1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "OffloadDump.h" 24 #include "SourcePrinter.h" 25 #include "WasmDump.h" 26 #include "XCOFFDump.h" 27 #include "llvm/ADT/IndexedMap.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 36 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 37 #include "llvm/Debuginfod/BuildIDFetcher.h" 38 #include "llvm/Debuginfod/Debuginfod.h" 39 #include "llvm/Debuginfod/HTTPClient.h" 40 #include "llvm/Demangle/Demangle.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/MCContext.h" 43 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 45 #include "llvm/MC/MCInst.h" 46 #include "llvm/MC/MCInstPrinter.h" 47 #include "llvm/MC/MCInstrAnalysis.h" 48 #include "llvm/MC/MCInstrInfo.h" 49 #include "llvm/MC/MCObjectFileInfo.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/MC/MCSubtargetInfo.h" 52 #include "llvm/MC/MCTargetOptions.h" 53 #include "llvm/MC/TargetRegistry.h" 54 #include "llvm/Object/Archive.h" 55 #include "llvm/Object/BuildID.h" 56 #include "llvm/Object/COFF.h" 57 #include "llvm/Object/COFFImportFile.h" 58 #include "llvm/Object/ELFObjectFile.h" 59 #include "llvm/Object/ELFTypes.h" 60 #include "llvm/Object/FaultMapParser.h" 61 #include "llvm/Object/MachO.h" 62 #include "llvm/Object/MachOUniversal.h" 63 #include "llvm/Object/ObjectFile.h" 64 #include "llvm/Object/OffloadBinary.h" 65 #include "llvm/Object/Wasm.h" 66 #include "llvm/Option/Arg.h" 67 #include "llvm/Option/ArgList.h" 68 #include "llvm/Option/Option.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/Errc.h" 72 #include "llvm/Support/FileSystem.h" 73 #include "llvm/Support/Format.h" 74 #include "llvm/Support/FormatVariadic.h" 75 #include "llvm/Support/GraphWriter.h" 76 #include "llvm/Support/InitLLVM.h" 77 #include "llvm/Support/MemoryBuffer.h" 78 #include "llvm/Support/SourceMgr.h" 79 #include "llvm/Support/StringSaver.h" 80 #include "llvm/Support/TargetSelect.h" 81 #include "llvm/Support/WithColor.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/TargetParser/Host.h" 84 #include "llvm/TargetParser/Triple.h" 85 #include <algorithm> 86 #include <cctype> 87 #include <cstring> 88 #include <optional> 89 #include <system_error> 90 #include <unordered_map> 91 #include <utility> 92 93 using namespace llvm; 94 using namespace llvm::object; 95 using namespace llvm::objdump; 96 using namespace llvm::opt; 97 98 namespace { 99 100 class CommonOptTable : public opt::GenericOptTable { 101 public: 102 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 103 const char *Description) 104 : opt::GenericOptTable(OptionInfos), Usage(Usage), 105 Description(Description) { 106 setGroupedShortOptions(true); 107 } 108 109 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 110 Argv0 = sys::path::filename(Argv0); 111 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), 112 Description, ShowHidden, ShowHidden); 113 // TODO Replace this with OptTable API once it adds extrahelp support. 114 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 115 } 116 117 private: 118 const char *Usage; 119 const char *Description; 120 }; 121 122 // ObjdumpOptID is in ObjdumpOptID.h 123 namespace objdump_opt { 124 #define PREFIX(NAME, VALUE) \ 125 static constexpr StringLiteral NAME##_init[] = VALUE; \ 126 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 127 std::size(NAME##_init) - 1); 128 #include "ObjdumpOpts.inc" 129 #undef PREFIX 130 131 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 132 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 133 HELPTEXT, METAVAR, VALUES) \ 134 {PREFIX, NAME, HELPTEXT, \ 135 METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ 136 PARAM, FLAGS, OBJDUMP_##GROUP, \ 137 OBJDUMP_##ALIAS, ALIASARGS, VALUES}, 138 #include "ObjdumpOpts.inc" 139 #undef OPTION 140 }; 141 } // namespace objdump_opt 142 143 class ObjdumpOptTable : public CommonOptTable { 144 public: 145 ObjdumpOptTable() 146 : CommonOptTable(objdump_opt::ObjdumpInfoTable, 147 " [options] <input object files>", 148 "llvm object file dumper") {} 149 }; 150 151 enum OtoolOptID { 152 OTOOL_INVALID = 0, // This is not an option ID. 153 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 154 HELPTEXT, METAVAR, VALUES) \ 155 OTOOL_##ID, 156 #include "OtoolOpts.inc" 157 #undef OPTION 158 }; 159 160 namespace otool { 161 #define PREFIX(NAME, VALUE) \ 162 static constexpr StringLiteral NAME##_init[] = VALUE; \ 163 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 164 std::size(NAME##_init) - 1); 165 #include "OtoolOpts.inc" 166 #undef PREFIX 167 168 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 169 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 170 HELPTEXT, METAVAR, VALUES) \ 171 {PREFIX, NAME, HELPTEXT, \ 172 METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ 173 PARAM, FLAGS, OTOOL_##GROUP, \ 174 OTOOL_##ALIAS, ALIASARGS, VALUES}, 175 #include "OtoolOpts.inc" 176 #undef OPTION 177 }; 178 } // namespace otool 179 180 class OtoolOptTable : public CommonOptTable { 181 public: 182 OtoolOptTable() 183 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", 184 "Mach-O object file displaying tool") {} 185 }; 186 187 } // namespace 188 189 #define DEBUG_TYPE "objdump" 190 191 static uint64_t AdjustVMA; 192 static bool AllHeaders; 193 static std::string ArchName; 194 bool objdump::ArchiveHeaders; 195 bool objdump::Demangle; 196 bool objdump::Disassemble; 197 bool objdump::DisassembleAll; 198 bool objdump::SymbolDescription; 199 static std::vector<std::string> DisassembleSymbols; 200 static bool DisassembleZeroes; 201 static std::vector<std::string> DisassemblerOptions; 202 DIDumpType objdump::DwarfDumpType; 203 static bool DynamicRelocations; 204 static bool FaultMapSection; 205 static bool FileHeaders; 206 bool objdump::SectionContents; 207 static std::vector<std::string> InputFilenames; 208 bool objdump::PrintLines; 209 static bool MachOOpt; 210 std::string objdump::MCPU; 211 std::vector<std::string> objdump::MAttrs; 212 bool objdump::ShowRawInsn; 213 bool objdump::LeadingAddr; 214 static bool Offloading; 215 static bool RawClangAST; 216 bool objdump::Relocations; 217 bool objdump::PrintImmHex; 218 bool objdump::PrivateHeaders; 219 std::vector<std::string> objdump::FilterSections; 220 bool objdump::SectionHeaders; 221 static bool ShowAllSymbols; 222 static bool ShowLMA; 223 bool objdump::PrintSource; 224 225 static uint64_t StartAddress; 226 static bool HasStartAddressFlag; 227 static uint64_t StopAddress = UINT64_MAX; 228 static bool HasStopAddressFlag; 229 230 bool objdump::SymbolTable; 231 static bool SymbolizeOperands; 232 static bool DynamicSymbolTable; 233 std::string objdump::TripleName; 234 bool objdump::UnwindInfo; 235 static bool Wide; 236 std::string objdump::Prefix; 237 uint32_t objdump::PrefixStrip; 238 239 DebugVarsFormat objdump::DbgVariables = DVDisabled; 240 241 int objdump::DbgIndent = 52; 242 243 static StringSet<> DisasmSymbolSet; 244 StringSet<> objdump::FoundSectionSet; 245 static StringRef ToolName; 246 247 std::unique_ptr<BuildIDFetcher> BIDFetcher; 248 ExitOnError ExitOnErr; 249 250 namespace { 251 struct FilterResult { 252 // True if the section should not be skipped. 253 bool Keep; 254 255 // True if the index counter should be incremented, even if the section should 256 // be skipped. For example, sections may be skipped if they are not included 257 // in the --section flag, but we still want those to count toward the section 258 // count. 259 bool IncrementIndex; 260 }; 261 } // namespace 262 263 static FilterResult checkSectionFilter(object::SectionRef S) { 264 if (FilterSections.empty()) 265 return {/*Keep=*/true, /*IncrementIndex=*/true}; 266 267 Expected<StringRef> SecNameOrErr = S.getName(); 268 if (!SecNameOrErr) { 269 consumeError(SecNameOrErr.takeError()); 270 return {/*Keep=*/false, /*IncrementIndex=*/false}; 271 } 272 StringRef SecName = *SecNameOrErr; 273 274 // StringSet does not allow empty key so avoid adding sections with 275 // no name (such as the section with index 0) here. 276 if (!SecName.empty()) 277 FoundSectionSet.insert(SecName); 278 279 // Only show the section if it's in the FilterSections list, but always 280 // increment so the indexing is stable. 281 return {/*Keep=*/is_contained(FilterSections, SecName), 282 /*IncrementIndex=*/true}; 283 } 284 285 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 286 uint64_t *Idx) { 287 // Start at UINT64_MAX so that the first index returned after an increment is 288 // zero (after the unsigned wrap). 289 if (Idx) 290 *Idx = UINT64_MAX; 291 return SectionFilter( 292 [Idx](object::SectionRef S) { 293 FilterResult Result = checkSectionFilter(S); 294 if (Idx != nullptr && Result.IncrementIndex) 295 *Idx += 1; 296 return Result.Keep; 297 }, 298 O); 299 } 300 301 std::string objdump::getFileNameForError(const object::Archive::Child &C, 302 unsigned Index) { 303 Expected<StringRef> NameOrErr = C.getName(); 304 if (NameOrErr) 305 return std::string(NameOrErr.get()); 306 // If we have an error getting the name then we print the index of the archive 307 // member. Since we are already in an error state, we just ignore this error. 308 consumeError(NameOrErr.takeError()); 309 return "<file index: " + std::to_string(Index) + ">"; 310 } 311 312 void objdump::reportWarning(const Twine &Message, StringRef File) { 313 // Output order between errs() and outs() matters especially for archive 314 // files where the output is per member object. 315 outs().flush(); 316 WithColor::warning(errs(), ToolName) 317 << "'" << File << "': " << Message << "\n"; 318 } 319 320 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 321 outs().flush(); 322 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 323 exit(1); 324 } 325 326 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 327 StringRef ArchiveName, 328 StringRef ArchitectureName) { 329 assert(E); 330 outs().flush(); 331 WithColor::error(errs(), ToolName); 332 if (ArchiveName != "") 333 errs() << ArchiveName << "(" << FileName << ")"; 334 else 335 errs() << "'" << FileName << "'"; 336 if (!ArchitectureName.empty()) 337 errs() << " (for architecture " << ArchitectureName << ")"; 338 errs() << ": "; 339 logAllUnhandledErrors(std::move(E), errs()); 340 exit(1); 341 } 342 343 static void reportCmdLineWarning(const Twine &Message) { 344 WithColor::warning(errs(), ToolName) << Message << "\n"; 345 } 346 347 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 348 WithColor::error(errs(), ToolName) << Message << "\n"; 349 exit(1); 350 } 351 352 static void warnOnNoMatchForSections() { 353 SetVector<StringRef> MissingSections; 354 for (StringRef S : FilterSections) { 355 if (FoundSectionSet.count(S)) 356 return; 357 // User may specify a unnamed section. Don't warn for it. 358 if (!S.empty()) 359 MissingSections.insert(S); 360 } 361 362 // Warn only if no section in FilterSections is matched. 363 for (StringRef S : MissingSections) 364 reportCmdLineWarning("section '" + S + 365 "' mentioned in a -j/--section option, but not " 366 "found in any input file"); 367 } 368 369 static const Target *getTarget(const ObjectFile *Obj) { 370 // Figure out the target triple. 371 Triple TheTriple("unknown-unknown-unknown"); 372 if (TripleName.empty()) { 373 TheTriple = Obj->makeTriple(); 374 } else { 375 TheTriple.setTriple(Triple::normalize(TripleName)); 376 auto Arch = Obj->getArch(); 377 if (Arch == Triple::arm || Arch == Triple::armeb) 378 Obj->setARMSubArch(TheTriple); 379 } 380 381 // Get the target specific parser. 382 std::string Error; 383 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 384 Error); 385 if (!TheTarget) 386 reportError(Obj->getFileName(), "can't find target: " + Error); 387 388 // Update the triple name and return the found target. 389 TripleName = TheTriple.getTriple(); 390 return TheTarget; 391 } 392 393 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 394 return A.getOffset() < B.getOffset(); 395 } 396 397 static Error getRelocationValueString(const RelocationRef &Rel, 398 SmallVectorImpl<char> &Result) { 399 const ObjectFile *Obj = Rel.getObject(); 400 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 401 return getELFRelocationValueString(ELF, Rel, Result); 402 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 403 return getCOFFRelocationValueString(COFF, Rel, Result); 404 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 405 return getWasmRelocationValueString(Wasm, Rel, Result); 406 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 407 return getMachORelocationValueString(MachO, Rel, Result); 408 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 409 return getXCOFFRelocationValueString(*XCOFF, Rel, Result); 410 llvm_unreachable("unknown object file format"); 411 } 412 413 /// Indicates whether this relocation should hidden when listing 414 /// relocations, usually because it is the trailing part of a multipart 415 /// relocation that will be printed as part of the leading relocation. 416 static bool getHidden(RelocationRef RelRef) { 417 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 418 if (!MachO) 419 return false; 420 421 unsigned Arch = MachO->getArch(); 422 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 423 uint64_t Type = MachO->getRelocationType(Rel); 424 425 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 426 // is always hidden. 427 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 428 return Type == MachO::GENERIC_RELOC_PAIR; 429 430 if (Arch == Triple::x86_64) { 431 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 432 // an X86_64_RELOC_SUBTRACTOR. 433 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 434 DataRefImpl RelPrev = Rel; 435 RelPrev.d.a--; 436 uint64_t PrevType = MachO->getRelocationType(RelPrev); 437 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 438 return true; 439 } 440 } 441 442 return false; 443 } 444 445 namespace { 446 447 /// Get the column at which we want to start printing the instruction 448 /// disassembly, taking into account anything which appears to the left of it. 449 unsigned getInstStartColumn(const MCSubtargetInfo &STI) { 450 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 451 } 452 453 static bool isAArch64Elf(const ObjectFile &Obj) { 454 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 455 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 456 } 457 458 static bool isArmElf(const ObjectFile &Obj) { 459 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 460 return Elf && Elf->getEMachine() == ELF::EM_ARM; 461 } 462 463 static bool isCSKYElf(const ObjectFile &Obj) { 464 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 465 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 466 } 467 468 static bool hasMappingSymbols(const ObjectFile &Obj) { 469 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 470 } 471 472 static bool isMappingSymbol(const SymbolInfoTy &Sym) { 473 return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") || 474 Sym.Name.startswith("$a") || Sym.Name.startswith("$t"); 475 } 476 477 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 478 const RelocationRef &Rel, uint64_t Address, 479 bool Is64Bits) { 480 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; 481 SmallString<16> Name; 482 SmallString<32> Val; 483 Rel.getTypeName(Name); 484 if (Error E = getRelocationValueString(Rel, Val)) 485 reportError(std::move(E), FileName); 486 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); 487 if (LeadingAddr) 488 OS << format(Fmt.data(), Address); 489 OS << Name << "\t" << Val; 490 } 491 492 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, 493 raw_ostream &OS) { 494 // The output of printInst starts with a tab. Print some spaces so that 495 // the tab has 1 column and advances to the target tab stop. 496 unsigned TabStop = getInstStartColumn(STI); 497 unsigned Column = OS.tell() - Start; 498 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 499 } 500 501 class PrettyPrinter { 502 public: 503 virtual ~PrettyPrinter() = default; 504 virtual void 505 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 506 object::SectionedAddress Address, formatted_raw_ostream &OS, 507 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 508 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 509 LiveVariablePrinter &LVP) { 510 if (SP && (PrintSource || PrintLines)) 511 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 512 LVP.printBetweenInsts(OS, false); 513 514 size_t Start = OS.tell(); 515 if (LeadingAddr) 516 OS << format("%8" PRIx64 ":", Address.Address); 517 if (ShowRawInsn) { 518 OS << ' '; 519 dumpBytes(Bytes, OS); 520 } 521 522 AlignToInstStartColumn(Start, STI, OS); 523 524 if (MI) { 525 // See MCInstPrinter::printInst. On targets where a PC relative immediate 526 // is relative to the next instruction and the length of a MCInst is 527 // difficult to measure (x86), this is the address of the next 528 // instruction. 529 uint64_t Addr = 530 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 531 IP.printInst(MI, Addr, "", STI, OS); 532 } else 533 OS << "\t<unknown>"; 534 } 535 }; 536 PrettyPrinter PrettyPrinterInst; 537 538 class HexagonPrettyPrinter : public PrettyPrinter { 539 public: 540 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 541 formatted_raw_ostream &OS) { 542 uint32_t opcode = 543 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 544 if (LeadingAddr) 545 OS << format("%8" PRIx64 ":", Address); 546 if (ShowRawInsn) { 547 OS << "\t"; 548 dumpBytes(Bytes.slice(0, 4), OS); 549 OS << format("\t%08" PRIx32, opcode); 550 } 551 } 552 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 553 object::SectionedAddress Address, formatted_raw_ostream &OS, 554 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 555 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 556 LiveVariablePrinter &LVP) override { 557 if (SP && (PrintSource || PrintLines)) 558 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 559 if (!MI) { 560 printLead(Bytes, Address.Address, OS); 561 OS << " <unknown>"; 562 return; 563 } 564 std::string Buffer; 565 { 566 raw_string_ostream TempStream(Buffer); 567 IP.printInst(MI, Address.Address, "", STI, TempStream); 568 } 569 StringRef Contents(Buffer); 570 // Split off bundle attributes 571 auto PacketBundle = Contents.rsplit('\n'); 572 // Split off first instruction from the rest 573 auto HeadTail = PacketBundle.first.split('\n'); 574 auto Preamble = " { "; 575 auto Separator = ""; 576 577 // Hexagon's packets require relocations to be inline rather than 578 // clustered at the end of the packet. 579 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 580 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 581 auto PrintReloc = [&]() -> void { 582 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 583 if (RelCur->getOffset() == Address.Address) { 584 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 585 return; 586 } 587 ++RelCur; 588 } 589 }; 590 591 while (!HeadTail.first.empty()) { 592 OS << Separator; 593 Separator = "\n"; 594 if (SP && (PrintSource || PrintLines)) 595 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 596 printLead(Bytes, Address.Address, OS); 597 OS << Preamble; 598 Preamble = " "; 599 StringRef Inst; 600 auto Duplex = HeadTail.first.split('\v'); 601 if (!Duplex.second.empty()) { 602 OS << Duplex.first; 603 OS << "; "; 604 Inst = Duplex.second; 605 } 606 else 607 Inst = HeadTail.first; 608 OS << Inst; 609 HeadTail = HeadTail.second.split('\n'); 610 if (HeadTail.first.empty()) 611 OS << " } " << PacketBundle.second; 612 PrintReloc(); 613 Bytes = Bytes.slice(4); 614 Address.Address += 4; 615 } 616 } 617 }; 618 HexagonPrettyPrinter HexagonPrettyPrinterInst; 619 620 class AMDGCNPrettyPrinter : public PrettyPrinter { 621 public: 622 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 623 object::SectionedAddress Address, formatted_raw_ostream &OS, 624 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 625 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 626 LiveVariablePrinter &LVP) override { 627 if (SP && (PrintSource || PrintLines)) 628 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 629 630 if (MI) { 631 SmallString<40> InstStr; 632 raw_svector_ostream IS(InstStr); 633 634 IP.printInst(MI, Address.Address, "", STI, IS); 635 636 OS << left_justify(IS.str(), 60); 637 } else { 638 // an unrecognized encoding - this is probably data so represent it 639 // using the .long directive, or .byte directive if fewer than 4 bytes 640 // remaining 641 if (Bytes.size() >= 4) { 642 OS << format("\t.long 0x%08" PRIx32 " ", 643 support::endian::read32<support::little>(Bytes.data())); 644 OS.indent(42); 645 } else { 646 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 647 for (unsigned int i = 1; i < Bytes.size(); i++) 648 OS << format(", 0x%02" PRIx8, Bytes[i]); 649 OS.indent(55 - (6 * Bytes.size())); 650 } 651 } 652 653 OS << format("// %012" PRIX64 ":", Address.Address); 654 if (Bytes.size() >= 4) { 655 // D should be casted to uint32_t here as it is passed by format to 656 // snprintf as vararg. 657 for (uint32_t D : 658 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), 659 Bytes.size() / 4)) 660 OS << format(" %08" PRIX32, D); 661 } else { 662 for (unsigned char B : Bytes) 663 OS << format(" %02" PRIX8, B); 664 } 665 666 if (!Annot.empty()) 667 OS << " // " << Annot; 668 } 669 }; 670 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 671 672 class BPFPrettyPrinter : public PrettyPrinter { 673 public: 674 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 675 object::SectionedAddress Address, formatted_raw_ostream &OS, 676 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 677 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 678 LiveVariablePrinter &LVP) override { 679 if (SP && (PrintSource || PrintLines)) 680 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 681 if (LeadingAddr) 682 OS << format("%8" PRId64 ":", Address.Address / 8); 683 if (ShowRawInsn) { 684 OS << "\t"; 685 dumpBytes(Bytes, OS); 686 } 687 if (MI) 688 IP.printInst(MI, Address.Address, "", STI, OS); 689 else 690 OS << "\t<unknown>"; 691 } 692 }; 693 BPFPrettyPrinter BPFPrettyPrinterInst; 694 695 class ARMPrettyPrinter : public PrettyPrinter { 696 public: 697 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 698 object::SectionedAddress Address, formatted_raw_ostream &OS, 699 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 700 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 701 LiveVariablePrinter &LVP) override { 702 if (SP && (PrintSource || PrintLines)) 703 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 704 LVP.printBetweenInsts(OS, false); 705 706 size_t Start = OS.tell(); 707 if (LeadingAddr) 708 OS << format("%8" PRIx64 ":", Address.Address); 709 if (ShowRawInsn) { 710 size_t Pos = 0, End = Bytes.size(); 711 if (STI.checkFeatures("+thumb-mode")) { 712 for (; Pos + 2 <= End; Pos += 2) 713 OS << ' ' 714 << format_hex_no_prefix( 715 llvm::support::endian::read<uint16_t>( 716 Bytes.data() + Pos, InstructionEndianness), 717 4); 718 } else { 719 for (; Pos + 4 <= End; Pos += 4) 720 OS << ' ' 721 << format_hex_no_prefix( 722 llvm::support::endian::read<uint32_t>( 723 Bytes.data() + Pos, InstructionEndianness), 724 8); 725 } 726 if (Pos < End) { 727 OS << ' '; 728 dumpBytes(Bytes.slice(Pos), OS); 729 } 730 } 731 732 AlignToInstStartColumn(Start, STI, OS); 733 734 if (MI) { 735 IP.printInst(MI, Address.Address, "", STI, OS); 736 } else 737 OS << "\t<unknown>"; 738 } 739 740 void setInstructionEndianness(llvm::support::endianness Endianness) { 741 InstructionEndianness = Endianness; 742 } 743 744 private: 745 llvm::support::endianness InstructionEndianness = llvm::support::little; 746 }; 747 ARMPrettyPrinter ARMPrettyPrinterInst; 748 749 class AArch64PrettyPrinter : public PrettyPrinter { 750 public: 751 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 752 object::SectionedAddress Address, formatted_raw_ostream &OS, 753 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 754 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 755 LiveVariablePrinter &LVP) override { 756 if (SP && (PrintSource || PrintLines)) 757 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 758 LVP.printBetweenInsts(OS, false); 759 760 size_t Start = OS.tell(); 761 if (LeadingAddr) 762 OS << format("%8" PRIx64 ":", Address.Address); 763 if (ShowRawInsn) { 764 size_t Pos = 0, End = Bytes.size(); 765 for (; Pos + 4 <= End; Pos += 4) 766 OS << ' ' 767 << format_hex_no_prefix( 768 llvm::support::endian::read<uint32_t>(Bytes.data() + Pos, 769 llvm::support::little), 770 8); 771 if (Pos < End) { 772 OS << ' '; 773 dumpBytes(Bytes.slice(Pos), OS); 774 } 775 } 776 777 AlignToInstStartColumn(Start, STI, OS); 778 779 if (MI) { 780 IP.printInst(MI, Address.Address, "", STI, OS); 781 } else 782 OS << "\t<unknown>"; 783 } 784 }; 785 AArch64PrettyPrinter AArch64PrettyPrinterInst; 786 787 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 788 switch(Triple.getArch()) { 789 default: 790 return PrettyPrinterInst; 791 case Triple::hexagon: 792 return HexagonPrettyPrinterInst; 793 case Triple::amdgcn: 794 return AMDGCNPrettyPrinterInst; 795 case Triple::bpfel: 796 case Triple::bpfeb: 797 return BPFPrettyPrinterInst; 798 case Triple::arm: 799 case Triple::armeb: 800 case Triple::thumb: 801 case Triple::thumbeb: 802 return ARMPrettyPrinterInst; 803 case Triple::aarch64: 804 case Triple::aarch64_be: 805 case Triple::aarch64_32: 806 return AArch64PrettyPrinterInst; 807 } 808 } 809 } 810 811 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { 812 assert(Obj.isELF()); 813 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 814 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 815 Obj.getFileName()) 816 ->getType(); 817 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 818 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 819 Obj.getFileName()) 820 ->getType(); 821 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 822 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 823 Obj.getFileName()) 824 ->getType(); 825 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 826 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 827 Obj.getFileName()) 828 ->getType(); 829 llvm_unreachable("Unsupported binary format"); 830 } 831 832 template <class ELFT> 833 static void 834 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, 835 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 836 for (auto Symbol : Obj.getDynamicSymbolIterators()) { 837 uint8_t SymbolType = Symbol.getELFType(); 838 if (SymbolType == ELF::STT_SECTION) 839 continue; 840 841 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); 842 // ELFSymbolRef::getAddress() returns size instead of value for common 843 // symbols which is not desirable for disassembly output. Overriding. 844 if (SymbolType == ELF::STT_COMMON) 845 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), 846 Obj.getFileName()) 847 ->st_value; 848 849 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); 850 if (Name.empty()) 851 continue; 852 853 section_iterator SecI = 854 unwrapOrError(Symbol.getSection(), Obj.getFileName()); 855 if (SecI == Obj.section_end()) 856 continue; 857 858 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 859 } 860 } 861 862 static void 863 addDynamicElfSymbols(const ELFObjectFileBase &Obj, 864 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 865 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 866 addDynamicElfSymbols(*Elf32LEObj, AllSymbols); 867 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 868 addDynamicElfSymbols(*Elf64LEObj, AllSymbols); 869 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 870 addDynamicElfSymbols(*Elf32BEObj, AllSymbols); 871 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 872 addDynamicElfSymbols(*Elf64BEObj, AllSymbols); 873 else 874 llvm_unreachable("Unsupported binary format"); 875 } 876 877 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { 878 for (auto SecI : Obj.sections()) { 879 const WasmSection &Section = Obj.getWasmSection(SecI); 880 if (Section.Type == wasm::WASM_SEC_CODE) 881 return SecI; 882 } 883 return std::nullopt; 884 } 885 886 static void 887 addMissingWasmCodeSymbols(const WasmObjectFile &Obj, 888 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 889 std::optional<SectionRef> Section = getWasmCodeSection(Obj); 890 if (!Section) 891 return; 892 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 893 894 std::set<uint64_t> SymbolAddresses; 895 for (const auto &Sym : Symbols) 896 SymbolAddresses.insert(Sym.Addr); 897 898 for (const wasm::WasmFunction &Function : Obj.functions()) { 899 uint64_t Address = Function.CodeSectionOffset; 900 // Only add fallback symbols for functions not already present in the symbol 901 // table. 902 if (SymbolAddresses.count(Address)) 903 continue; 904 // This function has no symbol, so it should have no SymbolName. 905 assert(Function.SymbolName.empty()); 906 // We use DebugName for the name, though it may be empty if there is no 907 // "name" custom section, or that section is missing a name for this 908 // function. 909 StringRef Name = Function.DebugName; 910 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 911 } 912 } 913 914 static void addPltEntries(const ObjectFile &Obj, 915 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 916 StringSaver &Saver) { 917 auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj); 918 if (!ElfObj) 919 return; 920 DenseMap<StringRef, SectionRef> Sections; 921 for (SectionRef Section : Obj.sections()) { 922 Expected<StringRef> SecNameOrErr = Section.getName(); 923 if (!SecNameOrErr) { 924 consumeError(SecNameOrErr.takeError()); 925 continue; 926 } 927 Sections[*SecNameOrErr] = Section; 928 } 929 for (auto Plt : ElfObj->getPltEntries()) { 930 if (Plt.Symbol) { 931 SymbolRef Symbol(*Plt.Symbol, ElfObj); 932 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 933 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 934 if (!NameOrErr->empty()) 935 AllSymbols[Sections[Plt.Section]].emplace_back( 936 Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType); 937 continue; 938 } else { 939 // The warning has been reported in disassembleObject(). 940 consumeError(NameOrErr.takeError()); 941 } 942 } 943 reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) + 944 " references an invalid symbol", 945 Obj.getFileName()); 946 } 947 } 948 949 // Normally the disassembly output will skip blocks of zeroes. This function 950 // returns the number of zero bytes that can be skipped when dumping the 951 // disassembly of the instructions in Buf. 952 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 953 // Find the number of leading zeroes. 954 size_t N = 0; 955 while (N < Buf.size() && !Buf[N]) 956 ++N; 957 958 // We may want to skip blocks of zero bytes, but unless we see 959 // at least 8 of them in a row. 960 if (N < 8) 961 return 0; 962 963 // We skip zeroes in multiples of 4 because do not want to truncate an 964 // instruction if it starts with a zero byte. 965 return N & ~0x3; 966 } 967 968 // Returns a map from sections to their relocations. 969 static std::map<SectionRef, std::vector<RelocationRef>> 970 getRelocsMap(object::ObjectFile const &Obj) { 971 std::map<SectionRef, std::vector<RelocationRef>> Ret; 972 uint64_t I = (uint64_t)-1; 973 for (SectionRef Sec : Obj.sections()) { 974 ++I; 975 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 976 if (!RelocatedOrErr) 977 reportError(Obj.getFileName(), 978 "section (" + Twine(I) + 979 "): failed to get a relocated section: " + 980 toString(RelocatedOrErr.takeError())); 981 982 section_iterator Relocated = *RelocatedOrErr; 983 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 984 continue; 985 std::vector<RelocationRef> &V = Ret[*Relocated]; 986 append_range(V, Sec.relocations()); 987 // Sort relocations by address. 988 llvm::stable_sort(V, isRelocAddressLess); 989 } 990 return Ret; 991 } 992 993 // Used for --adjust-vma to check if address should be adjusted by the 994 // specified value for a given section. 995 // For ELF we do not adjust non-allocatable sections like debug ones, 996 // because they are not loadable. 997 // TODO: implement for other file formats. 998 static bool shouldAdjustVA(const SectionRef &Section) { 999 const ObjectFile *Obj = Section.getObject(); 1000 if (Obj->isELF()) 1001 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1002 return false; 1003 } 1004 1005 1006 typedef std::pair<uint64_t, char> MappingSymbolPair; 1007 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1008 uint64_t Address) { 1009 auto It = 1010 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1011 return Val.first <= Address; 1012 }); 1013 // Return zero for any address before the first mapping symbol; this means 1014 // we should use the default disassembly mode, depending on the target. 1015 if (It == MappingSymbols.begin()) 1016 return '\x00'; 1017 return (It - 1)->second; 1018 } 1019 1020 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1021 uint64_t End, const ObjectFile &Obj, 1022 ArrayRef<uint8_t> Bytes, 1023 ArrayRef<MappingSymbolPair> MappingSymbols, 1024 const MCSubtargetInfo &STI, raw_ostream &OS) { 1025 support::endianness Endian = 1026 Obj.isLittleEndian() ? support::little : support::big; 1027 size_t Start = OS.tell(); 1028 OS << format("%8" PRIx64 ": ", SectionAddr + Index); 1029 if (Index + 4 <= End) { 1030 dumpBytes(Bytes.slice(Index, 4), OS); 1031 AlignToInstStartColumn(Start, STI, OS); 1032 OS << "\t.word\t" 1033 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 1034 10); 1035 return 4; 1036 } 1037 if (Index + 2 <= End) { 1038 dumpBytes(Bytes.slice(Index, 2), OS); 1039 AlignToInstStartColumn(Start, STI, OS); 1040 OS << "\t.short\t" 1041 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); 1042 return 2; 1043 } 1044 dumpBytes(Bytes.slice(Index, 1), OS); 1045 AlignToInstStartColumn(Start, STI, OS); 1046 OS << "\t.byte\t" << format_hex(Bytes[Index], 4); 1047 return 1; 1048 } 1049 1050 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1051 ArrayRef<uint8_t> Bytes) { 1052 // print out data up to 8 bytes at a time in hex and ascii 1053 uint8_t AsciiData[9] = {'\0'}; 1054 uint8_t Byte; 1055 int NumBytes = 0; 1056 1057 for (; Index < End; ++Index) { 1058 if (NumBytes == 0) 1059 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1060 Byte = Bytes.slice(Index)[0]; 1061 outs() << format(" %02x", Byte); 1062 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1063 1064 uint8_t IndentOffset = 0; 1065 NumBytes++; 1066 if (Index == End - 1 || NumBytes > 8) { 1067 // Indent the space for less than 8 bytes data. 1068 // 2 spaces for byte and one for space between bytes 1069 IndentOffset = 3 * (8 - NumBytes); 1070 for (int Excess = NumBytes; Excess < 8; Excess++) 1071 AsciiData[Excess] = '\0'; 1072 NumBytes = 8; 1073 } 1074 if (NumBytes == 8) { 1075 AsciiData[8] = '\0'; 1076 outs() << std::string(IndentOffset, ' ') << " "; 1077 outs() << reinterpret_cast<char *>(AsciiData); 1078 outs() << '\n'; 1079 NumBytes = 0; 1080 } 1081 } 1082 } 1083 1084 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, 1085 const SymbolRef &Symbol) { 1086 const StringRef FileName = Obj.getFileName(); 1087 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 1088 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1089 1090 if (Obj.isXCOFF() && SymbolDescription) { 1091 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); 1092 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 1093 1094 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); 1095 std::optional<XCOFF::StorageMappingClass> Smc = 1096 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 1097 return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, 1098 isLabel(XCOFFObj, Symbol)); 1099 } else if (Obj.isXCOFF()) { 1100 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 1101 return SymbolInfoTy(Addr, Name, SymType, true); 1102 } else 1103 return SymbolInfoTy(Addr, Name, 1104 Obj.isELF() ? getElfSymbolType(Obj, Symbol) 1105 : (uint8_t)ELF::STT_NOTYPE); 1106 } 1107 1108 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, 1109 const uint64_t Addr, StringRef &Name, 1110 uint8_t Type) { 1111 if (Obj.isXCOFF() && SymbolDescription) 1112 return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false); 1113 else 1114 return SymbolInfoTy(Addr, Name, Type); 1115 } 1116 1117 static void 1118 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, 1119 uint64_t SectionAddr, uint64_t Start, uint64_t End, 1120 std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { 1121 if (AddrToBBAddrMap.empty()) 1122 return; 1123 Labels.clear(); 1124 uint64_t StartAddress = SectionAddr + Start; 1125 uint64_t EndAddress = SectionAddr + End; 1126 auto Iter = AddrToBBAddrMap.find(StartAddress); 1127 if (Iter == AddrToBBAddrMap.end()) 1128 return; 1129 for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) { 1130 uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr; 1131 if (BBAddress >= EndAddress) 1132 continue; 1133 Labels[BBAddress].push_back(("BB" + Twine(I)).str()); 1134 } 1135 } 1136 1137 static void collectLocalBranchTargets( 1138 ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm, 1139 MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr, 1140 uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) { 1141 // So far only supports PowerPC and X86. 1142 if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) 1143 return; 1144 1145 Labels.clear(); 1146 unsigned LabelCount = 0; 1147 Start += SectionAddr; 1148 End += SectionAddr; 1149 uint64_t Index = Start; 1150 while (Index < End) { 1151 // Disassemble a real instruction and record function-local branch labels. 1152 MCInst Inst; 1153 uint64_t Size; 1154 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); 1155 bool Disassembled = 1156 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); 1157 if (Size == 0) 1158 Size = std::min<uint64_t>(ThisBytes.size(), 1159 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1160 1161 if (Disassembled && MIA) { 1162 uint64_t Target; 1163 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1164 // On PowerPC, if the address of a branch is the same as the target, it 1165 // means that it's a function call. Do not mark the label for this case. 1166 if (TargetKnown && (Target >= Start && Target < End) && 1167 !Labels.count(Target) && 1168 !(STI->getTargetTriple().isPPC() && Target == Index)) 1169 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1170 } 1171 Index += Size; 1172 } 1173 } 1174 1175 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1176 // This is currently only used on AMDGPU, and assumes the format of the 1177 // void * argument passed to AMDGPU's createMCSymbolizer. 1178 static void addSymbolizer( 1179 MCContext &Ctx, const Target *Target, StringRef TripleName, 1180 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1181 SectionSymbolsTy &Symbols, 1182 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1183 1184 std::unique_ptr<MCRelocationInfo> RelInfo( 1185 Target->createMCRelocationInfo(TripleName, Ctx)); 1186 if (!RelInfo) 1187 return; 1188 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1189 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1190 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1191 DisAsm->setSymbolizer(std::move(Symbolizer)); 1192 1193 if (!SymbolizeOperands) 1194 return; 1195 1196 // Synthesize labels referenced by branch instructions by 1197 // disassembling, discarding the output, and collecting the referenced 1198 // addresses from the symbolizer. 1199 for (size_t Index = 0; Index != Bytes.size();) { 1200 MCInst Inst; 1201 uint64_t Size; 1202 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1203 const uint64_t ThisAddr = SectionAddr + Index; 1204 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); 1205 if (Size == 0) 1206 Size = std::min<uint64_t>(ThisBytes.size(), 1207 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1208 Index += Size; 1209 } 1210 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1211 // Copy and sort to remove duplicates. 1212 std::vector<uint64_t> LabelAddrs; 1213 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1214 LabelAddrsRef.end()); 1215 llvm::sort(LabelAddrs); 1216 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1217 LabelAddrs.begin()); 1218 // Add the labels. 1219 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1220 auto Name = std::make_unique<std::string>(); 1221 *Name = (Twine("L") + Twine(LabelNum)).str(); 1222 SynthesizedLabelNames.push_back(std::move(Name)); 1223 Symbols.push_back(SymbolInfoTy( 1224 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1225 } 1226 llvm::stable_sort(Symbols); 1227 // Recreate the symbolizer with the new symbols list. 1228 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1229 Symbolizer.reset(Target->createMCSymbolizer( 1230 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1231 DisAsm->setSymbolizer(std::move(Symbolizer)); 1232 } 1233 1234 static StringRef getSegmentName(const MachOObjectFile *MachO, 1235 const SectionRef &Section) { 1236 if (MachO) { 1237 DataRefImpl DR = Section.getRawDataRefImpl(); 1238 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1239 return SegmentName; 1240 } 1241 return ""; 1242 } 1243 1244 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1245 const MCAsmInfo &MAI, 1246 const MCSubtargetInfo &STI, 1247 StringRef Comments, 1248 LiveVariablePrinter &LVP) { 1249 do { 1250 if (!Comments.empty()) { 1251 // Emit a line of comments. 1252 StringRef Comment; 1253 std::tie(Comment, Comments) = Comments.split('\n'); 1254 // MAI.getCommentColumn() assumes that instructions are printed at the 1255 // position of 8, while getInstStartColumn() returns the actual position. 1256 unsigned CommentColumn = 1257 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1258 FOS.PadToColumn(CommentColumn); 1259 FOS << MAI.getCommentString() << ' ' << Comment; 1260 } 1261 LVP.printAfterInst(FOS); 1262 FOS << '\n'; 1263 } while (!Comments.empty()); 1264 FOS.flush(); 1265 } 1266 1267 static void createFakeELFSections(ObjectFile &Obj) { 1268 assert(Obj.isELF()); 1269 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1270 Elf32LEObj->createFakeSections(); 1271 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1272 Elf64LEObj->createFakeSections(); 1273 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1274 Elf32BEObj->createFakeSections(); 1275 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1276 Elf64BEObj->createFakeSections(); 1277 else 1278 llvm_unreachable("Unsupported binary format"); 1279 } 1280 1281 // Tries to fetch a more complete version of the given object file using its 1282 // Build ID. Returns std::nullopt if nothing was found. 1283 static std::optional<OwningBinary<Binary>> 1284 fetchBinaryByBuildID(const ObjectFile &Obj) { 1285 object::BuildIDRef BuildID = getBuildID(&Obj); 1286 if (BuildID.empty()) 1287 return std::nullopt; 1288 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 1289 if (!Path) 1290 return std::nullopt; 1291 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); 1292 if (!DebugBinary) { 1293 reportWarning(toString(DebugBinary.takeError()), *Path); 1294 return std::nullopt; 1295 } 1296 return std::move(*DebugBinary); 1297 } 1298 1299 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj, 1300 const ObjectFile &DbgObj, MCContext &Ctx, 1301 MCDisassembler *PrimaryDisAsm, 1302 MCDisassembler *SecondaryDisAsm, 1303 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1304 const MCSubtargetInfo *PrimarySTI, 1305 const MCSubtargetInfo *SecondarySTI, 1306 PrettyPrinter &PIP, SourcePrinter &SP, 1307 bool InlineRelocs) { 1308 const MCSubtargetInfo *STI = PrimarySTI; 1309 MCDisassembler *DisAsm = PrimaryDisAsm; 1310 bool PrimaryIsThumb = false; 1311 if (isArmElf(Obj)) 1312 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1313 1314 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1315 if (InlineRelocs) 1316 RelocMap = getRelocsMap(Obj); 1317 bool Is64Bits = Obj.getBytesInAddress() > 4; 1318 1319 // Create a mapping from virtual address to symbol name. This is used to 1320 // pretty print the symbols while disassembling. 1321 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1322 SectionSymbolsTy AbsoluteSymbols; 1323 const StringRef FileName = Obj.getFileName(); 1324 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); 1325 for (const SymbolRef &Symbol : Obj.symbols()) { 1326 Expected<StringRef> NameOrErr = Symbol.getName(); 1327 if (!NameOrErr) { 1328 reportWarning(toString(NameOrErr.takeError()), FileName); 1329 continue; 1330 } 1331 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) 1332 continue; 1333 1334 if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) 1335 continue; 1336 1337 if (MachO) { 1338 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1339 // symbols that support MachO header introspection. They do not bind to 1340 // code locations and are irrelevant for disassembly. 1341 if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) 1342 continue; 1343 // Don't ask a Mach-O STAB symbol for its section unless you know that 1344 // STAB symbol's section field refers to a valid section index. Otherwise 1345 // the symbol may error trying to load a section that does not exist. 1346 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1347 uint8_t NType = (MachO->is64Bit() ? 1348 MachO->getSymbol64TableEntry(SymDRI).n_type: 1349 MachO->getSymbolTableEntry(SymDRI).n_type); 1350 if (NType & MachO::N_STAB) 1351 continue; 1352 } 1353 1354 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1355 if (SecI != Obj.section_end()) 1356 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1357 else 1358 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1359 } 1360 1361 if (AllSymbols.empty() && Obj.isELF()) 1362 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); 1363 1364 if (Obj.isWasm()) 1365 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1366 1367 if (Obj.isELF() && Obj.sections().empty()) 1368 createFakeELFSections(Obj); 1369 1370 BumpPtrAllocator A; 1371 StringSaver Saver(A); 1372 addPltEntries(Obj, AllSymbols, Saver); 1373 1374 // Create a mapping from virtual address to section. An empty section can 1375 // cause more than one section at the same address. Sort such sections to be 1376 // before same-addressed non-empty sections so that symbol lookups prefer the 1377 // non-empty section. 1378 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1379 for (SectionRef Sec : Obj.sections()) 1380 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1381 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1382 if (LHS.first != RHS.first) 1383 return LHS.first < RHS.first; 1384 return LHS.second.getSize() < RHS.second.getSize(); 1385 }); 1386 1387 // Linked executables (.exe and .dll files) typically don't include a real 1388 // symbol table but they might contain an export table. 1389 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1390 for (const auto &ExportEntry : COFFObj->export_directories()) { 1391 StringRef Name; 1392 if (Error E = ExportEntry.getSymbolName(Name)) 1393 reportError(std::move(E), Obj.getFileName()); 1394 if (Name.empty()) 1395 continue; 1396 1397 uint32_t RVA; 1398 if (Error E = ExportEntry.getExportRVA(RVA)) 1399 reportError(std::move(E), Obj.getFileName()); 1400 1401 uint64_t VA = COFFObj->getImageBase() + RVA; 1402 auto Sec = partition_point( 1403 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1404 return O.first <= VA; 1405 }); 1406 if (Sec != SectionAddresses.begin()) { 1407 --Sec; 1408 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1409 } else 1410 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1411 } 1412 } 1413 1414 // Sort all the symbols, this allows us to use a simple binary search to find 1415 // Multiple symbols can have the same address. Use a stable sort to stabilize 1416 // the output. 1417 StringSet<> FoundDisasmSymbolSet; 1418 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1419 llvm::stable_sort(SecSyms.second); 1420 llvm::stable_sort(AbsoluteSymbols); 1421 1422 std::unique_ptr<DWARFContext> DICtx; 1423 LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); 1424 1425 if (DbgVariables != DVDisabled) { 1426 DICtx = DWARFContext::create(DbgObj); 1427 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1428 LVP.addCompileUnit(CU->getUnitDIE(false)); 1429 } 1430 1431 LLVM_DEBUG(LVP.dump()); 1432 1433 std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; 1434 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = 1435 std::nullopt) { 1436 AddrToBBAddrMap.clear(); 1437 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { 1438 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); 1439 if (!BBAddrMapsOrErr) { 1440 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); 1441 return; 1442 } 1443 for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) 1444 AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, 1445 std::move(FunctionBBAddrMap)); 1446 } 1447 }; 1448 1449 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a 1450 // single mapping, since they don't have any conflicts. 1451 if (SymbolizeOperands && !Obj.isRelocatableObject()) 1452 ReadBBAddrMap(); 1453 1454 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 1455 if (FilterSections.empty() && !DisassembleAll && 1456 (!Section.isText() || Section.isVirtual())) 1457 continue; 1458 1459 uint64_t SectionAddr = Section.getAddress(); 1460 uint64_t SectSize = Section.getSize(); 1461 if (!SectSize) 1462 continue; 1463 1464 // For relocatable object files, read the LLVM_BB_ADDR_MAP section 1465 // corresponding to this section, if present. 1466 if (SymbolizeOperands && Obj.isRelocatableObject()) 1467 ReadBBAddrMap(Section.getIndex()); 1468 1469 // Get the list of all the symbols in this section. 1470 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1471 std::vector<MappingSymbolPair> MappingSymbols; 1472 if (hasMappingSymbols(Obj)) { 1473 for (const auto &Symb : Symbols) { 1474 uint64_t Address = Symb.Addr; 1475 StringRef Name = Symb.Name; 1476 if (Name.startswith("$d")) 1477 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1478 if (Name.startswith("$x")) 1479 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1480 if (Name.startswith("$a")) 1481 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1482 if (Name.startswith("$t")) 1483 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1484 } 1485 } 1486 1487 llvm::sort(MappingSymbols); 1488 1489 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1490 unwrapOrError(Section.getContents(), Obj.getFileName())); 1491 1492 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1493 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { 1494 // AMDGPU disassembler uses symbolizer for printing labels 1495 addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, 1496 Symbols, SynthesizedLabelNames); 1497 } 1498 1499 StringRef SegmentName = getSegmentName(MachO, Section); 1500 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); 1501 // If the section has no symbol at the start, just insert a dummy one. 1502 if (Symbols.empty() || Symbols[0].Addr != 0) { 1503 Symbols.insert(Symbols.begin(), 1504 createDummySymbolInfo(Obj, SectionAddr, SectionName, 1505 Section.isText() ? ELF::STT_FUNC 1506 : ELF::STT_OBJECT)); 1507 } 1508 1509 SmallString<40> Comments; 1510 raw_svector_ostream CommentStream(Comments); 1511 1512 uint64_t VMAAdjustment = 0; 1513 if (shouldAdjustVA(Section)) 1514 VMAAdjustment = AdjustVMA; 1515 1516 // In executable and shared objects, r_offset holds a virtual address. 1517 // Subtract SectionAddr from the r_offset field of a relocation to get 1518 // the section offset. 1519 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; 1520 uint64_t Size; 1521 uint64_t Index; 1522 bool PrintedSection = false; 1523 std::vector<RelocationRef> Rels = RelocMap[Section]; 1524 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1525 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1526 1527 // Loop over each chunk of code between two points where at least 1528 // one symbol is defined. 1529 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { 1530 // Advance SI past all the symbols starting at the same address, 1531 // and make an ArrayRef of them. 1532 unsigned FirstSI = SI; 1533 uint64_t Start = Symbols[SI].Addr; 1534 ArrayRef<SymbolInfoTy> SymbolsHere; 1535 while (SI != SE && Symbols[SI].Addr == Start) 1536 ++SI; 1537 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); 1538 1539 // Get the demangled names of all those symbols. We end up with a vector 1540 // of StringRef that holds the names we're going to use, and a vector of 1541 // std::string that stores the new strings returned by demangle(), if 1542 // any. If we don't call demangle() then that vector can stay empty. 1543 std::vector<StringRef> SymNamesHere; 1544 std::vector<std::string> DemangledSymNamesHere; 1545 if (Demangle) { 1546 // Fetch the demangled names and store them locally. 1547 for (const SymbolInfoTy &Symbol : SymbolsHere) 1548 DemangledSymNamesHere.push_back(demangle(Symbol.Name.str())); 1549 // Now we've finished modifying that vector, it's safe to make 1550 // a vector of StringRefs pointing into it. 1551 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), 1552 DemangledSymNamesHere.end()); 1553 } else { 1554 for (const SymbolInfoTy &Symbol : SymbolsHere) 1555 SymNamesHere.push_back(Symbol.Name); 1556 } 1557 1558 // Distinguish ELF data from code symbols, which will be used later on to 1559 // decide whether to 'disassemble' this chunk as a data declaration via 1560 // dumpELFData(), or whether to treat it as code. 1561 // 1562 // If data _and_ code symbols are defined at the same address, the code 1563 // takes priority, on the grounds that disassembling code is our main 1564 // purpose here, and it would be a worse failure to _not_ interpret 1565 // something that _was_ meaningful as code than vice versa. 1566 // 1567 // Any ELF symbol type that is not clearly data will be regarded as code. 1568 // In particular, one of the uses of STT_NOTYPE is for branch targets 1569 // inside functions, for which STT_FUNC would be inaccurate. 1570 // 1571 // So here, we spot whether there's any non-data symbol present at all, 1572 // and only set the DisassembleAsData flag if there isn't. Also, we use 1573 // this distinction to inform the decision of which symbol to print at 1574 // the head of the section, so that if we're printing code, we print a 1575 // code-related symbol name to go with it. 1576 bool DisassembleAsData = false; 1577 size_t DisplaySymIndex = SymbolsHere.size() - 1; 1578 if (Obj.isELF() && !DisassembleAll && Section.isText()) { 1579 DisassembleAsData = true; // unless we find a code symbol below 1580 1581 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1582 uint8_t SymTy = SymbolsHere[i].Type; 1583 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { 1584 DisassembleAsData = false; 1585 DisplaySymIndex = i; 1586 } 1587 } 1588 } 1589 1590 // Decide which symbol(s) from this collection we're going to print. 1591 std::vector<bool> SymsToPrint(SymbolsHere.size(), false); 1592 // If the user has given the --disassemble-symbols option, then we must 1593 // display every symbol in that set, and no others. 1594 if (!DisasmSymbolSet.empty()) { 1595 bool FoundAny = false; 1596 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1597 if (DisasmSymbolSet.count(SymNamesHere[i])) { 1598 SymsToPrint[i] = true; 1599 FoundAny = true; 1600 } 1601 } 1602 1603 // And if none of the symbols here is one that the user asked for, skip 1604 // disassembling this entire chunk of code. 1605 if (!FoundAny) 1606 continue; 1607 } else { 1608 // Otherwise, print whichever symbol at this location is last in the 1609 // Symbols array, because that array is pre-sorted in a way intended to 1610 // correlate with priority of which symbol to display. 1611 SymsToPrint[DisplaySymIndex] = true; 1612 } 1613 1614 // Now that we know we're disassembling this section, override the choice 1615 // of which symbols to display by printing _all_ of them at this address 1616 // if the user asked for all symbols. 1617 // 1618 // That way, '--show-all-symbols --disassemble-symbol=foo' will print 1619 // only the chunk of code headed by 'foo', but also show any other 1620 // symbols defined at that address, such as aliases for 'foo', or the ARM 1621 // mapping symbol preceding its code. 1622 if (ShowAllSymbols) { 1623 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1624 SymsToPrint[i] = true; 1625 } 1626 1627 if (Start < SectionAddr || StopAddress <= Start) 1628 continue; 1629 1630 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1631 FoundDisasmSymbolSet.insert(SymNamesHere[i]); 1632 1633 // The end is the section end, the beginning of the next symbol, or 1634 // --stop-address. 1635 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1636 if (SI < SE) 1637 End = std::min(End, Symbols[SI].Addr); 1638 if (Start >= End || End <= StartAddress) 1639 continue; 1640 Start -= SectionAddr; 1641 End -= SectionAddr; 1642 1643 if (!PrintedSection) { 1644 PrintedSection = true; 1645 outs() << "\nDisassembly of section "; 1646 if (!SegmentName.empty()) 1647 outs() << SegmentName << ","; 1648 outs() << SectionName << ":\n"; 1649 } 1650 1651 outs() << '\n'; 1652 1653 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1654 if (!SymsToPrint[i]) 1655 continue; 1656 1657 const SymbolInfoTy &Symbol = SymbolsHere[i]; 1658 const StringRef SymbolName = SymNamesHere[i]; 1659 1660 if (LeadingAddr) 1661 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1662 SectionAddr + Start + VMAAdjustment); 1663 if (Obj.isXCOFF() && SymbolDescription) { 1664 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; 1665 } else 1666 outs() << '<' << SymbolName << ">:\n"; 1667 } 1668 1669 // Don't print raw contents of a virtual section. A virtual section 1670 // doesn't have any contents in the file. 1671 if (Section.isVirtual()) { 1672 outs() << "...\n"; 1673 continue; 1674 } 1675 1676 // See if any of the symbols defined at this location triggers target- 1677 // specific disassembly behavior, e.g. of special descriptors or function 1678 // prelude information. 1679 // 1680 // We stop this loop at the first symbol that triggers some kind of 1681 // interesting behavior (if any), on the assumption that if two symbols 1682 // defined at the same address trigger two conflicting symbol handlers, 1683 // the object file is probably confused anyway, and it would make even 1684 // less sense to present the output of _both_ handlers, because that 1685 // would describe the same data twice. 1686 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { 1687 SymbolInfoTy Symbol = SymbolsHere[SHI]; 1688 1689 auto Status = 1690 DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start), 1691 SectionAddr + Start, CommentStream); 1692 1693 if (!Status) { 1694 // If onSymbolStart returns std::nullopt, that means it didn't trigger 1695 // any interesting handling for this symbol. Try the other symbols 1696 // defined at this address. 1697 continue; 1698 } 1699 1700 if (*Status == MCDisassembler::Fail) { 1701 // If onSymbolStart returns Fail, that means it identified some kind 1702 // of special data at this address, but wasn't able to disassemble it 1703 // meaningfully. So we fall back to disassembling the failed region 1704 // as bytes, assuming that the target detected the failure before 1705 // printing anything. 1706 // 1707 // Return values Success or SoftFail (i.e no 'real' failure) are 1708 // expected to mean that the target has emitted its own output. 1709 // 1710 // Either way, 'Size' will have been set to the amount of data 1711 // covered by whatever prologue the target identified. So we advance 1712 // our own position to beyond that. Sometimes that will be the entire 1713 // distance to the next symbol, and sometimes it will be just a 1714 // prologue and we should start disassembling instructions from where 1715 // it left off. 1716 outs() << "// Error in decoding " << SymNamesHere[SHI] 1717 << " : Decoding failed region as bytes.\n"; 1718 for (uint64_t I = 0; I < Size; ++I) { 1719 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1720 << "\n"; 1721 } 1722 } 1723 Start += Size; 1724 break; 1725 } 1726 1727 Index = Start; 1728 if (SectionAddr < StartAddress) 1729 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1730 1731 if (DisassembleAsData) { 1732 dumpELFData(SectionAddr, Index, End, Bytes); 1733 Index = End; 1734 continue; 1735 } 1736 1737 bool DumpARMELFData = false; 1738 formatted_raw_ostream FOS(outs()); 1739 1740 std::unordered_map<uint64_t, std::string> AllLabels; 1741 std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; 1742 if (SymbolizeOperands) { 1743 collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, 1744 SectionAddr, Index, End, AllLabels); 1745 collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, 1746 BBAddrMapLabels); 1747 } 1748 1749 while (Index < End) { 1750 // ARM and AArch64 ELF binaries can interleave data and text in the 1751 // same section. We rely on the markers introduced to understand what 1752 // we need to dump. If the data marker is within a function, it is 1753 // denoted as a word/short etc. 1754 if (!MappingSymbols.empty()) { 1755 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1756 DumpARMELFData = Kind == 'd'; 1757 if (SecondarySTI) { 1758 if (Kind == 'a') { 1759 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1760 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1761 } else if (Kind == 't') { 1762 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1763 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1764 } 1765 } 1766 } 1767 1768 if (DumpARMELFData) { 1769 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1770 MappingSymbols, *STI, FOS); 1771 } else { 1772 // When -z or --disassemble-zeroes are given we always dissasemble 1773 // them. Otherwise we might want to skip zero bytes we see. 1774 if (!DisassembleZeroes) { 1775 uint64_t MaxOffset = End - Index; 1776 // For --reloc: print zero blocks patched by relocations, so that 1777 // relocations can be shown in the dump. 1778 if (RelCur != RelEnd) 1779 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 1780 MaxOffset); 1781 1782 if (size_t N = 1783 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1784 FOS << "\t\t..." << '\n'; 1785 Index += N; 1786 continue; 1787 } 1788 } 1789 1790 // Print local label if there's any. 1791 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); 1792 if (Iter1 != BBAddrMapLabels.end()) { 1793 for (StringRef Label : Iter1->second) 1794 FOS << "<" << Label << ">:\n"; 1795 } else { 1796 auto Iter2 = AllLabels.find(SectionAddr + Index); 1797 if (Iter2 != AllLabels.end()) 1798 FOS << "<" << Iter2->second << ">:\n"; 1799 } 1800 1801 // Disassemble a real instruction or a data when disassemble all is 1802 // provided 1803 MCInst Inst; 1804 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1805 uint64_t ThisAddr = SectionAddr + Index; 1806 bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes, 1807 ThisAddr, CommentStream); 1808 if (Size == 0) 1809 Size = std::min<uint64_t>( 1810 ThisBytes.size(), 1811 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); 1812 1813 LVP.update({Index, Section.getIndex()}, 1814 {Index + Size, Section.getIndex()}, Index + Size != End); 1815 1816 IP->setCommentStream(CommentStream); 1817 1818 PIP.printInst( 1819 *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), 1820 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 1821 "", *STI, &SP, Obj.getFileName(), &Rels, LVP); 1822 1823 IP->setCommentStream(llvm::nulls()); 1824 1825 // If disassembly has failed, avoid analysing invalid/incomplete 1826 // instruction information. Otherwise, try to resolve the target 1827 // address (jump target or memory operand address) and print it on the 1828 // right of the instruction. 1829 if (Disassembled && MIA) { 1830 // Branch targets are printed just after the instructions. 1831 llvm::raw_ostream *TargetOS = &FOS; 1832 uint64_t Target; 1833 bool PrintTarget = 1834 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); 1835 if (!PrintTarget) 1836 if (std::optional<uint64_t> MaybeTarget = 1837 MIA->evaluateMemoryOperandAddress( 1838 Inst, STI, SectionAddr + Index, Size)) { 1839 Target = *MaybeTarget; 1840 PrintTarget = true; 1841 // Do not print real address when symbolizing. 1842 if (!SymbolizeOperands) { 1843 // Memory operand addresses are printed as comments. 1844 TargetOS = &CommentStream; 1845 *TargetOS << "0x" << Twine::utohexstr(Target); 1846 } 1847 } 1848 if (PrintTarget) { 1849 // In a relocatable object, the target's section must reside in 1850 // the same section as the call instruction or it is accessed 1851 // through a relocation. 1852 // 1853 // In a non-relocatable object, the target may be in any section. 1854 // In that case, locate the section(s) containing the target 1855 // address and find the symbol in one of those, if possible. 1856 // 1857 // N.B. We don't walk the relocations in the relocatable case yet. 1858 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 1859 if (!Obj.isRelocatableObject()) { 1860 auto It = llvm::partition_point( 1861 SectionAddresses, 1862 [=](const std::pair<uint64_t, SectionRef> &O) { 1863 return O.first <= Target; 1864 }); 1865 uint64_t TargetSecAddr = 0; 1866 while (It != SectionAddresses.begin()) { 1867 --It; 1868 if (TargetSecAddr == 0) 1869 TargetSecAddr = It->first; 1870 if (It->first != TargetSecAddr) 1871 break; 1872 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 1873 } 1874 } else { 1875 TargetSectionSymbols.push_back(&Symbols); 1876 } 1877 TargetSectionSymbols.push_back(&AbsoluteSymbols); 1878 1879 // Find the last symbol in the first candidate section whose 1880 // offset is less than or equal to the target. If there are no 1881 // such symbols, try in the next section and so on, before finally 1882 // using the nearest preceding absolute symbol (if any), if there 1883 // are no other valid symbols. 1884 const SymbolInfoTy *TargetSym = nullptr; 1885 for (const SectionSymbolsTy *TargetSymbols : 1886 TargetSectionSymbols) { 1887 auto It = llvm::partition_point( 1888 *TargetSymbols, 1889 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 1890 while (It != TargetSymbols->begin()) { 1891 --It; 1892 // Skip mapping symbols to avoid possible ambiguity as they 1893 // do not allow uniquely identifying the target address. 1894 if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) { 1895 TargetSym = &*It; 1896 break; 1897 } 1898 } 1899 if (TargetSym) 1900 break; 1901 } 1902 1903 // Print the labels corresponding to the target if there's any. 1904 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); 1905 bool LabelAvailable = AllLabels.count(Target); 1906 if (TargetSym != nullptr) { 1907 uint64_t TargetAddress = TargetSym->Addr; 1908 uint64_t Disp = Target - TargetAddress; 1909 std::string TargetName = TargetSym->Name.str(); 1910 if (Demangle) 1911 TargetName = demangle(TargetName); 1912 1913 *TargetOS << " <"; 1914 if (!Disp) { 1915 // Always Print the binary symbol precisely corresponding to 1916 // the target address. 1917 *TargetOS << TargetName; 1918 } else if (BBAddrMapLabelAvailable) { 1919 *TargetOS << BBAddrMapLabels[Target].front(); 1920 } else if (LabelAvailable) { 1921 *TargetOS << AllLabels[Target]; 1922 } else { 1923 // Always Print the binary symbol plus an offset if there's no 1924 // local label corresponding to the target address. 1925 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 1926 } 1927 *TargetOS << ">"; 1928 } else if (BBAddrMapLabelAvailable) { 1929 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; 1930 } else if (LabelAvailable) { 1931 *TargetOS << " <" << AllLabels[Target] << ">"; 1932 } 1933 // By convention, each record in the comment stream should be 1934 // terminated. 1935 if (TargetOS == &CommentStream) 1936 *TargetOS << "\n"; 1937 } 1938 } 1939 } 1940 1941 assert(Ctx.getAsmInfo()); 1942 emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI, 1943 CommentStream.str(), LVP); 1944 Comments.clear(); 1945 1946 // Hexagon does this in pretty printer 1947 if (Obj.getArch() != Triple::hexagon) { 1948 // Print relocation for instruction and data. 1949 while (RelCur != RelEnd) { 1950 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 1951 // If this relocation is hidden, skip it. 1952 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1953 ++RelCur; 1954 continue; 1955 } 1956 1957 // Stop when RelCur's offset is past the disassembled 1958 // instruction/data. Note that it's possible the disassembled data 1959 // is not the complete data: we might see the relocation printed in 1960 // the middle of the data, but this matches the binutils objdump 1961 // output. 1962 if (Offset >= Index + Size) 1963 break; 1964 1965 // When --adjust-vma is used, update the address printed. 1966 if (RelCur->getSymbol() != Obj.symbol_end()) { 1967 Expected<section_iterator> SymSI = 1968 RelCur->getSymbol()->getSection(); 1969 if (SymSI && *SymSI != Obj.section_end() && 1970 shouldAdjustVA(**SymSI)) 1971 Offset += AdjustVMA; 1972 } 1973 1974 printRelocation(FOS, Obj.getFileName(), *RelCur, 1975 SectionAddr + Offset, Is64Bits); 1976 LVP.printAfterOtherLine(FOS, true); 1977 ++RelCur; 1978 } 1979 } 1980 1981 Index += Size; 1982 } 1983 } 1984 } 1985 StringSet<> MissingDisasmSymbolSet = 1986 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 1987 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 1988 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 1989 } 1990 1991 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { 1992 // If information useful for showing the disassembly is missing, try to find a 1993 // more complete binary and disassemble that instead. 1994 OwningBinary<Binary> FetchedBinary; 1995 if (Obj->symbols().empty()) { 1996 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = 1997 fetchBinaryByBuildID(*Obj)) { 1998 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { 1999 if (!O->symbols().empty() || 2000 (!O->sections().empty() && Obj->sections().empty())) { 2001 FetchedBinary = std::move(*FetchedBinaryOpt); 2002 Obj = O; 2003 } 2004 } 2005 } 2006 } 2007 2008 const Target *TheTarget = getTarget(Obj); 2009 2010 // Package up features to be passed to target/subtarget 2011 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); 2012 if (!FeaturesValue) 2013 reportError(FeaturesValue.takeError(), Obj->getFileName()); 2014 SubtargetFeatures Features = *FeaturesValue; 2015 if (!MAttrs.empty()) { 2016 for (unsigned I = 0; I != MAttrs.size(); ++I) 2017 Features.AddFeature(MAttrs[I]); 2018 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { 2019 Features.AddFeature("+all"); 2020 } 2021 2022 std::unique_ptr<const MCRegisterInfo> MRI( 2023 TheTarget->createMCRegInfo(TripleName)); 2024 if (!MRI) 2025 reportError(Obj->getFileName(), 2026 "no register info for target " + TripleName); 2027 2028 // Set up disassembler. 2029 MCTargetOptions MCOptions; 2030 std::unique_ptr<const MCAsmInfo> AsmInfo( 2031 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 2032 if (!AsmInfo) 2033 reportError(Obj->getFileName(), 2034 "no assembly info for target " + TripleName); 2035 2036 if (MCPU.empty()) 2037 MCPU = Obj->tryGetCPUName().value_or("").str(); 2038 2039 if (isArmElf(*Obj)) { 2040 // When disassembling big-endian Arm ELF, the instruction endianness is 2041 // determined in a complex way. In relocatable objects, AAELF32 mandates 2042 // that instruction endianness matches the ELF file endianness; in 2043 // executable images, that's true unless the file header has the EF_ARM_BE8 2044 // flag, in which case instructions are little-endian regardless of data 2045 // endianness. 2046 // 2047 // We must set the big-endian-instructions SubtargetFeature to make the 2048 // disassembler read the instructions the right way round, and also tell 2049 // our own prettyprinter to retrieve the encodings the same way to print in 2050 // hex. 2051 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); 2052 2053 if (Elf32BE && (Elf32BE->isRelocatableObject() || 2054 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { 2055 Features.AddFeature("+big-endian-instructions"); 2056 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big); 2057 } else { 2058 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little); 2059 } 2060 } 2061 2062 std::unique_ptr<const MCSubtargetInfo> STI( 2063 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 2064 if (!STI) 2065 reportError(Obj->getFileName(), 2066 "no subtarget info for target " + TripleName); 2067 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 2068 if (!MII) 2069 reportError(Obj->getFileName(), 2070 "no instruction info for target " + TripleName); 2071 MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); 2072 // FIXME: for now initialize MCObjectFileInfo with default values 2073 std::unique_ptr<MCObjectFileInfo> MOFI( 2074 TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); 2075 Ctx.setObjectFileInfo(MOFI.get()); 2076 2077 std::unique_ptr<MCDisassembler> DisAsm( 2078 TheTarget->createMCDisassembler(*STI, Ctx)); 2079 if (!DisAsm) 2080 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 2081 2082 // If we have an ARM object file, we need a second disassembler, because 2083 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2084 // We use mapping symbols to switch between the two assemblers, where 2085 // appropriate. 2086 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 2087 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 2088 if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) { 2089 if (STI->checkFeatures("+thumb-mode")) 2090 Features.AddFeature("-thumb-mode"); 2091 else 2092 Features.AddFeature("+thumb-mode"); 2093 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 2094 Features.getString())); 2095 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 2096 } 2097 2098 std::unique_ptr<const MCInstrAnalysis> MIA( 2099 TheTarget->createMCInstrAnalysis(MII.get())); 2100 2101 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 2102 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 2103 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 2104 if (!IP) 2105 reportError(Obj->getFileName(), 2106 "no instruction printer for target " + TripleName); 2107 IP->setPrintImmHex(PrintImmHex); 2108 IP->setPrintBranchImmAsAddress(true); 2109 IP->setSymbolizeOperands(SymbolizeOperands); 2110 IP->setMCInstrAnalysis(MIA.get()); 2111 2112 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 2113 2114 const ObjectFile *DbgObj = Obj; 2115 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { 2116 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = 2117 fetchBinaryByBuildID(*Obj)) { 2118 if (auto *FetchedObj = 2119 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { 2120 if (FetchedObj->hasDebugInfo()) { 2121 FetchedBinary = std::move(*DebugBinaryOpt); 2122 DbgObj = FetchedObj; 2123 } 2124 } 2125 } 2126 } 2127 2128 std::unique_ptr<object::Binary> DSYMBinary; 2129 std::unique_ptr<MemoryBuffer> DSYMBuf; 2130 if (!DbgObj->hasDebugInfo()) { 2131 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { 2132 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), 2133 DSYMBinary, DSYMBuf); 2134 if (!DbgObj) 2135 return; 2136 } 2137 } 2138 2139 SourcePrinter SP(DbgObj, TheTarget->getName()); 2140 2141 for (StringRef Opt : DisassemblerOptions) 2142 if (!IP->applyTargetSpecificCLOption(Opt)) 2143 reportError(Obj->getFileName(), 2144 "Unrecognized disassembler option: " + Opt); 2145 2146 disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(), 2147 SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(), 2148 SecondarySTI.get(), PIP, SP, InlineRelocs); 2149 } 2150 2151 void objdump::printRelocations(const ObjectFile *Obj) { 2152 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 2153 "%08" PRIx64; 2154 2155 // Build a mapping from relocation target to a vector of relocation 2156 // sections. Usually, there is an only one relocation section for 2157 // each relocated section. 2158 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2159 uint64_t Ndx; 2160 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 2161 if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) 2162 continue; 2163 if (Section.relocation_begin() == Section.relocation_end()) 2164 continue; 2165 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2166 if (!SecOrErr) 2167 reportError(Obj->getFileName(), 2168 "section (" + Twine(Ndx) + 2169 "): unable to get a relocation target: " + 2170 toString(SecOrErr.takeError())); 2171 SecToRelSec[**SecOrErr].push_back(Section); 2172 } 2173 2174 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2175 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 2176 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 2177 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 2178 uint32_t TypePadding = 24; 2179 outs() << left_justify("OFFSET", OffsetPadding) << " " 2180 << left_justify("TYPE", TypePadding) << " " 2181 << "VALUE\n"; 2182 2183 for (SectionRef Section : P.second) { 2184 for (const RelocationRef &Reloc : Section.relocations()) { 2185 uint64_t Address = Reloc.getOffset(); 2186 SmallString<32> RelocName; 2187 SmallString<32> ValueStr; 2188 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2189 continue; 2190 Reloc.getTypeName(RelocName); 2191 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2192 reportError(std::move(E), Obj->getFileName()); 2193 2194 outs() << format(Fmt.data(), Address) << " " 2195 << left_justify(RelocName, TypePadding) << " " << ValueStr 2196 << "\n"; 2197 } 2198 } 2199 } 2200 } 2201 2202 void objdump::printDynamicRelocations(const ObjectFile *Obj) { 2203 // For the moment, this option is for ELF only 2204 if (!Obj->isELF()) 2205 return; 2206 2207 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 2208 if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) { 2209 return Sec.getType() == ELF::SHT_DYNAMIC; 2210 })) { 2211 reportError(Obj->getFileName(), "not a dynamic object"); 2212 return; 2213 } 2214 2215 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 2216 if (DynRelSec.empty()) 2217 return; 2218 2219 outs() << "\nDYNAMIC RELOCATION RECORDS\n"; 2220 const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 2221 const uint32_t TypePadding = 24; 2222 outs() << left_justify("OFFSET", OffsetPadding) << ' ' 2223 << left_justify("TYPE", TypePadding) << " VALUE\n"; 2224 2225 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2226 for (const SectionRef &Section : DynRelSec) 2227 for (const RelocationRef &Reloc : Section.relocations()) { 2228 uint64_t Address = Reloc.getOffset(); 2229 SmallString<32> RelocName; 2230 SmallString<32> ValueStr; 2231 Reloc.getTypeName(RelocName); 2232 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2233 reportError(std::move(E), Obj->getFileName()); 2234 outs() << format(Fmt.data(), Address) << ' ' 2235 << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n'; 2236 } 2237 } 2238 2239 // Returns true if we need to show LMA column when dumping section headers. We 2240 // show it only when the platform is ELF and either we have at least one section 2241 // whose VMA and LMA are different and/or when --show-lma flag is used. 2242 static bool shouldDisplayLMA(const ObjectFile &Obj) { 2243 if (!Obj.isELF()) 2244 return false; 2245 for (const SectionRef &S : ToolSectionFilter(Obj)) 2246 if (S.getAddress() != getELFSectionLMA(S)) 2247 return true; 2248 return ShowLMA; 2249 } 2250 2251 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { 2252 // Default column width for names is 13 even if no names are that long. 2253 size_t MaxWidth = 13; 2254 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 2255 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2256 MaxWidth = std::max(MaxWidth, Name.size()); 2257 } 2258 return MaxWidth; 2259 } 2260 2261 void objdump::printSectionHeaders(ObjectFile &Obj) { 2262 if (Obj.isELF() && Obj.sections().empty()) 2263 createFakeELFSections(Obj); 2264 2265 size_t NameWidth = getMaxSectionNameWidth(Obj); 2266 size_t AddressWidth = 2 * Obj.getBytesInAddress(); 2267 bool HasLMAColumn = shouldDisplayLMA(Obj); 2268 outs() << "\nSections:\n"; 2269 if (HasLMAColumn) 2270 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2271 << left_justify("VMA", AddressWidth) << " " 2272 << left_justify("LMA", AddressWidth) << " Type\n"; 2273 else 2274 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2275 << left_justify("VMA", AddressWidth) << " Type\n"; 2276 2277 uint64_t Idx; 2278 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { 2279 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2280 uint64_t VMA = Section.getAddress(); 2281 if (shouldAdjustVA(Section)) 2282 VMA += AdjustVMA; 2283 2284 uint64_t Size = Section.getSize(); 2285 2286 std::string Type = Section.isText() ? "TEXT" : ""; 2287 if (Section.isData()) 2288 Type += Type.empty() ? "DATA" : ", DATA"; 2289 if (Section.isBSS()) 2290 Type += Type.empty() ? "BSS" : ", BSS"; 2291 if (Section.isDebugSection()) 2292 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 2293 2294 if (HasLMAColumn) 2295 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2296 Name.str().c_str(), Size) 2297 << format_hex_no_prefix(VMA, AddressWidth) << " " 2298 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2299 << " " << Type << "\n"; 2300 else 2301 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2302 Name.str().c_str(), Size) 2303 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2304 } 2305 } 2306 2307 void objdump::printSectionContents(const ObjectFile *Obj) { 2308 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 2309 2310 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2311 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2312 uint64_t BaseAddr = Section.getAddress(); 2313 uint64_t Size = Section.getSize(); 2314 if (!Size) 2315 continue; 2316 2317 outs() << "Contents of section "; 2318 StringRef SegmentName = getSegmentName(MachO, Section); 2319 if (!SegmentName.empty()) 2320 outs() << SegmentName << ","; 2321 outs() << Name << ":\n"; 2322 if (Section.isBSS()) { 2323 outs() << format("<skipping contents of bss section at [%04" PRIx64 2324 ", %04" PRIx64 ")>\n", 2325 BaseAddr, BaseAddr + Size); 2326 continue; 2327 } 2328 2329 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2330 2331 // Dump out the content as hex and printable ascii characters. 2332 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2333 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2334 // Dump line of hex. 2335 for (std::size_t I = 0; I < 16; ++I) { 2336 if (I != 0 && I % 4 == 0) 2337 outs() << ' '; 2338 if (Addr + I < End) 2339 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2340 << hexdigit(Contents[Addr + I] & 0xF, true); 2341 else 2342 outs() << " "; 2343 } 2344 // Print ascii. 2345 outs() << " "; 2346 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2347 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2348 outs() << Contents[Addr + I]; 2349 else 2350 outs() << "."; 2351 } 2352 outs() << "\n"; 2353 } 2354 } 2355 } 2356 2357 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName, 2358 StringRef ArchitectureName, bool DumpDynamic) { 2359 if (O.isCOFF() && !DumpDynamic) { 2360 outs() << "\nSYMBOL TABLE:\n"; 2361 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 2362 return; 2363 } 2364 2365 const StringRef FileName = O.getFileName(); 2366 2367 if (!DumpDynamic) { 2368 outs() << "\nSYMBOL TABLE:\n"; 2369 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) 2370 printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName, 2371 DumpDynamic); 2372 return; 2373 } 2374 2375 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 2376 if (!O.isELF()) { 2377 reportWarning( 2378 "this operation is not currently supported for this file format", 2379 FileName); 2380 return; 2381 } 2382 2383 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); 2384 auto Symbols = ELF->getDynamicSymbolIterators(); 2385 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 2386 ELF->readDynsymVersions(); 2387 if (!SymbolVersionsOrErr) { 2388 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 2389 SymbolVersionsOrErr = std::vector<VersionEntry>(); 2390 (void)!SymbolVersionsOrErr; 2391 } 2392 for (auto &Sym : Symbols) 2393 printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 2394 ArchitectureName, DumpDynamic); 2395 } 2396 2397 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol, 2398 ArrayRef<VersionEntry> SymbolVersions, 2399 StringRef FileName, StringRef ArchiveName, 2400 StringRef ArchitectureName, bool DumpDynamic) { 2401 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); 2402 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 2403 ArchitectureName); 2404 if ((Address < StartAddress) || (Address > StopAddress)) 2405 return; 2406 SymbolRef::Type Type = 2407 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 2408 uint32_t Flags = 2409 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 2410 2411 // Don't ask a Mach-O STAB symbol for its section unless you know that 2412 // STAB symbol's section field refers to a valid section index. Otherwise 2413 // the symbol may error trying to load a section that does not exist. 2414 bool IsSTAB = false; 2415 if (MachO) { 2416 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2417 uint8_t NType = 2418 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 2419 : MachO->getSymbolTableEntry(SymDRI).n_type); 2420 if (NType & MachO::N_STAB) 2421 IsSTAB = true; 2422 } 2423 section_iterator Section = IsSTAB 2424 ? O.section_end() 2425 : unwrapOrError(Symbol.getSection(), FileName, 2426 ArchiveName, ArchitectureName); 2427 2428 StringRef Name; 2429 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { 2430 if (Expected<StringRef> NameOrErr = Section->getName()) 2431 Name = *NameOrErr; 2432 else 2433 consumeError(NameOrErr.takeError()); 2434 2435 } else { 2436 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2437 ArchitectureName); 2438 } 2439 2440 bool Global = Flags & SymbolRef::SF_Global; 2441 bool Weak = Flags & SymbolRef::SF_Weak; 2442 bool Absolute = Flags & SymbolRef::SF_Absolute; 2443 bool Common = Flags & SymbolRef::SF_Common; 2444 bool Hidden = Flags & SymbolRef::SF_Hidden; 2445 2446 char GlobLoc = ' '; 2447 if ((Section != O.section_end() || Absolute) && !Weak) 2448 GlobLoc = Global ? 'g' : 'l'; 2449 char IFunc = ' '; 2450 if (O.isELF()) { 2451 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2452 IFunc = 'i'; 2453 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2454 GlobLoc = 'u'; 2455 } 2456 2457 char Debug = ' '; 2458 if (DumpDynamic) 2459 Debug = 'D'; 2460 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2461 Debug = 'd'; 2462 2463 char FileFunc = ' '; 2464 if (Type == SymbolRef::ST_File) 2465 FileFunc = 'f'; 2466 else if (Type == SymbolRef::ST_Function) 2467 FileFunc = 'F'; 2468 else if (Type == SymbolRef::ST_Data) 2469 FileFunc = 'O'; 2470 2471 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2472 2473 outs() << format(Fmt, Address) << " " 2474 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2475 << (Weak ? 'w' : ' ') // Weak? 2476 << ' ' // Constructor. Not supported yet. 2477 << ' ' // Warning. Not supported yet. 2478 << IFunc // Indirect reference to another symbol. 2479 << Debug // Debugging (d) or dynamic (D) symbol. 2480 << FileFunc // Name of function (F), file (f) or object (O). 2481 << ' '; 2482 if (Absolute) { 2483 outs() << "*ABS*"; 2484 } else if (Common) { 2485 outs() << "*COM*"; 2486 } else if (Section == O.section_end()) { 2487 if (O.isXCOFF()) { 2488 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( 2489 Symbol.getRawDataRefImpl()); 2490 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2491 outs() << "*DEBUG*"; 2492 else 2493 outs() << "*UND*"; 2494 } else 2495 outs() << "*UND*"; 2496 } else { 2497 StringRef SegmentName = getSegmentName(MachO, *Section); 2498 if (!SegmentName.empty()) 2499 outs() << SegmentName << ","; 2500 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2501 outs() << SectionName; 2502 if (O.isXCOFF()) { 2503 std::optional<SymbolRef> SymRef = 2504 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); 2505 if (SymRef) { 2506 2507 Expected<StringRef> NameOrErr = SymRef->getName(); 2508 2509 if (NameOrErr) { 2510 outs() << " (csect:"; 2511 std::string SymName(NameOrErr.get()); 2512 2513 if (Demangle) 2514 SymName = demangle(SymName); 2515 2516 if (SymbolDescription) 2517 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), 2518 SymName); 2519 2520 outs() << ' ' << SymName; 2521 outs() << ") "; 2522 } else 2523 reportWarning(toString(NameOrErr.takeError()), FileName); 2524 } 2525 } 2526 } 2527 2528 if (Common) 2529 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2530 else if (O.isXCOFF()) 2531 outs() << '\t' 2532 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( 2533 Symbol.getRawDataRefImpl())); 2534 else if (O.isELF()) 2535 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2536 2537 if (O.isELF()) { 2538 if (!SymbolVersions.empty()) { 2539 const VersionEntry &Ver = 2540 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2541 std::string Str; 2542 if (!Ver.Name.empty()) 2543 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2544 outs() << ' ' << left_justify(Str, 12); 2545 } 2546 2547 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2548 switch (Other) { 2549 case ELF::STV_DEFAULT: 2550 break; 2551 case ELF::STV_INTERNAL: 2552 outs() << " .internal"; 2553 break; 2554 case ELF::STV_HIDDEN: 2555 outs() << " .hidden"; 2556 break; 2557 case ELF::STV_PROTECTED: 2558 outs() << " .protected"; 2559 break; 2560 default: 2561 outs() << format(" 0x%02x", Other); 2562 break; 2563 } 2564 } else if (Hidden) { 2565 outs() << " .hidden"; 2566 } 2567 2568 std::string SymName(Name); 2569 if (Demangle) 2570 SymName = demangle(SymName); 2571 2572 if (O.isXCOFF() && SymbolDescription) 2573 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2574 2575 outs() << ' ' << SymName << '\n'; 2576 } 2577 2578 static void printUnwindInfo(const ObjectFile *O) { 2579 outs() << "Unwind info:\n\n"; 2580 2581 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2582 printCOFFUnwindInfo(Coff); 2583 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2584 printMachOUnwindInfo(MachO); 2585 else 2586 // TODO: Extract DWARF dump tool to objdump. 2587 WithColor::error(errs(), ToolName) 2588 << "This operation is only currently supported " 2589 "for COFF and MachO object files.\n"; 2590 } 2591 2592 /// Dump the raw contents of the __clangast section so the output can be piped 2593 /// into llvm-bcanalyzer. 2594 static void printRawClangAST(const ObjectFile *Obj) { 2595 if (outs().is_displayed()) { 2596 WithColor::error(errs(), ToolName) 2597 << "The -raw-clang-ast option will dump the raw binary contents of " 2598 "the clang ast section.\n" 2599 "Please redirect the output to a file or another program such as " 2600 "llvm-bcanalyzer.\n"; 2601 return; 2602 } 2603 2604 StringRef ClangASTSectionName("__clangast"); 2605 if (Obj->isCOFF()) { 2606 ClangASTSectionName = "clangast"; 2607 } 2608 2609 std::optional<object::SectionRef> ClangASTSection; 2610 for (auto Sec : ToolSectionFilter(*Obj)) { 2611 StringRef Name; 2612 if (Expected<StringRef> NameOrErr = Sec.getName()) 2613 Name = *NameOrErr; 2614 else 2615 consumeError(NameOrErr.takeError()); 2616 2617 if (Name == ClangASTSectionName) { 2618 ClangASTSection = Sec; 2619 break; 2620 } 2621 } 2622 if (!ClangASTSection) 2623 return; 2624 2625 StringRef ClangASTContents = 2626 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); 2627 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2628 } 2629 2630 static void printFaultMaps(const ObjectFile *Obj) { 2631 StringRef FaultMapSectionName; 2632 2633 if (Obj->isELF()) { 2634 FaultMapSectionName = ".llvm_faultmaps"; 2635 } else if (Obj->isMachO()) { 2636 FaultMapSectionName = "__llvm_faultmaps"; 2637 } else { 2638 WithColor::error(errs(), ToolName) 2639 << "This operation is only currently supported " 2640 "for ELF and Mach-O executable files.\n"; 2641 return; 2642 } 2643 2644 std::optional<object::SectionRef> FaultMapSection; 2645 2646 for (auto Sec : ToolSectionFilter(*Obj)) { 2647 StringRef Name; 2648 if (Expected<StringRef> NameOrErr = Sec.getName()) 2649 Name = *NameOrErr; 2650 else 2651 consumeError(NameOrErr.takeError()); 2652 2653 if (Name == FaultMapSectionName) { 2654 FaultMapSection = Sec; 2655 break; 2656 } 2657 } 2658 2659 outs() << "FaultMap table:\n"; 2660 2661 if (!FaultMapSection) { 2662 outs() << "<not found>\n"; 2663 return; 2664 } 2665 2666 StringRef FaultMapContents = 2667 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); 2668 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2669 FaultMapContents.bytes_end()); 2670 2671 outs() << FMP; 2672 } 2673 2674 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2675 if (O->isELF()) { 2676 printELFFileHeader(O); 2677 printELFDynamicSection(O); 2678 printELFSymbolVersionInfo(O); 2679 return; 2680 } 2681 if (O->isCOFF()) 2682 return printCOFFFileHeader(cast<object::COFFObjectFile>(*O)); 2683 if (O->isWasm()) 2684 return printWasmFileHeader(O); 2685 if (O->isMachO()) { 2686 printMachOFileHeader(O); 2687 if (!OnlyFirst) 2688 printMachOLoadCommands(O); 2689 return; 2690 } 2691 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2692 } 2693 2694 static void printFileHeaders(const ObjectFile *O) { 2695 if (!O->isELF() && !O->isCOFF()) 2696 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2697 2698 Triple::ArchType AT = O->getArch(); 2699 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2700 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2701 2702 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2703 outs() << "start address: " 2704 << "0x" << format(Fmt.data(), Address) << "\n"; 2705 } 2706 2707 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2708 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2709 if (!ModeOrErr) { 2710 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2711 consumeError(ModeOrErr.takeError()); 2712 return; 2713 } 2714 sys::fs::perms Mode = ModeOrErr.get(); 2715 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2716 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2717 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2718 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2719 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2720 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2721 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2722 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2723 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2724 2725 outs() << " "; 2726 2727 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2728 unwrapOrError(C.getGID(), Filename), 2729 unwrapOrError(C.getRawSize(), Filename)); 2730 2731 StringRef RawLastModified = C.getRawLastModified(); 2732 unsigned Seconds; 2733 if (RawLastModified.getAsInteger(10, Seconds)) 2734 outs() << "(date: \"" << RawLastModified 2735 << "\" contains non-decimal chars) "; 2736 else { 2737 // Since ctime(3) returns a 26 character string of the form: 2738 // "Sun Sep 16 01:03:52 1973\n\0" 2739 // just print 24 characters. 2740 time_t t = Seconds; 2741 outs() << format("%.24s ", ctime(&t)); 2742 } 2743 2744 StringRef Name = ""; 2745 Expected<StringRef> NameOrErr = C.getName(); 2746 if (!NameOrErr) { 2747 consumeError(NameOrErr.takeError()); 2748 Name = unwrapOrError(C.getRawName(), Filename); 2749 } else { 2750 Name = NameOrErr.get(); 2751 } 2752 outs() << Name << "\n"; 2753 } 2754 2755 // For ELF only now. 2756 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2757 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2758 if (Elf->getEType() != ELF::ET_REL) 2759 return true; 2760 } 2761 return false; 2762 } 2763 2764 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2765 uint64_t Start, uint64_t Stop) { 2766 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2767 return; 2768 2769 for (const SectionRef &Section : Obj->sections()) 2770 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2771 uint64_t BaseAddr = Section.getAddress(); 2772 uint64_t Size = Section.getSize(); 2773 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2774 return; 2775 } 2776 2777 if (!HasStartAddressFlag) 2778 reportWarning("no section has address less than 0x" + 2779 Twine::utohexstr(Stop) + " specified by --stop-address", 2780 Obj->getFileName()); 2781 else if (!HasStopAddressFlag) 2782 reportWarning("no section has address greater than or equal to 0x" + 2783 Twine::utohexstr(Start) + " specified by --start-address", 2784 Obj->getFileName()); 2785 else 2786 reportWarning("no section overlaps the range [0x" + 2787 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2788 ") specified by --start-address/--stop-address", 2789 Obj->getFileName()); 2790 } 2791 2792 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2793 const Archive::Child *C = nullptr) { 2794 // Avoid other output when using a raw option. 2795 if (!RawClangAST) { 2796 outs() << '\n'; 2797 if (A) 2798 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2799 else 2800 outs() << O->getFileName(); 2801 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2802 } 2803 2804 if (HasStartAddressFlag || HasStopAddressFlag) 2805 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2806 2807 // Note: the order here matches GNU objdump for compatability. 2808 StringRef ArchiveName = A ? A->getFileName() : ""; 2809 if (ArchiveHeaders && !MachOOpt && C) 2810 printArchiveChild(ArchiveName, *C); 2811 if (FileHeaders) 2812 printFileHeaders(O); 2813 if (PrivateHeaders || FirstPrivateHeader) 2814 printPrivateFileHeaders(O, FirstPrivateHeader); 2815 if (SectionHeaders) 2816 printSectionHeaders(*O); 2817 if (SymbolTable) 2818 printSymbolTable(*O, ArchiveName); 2819 if (DynamicSymbolTable) 2820 printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"", 2821 /*DumpDynamic=*/true); 2822 if (DwarfDumpType != DIDT_Null) { 2823 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2824 // Dump the complete DWARF structure. 2825 DIDumpOptions DumpOpts; 2826 DumpOpts.DumpType = DwarfDumpType; 2827 DICtx->dump(outs(), DumpOpts); 2828 } 2829 if (Relocations && !Disassemble) 2830 printRelocations(O); 2831 if (DynamicRelocations) 2832 printDynamicRelocations(O); 2833 if (SectionContents) 2834 printSectionContents(O); 2835 if (Disassemble) 2836 disassembleObject(O, Relocations); 2837 if (UnwindInfo) 2838 printUnwindInfo(O); 2839 2840 // Mach-O specific options: 2841 if (ExportsTrie) 2842 printExportsTrie(O); 2843 if (Rebase) 2844 printRebaseTable(O); 2845 if (Bind) 2846 printBindTable(O); 2847 if (LazyBind) 2848 printLazyBindTable(O); 2849 if (WeakBind) 2850 printWeakBindTable(O); 2851 2852 // Other special sections: 2853 if (RawClangAST) 2854 printRawClangAST(O); 2855 if (FaultMapSection) 2856 printFaultMaps(O); 2857 if (Offloading) 2858 dumpOffloadBinary(*O); 2859 } 2860 2861 static void dumpObject(const COFFImportFile *I, const Archive *A, 2862 const Archive::Child *C = nullptr) { 2863 StringRef ArchiveName = A ? A->getFileName() : ""; 2864 2865 // Avoid other output when using a raw option. 2866 if (!RawClangAST) 2867 outs() << '\n' 2868 << ArchiveName << "(" << I->getFileName() << ")" 2869 << ":\tfile format COFF-import-file" 2870 << "\n\n"; 2871 2872 if (ArchiveHeaders && !MachOOpt && C) 2873 printArchiveChild(ArchiveName, *C); 2874 if (SymbolTable) 2875 printCOFFSymbolTable(*I); 2876 } 2877 2878 /// Dump each object file in \a a; 2879 static void dumpArchive(const Archive *A) { 2880 Error Err = Error::success(); 2881 unsigned I = -1; 2882 for (auto &C : A->children(Err)) { 2883 ++I; 2884 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2885 if (!ChildOrErr) { 2886 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2887 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2888 continue; 2889 } 2890 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2891 dumpObject(O, A, &C); 2892 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2893 dumpObject(I, A, &C); 2894 else 2895 reportError(errorCodeToError(object_error::invalid_file_type), 2896 A->getFileName()); 2897 } 2898 if (Err) 2899 reportError(std::move(Err), A->getFileName()); 2900 } 2901 2902 /// Open file and figure out how to dump it. 2903 static void dumpInput(StringRef file) { 2904 // If we are using the Mach-O specific object file parser, then let it parse 2905 // the file and process the command line options. So the -arch flags can 2906 // be used to select specific slices, etc. 2907 if (MachOOpt) { 2908 parseInputMachO(file); 2909 return; 2910 } 2911 2912 // Attempt to open the binary. 2913 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2914 Binary &Binary = *OBinary.getBinary(); 2915 2916 if (Archive *A = dyn_cast<Archive>(&Binary)) 2917 dumpArchive(A); 2918 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2919 dumpObject(O); 2920 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2921 parseInputMachO(UB); 2922 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) 2923 dumpOffloadSections(*OB); 2924 else 2925 reportError(errorCodeToError(object_error::invalid_file_type), file); 2926 } 2927 2928 template <typename T> 2929 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 2930 T &Value) { 2931 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 2932 StringRef V(A->getValue()); 2933 if (!llvm::to_integer(V, Value, 0)) { 2934 reportCmdLineError(A->getSpelling() + 2935 ": expected a non-negative integer, but got '" + V + 2936 "'"); 2937 } 2938 } 2939 } 2940 2941 static object::BuildID parseBuildIDArg(const opt::Arg *A) { 2942 StringRef V(A->getValue()); 2943 object::BuildID BID = parseBuildID(V); 2944 if (BID.empty()) 2945 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + 2946 V + "'"); 2947 return BID; 2948 } 2949 2950 void objdump::invalidArgValue(const opt::Arg *A) { 2951 reportCmdLineError("'" + StringRef(A->getValue()) + 2952 "' is not a valid value for '" + A->getSpelling() + "'"); 2953 } 2954 2955 static std::vector<std::string> 2956 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 2957 std::vector<std::string> Values; 2958 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 2959 llvm::SmallVector<StringRef, 2> SplitValues; 2960 llvm::SplitString(Value, SplitValues, ","); 2961 for (StringRef SplitValue : SplitValues) 2962 Values.push_back(SplitValue.str()); 2963 } 2964 return Values; 2965 } 2966 2967 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 2968 MachOOpt = true; 2969 FullLeadingAddr = true; 2970 PrintImmHex = true; 2971 2972 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 2973 LinkOptHints = InputArgs.hasArg(OTOOL_C); 2974 if (InputArgs.hasArg(OTOOL_d)) 2975 FilterSections.push_back("__DATA,__data"); 2976 DylibId = InputArgs.hasArg(OTOOL_D); 2977 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 2978 DataInCode = InputArgs.hasArg(OTOOL_G); 2979 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 2980 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 2981 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 2982 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 2983 DylibsUsed = InputArgs.hasArg(OTOOL_L); 2984 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 2985 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 2986 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 2987 InfoPlist = InputArgs.hasArg(OTOOL_P); 2988 Relocations = InputArgs.hasArg(OTOOL_r); 2989 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 2990 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 2991 FilterSections.push_back(Filter); 2992 } 2993 if (InputArgs.hasArg(OTOOL_t)) 2994 FilterSections.push_back("__TEXT,__text"); 2995 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 2996 InputArgs.hasArg(OTOOL_o); 2997 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 2998 if (InputArgs.hasArg(OTOOL_x)) 2999 FilterSections.push_back(",__text"); 3000 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 3001 3002 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); 3003 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); 3004 3005 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 3006 if (InputFilenames.empty()) 3007 reportCmdLineError("no input file"); 3008 3009 for (const Arg *A : InputArgs) { 3010 const Option &O = A->getOption(); 3011 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 3012 reportCmdLineWarning(O.getPrefixedName() + 3013 " is obsolete and not implemented"); 3014 } 3015 } 3016 } 3017 3018 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 3019 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 3020 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 3021 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 3022 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 3023 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 3024 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 3025 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 3026 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 3027 DisassembleSymbols = 3028 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 3029 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 3030 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 3031 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 3032 .Case("frames", DIDT_DebugFrame) 3033 .Default(DIDT_Null); 3034 if (DwarfDumpType == DIDT_Null) 3035 invalidArgValue(A); 3036 } 3037 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 3038 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 3039 Offloading = InputArgs.hasArg(OBJDUMP_offloading); 3040 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 3041 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 3042 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 3043 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 3044 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 3045 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 3046 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 3047 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 3048 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 3049 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 3050 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 3051 PrintImmHex = 3052 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); 3053 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 3054 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 3055 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 3056 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); 3057 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 3058 PrintSource = InputArgs.hasArg(OBJDUMP_source); 3059 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 3060 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 3061 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 3062 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 3063 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 3064 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 3065 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 3066 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 3067 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 3068 Wide = InputArgs.hasArg(OBJDUMP_wide); 3069 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 3070 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 3071 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 3072 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 3073 .Case("ascii", DVASCII) 3074 .Case("unicode", DVUnicode) 3075 .Default(DVInvalid); 3076 if (DbgVariables == DVInvalid) 3077 invalidArgValue(A); 3078 } 3079 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 3080 3081 parseMachOOptions(InputArgs); 3082 3083 // Parse -M (--disassembler-options) and deprecated 3084 // --x86-asm-syntax={att,intel}. 3085 // 3086 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 3087 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 3088 // called too late. For now we have to use the internal cl::opt option. 3089 const char *AsmSyntax = nullptr; 3090 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 3091 OBJDUMP_x86_asm_syntax_att, 3092 OBJDUMP_x86_asm_syntax_intel)) { 3093 switch (A->getOption().getID()) { 3094 case OBJDUMP_x86_asm_syntax_att: 3095 AsmSyntax = "--x86-asm-syntax=att"; 3096 continue; 3097 case OBJDUMP_x86_asm_syntax_intel: 3098 AsmSyntax = "--x86-asm-syntax=intel"; 3099 continue; 3100 } 3101 3102 SmallVector<StringRef, 2> Values; 3103 llvm::SplitString(A->getValue(), Values, ","); 3104 for (StringRef V : Values) { 3105 if (V == "att") 3106 AsmSyntax = "--x86-asm-syntax=att"; 3107 else if (V == "intel") 3108 AsmSyntax = "--x86-asm-syntax=intel"; 3109 else 3110 DisassemblerOptions.push_back(V.str()); 3111 } 3112 } 3113 if (AsmSyntax) { 3114 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 3115 llvm::cl::ParseCommandLineOptions(2, Argv); 3116 } 3117 3118 // Look up any provided build IDs, then append them to the input filenames. 3119 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { 3120 object::BuildID BuildID = parseBuildIDArg(A); 3121 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 3122 if (!Path) { 3123 reportCmdLineError(A->getSpelling() + ": could not find build ID '" + 3124 A->getValue() + "'"); 3125 } 3126 InputFilenames.push_back(std::move(*Path)); 3127 } 3128 3129 // objdump defaults to a.out if no filenames specified. 3130 if (InputFilenames.empty()) 3131 InputFilenames.push_back("a.out"); 3132 } 3133 3134 int main(int argc, char **argv) { 3135 using namespace llvm; 3136 InitLLVM X(argc, argv); 3137 3138 ToolName = argv[0]; 3139 std::unique_ptr<CommonOptTable> T; 3140 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 3141 3142 StringRef Stem = sys::path::stem(ToolName); 3143 auto Is = [=](StringRef Tool) { 3144 // We need to recognize the following filenames: 3145 // 3146 // llvm-objdump -> objdump 3147 // llvm-otool-10.exe -> otool 3148 // powerpc64-unknown-freebsd13-objdump -> objdump 3149 auto I = Stem.rfind_insensitive(Tool); 3150 return I != StringRef::npos && 3151 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 3152 }; 3153 if (Is("otool")) { 3154 T = std::make_unique<OtoolOptTable>(); 3155 Unknown = OTOOL_UNKNOWN; 3156 HelpFlag = OTOOL_help; 3157 HelpHiddenFlag = OTOOL_help_hidden; 3158 VersionFlag = OTOOL_version; 3159 } else { 3160 T = std::make_unique<ObjdumpOptTable>(); 3161 Unknown = OBJDUMP_UNKNOWN; 3162 HelpFlag = OBJDUMP_help; 3163 HelpHiddenFlag = OBJDUMP_help_hidden; 3164 VersionFlag = OBJDUMP_version; 3165 } 3166 3167 BumpPtrAllocator A; 3168 StringSaver Saver(A); 3169 opt::InputArgList InputArgs = 3170 T->parseArgs(argc, argv, Unknown, Saver, 3171 [&](StringRef Msg) { reportCmdLineError(Msg); }); 3172 3173 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 3174 T->printHelp(ToolName); 3175 return 0; 3176 } 3177 if (InputArgs.hasArg(HelpHiddenFlag)) { 3178 T->printHelp(ToolName, /*ShowHidden=*/true); 3179 return 0; 3180 } 3181 3182 // Initialize targets and assembly printers/parsers. 3183 InitializeAllTargetInfos(); 3184 InitializeAllTargetMCs(); 3185 InitializeAllDisassemblers(); 3186 3187 if (InputArgs.hasArg(VersionFlag)) { 3188 cl::PrintVersionMessage(); 3189 if (!Is("otool")) { 3190 outs() << '\n'; 3191 TargetRegistry::printRegisteredTargetsForVersion(outs()); 3192 } 3193 return 0; 3194 } 3195 3196 // Initialize debuginfod. 3197 const bool ShouldUseDebuginfodByDefault = 3198 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); 3199 std::vector<std::string> DebugFileDirectories = 3200 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); 3201 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, 3202 ShouldUseDebuginfodByDefault)) { 3203 HTTPClient::initialize(); 3204 BIDFetcher = 3205 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); 3206 } else { 3207 BIDFetcher = 3208 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); 3209 } 3210 3211 if (Is("otool")) 3212 parseOtoolOptions(InputArgs); 3213 else 3214 parseObjdumpOptions(InputArgs); 3215 3216 if (StartAddress >= StopAddress) 3217 reportCmdLineError("start address should be less than stop address"); 3218 3219 // Removes trailing separators from prefix. 3220 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 3221 Prefix.pop_back(); 3222 3223 if (AllHeaders) 3224 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 3225 SectionHeaders = SymbolTable = true; 3226 3227 if (DisassembleAll || PrintSource || PrintLines || 3228 !DisassembleSymbols.empty()) 3229 Disassemble = true; 3230 3231 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 3232 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 3233 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 3234 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && 3235 !(MachOOpt && 3236 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || 3237 DylibsUsed || ExportsTrie || FirstPrivateHeader || 3238 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || 3239 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || 3240 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { 3241 T->printHelp(ToolName); 3242 return 2; 3243 } 3244 3245 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 3246 3247 llvm::for_each(InputFilenames, dumpInput); 3248 3249 warnOnNoMatchForSections(); 3250 3251 return EXIT_SUCCESS; 3252 } 3253