964     section_iterator SecI =
965         unwrapOrError(Symbol.getSection(), Obj.getFileName());
966     if (SecI == Obj.section_end())
967       continue;
968 
969     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
970   }
971 }
972 
973 static void
974 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
975                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
976   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
977     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
978   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
979     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
980   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
981     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
982   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
983     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
984   else
985     llvm_unreachable("Unsupported binary format");
986 }
987 
988 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
989   for (auto SecI : Obj.sections()) {
990     const WasmSection &Section = Obj.getWasmSection(SecI);
991     if (Section.Type == wasm::WASM_SEC_CODE)
992       return SecI;
993   }
994   return std::nullopt;
995 }
996 
997 static void
998 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
999                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1000   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
1001   if (!Section)
1002     return;
1003   SectionSymbolsTy &Symbols = AllSymbols[*Section];
1004 
1005   std::set<uint64_t> SymbolAddresses;
1006   for (const auto &Sym : Symbols)
1007     SymbolAddresses.insert(Sym.Addr);
1008 
1009   for (const wasm::WasmFunction &Function : Obj.functions()) {
1010     uint64_t Address = Function.CodeSectionOffset;
1011     // Only add fallback symbols for functions not already present in the symbol
1012     // table.
1013     if (SymbolAddresses.count(Address))
1014       continue;
1015     // This function has no symbol, so it should have no SymbolName.
1016     assert(Function.SymbolName.empty());
1017     // We use DebugName for the name, though it may be empty if there is no
1018     // "name" custom section, or that section is missing a name for this
1019     // function.
1020     StringRef Name = Function.DebugName;
1021     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
1022   }
1023 }
1024 
1025 static void addPltEntries(const ObjectFile &Obj,
1026                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1027                           StringSaver &Saver) {
1028   auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
1029   if (!ElfObj)
1030     return;
1031   DenseMap<StringRef, SectionRef> Sections;
1032   for (SectionRef Section : Obj.sections()) {
1033     Expected<StringRef> SecNameOrErr = Section.getName();
1034     if (!SecNameOrErr) {
1035       consumeError(SecNameOrErr.takeError());
1036       continue;
1037     }
1038     Sections[*SecNameOrErr] = Section;
1039   }
1040   for (auto Plt : ElfObj->getPltEntries()) {
1041     if (Plt.Symbol) {
1042       SymbolRef Symbol(*Plt.Symbol, ElfObj);
1043       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1044       if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1045         if (!NameOrErr->empty())
1046           AllSymbols[Sections[Plt.Section]].emplace_back(
1047               Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
1048         continue;
1049       } else {
1050         // The warning has been reported in disassembleObject().
1051         consumeError(NameOrErr.takeError());
1052       }
1053     }
1054     reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
1055                       " references an invalid symbol",
1056                   Obj.getFileName());
1057   }
1058 }
1059 
1060 // Normally the disassembly output will skip blocks of zeroes. This function
1061 // returns the number of zero bytes that can be skipped when dumping the
1062 // disassembly of the instructions in Buf.
1063 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1064   // Find the number of leading zeroes.
1065   size_t N = 0;
1066   while (N < Buf.size() && !Buf[N])
1067     ++N;
1068 
1069   // We may want to skip blocks of zero bytes, but unless we see
1070   // at least 8 of them in a row.
1071   if (N < 8)
1072     return 0;
1073 
1074   // We skip zeroes in multiples of 4 because do not want to truncate an
1075   // instruction if it starts with a zero byte.
1076   return N & ~0x3;
1077 }
1078 
1079 // Returns a map from sections to their relocations.
1080 static std::map<SectionRef, std::vector<RelocationRef>>
1081 getRelocsMap(object::ObjectFile const &Obj) {
1082   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1083   uint64_t I = (uint64_t)-1;
1084   for (SectionRef Sec : Obj.sections()) {
1085     ++I;
1086     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1087     if (!RelocatedOrErr)
1088       reportError(Obj.getFileName(),
1089                   "section (" + Twine(I) +
1090                       "): failed to get a relocated section: " +
1091                       toString(RelocatedOrErr.takeError()));
1092 
1093     section_iterator Relocated = *RelocatedOrErr;
1094     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1095       continue;
1096     std::vector<RelocationRef> &V = Ret[*Relocated];
1097     append_range(V, Sec.relocations());
1098     // Sort relocations by address.
1099     llvm::stable_sort(V, isRelocAddressLess);
1100   }
1101   return Ret;
1102 }
1103 
1104 // Used for --adjust-vma to check if address should be adjusted by the
1105 // specified value for a given section.
1106 // For ELF we do not adjust non-allocatable sections like debug ones,
1107 // because they are not loadable.
1108 // TODO: implement for other file formats.
1109 static bool shouldAdjustVA(const SectionRef &Section) {
1110   const ObjectFile *Obj = Section.getObject();
1111   if (Obj->isELF())
1112     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1113   return false;
1114 }
1115 
1116 
1117 typedef std::pair<uint64_t, char> MappingSymbolPair;
1118 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1119                                  uint64_t Address) {
1120   auto It =
1121       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1122         return Val.first <= Address;
1123       });
1124   // Return zero for any address before the first mapping symbol; this means
1125   // we should use the default disassembly mode, depending on the target.
1126   if (It == MappingSymbols.begin())
1127     return '\x00';
1128   return (It - 1)->second;
1129 }
1130 
1131 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1132                                uint64_t End, const ObjectFile &Obj,
1133                                ArrayRef<uint8_t> Bytes,
1134                                ArrayRef<MappingSymbolPair> MappingSymbols,
1135                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1136   support::endianness Endian =
1137       Obj.isLittleEndian() ? support::little : support::big;
1138   size_t Start = OS.tell();
1139   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1140   if (Index + 4 <= End) {
1141     dumpBytes(Bytes.slice(Index, 4), OS);
1142     AlignToInstStartColumn(Start, STI, OS);
1143     OS << "\t.word\t"
1144            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1145                          10);
1146     return 4;
1147   }
1148   if (Index + 2 <= End) {
1149     dumpBytes(Bytes.slice(Index, 2), OS);
1150     AlignToInstStartColumn(Start, STI, OS);
1151     OS << "\t.short\t"
1152        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1153     return 2;
1154   }
1155   dumpBytes(Bytes.slice(Index, 1), OS);
1156   AlignToInstStartColumn(Start, STI, OS);
1157   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1158   return 1;
1159 }
1160 
1161 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1162                         ArrayRef<uint8_t> Bytes) {
1163   // print out data up to 8 bytes at a time in hex and ascii
1164   uint8_t AsciiData[9] = {'\0'};
1165   uint8_t Byte;
1166   int NumBytes = 0;
1167 
1168   for (; Index < End; ++Index) {
1169     if (NumBytes == 0)
1170       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1171     Byte = Bytes.slice(Index)[0];
1172     outs() << format(" %02x", Byte);
1173     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1174 
1175     uint8_t IndentOffset = 0;
1176     NumBytes++;
1177     if (Index == End - 1 || NumBytes > 8) {
1178       // Indent the space for less than 8 bytes data.
1179       // 2 spaces for byte and one for space between bytes
1180       IndentOffset = 3 * (8 - NumBytes);
1181       for (int Excess = NumBytes; Excess < 8; Excess++)
1182         AsciiData[Excess] = '\0';
1183       NumBytes = 8;
1184     }
1185     if (NumBytes == 8) {
1186       AsciiData[8] = '\0';
1187       outs() << std::string(IndentOffset, ' ') << "         ";
1188       outs() << reinterpret_cast<char *>(AsciiData);
1189       outs() << '\n';
1190       NumBytes = 0;
1191     }
1192   }
1193 }
1194 
1195 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1196                                        const SymbolRef &Symbol,
1197                                        bool IsMappingSymbol) {
1198   const StringRef FileName = Obj.getFileName();
1199   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1200   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1201 
1202   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1203     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1204     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1205 
1206     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1207     std::optional<XCOFF::StorageMappingClass> Smc =
1208         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1209     return SymbolInfoTy(Smc, Addr, Name, SymbolIndex,
1210                         isLabel(XCOFFObj, Symbol));
1211   } else if (Obj.isXCOFF()) {
1212     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1213     return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false,
1214                         /*IsXCOFF=*/true);
1215   } else {
1216     uint8_t Type =
1217         Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE;
1218     return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol);
1219   }
1220 }
1221 
1222 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1223                                           const uint64_t Addr, StringRef &Name,
1224                                           uint8_t Type) {
1225   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1226     return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false);
1227   else
1228     return SymbolInfoTy(Addr, Name, Type);
1229 }
1230 
1231 static void
1232 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1233                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1234                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1235   if (AddrToBBAddrMap.empty())
1236     return;
1237   Labels.clear();
1238   uint64_t StartAddress = SectionAddr + Start;
1239   uint64_t EndAddress = SectionAddr + End;
1240   auto Iter = AddrToBBAddrMap.find(StartAddress);
1241   if (Iter == AddrToBBAddrMap.end())
1242     return;
1243   for (const BBAddrMap::BBEntry &BBEntry : Iter->second.BBEntries) {
1244     uint64_t BBAddress = BBEntry.Offset + Iter->second.Addr;
1245     if (BBAddress >= EndAddress)
1246       continue;
1247     Labels[BBAddress].push_back(("BB" + Twine(BBEntry.ID)).str());
1248   }
1249 }
1250 
1251 static void collectLocalBranchTargets(
1252     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1253     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1254     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1255   // So far only supports PowerPC and X86.
1256   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1257     return;
1258 
1259   Labels.clear();
1260   unsigned LabelCount = 0;
1261   Start += SectionAddr;
1262   End += SectionAddr;
1263   uint64_t Index = Start;
1264   while (Index < End) {
1265     // Disassemble a real instruction and record function-local branch labels.
1266     MCInst Inst;
1267     uint64_t Size;
1268     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1269     bool Disassembled =
1270         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1271     if (Size == 0)
1272       Size = std::min<uint64_t>(ThisBytes.size(),
1273                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1274 
1275     if (Disassembled && MIA) {
1276       uint64_t Target;
1277       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1278       // On PowerPC, if the address of a branch is the same as the target, it
1279       // means that it's a function call. Do not mark the label for this case.
1280       if (TargetKnown && (Target >= Start && Target < End) &&
1281           !Labels.count(Target) &&
1282           !(STI->getTargetTriple().isPPC() && Target == Index))
1283         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1284     }
1285     Index += Size;
1286   }
1287 }
1288 
1289 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1290 // This is currently only used on AMDGPU, and assumes the format of the
1291 // void * argument passed to AMDGPU's createMCSymbolizer.
1292 static void addSymbolizer(
1293     MCContext &Ctx, const Target *Target, StringRef TripleName,
1294     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1295     SectionSymbolsTy &Symbols,
1296     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1297 
1298   std::unique_ptr<MCRelocationInfo> RelInfo(
1299       Target->createMCRelocationInfo(TripleName, Ctx));
1300   if (!RelInfo)
1301     return;
1302   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1303       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1304   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1305   DisAsm->setSymbolizer(std::move(Symbolizer));
1306 
1307   if (!SymbolizeOperands)
1308     return;
1309 
1310   // Synthesize labels referenced by branch instructions by
1311   // disassembling, discarding the output, and collecting the referenced
1312   // addresses from the symbolizer.
1313   for (size_t Index = 0; Index != Bytes.size();) {
1314     MCInst Inst;
1315     uint64_t Size;
1316     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1317     const uint64_t ThisAddr = SectionAddr + Index;
1318     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1319     if (Size == 0)
1320       Size = std::min<uint64_t>(ThisBytes.size(),
1321                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1322     Index += Size;
1323   }
1324   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1325   // Copy and sort to remove duplicates.
1326   std::vector<uint64_t> LabelAddrs;
1327   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1328                     LabelAddrsRef.end());
1329   llvm::sort(LabelAddrs);
1330   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1331                     LabelAddrs.begin());
1332   // Add the labels.
1333   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1334     auto Name = std::make_unique<std::string>();
1335     *Name = (Twine("L") + Twine(LabelNum)).str();
1336     SynthesizedLabelNames.push_back(std::move(Name));
1337     Symbols.push_back(SymbolInfoTy(
1338         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1339   }
1340   llvm::stable_sort(Symbols);
1341   // Recreate the symbolizer with the new symbols list.
1342   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1343   Symbolizer.reset(Target->createMCSymbolizer(
1344       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1345   DisAsm->setSymbolizer(std::move(Symbolizer));
1346 }
1347 
1348 static StringRef getSegmentName(const MachOObjectFile *MachO,
1349                                 const SectionRef &Section) {
1350   if (MachO) {
1351     DataRefImpl DR = Section.getRawDataRefImpl();
1352     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1353     return SegmentName;
1354   }
1355   return "";
1356 }
1357 
1358 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1359                                     const MCAsmInfo &MAI,
1360                                     const MCSubtargetInfo &STI,
1361                                     StringRef Comments,
1362                                     LiveVariablePrinter &LVP) {
1363   do {
1364     if (!Comments.empty()) {
1365       // Emit a line of comments.
1366       StringRef Comment;
1367       std::tie(Comment, Comments) = Comments.split('\n');
1368       // MAI.getCommentColumn() assumes that instructions are printed at the
1369       // position of 8, while getInstStartColumn() returns the actual position.
1370       unsigned CommentColumn =
1371           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1372       FOS.PadToColumn(CommentColumn);
1373       FOS << MAI.getCommentString() << ' ' << Comment;
1374     }
1375     LVP.printAfterInst(FOS);
1376     FOS << '\n';
1377   } while (!Comments.empty());
1378   FOS.flush();
1379 }
1380 
1381 static void createFakeELFSections(ObjectFile &Obj) {
1382   assert(Obj.isELF());
1383   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1384     Elf32LEObj->createFakeSections();
1385   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1386     Elf64LEObj->createFakeSections();
1387   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1388     Elf32BEObj->createFakeSections();
1389   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1390     Elf64BEObj->createFakeSections();
1391   else
1392     llvm_unreachable("Unsupported binary format");
1393 }
1394 
1395 // Tries to fetch a more complete version of the given object file using its
1396 // Build ID. Returns std::nullopt if nothing was found.
1397 static std::optional<OwningBinary<Binary>>
1398 fetchBinaryByBuildID(const ObjectFile &Obj) {
1399   object::BuildIDRef BuildID = getBuildID(&Obj);
1400   if (BuildID.empty())
1401     return std::nullopt;
1402   std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1403   if (!Path)
1404     return std::nullopt;
1405   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1406   if (!DebugBinary) {
1407     reportWarning(toString(DebugBinary.takeError()), *Path);
1408     return std::nullopt;
1409   }
1410   return std::move(*DebugBinary);
1411 }
1412 
1413 static void
1414 disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1415                   const ObjectFile &DbgObj, MCContext &Ctx,
1416                   MCDisassembler *PrimaryDisAsm,
1417                   std::optional<DisassemblerTarget> &SecondaryTarget,
1418                   const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1419                   const MCSubtargetInfo *PrimarySTI, PrettyPrinter &PIP,
1420                   SourcePrinter &SP, bool InlineRelocs) {
1421   const MCSubtargetInfo *STI = PrimarySTI;
1422   MCDisassembler *DisAsm = PrimaryDisAsm;
1423   bool PrimaryIsThumb = false;
1424   if (isArmElf(Obj))
1425     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1426 
1427   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1428   if (InlineRelocs)
1429     RelocMap = getRelocsMap(Obj);
1430   bool Is64Bits = Obj.getBytesInAddress() > 4;
1431 
1432   // Create a mapping from virtual address to symbol name.  This is used to
1433   // pretty print the symbols while disassembling.
1434   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1435   std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols;
1436   SectionSymbolsTy AbsoluteSymbols;
1437   const StringRef FileName = Obj.getFileName();
1438   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1439   for (const SymbolRef &Symbol : Obj.symbols()) {
1440     Expected<StringRef> NameOrErr = Symbol.getName();
1441     if (!NameOrErr) {
1442       reportWarning(toString(NameOrErr.takeError()), FileName);
1443       continue;
1444     }
1445     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1446       continue;
1447 
1448     if (Obj.isELF() &&
1449         (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) {
1450       // Symbol is intended not to be displayed by default (STT_FILE,
1451       // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will
1452       // synthesize a section symbol if no symbol is defined at offset 0.
1453       //
1454       // For a mapping symbol, store it within both AllSymbols and
1455       // AllMappingSymbols. If --show-all-symbols is unspecified, its label will
1456       // not be printed in disassembly listing.
1457       if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION &&
1458           hasMappingSymbols(Obj)) {
1459         section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1460         if (SecI != Obj.section_end()) {
1461           uint64_t SectionAddr = SecI->getAddress();
1462           uint64_t Address = cantFail(Symbol.getAddress());
1463           StringRef Name = *NameOrErr;
1464           if (Name.consume_front("$") && Name.size() &&
1465               strchr("adtx", Name[0])) {
1466             AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr,
1467                                                   Name[0]);
1468             AllSymbols[*SecI].push_back(
1469                 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true));
1470           }
1471         }
1472       }
1473       continue;
1474     }
1475 
1476     if (MachO) {
1477       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1478       // symbols that support MachO header introspection. They do not bind to
1479       // code locations and are irrelevant for disassembly.
1480       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1481         continue;
1482       // Don't ask a Mach-O STAB symbol for its section unless you know that
1483       // STAB symbol's section field refers to a valid section index. Otherwise
1484       // the symbol may error trying to load a section that does not exist.
1485       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1486       uint8_t NType = (MachO->is64Bit() ?
1487                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1488                        MachO->getSymbolTableEntry(SymDRI).n_type);
1489       if (NType & MachO::N_STAB)
1490         continue;
1491     }
1492 
1493     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1494     if (SecI != Obj.section_end())
1495       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1496     else
1497       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1498   }
1499 
1500   if (AllSymbols.empty() && Obj.isELF())
1501     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1502 
1503   if (Obj.isWasm())
1504     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1505 
1506   if (Obj.isELF() && Obj.sections().empty())
1507     createFakeELFSections(Obj);
1508 
1509   BumpPtrAllocator A;
1510   StringSaver Saver(A);
1511   addPltEntries(Obj, AllSymbols, Saver);
1512 
1513   // Create a mapping from virtual address to section. An empty section can
1514   // cause more than one section at the same address. Sort such sections to be
1515   // before same-addressed non-empty sections so that symbol lookups prefer the
1516   // non-empty section.
1517   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1518   for (SectionRef Sec : Obj.sections())
1519     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1520   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1521     if (LHS.first != RHS.first)
1522       return LHS.first < RHS.first;
1523     return LHS.second.getSize() < RHS.second.getSize();
1524   });
1525 
1526   // Linked executables (.exe and .dll files) typically don't include a real
1527   // symbol table but they might contain an export table.
1528   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1529     for (const auto &ExportEntry : COFFObj->export_directories()) {
1530       StringRef Name;
1531       if (Error E = ExportEntry.getSymbolName(Name))
1532         reportError(std::move(E), Obj.getFileName());
1533       if (Name.empty())
1534         continue;
1535 
1536       uint32_t RVA;
1537       if (Error E = ExportEntry.getExportRVA(RVA))
1538         reportError(std::move(E), Obj.getFileName());
1539 
1540       uint64_t VA = COFFObj->getImageBase() + RVA;
1541       auto Sec = partition_point(
1542           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1543             return O.first <= VA;
1544           });
1545       if (Sec != SectionAddresses.begin()) {
1546         --Sec;
1547         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1548       } else
1549         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1550     }
1551   }
1552 
1553   // Sort all the symbols, this allows us to use a simple binary search to find
1554   // Multiple symbols can have the same address. Use a stable sort to stabilize
1555   // the output.
1556   StringSet<> FoundDisasmSymbolSet;
1557   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1558     llvm::stable_sort(SecSyms.second);
1559   llvm::stable_sort(AbsoluteSymbols);
1560 
1561   std::unique_ptr<DWARFContext> DICtx;
1562   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1563 
1564   if (DbgVariables != DVDisabled) {
1565     DICtx = DWARFContext::create(DbgObj);
1566     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1567       LVP.addCompileUnit(CU->getUnitDIE(false));
1568   }
1569 
1570   LLVM_DEBUG(LVP.dump());
1571 
1572   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1573   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1574                                std::nullopt) {
1575     AddrToBBAddrMap.clear();
1576     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1577       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1578       if (!BBAddrMapsOrErr) {
1579         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1580         return;
1581       }
1582       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1583         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1584                                 std::move(FunctionBBAddrMap));
1585     }
1586   };
1587 
1588   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1589   // single mapping, since they don't have any conflicts.
1590   if (SymbolizeOperands && !Obj.isRelocatableObject())
1591     ReadBBAddrMap();
1592 
1593   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1594     if (FilterSections.empty() && !DisassembleAll &&
1595         (!Section.isText() || Section.isVirtual()))
1596       continue;
1597 
1598     uint64_t SectionAddr = Section.getAddress();
1599     uint64_t SectSize = Section.getSize();
1600     if (!SectSize)
1601       continue;
1602 
1603     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1604     // corresponding to this section, if present.
1605     if (SymbolizeOperands && Obj.isRelocatableObject())
1606       ReadBBAddrMap(Section.getIndex());
1607 
1608     // Get the list of all the symbols in this section.
1609     SectionSymbolsTy &Symbols = AllSymbols[Section];
1610     auto &MappingSymbols = AllMappingSymbols[Section];
1611     llvm::sort(MappingSymbols);
1612 
1613     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1614         unwrapOrError(Section.getContents(), Obj.getFileName()));
1615 
1616     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1617     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1618       // AMDGPU disassembler uses symbolizer for printing labels
1619       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1620                     Symbols, SynthesizedLabelNames);
1621     }
1622 
1623     StringRef SegmentName = getSegmentName(MachO, Section);
1624     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1625     // If the section has no symbol at the start, just insert a dummy one.
1626     // Without --show-all-symbols, also insert one if all symbols at the start
1627     // are mapping symbols.
1628     bool CreateDummy = Symbols.empty();
1629     if (!CreateDummy) {
1630       CreateDummy = true;
1631       for (auto &Sym : Symbols) {
1632         if (Sym.Addr != SectionAddr)
1633           break;
1634         if (!Sym.IsMappingSymbol || ShowAllSymbols)
1635           CreateDummy = false;
1636       }
1637     }
1638     if (CreateDummy) {
1639       SymbolInfoTy Sym = createDummySymbolInfo(
1640           Obj, SectionAddr, SectionName,
1641           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT);
1642       if (Obj.isXCOFF())
1643         Symbols.insert(Symbols.begin(), Sym);
1644       else
1645         Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym);
1646     }
1647 
1648     SmallString<40> Comments;
1649     raw_svector_ostream CommentStream(Comments);
1650 
1651     uint64_t VMAAdjustment = 0;
1652     if (shouldAdjustVA(Section))
1653       VMAAdjustment = AdjustVMA;
1654 
1655     // In executable and shared objects, r_offset holds a virtual address.
1656     // Subtract SectionAddr from the r_offset field of a relocation to get
1657     // the section offset.
1658     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1659     uint64_t Size;
1660     uint64_t Index;
1661     bool PrintedSection = false;
1662     std::vector<RelocationRef> Rels = RelocMap[Section];
1663     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1664     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1665 
1666     // Loop over each chunk of code between two points where at least
1667     // one symbol is defined.
1668     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1669       // Advance SI past all the symbols starting at the same address,
1670       // and make an ArrayRef of them.
1671       unsigned FirstSI = SI;
1672       uint64_t Start = Symbols[SI].Addr;
1673       ArrayRef<SymbolInfoTy> SymbolsHere;
1674       while (SI != SE && Symbols[SI].Addr == Start)
1675         ++SI;
1676       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1677 
1678       // Get the demangled names of all those symbols. We end up with a vector
1679       // of StringRef that holds the names we're going to use, and a vector of
1680       // std::string that stores the new strings returned by demangle(), if
1681       // any. If we don't call demangle() then that vector can stay empty.
1682       std::vector<StringRef> SymNamesHere;
1683       std::vector<std::string> DemangledSymNamesHere;
1684       if (Demangle) {
1685         // Fetch the demangled names and store them locally.
1686         for (const SymbolInfoTy &Symbol : SymbolsHere)
1687           DemangledSymNamesHere.push_back(demangle(Symbol.Name));
1688         // Now we've finished modifying that vector, it's safe to make
1689         // a vector of StringRefs pointing into it.
1690         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1691                             DemangledSymNamesHere.end());
1692       } else {
1693         for (const SymbolInfoTy &Symbol : SymbolsHere)
1694           SymNamesHere.push_back(Symbol.Name);
1695       }
1696 
1697       // Distinguish ELF data from code symbols, which will be used later on to
1698       // decide whether to 'disassemble' this chunk as a data declaration via
1699       // dumpELFData(), or whether to treat it as code.
1700       //
1701       // If data _and_ code symbols are defined at the same address, the code
1702       // takes priority, on the grounds that disassembling code is our main
1703       // purpose here, and it would be a worse failure to _not_ interpret
1704       // something that _was_ meaningful as code than vice versa.
1705       //
1706       // Any ELF symbol type that is not clearly data will be regarded as code.
1707       // In particular, one of the uses of STT_NOTYPE is for branch targets
1708       // inside functions, for which STT_FUNC would be inaccurate.
1709       //
1710       // So here, we spot whether there's any non-data symbol present at all,
1711       // and only set the DisassembleAsData flag if there isn't. Also, we use
1712       // this distinction to inform the decision of which symbol to print at
1713       // the head of the section, so that if we're printing code, we print a
1714       // code-related symbol name to go with it.
1715       bool DisassembleAsData = false;
1716       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1717       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1718         DisassembleAsData = true; // unless we find a code symbol below
1719 
1720         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1721           uint8_t SymTy = SymbolsHere[i].Type;
1722           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1723             DisassembleAsData = false;
1724             DisplaySymIndex = i;
1725           }
1726         }
1727       }
1728 
1729       // Decide which symbol(s) from this collection we're going to print.
1730       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1731       // If the user has given the --disassemble-symbols option, then we must
1732       // display every symbol in that set, and no others.
1733       if (!DisasmSymbolSet.empty()) {
1734         bool FoundAny = false;
1735         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1736           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1737             SymsToPrint[i] = true;
1738             FoundAny = true;
1739           }
1740         }
1741 
1742         // And if none of the symbols here is one that the user asked for, skip
1743         // disassembling this entire chunk of code.
1744         if (!FoundAny)
1745           continue;
1746       } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) {
1747         // Otherwise, print whichever symbol at this location is last in the
1748         // Symbols array, because that array is pre-sorted in a way intended to
1749         // correlate with priority of which symbol to display.
1750         SymsToPrint[DisplaySymIndex] = true;
1751       }
1752 
1753       // Now that we know we're disassembling this section, override the choice
1754       // of which symbols to display by printing _all_ of them at this address
1755       // if the user asked for all symbols.
1756       //
1757       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1758       // only the chunk of code headed by 'foo', but also show any other
1759       // symbols defined at that address, such as aliases for 'foo', or the ARM
1760       // mapping symbol preceding its code.
1761       if (ShowAllSymbols) {
1762         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1763           SymsToPrint[i] = true;
1764       }
1765 
1766       if (Start < SectionAddr || StopAddress <= Start)
1767         continue;
1768 
1769       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1770         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1771 
1772       // The end is the section end, the beginning of the next symbol, or
1773       // --stop-address.
1774       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1775       if (SI < SE)
1776         End = std::min(End, Symbols[SI].Addr);
1777       if (Start >= End || End <= StartAddress)
1778         continue;
1779       Start -= SectionAddr;
1780       End -= SectionAddr;
1781 
1782       if (!PrintedSection) {
1783         PrintedSection = true;
1784         outs() << "\nDisassembly of section ";
1785         if (!SegmentName.empty())
1786           outs() << SegmentName << ",";
1787         outs() << SectionName << ":\n";
1788       }
1789 
1790       bool PrintedLabel = false;
1791       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1792         if (!SymsToPrint[i])
1793           continue;
1794 
1795         const SymbolInfoTy &Symbol = SymbolsHere[i];
1796         const StringRef SymbolName = SymNamesHere[i];
1797 
1798         if (!PrintedLabel) {
1799           outs() << '\n';
1800           PrintedLabel = true;
1801         }
1802         if (LeadingAddr)
1803           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1804                            SectionAddr + Start + VMAAdjustment);
1805         if (Obj.isXCOFF() && SymbolDescription) {
1806           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1807         } else
1808           outs() << '<' << SymbolName << ">:\n";
1809       }
1810 
1811       // Don't print raw contents of a virtual section. A virtual section
1812       // doesn't have any contents in the file.
1813       if (Section.isVirtual()) {
1814         outs() << "...\n";
1815         continue;
1816       }
1817 
1818       // See if any of the symbols defined at this location triggers target-
1819       // specific disassembly behavior, e.g. of special descriptors or function
1820       // prelude information.
1821       //
1822       // We stop this loop at the first symbol that triggers some kind of
1823       // interesting behavior (if any), on the assumption that if two symbols
1824       // defined at the same address trigger two conflicting symbol handlers,
1825       // the object file is probably confused anyway, and it would make even
1826       // less sense to present the output of _both_ handlers, because that
1827       // would describe the same data twice.
1828       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1829         SymbolInfoTy Symbol = SymbolsHere[SHI];
1830 
1831         auto Status =
1832             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1833                                   SectionAddr + Start, CommentStream);
1834 
1835         if (!Status) {
1836           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1837           // any interesting handling for this symbol. Try the other symbols
1838           // defined at this address.
1839           continue;
1840         }
1841 
1842         if (*Status == MCDisassembler::Fail) {
1843           // If onSymbolStart returns Fail, that means it identified some kind
1844           // of special data at this address, but wasn't able to disassemble it
1845           // meaningfully. So we fall back to disassembling the failed region
1846           // as bytes, assuming that the target detected the failure before
1847           // printing anything.
1848           //
1849           // Return values Success or SoftFail (i.e no 'real' failure) are
1850           // expected to mean that the target has emitted its own output.
1851           //
1852           // Either way, 'Size' will have been set to the amount of data
1853           // covered by whatever prologue the target identified. So we advance
1854           // our own position to beyond that. Sometimes that will be the entire
1855           // distance to the next symbol, and sometimes it will be just a
1856           // prologue and we should start disassembling instructions from where
1857           // it left off.
1858           outs() << Ctx.getAsmInfo()->getCommentString()
1859                  << " error in decoding " << SymNamesHere[SHI]
1860                  << " : decoding failed region as bytes.\n";
1861           for (uint64_t I = 0; I < Size; ++I) {
1862             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1863                    << "\n";
1864           }
1865         }
1866         Start += Size;
1867         break;
1868       }
1869 
1870       Index = Start;
1871       if (SectionAddr < StartAddress)
1872         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1873 
1874       if (DisassembleAsData) {
1875         dumpELFData(SectionAddr, Index, End, Bytes);
1876         Index = End;
1877         continue;
1878       }
1879 
1880       bool DumpARMELFData = false;
1881       bool DumpTracebackTableForXCOFFFunction =
1882           Obj.isXCOFF() && Section.isText() && TracebackTable &&
1883           Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
1884           (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
1885 
1886       formatted_raw_ostream FOS(outs());
1887 
1888       std::unordered_map<uint64_t, std::string> AllLabels;
1889       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1890       if (SymbolizeOperands) {
1891         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1892                                   SectionAddr, Index, End, AllLabels);
1893         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1894                                BBAddrMapLabels);
1895       }
1896 
1897       while (Index < End) {
1898         // ARM and AArch64 ELF binaries can interleave data and text in the
1899         // same section. We rely on the markers introduced to understand what
1900         // we need to dump. If the data marker is within a function, it is
1901         // denoted as a word/short etc.
1902         if (!MappingSymbols.empty()) {
1903           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1904           DumpARMELFData = Kind == 'd';
1905           if (SecondaryTarget) {
1906             if (Kind == 'a') {
1907               STI = PrimaryIsThumb ? SecondaryTarget->SubtargetInfo.get()
1908                                    : PrimarySTI;
1909               DisAsm = PrimaryIsThumb ? SecondaryTarget->DisAsm.get()
1910                                       : PrimaryDisAsm;
1911             } else if (Kind == 't') {
1912               STI = PrimaryIsThumb ? PrimarySTI
1913                                    : SecondaryTarget->SubtargetInfo.get();
1914               DisAsm = PrimaryIsThumb ? PrimaryDisAsm
1915                                       : SecondaryTarget->DisAsm.get();
1916             }
1917           }
1918         }
1919 
1920         if (DumpARMELFData) {
1921           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1922                                 MappingSymbols, *STI, FOS);
1923         } else {
1924           // When -z or --disassemble-zeroes are given we always dissasemble
1925           // them. Otherwise we might want to skip zero bytes we see.
1926           if (!DisassembleZeroes) {
1927             uint64_t MaxOffset = End - Index;
1928             // For --reloc: print zero blocks patched by relocations, so that
1929             // relocations can be shown in the dump.
1930             if (RelCur != RelEnd)
1931               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1932                                    MaxOffset);
1933 
1934             if (size_t N =
1935                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1936               FOS << "\t\t..." << '\n';
1937               Index += N;
1938               continue;
1939             }
1940           }
1941 
1942           if (DumpTracebackTableForXCOFFFunction &&
1943               doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
1944             dumpTracebackTable(Bytes.slice(Index),
1945                                SectionAddr + Index + VMAAdjustment, FOS,
1946                                SectionAddr + End + VMAAdjustment, *STI,
1947                                cast<XCOFFObjectFile>(&Obj));
1948             Index = End;
1949             continue;
1950           }
1951 
1952           // Print local label if there's any.
1953           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1954           if (Iter1 != BBAddrMapLabels.end()) {
1955             for (StringRef Label : Iter1->second)
1956               FOS << "<" << Label << ">:\n";
1957           } else {
1958             auto Iter2 = AllLabels.find(SectionAddr + Index);
1959             if (Iter2 != AllLabels.end())
1960               FOS << "<" << Iter2->second << ">:\n";
1961           }
1962 
1963           // Disassemble a real instruction or a data when disassemble all is
1964           // provided
1965           MCInst Inst;
1966           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1967           uint64_t ThisAddr = SectionAddr + Index;
1968           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1969                                                      ThisAddr, CommentStream);
1970           if (Size == 0)
1971             Size = std::min<uint64_t>(
1972                 ThisBytes.size(),
1973                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1974 
1975           LVP.update({Index, Section.getIndex()},
1976                      {Index + Size, Section.getIndex()}, Index + Size != End);
1977 
1978           IP->setCommentStream(CommentStream);
1979 
1980           PIP.printInst(
1981               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1982               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1983               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1984 
1985           IP->setCommentStream(llvm::nulls());
1986 
1987           // If disassembly has failed, avoid analysing invalid/incomplete
1988           // instruction information. Otherwise, try to resolve the target
1989           // address (jump target or memory operand address) and print it on the
1990           // right of the instruction.
1991           if (Disassembled && MIA) {
1992             // Branch targets are printed just after the instructions.
1993             llvm::raw_ostream *TargetOS = &FOS;
1994             uint64_t Target;
1995             bool PrintTarget =
1996                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1997             if (!PrintTarget)
1998               if (std::optional<uint64_t> MaybeTarget =
1999                       MIA->evaluateMemoryOperandAddress(
2000                           Inst, STI, SectionAddr + Index, Size)) {
2001                 Target = *MaybeTarget;
2002                 PrintTarget = true;
2003                 // Do not print real address when symbolizing.
2004                 if (!SymbolizeOperands) {
2005                   // Memory operand addresses are printed as comments.
2006                   TargetOS = &CommentStream;
2007                   *TargetOS << "0x" << Twine::utohexstr(Target);
2008                 }
2009               }
2010             if (PrintTarget) {
2011               // In a relocatable object, the target's section must reside in
2012               // the same section as the call instruction or it is accessed
2013               // through a relocation.
2014               //
2015               // In a non-relocatable object, the target may be in any section.
2016               // In that case, locate the section(s) containing the target
2017               // address and find the symbol in one of those, if possible.
2018               //
2019               // N.B. We don't walk the relocations in the relocatable case yet.
2020               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2021               if (!Obj.isRelocatableObject()) {
2022                 auto It = llvm::partition_point(
2023                     SectionAddresses,
2024                     [=](const std::pair<uint64_t, SectionRef> &O) {
2025                       return O.first <= Target;
2026                     });
2027                 uint64_t TargetSecAddr = 0;
2028                 while (It != SectionAddresses.begin()) {
2029                   --It;
2030                   if (TargetSecAddr == 0)
2031                     TargetSecAddr = It->first;
2032                   if (It->first != TargetSecAddr)
2033                     break;
2034                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2035                 }
2036               } else {
2037                 TargetSectionSymbols.push_back(&Symbols);
2038               }
2039               TargetSectionSymbols.push_back(&AbsoluteSymbols);
2040 
2041               // Find the last symbol in the first candidate section whose
2042               // offset is less than or equal to the target. If there are no
2043               // such symbols, try in the next section and so on, before finally
2044               // using the nearest preceding absolute symbol (if any), if there
2045               // are no other valid symbols.
2046               const SymbolInfoTy *TargetSym = nullptr;
2047               for (const SectionSymbolsTy *TargetSymbols :
2048                    TargetSectionSymbols) {
2049                 auto It = llvm::partition_point(
2050                     *TargetSymbols,
2051                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2052                 while (It != TargetSymbols->begin()) {
2053                   --It;
2054                   // Skip mapping symbols to avoid possible ambiguity as they
2055                   // do not allow uniquely identifying the target address.
2056                   if (!It->IsMappingSymbol) {
2057                     TargetSym = &*It;
2058                     break;
2059                   }
2060                 }
2061                 if (TargetSym)
2062                   break;
2063               }
2064 
2065               // Print the labels corresponding to the target if there's any.
2066               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
2067               bool LabelAvailable = AllLabels.count(Target);
2068               if (TargetSym != nullptr) {
2069                 uint64_t TargetAddress = TargetSym->Addr;
2070                 uint64_t Disp = Target - TargetAddress;
2071                 std::string TargetName = Demangle ? demangle(TargetSym->Name)
2072                                                   : TargetSym->Name.str();
2073 
2074                 *TargetOS << " <";
2075                 if (!Disp) {
2076                   // Always Print the binary symbol precisely corresponding to
2077                   // the target address.
2078                   *TargetOS << TargetName;
2079                 } else if (BBAddrMapLabelAvailable) {
2080                   *TargetOS << BBAddrMapLabels[Target].front();
2081                 } else if (LabelAvailable) {
2082                   *TargetOS << AllLabels[Target];
2083                 } else {
2084                   // Always Print the binary symbol plus an offset if there's no
2085                   // local label corresponding to the target address.
2086                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2087                 }
2088                 *TargetOS << ">";
2089               } else if (BBAddrMapLabelAvailable) {
2090                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
2091               } else if (LabelAvailable) {
2092                 *TargetOS << " <" << AllLabels[Target] << ">";
2093               }
2094               // By convention, each record in the comment stream should be
2095               // terminated.
2096               if (TargetOS == &CommentStream)
2097                 *TargetOS << "\n";
2098             }
2099           }
2100         }
2101 
2102         assert(Ctx.getAsmInfo());
2103         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
2104                                 CommentStream.str(), LVP);
2105         Comments.clear();
2106 
2107         // Hexagon does this in pretty printer
2108         if (Obj.getArch() != Triple::hexagon) {
2109           // Print relocation for instruction and data.
2110           while (RelCur != RelEnd) {
2111             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
2112             // If this relocation is hidden, skip it.
2113             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
2114               ++RelCur;
2115               continue;
2116             }
2117 
2118             // Stop when RelCur's offset is past the disassembled
2119             // instruction/data. Note that it's possible the disassembled data
2120             // is not the complete data: we might see the relocation printed in
2121             // the middle of the data, but this matches the binutils objdump
2122             // output.
2123             if (Offset >= Index + Size)
2124               break;
2125 
2126             // When --adjust-vma is used, update the address printed.
2127             if (RelCur->getSymbol() != Obj.symbol_end()) {
2128               Expected<section_iterator> SymSI =
2129                   RelCur->getSymbol()->getSection();
2130               if (SymSI && *SymSI != Obj.section_end() &&
2131                   shouldAdjustVA(**SymSI))
2132                 Offset += AdjustVMA;
2133             }
2134 
2135             printRelocation(FOS, Obj.getFileName(), *RelCur,
2136                             SectionAddr + Offset, Is64Bits);
2137             LVP.printAfterOtherLine(FOS, true);
2138             ++RelCur;
2139           }
2140         }
2141 
2142         Index += Size;
2143       }
2144     }
2145   }
2146   StringSet<> MissingDisasmSymbolSet =
2147       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2148   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2149     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2150 }
2151 
2152 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2153   // If information useful for showing the disassembly is missing, try to find a
2154   // more complete binary and disassemble that instead.
2155   OwningBinary<Binary> FetchedBinary;
2156   if (Obj->symbols().empty()) {
2157     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2158             fetchBinaryByBuildID(*Obj)) {
2159       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2160         if (!O->symbols().empty() ||
2161             (!O->sections().empty() && Obj->sections().empty())) {
2162           FetchedBinary = std::move(*FetchedBinaryOpt);
2163           Obj = O;
2164         }
2165       }
2166     }
2167   }
2168 
2169   const Target *TheTarget = getTarget(Obj);
2170 
2171   // Package up features to be passed to target/subtarget
2172   Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2173   if (!FeaturesValue)
2174     reportError(FeaturesValue.takeError(), Obj->getFileName());
2175   SubtargetFeatures Features = *FeaturesValue;
2176   if (!MAttrs.empty()) {
2177     for (unsigned I = 0; I != MAttrs.size(); ++I)
2178       Features.AddFeature(MAttrs[I]);
2179   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2180     Features.AddFeature("+all");
2181   }
2182 
2183   if (MCPU.empty())
2184     MCPU = Obj->tryGetCPUName().value_or("").str();
2185 
2186   if (isArmElf(*Obj)) {
2187     // When disassembling big-endian Arm ELF, the instruction endianness is
2188     // determined in a complex way. In relocatable objects, AAELF32 mandates
2189     // that instruction endianness matches the ELF file endianness; in
2190     // executable images, that's true unless the file header has the EF_ARM_BE8
2191     // flag, in which case instructions are little-endian regardless of data
2192     // endianness.
2193     //
2194     // We must set the big-endian-instructions SubtargetFeature to make the
2195     // disassembler read the instructions the right way round, and also tell
2196     // our own prettyprinter to retrieve the encodings the same way to print in
2197     // hex.
2198     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2199 
2200     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2201                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2202       Features.AddFeature("+big-endian-instructions");
2203       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2204     } else {
2205       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2206     }
2207   }
2208 
2209   DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features);
2210 
2211   // If we have an ARM object file, we need a second disassembler, because
2212   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2213   // We use mapping symbols to switch between the two assemblers, where
2214   // appropriate.
2215   std::optional<DisassemblerTarget> SecondaryTarget;
2216 
2217   if (isArmElf(*Obj)) {
2218     if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) {
2219       if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"))
2220         Features.AddFeature("-thumb-mode");
2221       else
2222         Features.AddFeature("+thumb-mode");
2223       SecondaryTarget.emplace(PrimaryTarget, Features);
2224     }
2225   }
2226 
2227   const ObjectFile *DbgObj = Obj;
2228   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2229     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2230             fetchBinaryByBuildID(*Obj)) {
2231       if (auto *FetchedObj =
2232               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2233         if (FetchedObj->hasDebugInfo()) {
2234           FetchedBinary = std::move(*DebugBinaryOpt);
2235           DbgObj = FetchedObj;
2236         }
2237       }
2238     }
2239   }
2240 
2241   std::unique_ptr<object::Binary> DSYMBinary;
2242   std::unique_ptr<MemoryBuffer> DSYMBuf;
2243   if (!DbgObj->hasDebugInfo()) {
2244     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2245       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2246                                            DSYMBinary, DSYMBuf);
2247       if (!DbgObj)
2248         return;
2249     }
2250   }
2251 
2252   SourcePrinter SP(DbgObj, TheTarget->getName());
2253 
2254   for (StringRef Opt : DisassemblerOptions)
2255     if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt))
2256       reportError(Obj->getFileName(),
2257                   "Unrecognized disassembler option: " + Opt);
2258 
2259   disassembleObject(TheTarget, *Obj, *DbgObj, *PrimaryTarget.Context.get(),
2260                     PrimaryTarget.DisAsm.get(), SecondaryTarget,
2261                     PrimaryTarget.InstrAnalysis.get(),
2262                     PrimaryTarget.InstPrinter.get(),
2263                     PrimaryTarget.SubtargetInfo.get(),
2264                     *PrimaryTarget.Printer, SP, InlineRelocs);
2265 }
2266 
2267 void Dumper::printRelocations() {
2268   StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2269 
2270   // Build a mapping from relocation target to a vector of relocation
2271   // sections. Usually, there is an only one relocation section for
2272   // each relocated section.
2273   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2274   uint64_t Ndx;
2275   for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) {
2276     if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2277       continue;
2278     if (Section.relocation_begin() == Section.relocation_end())
2279       continue;
2280     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2281     if (!SecOrErr)
2282       reportError(O.getFileName(),
2283                   "section (" + Twine(Ndx) +
2284                       "): unable to get a relocation target: " +
2285                       toString(SecOrErr.takeError()));
2286     SecToRelSec[**SecOrErr].push_back(Section);
2287   }
2288 
2289   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2290     StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName());
2291     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2292     uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
2293     uint32_t TypePadding = 24;
2294     outs() << left_justify("OFFSET", OffsetPadding) << " "
2295            << left_justify("TYPE", TypePadding) << " "
2296            << "VALUE\n";
2297 
2298     for (SectionRef Section : P.second) {
2299       for (const RelocationRef &Reloc : Section.relocations()) {
2300         uint64_t Address = Reloc.getOffset();
2301         SmallString<32> RelocName;
2302         SmallString<32> ValueStr;
2303         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2304           continue;
2305         Reloc.getTypeName(RelocName);
2306         if (Error E = getRelocationValueString(Reloc, ValueStr))
2307           reportUniqueWarning(std::move(E));
2308 
2309         outs() << format(Fmt.data(), Address) << " "
2310                << left_justify(RelocName, TypePadding) << " " << ValueStr
2311                << "\n";
2312       }
2313     }
2314   }
2315 }
2316 
2317 // Returns true if we need to show LMA column when dumping section headers. We
2318 // show it only when the platform is ELF and either we have at least one section
2319 // whose VMA and LMA are different and/or when --show-lma flag is used.
2320 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2321   if (!Obj.isELF())
2322     return false;
2323   for (const SectionRef &S : ToolSectionFilter(Obj))
2324     if (S.getAddress() != getELFSectionLMA(S))
2325       return true;
2326   return ShowLMA;
2327 }
2328 
2329 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2330   // Default column width for names is 13 even if no names are that long.
2331   size_t MaxWidth = 13;
2332   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2333     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2334     MaxWidth = std::max(MaxWidth, Name.size());
2335   }
2336   return MaxWidth;
2337 }
2338 
2339 void objdump::printSectionHeaders(ObjectFile &Obj) {
2340   if (Obj.isELF() && Obj.sections().empty())
2341     createFakeELFSections(Obj);
2342 
2343   size_t NameWidth = getMaxSectionNameWidth(Obj);
2344   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2345   bool HasLMAColumn = shouldDisplayLMA(Obj);
2346   outs() << "\nSections:\n";
2347   if (HasLMAColumn)
2348     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2349            << left_justify("VMA", AddressWidth) << " "
2350            << left_justify("LMA", AddressWidth) << " Type\n";
2351   else
2352     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2353            << left_justify("VMA", AddressWidth) << " Type\n";
2354 
2355   uint64_t Idx;
2356   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2357     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2358     uint64_t VMA = Section.getAddress();
2359     if (shouldAdjustVA(Section))
2360       VMA += AdjustVMA;
2361 
2362     uint64_t Size = Section.getSize();
2363 
2364     std::string Type = Section.isText() ? "TEXT" : "";
2365     if (Section.isData())
2366       Type += Type.empty() ? "DATA" : ", DATA";
2367     if (Section.isBSS())
2368       Type += Type.empty() ? "BSS" : ", BSS";
2369     if (Section.isDebugSection())
2370       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2371 
2372     if (HasLMAColumn)
2373       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2374                        Name.str().c_str(), Size)
2375              << format_hex_no_prefix(VMA, AddressWidth) << " "
2376              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2377              << " " << Type << "\n";
2378     else
2379       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2380                        Name.str().c_str(), Size)
2381              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2382   }
2383 }
2384 
2385 void objdump::printSectionContents(const ObjectFile *Obj) {
2386   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2387 
2388   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2389     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2390     uint64_t BaseAddr = Section.getAddress();
2391     uint64_t Size = Section.getSize();
2392     if (!Size)
2393       continue;
2394 
2395     outs() << "Contents of section ";
2396     StringRef SegmentName = getSegmentName(MachO, Section);
2397     if (!SegmentName.empty())
2398       outs() << SegmentName << ",";
2399     outs() << Name << ":\n";
2400     if (Section.isBSS()) {
2401       outs() << format("<skipping contents of bss section at [%04" PRIx64
2402                        ", %04" PRIx64 ")>\n",
2403                        BaseAddr, BaseAddr + Size);
2404       continue;
2405     }
2406 
2407     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2408 
2409     // Dump out the content as hex and printable ascii characters.
2410     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2411       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2412       // Dump line of hex.
2413       for (std::size_t I = 0; I < 16; ++I) {
2414         if (I != 0 && I % 4 == 0)
2415           outs() << ' ';
2416         if (Addr + I < End)
2417           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2418                  << hexdigit(Contents[Addr + I] & 0xF, true);
2419         else
2420           outs() << "  ";
2421       }
2422       // Print ascii.
2423       outs() << "  ";
2424       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2425         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2426           outs() << Contents[Addr + I];
2427         else
2428           outs() << ".";
2429       }
2430       outs() << "\n";
2431     }
2432   }
2433 }
2434 
2435 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
2436                               bool DumpDynamic) {
2437   if (O.isCOFF() && !DumpDynamic) {
2438     outs() << "\nSYMBOL TABLE:\n";
2439     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2440     return;
2441   }
2442 
2443   const StringRef FileName = O.getFileName();
2444 
2445   if (!DumpDynamic) {
2446     outs() << "\nSYMBOL TABLE:\n";
2447     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2448       printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2449     return;
2450   }
2451 
2452   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2453   if (!O.isELF()) {
2454     reportWarning(
2455         "this operation is not currently supported for this file format",
2456         FileName);
2457     return;
2458   }
2459 
2460   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2461   auto Symbols = ELF->getDynamicSymbolIterators();
2462   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2463       ELF->readDynsymVersions();
2464   if (!SymbolVersionsOrErr) {
2465     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2466     SymbolVersionsOrErr = std::vector<VersionEntry>();
2467     (void)!SymbolVersionsOrErr;
2468   }
2469   for (auto &Sym : Symbols)
2470     printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2471                 ArchitectureName, DumpDynamic);
2472 }
2473 
2474 void Dumper::printSymbol(const SymbolRef &Symbol,
2475                          ArrayRef<VersionEntry> SymbolVersions,
2476                          StringRef FileName, StringRef ArchiveName,
2477                          StringRef ArchitectureName, bool DumpDynamic) {
2478   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2479   Expected<uint64_t> AddrOrErr = Symbol.getAddress();
2480   if (!AddrOrErr) {
2481     reportUniqueWarning(AddrOrErr.takeError());
2482     return;
2483   }
2484   uint64_t Address = *AddrOrErr;
2485   if ((Address < StartAddress) || (Address > StopAddress))
2486     return;
2487   SymbolRef::Type Type =
2488       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2489   uint32_t Flags =
2490       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2491 
2492   // Don't ask a Mach-O STAB symbol for its section unless you know that
2493   // STAB symbol's section field refers to a valid section index. Otherwise
2494   // the symbol may error trying to load a section that does not exist.
2495   bool IsSTAB = false;
2496   if (MachO) {
2497     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2498     uint8_t NType =
2499         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2500                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2501     if (NType & MachO::N_STAB)
2502       IsSTAB = true;
2503   }
2504   section_iterator Section = IsSTAB
2505                                  ? O.section_end()
2506                                  : unwrapOrError(Symbol.getSection(), FileName,
2507                                                  ArchiveName, ArchitectureName);
2508 
2509   StringRef Name;
2510   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2511     if (Expected<StringRef> NameOrErr = Section->getName())
2512       Name = *NameOrErr;
2513     else
2514       consumeError(NameOrErr.takeError());
2515 
2516   } else {
2517     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2518                          ArchitectureName);
2519   }
2520 
2521   bool Global = Flags & SymbolRef::SF_Global;
2522   bool Weak = Flags & SymbolRef::SF_Weak;
2523   bool Absolute = Flags & SymbolRef::SF_Absolute;
2524   bool Common = Flags & SymbolRef::SF_Common;
2525   bool Hidden = Flags & SymbolRef::SF_Hidden;
2526 
2527   char GlobLoc = ' ';
2528   if ((Section != O.section_end() || Absolute) && !Weak)
2529     GlobLoc = Global ? 'g' : 'l';
2530   char IFunc = ' ';
2531   if (O.isELF()) {
2532     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2533       IFunc = 'i';
2534     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2535       GlobLoc = 'u';
2536   }
2537 
2538   char Debug = ' ';
2539   if (DumpDynamic)
2540     Debug = 'D';
2541   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2542     Debug = 'd';
2543 
2544   char FileFunc = ' ';
2545   if (Type == SymbolRef::ST_File)
2546     FileFunc = 'f';
2547   else if (Type == SymbolRef::ST_Function)
2548     FileFunc = 'F';
2549   else if (Type == SymbolRef::ST_Data)
2550     FileFunc = 'O';
2551 
2552   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2553 
2554   outs() << format(Fmt, Address) << " "
2555          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2556          << (Weak ? 'w' : ' ') // Weak?
2557          << ' '                // Constructor. Not supported yet.
2558          << ' '                // Warning. Not supported yet.
2559          << IFunc              // Indirect reference to another symbol.
2560          << Debug              // Debugging (d) or dynamic (D) symbol.
2561          << FileFunc           // Name of function (F), file (f) or object (O).
2562          << ' ';
2563   if (Absolute) {
2564     outs() << "*ABS*";
2565   } else if (Common) {
2566     outs() << "*COM*";
2567   } else if (Section == O.section_end()) {
2568     if (O.isXCOFF()) {
2569       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2570           Symbol.getRawDataRefImpl());
2571       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2572         outs() << "*DEBUG*";
2573       else
2574         outs() << "*UND*";
2575     } else
2576       outs() << "*UND*";
2577   } else {
2578     StringRef SegmentName = getSegmentName(MachO, *Section);
2579     if (!SegmentName.empty())
2580       outs() << SegmentName << ",";
2581     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2582     outs() << SectionName;
2583     if (O.isXCOFF()) {
2584       std::optional<SymbolRef> SymRef =
2585           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2586       if (SymRef) {
2587 
2588         Expected<StringRef> NameOrErr = SymRef->getName();
2589 
2590         if (NameOrErr) {
2591           outs() << " (csect:";
2592           std::string SymName =
2593               Demangle ? demangle(*NameOrErr) : NameOrErr->str();
2594 
2595           if (SymbolDescription)
2596             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2597                                                 SymName);
2598 
2599           outs() << ' ' << SymName;
2600           outs() << ") ";
2601         } else
2602           reportWarning(toString(NameOrErr.takeError()), FileName);
2603       }
2604     }
2605   }
2606 
2607   if (Common)
2608     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2609   else if (O.isXCOFF())
2610     outs() << '\t'
2611            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2612                               Symbol.getRawDataRefImpl()));
2613   else if (O.isELF())
2614     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2615 
2616   if (O.isELF()) {
2617     if (!SymbolVersions.empty()) {
2618       const VersionEntry &Ver =
2619           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2620       std::string Str;
2621       if (!Ver.Name.empty())
2622         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2623       outs() << ' ' << left_justify(Str, 12);
2624     }
2625 
2626     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2627     switch (Other) {
2628     case ELF::STV_DEFAULT:
2629       break;
2630     case ELF::STV_INTERNAL:
2631       outs() << " .internal";
2632       break;
2633     case ELF::STV_HIDDEN:
2634       outs() << " .hidden";
2635       break;
2636     case ELF::STV_PROTECTED:
2637       outs() << " .protected";
2638       break;
2639     default:
2640       outs() << format(" 0x%02x", Other);
2641       break;
2642     }
2643   } else if (Hidden) {
2644     outs() << " .hidden";
2645   }
2646 
2647   std::string SymName = Demangle ? demangle(Name) : Name.str();
2648   if (O.isXCOFF() && SymbolDescription)
2649     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2650 
2651   outs() << ' ' << SymName << '\n';
2652 }
2653 
2654 static void printUnwindInfo(const ObjectFile *O) {
2655   outs() << "Unwind info:\n\n";
2656 
2657   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2658     printCOFFUnwindInfo(Coff);
2659   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2660     printMachOUnwindInfo(MachO);
2661   else
2662     // TODO: Extract DWARF dump tool to objdump.
2663     WithColor::error(errs(), ToolName)
2664         << "This operation is only currently supported "
2665            "for COFF and MachO object files.\n";
2666 }
2667 
2668 /// Dump the raw contents of the __clangast section so the output can be piped
2669 /// into llvm-bcanalyzer.
2670 static void printRawClangAST(const ObjectFile *Obj) {
2671   if (outs().is_displayed()) {
2672     WithColor::error(errs(), ToolName)
2673         << "The -raw-clang-ast option will dump the raw binary contents of "
2674            "the clang ast section.\n"
2675            "Please redirect the output to a file or another program such as "
2676            "llvm-bcanalyzer.\n";
2677     return;
2678   }
2679 
2680   StringRef ClangASTSectionName("__clangast");
2681   if (Obj->isCOFF()) {
2682     ClangASTSectionName = "clangast";
2683   }
2684 
2685   std::optional<object::SectionRef> ClangASTSection;
2686   for (auto Sec : ToolSectionFilter(*Obj)) {
2687     StringRef Name;
2688     if (Expected<StringRef> NameOrErr = Sec.getName())
2689       Name = *NameOrErr;
2690     else
2691       consumeError(NameOrErr.takeError());
2692 
2693     if (Name == ClangASTSectionName) {
2694       ClangASTSection = Sec;
2695       break;
2696     }
2697   }
2698   if (!ClangASTSection)
2699     return;
2700 
2701   StringRef ClangASTContents =
2702       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2703   outs().write(ClangASTContents.data(), ClangASTContents.size());
2704 }
2705 
2706 static void printFaultMaps(const ObjectFile *Obj) {
2707   StringRef FaultMapSectionName;
2708 
2709   if (Obj->isELF()) {
2710     FaultMapSectionName = ".llvm_faultmaps";
2711   } else if (Obj->isMachO()) {
2712     FaultMapSectionName = "__llvm_faultmaps";
2713   } else {
2714     WithColor::error(errs(), ToolName)
2715         << "This operation is only currently supported "
2716            "for ELF and Mach-O executable files.\n";
2717     return;
2718   }
2719 
2720   std::optional<object::SectionRef> FaultMapSection;
2721 
2722   for (auto Sec : ToolSectionFilter(*Obj)) {
2723     StringRef Name;
2724     if (Expected<StringRef> NameOrErr = Sec.getName())
2725       Name = *NameOrErr;
2726     else
2727       consumeError(NameOrErr.takeError());
2728 
2729     if (Name == FaultMapSectionName) {
2730       FaultMapSection = Sec;
2731       break;
2732     }
2733   }
2734 
2735   outs() << "FaultMap table:\n";
2736 
2737   if (!FaultMapSection) {
2738     outs() << "<not found>\n";
2739     return;
2740   }
2741 
2742   StringRef FaultMapContents =
2743       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2744   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2745                      FaultMapContents.bytes_end());
2746 
2747   outs() << FMP;
2748 }
2749 
2750 void Dumper::printPrivateHeaders() {
2751   reportError(O.getFileName(), "Invalid/Unsupported object file format");
2752 }
2753 
2754 static void printFileHeaders(const ObjectFile *O) {
2755   if (!O->isELF() && !O->isCOFF())
2756     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2757 
2758   Triple::ArchType AT = O->getArch();
2759   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2760   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2761 
2762   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2763   outs() << "start address: "
2764          << "0x" << format(Fmt.data(), Address) << "\n";
2765 }
2766 
2767 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2768   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2769   if (!ModeOrErr) {
2770     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2771     consumeError(ModeOrErr.takeError());
2772     return;
2773   }
2774   sys::fs::perms Mode = ModeOrErr.get();
2775   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2776   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2777   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2778   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2779   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2780   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2781   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2782   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2783   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2784 
2785   outs() << " ";
2786 
2787   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2788                    unwrapOrError(C.getGID(), Filename),
2789                    unwrapOrError(C.getRawSize(), Filename));
2790 
2791   StringRef RawLastModified = C.getRawLastModified();
2792   unsigned Seconds;
2793   if (RawLastModified.getAsInteger(10, Seconds))
2794     outs() << "(date: \"" << RawLastModified
2795            << "\" contains non-decimal chars) ";
2796   else {
2797     // Since ctime(3) returns a 26 character string of the form:
2798     // "Sun Sep 16 01:03:52 1973\n\0"
2799     // just print 24 characters.
2800     time_t t = Seconds;
2801     outs() << format("%.24s ", ctime(&t));
2802   }
2803 
2804   StringRef Name = "";
2805   Expected<StringRef> NameOrErr = C.getName();
2806   if (!NameOrErr) {
2807     consumeError(NameOrErr.takeError());
2808     Name = unwrapOrError(C.getRawName(), Filename);
2809   } else {
2810     Name = NameOrErr.get();
2811   }
2812   outs() << Name << "\n";
2813 }
2814 
2815 // For ELF only now.
2816 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2817   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2818     if (Elf->getEType() != ELF::ET_REL)
2819       return true;
2820   }
2821   return false;
2822 }
2823 
2824 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2825                                             uint64_t Start, uint64_t Stop) {
2826   if (!shouldWarnForInvalidStartStopAddress(Obj))
2827     return;
2828 
2829   for (const SectionRef &Section : Obj->sections())
2830     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2831       uint64_t BaseAddr = Section.getAddress();
2832       uint64_t Size = Section.getSize();
2833       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2834         return;
2835     }
2836 
2837   if (!HasStartAddressFlag)
2838     reportWarning("no section has address less than 0x" +
2839                       Twine::utohexstr(Stop) + " specified by --stop-address",
2840                   Obj->getFileName());
2841   else if (!HasStopAddressFlag)
2842     reportWarning("no section has address greater than or equal to 0x" +
2843                       Twine::utohexstr(Start) + " specified by --start-address",
2844                   Obj->getFileName());
2845   else
2846     reportWarning("no section overlaps the range [0x" +
2847                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2848                       ") specified by --start-address/--stop-address",
2849                   Obj->getFileName());
2850 }
2851 
2852 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2853                        const Archive::Child *C = nullptr) {
2854   Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O);
2855   if (!DumperOrErr) {
2856     reportError(DumperOrErr.takeError(), O->getFileName(),
2857                 A ? A->getFileName() : "");
2858     return;
2859   }
2860   Dumper &D = **DumperOrErr;
2861 
2862   // Avoid other output when using a raw option.
2863   if (!RawClangAST) {
2864     outs() << '\n';
2865     if (A)
2866       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2867     else
2868       outs() << O->getFileName();
2869     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2870   }
2871 
2872   if (HasStartAddressFlag || HasStopAddressFlag)
2873     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2874 
2875   // TODO: Change print* free functions to Dumper member functions to utilitize
2876   // stateful functions like reportUniqueWarning.
2877 
2878   // Note: the order here matches GNU objdump for compatability.
2879   StringRef ArchiveName = A ? A->getFileName() : "";
2880   if (ArchiveHeaders && !MachOOpt && C)
2881     printArchiveChild(ArchiveName, *C);
2882   if (FileHeaders)
2883     printFileHeaders(O);
2884   if (PrivateHeaders || FirstPrivateHeader)
2885     D.printPrivateHeaders();
2886   if (SectionHeaders)
2887     printSectionHeaders(*O);
2888   if (SymbolTable)
2889     D.printSymbolTable(ArchiveName);
2890   if (DynamicSymbolTable)
2891     D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
2892                        /*DumpDynamic=*/true);
2893   if (DwarfDumpType != DIDT_Null) {
2894     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2895     // Dump the complete DWARF structure.
2896     DIDumpOptions DumpOpts;
2897     DumpOpts.DumpType = DwarfDumpType;
2898     DICtx->dump(outs(), DumpOpts);
2899   }
2900   if (Relocations && !Disassemble)
2901     D.printRelocations();
2902   if (DynamicRelocations)
2903     D.printDynamicRelocations();
2904   if (SectionContents)
2905     printSectionContents(O);
2906   if (Disassemble)
2907     disassembleObject(O, Relocations);
2908   if (UnwindInfo)
2909     printUnwindInfo(O);
2910 
2911   // Mach-O specific options:
2912   if (ExportsTrie)
2913     printExportsTrie(O);
2914   if (Rebase)
2915     printRebaseTable(O);
2916   if (Bind)
2917     printBindTable(O);
2918   if (LazyBind)
2919     printLazyBindTable(O);
2920   if (WeakBind)
2921     printWeakBindTable(O);
2922 
2923   // Other special sections:
2924   if (RawClangAST)
2925     printRawClangAST(O);
2926   if (FaultMapSection)
2927     printFaultMaps(O);
2928   if (Offloading)
2929     dumpOffloadBinary(*O);
2930 }
2931 
2932 static void dumpObject(const COFFImportFile *I, const Archive *A,
2933                        const Archive::Child *C = nullptr) {
2934   StringRef ArchiveName = A ? A->getFileName() : "";
2935 
2936   // Avoid other output when using a raw option.
2937   if (!RawClangAST)
2938     outs() << '\n'
2939            << ArchiveName << "(" << I->getFileName() << ")"
2940            << ":\tfile format COFF-import-file"
2941            << "\n\n";
2942 
2943   if (ArchiveHeaders && !MachOOpt && C)
2944     printArchiveChild(ArchiveName, *C);
2945   if (SymbolTable)
2946     printCOFFSymbolTable(*I);
2947 }
2948 
2949 /// Dump each object file in \a a;
2950 static void dumpArchive(const Archive *A) {
2951   Error Err = Error::success();
2952   unsigned I = -1;
2953   for (auto &C : A->children(Err)) {
2954     ++I;
2955     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2956     if (!ChildOrErr) {
2957       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2958         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2959       continue;
2960     }
2961     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2962       dumpObject(O, A, &C);
2963     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2964       dumpObject(I, A, &C);
2965     else
2966       reportError(errorCodeToError(object_error::invalid_file_type),
2967                   A->getFileName());
2968   }
2969   if (Err)
2970     reportError(std::move(Err), A->getFileName());
2971 }
2972 
2973 /// Open file and figure out how to dump it.
2974 static void dumpInput(StringRef file) {
2975   // If we are using the Mach-O specific object file parser, then let it parse
2976   // the file and process the command line options.  So the -arch flags can
2977   // be used to select specific slices, etc.
2978   if (MachOOpt) {
2979     parseInputMachO(file);
2980     return;
2981   }
2982 
2983   // Attempt to open the binary.
2984   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2985   Binary &Binary = *OBinary.getBinary();
2986 
2987   if (Archive *A = dyn_cast<Archive>(&Binary))
2988     dumpArchive(A);
2989   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2990     dumpObject(O);
2991   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2992     parseInputMachO(UB);
2993   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2994     dumpOffloadSections(*OB);
2995   else
2996     reportError(errorCodeToError(object_error::invalid_file_type), file);
2997 }
2998 
2999 template <typename T>
3000 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
3001                         T &Value) {
3002   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
3003     StringRef V(A->getValue());
3004     if (!llvm::to_integer(V, Value, 0)) {
3005       reportCmdLineError(A->getSpelling() +
3006                          ": expected a non-negative integer, but got '" + V +
3007                          "'");
3008     }
3009   }
3010 }
3011 
3012 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
3013   StringRef V(A->getValue());
3014   object::BuildID BID = parseBuildID(V);
3015   if (BID.empty())
3016     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
3017                        V + "'");
3018   return BID;
3019 }
3020 
3021 void objdump::invalidArgValue(const opt::Arg *A) {
3022   reportCmdLineError("'" + StringRef(A->getValue()) +
3023                      "' is not a valid value for '" + A->getSpelling() + "'");
3024 }
3025 
3026 static std::vector<std::string>
3027 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
3028   std::vector<std::string> Values;
3029   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
3030     llvm::SmallVector<StringRef, 2> SplitValues;
3031     llvm::SplitString(Value, SplitValues, ",");
3032     for (StringRef SplitValue : SplitValues)
3033       Values.push_back(SplitValue.str());
3034   }
3035   return Values;
3036 }
3037 
3038 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
3039   MachOOpt = true;
3040   FullLeadingAddr = true;
3041   PrintImmHex = true;
3042 
3043   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
3044   LinkOptHints = InputArgs.hasArg(OTOOL_C);
3045   if (InputArgs.hasArg(OTOOL_d))
3046     FilterSections.push_back("__DATA,__data");
3047   DylibId = InputArgs.hasArg(OTOOL_D);
3048   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
3049   DataInCode = InputArgs.hasArg(OTOOL_G);
3050   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
3051   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
3052   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
3053   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
3054   DylibsUsed = InputArgs.hasArg(OTOOL_L);
3055   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
3056   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3057   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
3058   InfoPlist = InputArgs.hasArg(OTOOL_P);
3059   Relocations = InputArgs.hasArg(OTOOL_r);
3060   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3061     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
3062     FilterSections.push_back(Filter);
3063   }
3064   if (InputArgs.hasArg(OTOOL_t))
3065     FilterSections.push_back("__TEXT,__text");
3066   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3067             InputArgs.hasArg(OTOOL_o);
3068   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3069   if (InputArgs.hasArg(OTOOL_x))
3070     FilterSections.push_back(",__text");
3071   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3072 
3073   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3074   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3075 
3076   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3077   if (InputFilenames.empty())
3078     reportCmdLineError("no input file");
3079 
3080   for (const Arg *A : InputArgs) {
3081     const Option &O = A->getOption();
3082     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3083       reportCmdLineWarning(O.getPrefixedName() +
3084                            " is obsolete and not implemented");
3085     }
3086   }
3087 }
3088 
3089 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3090   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3091   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3092   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3093   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3094   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3095   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3096   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3097   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3098   TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3099   DisassembleSymbols =
3100       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3101   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3102   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3103     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3104                         .Case("frames", DIDT_DebugFrame)
3105                         .Default(DIDT_Null);
3106     if (DwarfDumpType == DIDT_Null)
3107       invalidArgValue(A);
3108   }
3109   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3110   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3111   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3112   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3113   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3114   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3115   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3116   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3117   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3118   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3119   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3120   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3121   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3122   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3123   PrintImmHex =
3124       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3125   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3126   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3127   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3128   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3129   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3130   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3131   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3132   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3133   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3134   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3135   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3136   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3137   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3138   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3139   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3140   Wide = InputArgs.hasArg(OBJDUMP_wide);
3141   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3142   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3143   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3144     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3145                        .Case("ascii", DVASCII)
3146                        .Case("unicode", DVUnicode)
3147                        .Default(DVInvalid);
3148     if (DbgVariables == DVInvalid)
3149       invalidArgValue(A);
3150   }
3151   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3152 
3153   parseMachOOptions(InputArgs);
3154 
3155   // Parse -M (--disassembler-options) and deprecated
3156   // --x86-asm-syntax={att,intel}.
3157   //
3158   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3159   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3160   // called too late. For now we have to use the internal cl::opt option.
3161   const char *AsmSyntax = nullptr;
3162   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3163                                           OBJDUMP_x86_asm_syntax_att,
3164                                           OBJDUMP_x86_asm_syntax_intel)) {
3165     switch (A->getOption().getID()) {
3166     case OBJDUMP_x86_asm_syntax_att:
3167       AsmSyntax = "--x86-asm-syntax=att";
3168       continue;
3169     case OBJDUMP_x86_asm_syntax_intel:
3170       AsmSyntax = "--x86-asm-syntax=intel";
3171       continue;
3172     }
3173 
3174     SmallVector<StringRef, 2> Values;
3175     llvm::SplitString(A->getValue(), Values, ",");
3176     for (StringRef V : Values) {
3177       if (V == "att")
3178         AsmSyntax = "--x86-asm-syntax=att";
3179       else if (V == "intel")
3180         AsmSyntax = "--x86-asm-syntax=intel";
3181       else
3182         DisassemblerOptions.push_back(V.str());
3183     }
3184   }
3185   if (AsmSyntax) {
3186     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3187     llvm::cl::ParseCommandLineOptions(2, Argv);
3188   }
3189 
3190   // Look up any provided build IDs, then append them to the input filenames.
3191   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3192     object::BuildID BuildID = parseBuildIDArg(A);
3193     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3194     if (!Path) {
3195       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3196                          A->getValue() + "'");
3197     }
3198     InputFilenames.push_back(std::move(*Path));
3199   }
3200 
3201   // objdump defaults to a.out if no filenames specified.
3202   if (InputFilenames.empty())
3203     InputFilenames.push_back("a.out");
3204 }
3205 
3206 int main(int argc, char **argv) {
3207   using namespace llvm;
3208   InitLLVM X(argc, argv);
3209 
3210   ToolName = argv[0];
3211   std::unique_ptr<CommonOptTable> T;
3212   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3213 
3214   StringRef Stem = sys::path::stem(ToolName);
3215   auto Is = [=](StringRef Tool) {
3216     // We need to recognize the following filenames:
3217     //
3218     // llvm-objdump -> objdump
3219     // llvm-otool-10.exe -> otool
3220     // powerpc64-unknown-freebsd13-objdump -> objdump
3221     auto I = Stem.rfind_insensitive(Tool);
3222     return I != StringRef::npos &&
3223            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3224   };
3225   if (Is("otool")) {
3226     T = std::make_unique<OtoolOptTable>();
3227     Unknown = OTOOL_UNKNOWN;
3228     HelpFlag = OTOOL_help;
3229     HelpHiddenFlag = OTOOL_help_hidden;
3230     VersionFlag = OTOOL_version;
3231   } else {
3232     T = std::make_unique<ObjdumpOptTable>();
3233     Unknown = OBJDUMP_UNKNOWN;
3234     HelpFlag = OBJDUMP_help;
3235     HelpHiddenFlag = OBJDUMP_help_hidden;
3236     VersionFlag = OBJDUMP_version;
3237   }
3238 
3239   BumpPtrAllocator A;
3240   StringSaver Saver(A);
3241   opt::InputArgList InputArgs =
3242       T->parseArgs(argc, argv, Unknown, Saver,
3243                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3244 
3245   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3246     T->printHelp(ToolName);
3247     return 0;
3248   }
3249   if (InputArgs.hasArg(HelpHiddenFlag)) {
3250     T->printHelp(ToolName, /*ShowHidden=*/true);
3251     return 0;
3252   }
3253 
3254   // Initialize targets and assembly printers/parsers.
3255   InitializeAllTargetInfos();
3256   InitializeAllTargetMCs();
3257   InitializeAllDisassemblers();
3258 
3259   if (InputArgs.hasArg(VersionFlag)) {
3260     cl::PrintVersionMessage();
3261     if (!Is("otool")) {
3262       outs() << '\n';
3263       TargetRegistry::printRegisteredTargetsForVersion(outs());
3264     }
3265     return 0;
3266   }
3267 
3268   // Initialize debuginfod.
3269   const bool ShouldUseDebuginfodByDefault =
3270       InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3271   std::vector<std::string> DebugFileDirectories =
3272       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3273   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3274                         ShouldUseDebuginfodByDefault)) {
3275     HTTPClient::initialize();
3276     BIDFetcher =
3277         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3278   } else {
3279     BIDFetcher =
3280         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3281   }
3282 
3283   if (Is("otool"))
3284     parseOtoolOptions(InputArgs);
3285   else
3286     parseObjdumpOptions(InputArgs);
3287 
3288   if (StartAddress >= StopAddress)
3289     reportCmdLineError("start address should be less than stop address");
3290 
3291   // Removes trailing separators from prefix.
3292   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3293     Prefix.pop_back();
3294 
3295   if (AllHeaders)
3296     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3297         SectionHeaders = SymbolTable = true;
3298 
3299   if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3300       !DisassembleSymbols.empty())
3301     Disassemble = true;
3302 
3303   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3304       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3305       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3306       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3307       !(MachOOpt &&
3308         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3309          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3310          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3311          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3312          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3313     T->printHelp(ToolName);
3314     return 2;
3315   }
3316 
3317   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3318 
3319   llvm::for_each(InputFilenames, dumpInput);
3320 
3321   warnOnNoMatchForSections();
3322 
3323   return EXIT_SUCCESS;
3324 }
3325