xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 9d812f44994231772508d12cd56685d26917dab6)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringSet.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/Demangle/Demangle.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/MachOUniversal.h"
45 #include "llvm/Object/ObjectFile.h"
46 #include "llvm/Object/Wasm.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Errc.h"
51 #include "llvm/Support/FileSystem.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/Host.h"
55 #include "llvm/Support/InitLLVM.h"
56 #include "llvm/Support/MemoryBuffer.h"
57 #include "llvm/Support/SourceMgr.h"
58 #include "llvm/Support/StringSaver.h"
59 #include "llvm/Support/TargetRegistry.h"
60 #include "llvm/Support/TargetSelect.h"
61 #include "llvm/Support/WithColor.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cctype>
65 #include <cstring>
66 #include <system_error>
67 #include <unordered_map>
68 #include <utility>
69 
70 using namespace llvm;
71 using namespace object;
72 
73 namespace llvm {
74 
75 // MachO specific
76 extern cl::opt<bool> Bind;
77 extern cl::opt<bool> DataInCode;
78 extern cl::opt<bool> DylibsUsed;
79 extern cl::opt<bool> DylibId;
80 extern cl::opt<bool> ExportsTrie;
81 extern cl::opt<bool> FirstPrivateHeader;
82 extern cl::opt<bool> IndirectSymbols;
83 extern cl::opt<bool> InfoPlist;
84 extern cl::opt<bool> LazyBind;
85 extern cl::opt<bool> LinkOptHints;
86 extern cl::opt<bool> ObjcMetaData;
87 extern cl::opt<bool> Rebase;
88 extern cl::opt<bool> UniversalHeaders;
89 extern cl::opt<bool> WeakBind;
90 
91 static cl::opt<unsigned long long> AdjustVMA(
92     "adjust-vma",
93     cl::desc("Increase the displayed address by the specified offset"),
94     cl::value_desc("offset"), cl::init(0));
95 
96 static cl::opt<bool>
97     AllHeaders("all-headers",
98                cl::desc("Display all available header information"));
99 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
100                                  cl::NotHidden, cl::Grouping,
101                                  cl::aliasopt(AllHeaders));
102 
103 static cl::opt<std::string>
104     ArchName("arch-name", cl::desc("Target arch to disassemble for, "
105                                    "see -version for available targets"));
106 
107 cl::opt<bool> ArchiveHeaders("archive-headers",
108                              cl::desc("Display archive header information"));
109 static cl::alias ArchiveHeadersShort("a",
110                                      cl::desc("Alias for --archive-headers"),
111                                      cl::NotHidden, cl::Grouping,
112                                      cl::aliasopt(ArchiveHeaders));
113 
114 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
115                        cl::init(false));
116 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
117                                cl::NotHidden, cl::Grouping,
118                                cl::aliasopt(Demangle));
119 
120 cl::opt<bool> Disassemble(
121     "disassemble",
122     cl::desc("Display assembler mnemonics for the machine instructions"));
123 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
124                                   cl::NotHidden, cl::Grouping,
125                                   cl::aliasopt(Disassemble));
126 
127 cl::opt<bool> DisassembleAll(
128     "disassemble-all",
129     cl::desc("Display assembler mnemonics for the machine instructions"));
130 static cl::alias DisassembleAllShort("D",
131                                      cl::desc("Alias for --disassemble-all"),
132                                      cl::NotHidden, cl::Grouping,
133                                      cl::aliasopt(DisassembleAll));
134 
135 static cl::list<std::string>
136 DisassembleFunctions("disassemble-functions",
137                      cl::CommaSeparated,
138                      cl::desc("List of functions to disassemble"));
139 
140 static cl::opt<bool> DisassembleZeroes(
141     "disassemble-zeroes",
142     cl::desc("Do not skip blocks of zeroes when disassembling"));
143 static cl::alias
144     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
145                            cl::NotHidden, cl::Grouping,
146                            cl::aliasopt(DisassembleZeroes));
147 
148 static cl::list<std::string>
149     DisassemblerOptions("disassembler-options",
150                         cl::desc("Pass target specific disassembler options"),
151                         cl::value_desc("options"), cl::CommaSeparated);
152 static cl::alias
153     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
154                              cl::NotHidden, cl::Grouping, cl::Prefix,
155                              cl::CommaSeparated,
156                              cl::aliasopt(DisassemblerOptions));
157 
158 cl::opt<DIDumpType> DwarfDumpType(
159     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
160     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
161 
162 static cl::opt<bool> DynamicRelocations(
163     "dynamic-reloc",
164     cl::desc("Display the dynamic relocation entries in the file"));
165 static cl::alias DynamicRelocationShort("R",
166                                         cl::desc("Alias for --dynamic-reloc"),
167                                         cl::NotHidden, cl::Grouping,
168                                         cl::aliasopt(DynamicRelocations));
169 
170 static cl::opt<bool>
171     FaultMapSection("fault-map-section",
172                    cl::desc("Display contents of faultmap section"));
173 
174 static cl::opt<bool>
175     FileHeaders("file-headers",
176                 cl::desc("Display the contents of the overall file header"));
177 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
178                                   cl::NotHidden, cl::Grouping,
179                                   cl::aliasopt(FileHeaders));
180 
181 cl::opt<bool> SectionContents("full-contents",
182                               cl::desc("Display the content of each section"));
183 static cl::alias SectionContentsShort("s",
184                                       cl::desc("Alias for --full-contents"),
185                                       cl::NotHidden, cl::Grouping,
186                                       cl::aliasopt(SectionContents));
187 
188 static cl::list<std::string>
189 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
190 
191 static cl::opt<bool>
192     PrintLines("line-numbers",
193                cl::desc("Display source line numbers with "
194                         "disassembly. Implies disassemble object"));
195 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
196                                  cl::NotHidden, cl::Grouping,
197                                  cl::aliasopt(PrintLines));
198 
199 static cl::opt<bool>
200 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
201 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
202                         cl::Grouping, cl::aliasopt(MachOOpt));
203 
204 cl::opt<std::string>
205     MCPU("mcpu",
206          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
207          cl::value_desc("cpu-name"), cl::init(""));
208 
209 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
210                              cl::desc("Target specific attributes"),
211                              cl::value_desc("a1,+a2,-a3,..."));
212 
213 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
214                             cl::desc("When disassembling "
215                                      "instructions, do not print "
216                                      "the instruction bytes."));
217 cl::opt<bool> NoLeadingAddr("no-leading-addr",
218                                    cl::desc("Print no leading address"));
219 
220 static cl::opt<bool> RawClangAST(
221     "raw-clang-ast",
222     cl::desc("Dump the raw binary contents of the clang AST section"));
223 
224 cl::opt<bool>
225     Relocations("reloc",
226                 cl::desc("Display the relocation entries in the file"));
227 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
228                                   cl::NotHidden, cl::Grouping,
229                                   cl::aliasopt(Relocations));
230 
231 cl::opt<bool>
232     PrintImmHex("print-imm-hex",
233                 cl::desc("Use hex format for immediate values"));
234 
235 cl::opt<bool>
236     PrivateHeaders("private-headers",
237                    cl::desc("Display format specific file headers"));
238 static cl::alias PrivateHeadersShort("p",
239                                      cl::desc("Alias for --private-headers"),
240                                      cl::NotHidden, cl::Grouping,
241                                      cl::aliasopt(PrivateHeaders));
242 
243 cl::list<std::string>
244     FilterSections("section",
245                    cl::desc("Operate on the specified sections only. "
246                             "With -macho dump segment,section"));
247 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
248                                  cl::NotHidden, cl::Grouping, cl::Prefix,
249                                  cl::aliasopt(FilterSections));
250 
251 cl::opt<bool> SectionHeaders("section-headers",
252                              cl::desc("Display summaries of the "
253                                       "headers for each section."));
254 static cl::alias SectionHeadersShort("headers",
255                                      cl::desc("Alias for --section-headers"),
256                                      cl::NotHidden,
257                                      cl::aliasopt(SectionHeaders));
258 static cl::alias SectionHeadersShorter("h",
259                                        cl::desc("Alias for --section-headers"),
260                                        cl::NotHidden, cl::Grouping,
261                                        cl::aliasopt(SectionHeaders));
262 
263 static cl::opt<bool>
264     ShowLMA("show-lma",
265             cl::desc("Display LMA column when dumping ELF section headers"));
266 
267 static cl::opt<bool> PrintSource(
268     "source",
269     cl::desc(
270         "Display source inlined with disassembly. Implies disassemble object"));
271 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
272                                   cl::NotHidden, cl::Grouping,
273                                   cl::aliasopt(PrintSource));
274 
275 static cl::opt<unsigned long long>
276     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
277                  cl::value_desc("address"), cl::init(0));
278 static cl::opt<unsigned long long>
279     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
280                 cl::value_desc("address"), cl::init(UINT64_MAX));
281 
282 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"));
283 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
284                                   cl::NotHidden, cl::Grouping,
285                                   cl::aliasopt(SymbolTable));
286 
287 cl::opt<std::string> TripleName("triple",
288                                 cl::desc("Target triple to disassemble for, "
289                                          "see -version for available targets"));
290 
291 cl::opt<bool> UnwindInfo("unwind-info",
292                                 cl::desc("Display unwind information"));
293 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
294                                  cl::NotHidden, cl::Grouping,
295                                  cl::aliasopt(UnwindInfo));
296 
297 
298 static cl::opt<bool>
299     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"));
300 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
301 } // namespace llvm
302 
303 static StringSet<> DisasmFuncsSet;
304 static StringRef ToolName;
305 
306 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
307 
308 SectionFilter llvm::ToolSectionFilter(llvm::object::ObjectFile const &O) {
309   return SectionFilter(
310       [](llvm::object::SectionRef const &S) {
311         if (FilterSections.empty())
312           return true;
313         llvm::StringRef String;
314         std::error_code error = S.getName(String);
315         if (error)
316           return false;
317         return is_contained(FilterSections, String);
318       },
319       O);
320 }
321 
322 void llvm::error(std::error_code EC) {
323   if (!EC)
324     return;
325   WithColor::error(errs(), ToolName)
326       << "reading file: " << EC.message() << ".\n";
327   errs().flush();
328   exit(1);
329 }
330 
331 void llvm::error(Error E) {
332   if (!E)
333     return;
334   WithColor::error(errs(), ToolName) << toString(std::move(E));
335   exit(1);
336 }
337 
338 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
339   WithColor::error(errs(), ToolName) << Message << ".\n";
340   errs().flush();
341   exit(1);
342 }
343 
344 void llvm::warn(StringRef Message) {
345   WithColor::warning(errs(), ToolName) << Message << ".\n";
346   errs().flush();
347 }
348 
349 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
350                                                 Twine Message) {
351   WithColor::error(errs(), ToolName)
352       << "'" << File << "': " << Message << ".\n";
353   exit(1);
354 }
355 
356 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(Error E, StringRef File) {
357   assert(E);
358   std::string Buf;
359   raw_string_ostream OS(Buf);
360   logAllUnhandledErrors(std::move(E), OS);
361   OS.flush();
362   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
363   exit(1);
364 }
365 
366 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(Error E, StringRef ArchiveName,
367                                                 StringRef FileName,
368                                                 StringRef ArchitectureName) {
369   assert(E);
370   WithColor::error(errs(), ToolName);
371   if (ArchiveName != "")
372     errs() << ArchiveName << "(" << FileName << ")";
373   else
374     errs() << "'" << FileName << "'";
375   if (!ArchitectureName.empty())
376     errs() << " (for architecture " << ArchitectureName << ")";
377   std::string Buf;
378   raw_string_ostream OS(Buf);
379   logAllUnhandledErrors(std::move(E), OS);
380   OS.flush();
381   errs() << ": " << Buf;
382   exit(1);
383 }
384 
385 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(Error E, StringRef ArchiveName,
386                                                 const object::Archive::Child &C,
387                                                 StringRef ArchitectureName) {
388   Expected<StringRef> NameOrErr = C.getName();
389   // TODO: if we have a error getting the name then it would be nice to print
390   // the index of which archive member this is and or its offset in the
391   // archive instead of "???" as the name.
392   if (!NameOrErr) {
393     consumeError(NameOrErr.takeError());
394     llvm::report_error(std::move(E), ArchiveName, "???", ArchitectureName);
395   } else
396     llvm::report_error(std::move(E), ArchiveName, NameOrErr.get(),
397                        ArchitectureName);
398 }
399 
400 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
401   // Figure out the target triple.
402   llvm::Triple TheTriple("unknown-unknown-unknown");
403   if (TripleName.empty()) {
404     if (Obj)
405       TheTriple = Obj->makeTriple();
406   } else {
407     TheTriple.setTriple(Triple::normalize(TripleName));
408 
409     // Use the triple, but also try to combine with ARM build attributes.
410     if (Obj) {
411       auto Arch = Obj->getArch();
412       if (Arch == Triple::arm || Arch == Triple::armeb)
413         Obj->setARMSubArch(TheTriple);
414     }
415   }
416 
417   // Get the target specific parser.
418   std::string Error;
419   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
420                                                          Error);
421   if (!TheTarget) {
422     if (Obj)
423       report_error(Obj->getFileName(), "can't find target: " + Error);
424     else
425       error("can't find target: " + Error);
426   }
427 
428   // Update the triple name and return the found target.
429   TripleName = TheTriple.getTriple();
430   return TheTarget;
431 }
432 
433 bool llvm::isRelocAddressLess(RelocationRef A, RelocationRef B) {
434   return A.getOffset() < B.getOffset();
435 }
436 
437 static Error getRelocationValueString(const RelocationRef &Rel,
438                                       SmallVectorImpl<char> &Result) {
439   const ObjectFile *Obj = Rel.getObject();
440   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
441     return getELFRelocationValueString(ELF, Rel, Result);
442   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
443     return getCOFFRelocationValueString(COFF, Rel, Result);
444   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
445     return getWasmRelocationValueString(Wasm, Rel, Result);
446   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
447     return getMachORelocationValueString(MachO, Rel, Result);
448   llvm_unreachable("unknown object file format");
449 }
450 
451 /// Indicates whether this relocation should hidden when listing
452 /// relocations, usually because it is the trailing part of a multipart
453 /// relocation that will be printed as part of the leading relocation.
454 static bool getHidden(RelocationRef RelRef) {
455   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
456   if (!MachO)
457     return false;
458 
459   unsigned Arch = MachO->getArch();
460   DataRefImpl Rel = RelRef.getRawDataRefImpl();
461   uint64_t Type = MachO->getRelocationType(Rel);
462 
463   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
464   // is always hidden.
465   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
466     return Type == MachO::GENERIC_RELOC_PAIR;
467 
468   if (Arch == Triple::x86_64) {
469     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
470     // an X86_64_RELOC_SUBTRACTOR.
471     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
472       DataRefImpl RelPrev = Rel;
473       RelPrev.d.a--;
474       uint64_t PrevType = MachO->getRelocationType(RelPrev);
475       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
476         return true;
477     }
478   }
479 
480   return false;
481 }
482 
483 namespace {
484 class SourcePrinter {
485 protected:
486   DILineInfo OldLineInfo;
487   const ObjectFile *Obj = nullptr;
488   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
489   // File name to file contents of source
490   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
491   // Mark the line endings of the cached source
492   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
493 
494 private:
495   bool cacheSource(const DILineInfo& LineInfoFile);
496 
497 public:
498   SourcePrinter() = default;
499   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
500     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
501         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
502         DefaultArch);
503     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
504   }
505   virtual ~SourcePrinter() = default;
506   virtual void printSourceLine(raw_ostream &OS,
507                                object::SectionedAddress Address,
508                                StringRef Delimiter = "; ");
509 };
510 
511 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
512   std::unique_ptr<MemoryBuffer> Buffer;
513   if (LineInfo.Source) {
514     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
515   } else {
516     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
517     if (!BufferOrError)
518       return false;
519     Buffer = std::move(*BufferOrError);
520   }
521   // Chomp the file to get lines
522   const char *BufferStart = Buffer->getBufferStart(),
523              *BufferEnd = Buffer->getBufferEnd();
524   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
525   const char *Start = BufferStart;
526   for (const char *I = BufferStart; I != BufferEnd; ++I)
527     if (*I == '\n') {
528       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
529       Start = I + 1;
530     }
531   if (Start < BufferEnd)
532     Lines.emplace_back(Start, BufferEnd - Start);
533   SourceCache[LineInfo.FileName] = std::move(Buffer);
534   return true;
535 }
536 
537 void SourcePrinter::printSourceLine(raw_ostream &OS,
538                                     object::SectionedAddress Address,
539                                     StringRef Delimiter) {
540   if (!Symbolizer)
541     return;
542   DILineInfo LineInfo = DILineInfo();
543   auto ExpectedLineInfo =
544       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
545   if (!ExpectedLineInfo)
546     consumeError(ExpectedLineInfo.takeError());
547   else
548     LineInfo = *ExpectedLineInfo;
549 
550   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
551       LineInfo.Line == 0)
552     return;
553 
554   if (PrintLines)
555     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
556   if (PrintSource) {
557     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
558       if (!cacheSource(LineInfo))
559         return;
560     auto LineBuffer = LineCache.find(LineInfo.FileName);
561     if (LineBuffer != LineCache.end()) {
562       if (LineInfo.Line > LineBuffer->second.size())
563         return;
564       // Vector begins at 0, line numbers are non-zero
565       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
566     }
567   }
568   OldLineInfo = LineInfo;
569 }
570 
571 static bool isArmElf(const ObjectFile *Obj) {
572   return (Obj->isELF() &&
573           (Obj->getArch() == Triple::aarch64 ||
574            Obj->getArch() == Triple::aarch64_be ||
575            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
576            Obj->getArch() == Triple::thumb ||
577            Obj->getArch() == Triple::thumbeb));
578 }
579 
580 static void printRelocation(const RelocationRef &Rel, uint64_t Address,
581                             uint8_t AddrSize) {
582   StringRef Fmt =
583       AddrSize > 4 ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
584   SmallString<16> Name;
585   SmallString<32> Val;
586   Rel.getTypeName(Name);
587   error(getRelocationValueString(Rel, Val));
588   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
589 }
590 
591 class PrettyPrinter {
592 public:
593   virtual ~PrettyPrinter() = default;
594   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
595                          ArrayRef<uint8_t> Bytes,
596                          object::SectionedAddress Address, raw_ostream &OS,
597                          StringRef Annot, MCSubtargetInfo const &STI,
598                          SourcePrinter *SP,
599                          std::vector<RelocationRef> *Rels = nullptr) {
600     if (SP && (PrintSource || PrintLines))
601       SP->printSourceLine(OS, Address);
602 
603     {
604       formatted_raw_ostream FOS(OS);
605       if (!NoLeadingAddr)
606         FOS << format("%8" PRIx64 ":", Address.Address);
607       if (!NoShowRawInsn) {
608         FOS << ' ';
609         dumpBytes(Bytes, FOS);
610       }
611       FOS.flush();
612       // The output of printInst starts with a tab. Print some spaces so that
613       // the tab has 1 column and advances to the target tab stop.
614       unsigned TabStop = NoShowRawInsn ? 16 : 40;
615       unsigned Column = FOS.getColumn();
616       FOS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
617 
618       // The dtor calls flush() to ensure the indent comes before printInst().
619     }
620 
621     if (MI)
622       IP.printInst(MI, OS, "", STI);
623     else
624       OS << "\t<unknown>";
625   }
626 };
627 PrettyPrinter PrettyPrinterInst;
628 class HexagonPrettyPrinter : public PrettyPrinter {
629 public:
630   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
631                  raw_ostream &OS) {
632     uint32_t opcode =
633       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
634     if (!NoLeadingAddr)
635       OS << format("%8" PRIx64 ":", Address);
636     if (!NoShowRawInsn) {
637       OS << "\t";
638       dumpBytes(Bytes.slice(0, 4), OS);
639       OS << format("\t%08" PRIx32, opcode);
640     }
641   }
642   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
643                  object::SectionedAddress Address, raw_ostream &OS,
644                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
645                  std::vector<RelocationRef> *Rels) override {
646     if (SP && (PrintSource || PrintLines))
647       SP->printSourceLine(OS, Address, "");
648     if (!MI) {
649       printLead(Bytes, Address.Address, OS);
650       OS << " <unknown>";
651       return;
652     }
653     std::string Buffer;
654     {
655       raw_string_ostream TempStream(Buffer);
656       IP.printInst(MI, TempStream, "", STI);
657     }
658     StringRef Contents(Buffer);
659     // Split off bundle attributes
660     auto PacketBundle = Contents.rsplit('\n');
661     // Split off first instruction from the rest
662     auto HeadTail = PacketBundle.first.split('\n');
663     auto Preamble = " { ";
664     auto Separator = "";
665 
666     // Hexagon's packets require relocations to be inline rather than
667     // clustered at the end of the packet.
668     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
669     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
670     auto PrintReloc = [&]() -> void {
671       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
672         if (RelCur->getOffset() == Address.Address) {
673           printRelocation(*RelCur, Address.Address, 4);
674           return;
675         }
676         ++RelCur;
677       }
678     };
679 
680     while (!HeadTail.first.empty()) {
681       OS << Separator;
682       Separator = "\n";
683       if (SP && (PrintSource || PrintLines))
684         SP->printSourceLine(OS, Address, "");
685       printLead(Bytes, Address.Address, OS);
686       OS << Preamble;
687       Preamble = "   ";
688       StringRef Inst;
689       auto Duplex = HeadTail.first.split('\v');
690       if (!Duplex.second.empty()) {
691         OS << Duplex.first;
692         OS << "; ";
693         Inst = Duplex.second;
694       }
695       else
696         Inst = HeadTail.first;
697       OS << Inst;
698       HeadTail = HeadTail.second.split('\n');
699       if (HeadTail.first.empty())
700         OS << " } " << PacketBundle.second;
701       PrintReloc();
702       Bytes = Bytes.slice(4);
703       Address.Address += 4;
704     }
705   }
706 };
707 HexagonPrettyPrinter HexagonPrettyPrinterInst;
708 
709 class AMDGCNPrettyPrinter : public PrettyPrinter {
710 public:
711   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
712                  object::SectionedAddress Address, raw_ostream &OS,
713                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
714                  std::vector<RelocationRef> *Rels) override {
715     if (SP && (PrintSource || PrintLines))
716       SP->printSourceLine(OS, Address);
717 
718     typedef support::ulittle32_t U32;
719 
720     if (MI) {
721       SmallString<40> InstStr;
722       raw_svector_ostream IS(InstStr);
723 
724       IP.printInst(MI, IS, "", STI);
725 
726       OS << left_justify(IS.str(), 60);
727     } else {
728       // an unrecognized encoding - this is probably data so represent it
729       // using the .long directive, or .byte directive if fewer than 4 bytes
730       // remaining
731       if (Bytes.size() >= 4) {
732         OS << format("\t.long 0x%08" PRIx32 " ",
733                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
734         OS.indent(42);
735       } else {
736           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
737           for (unsigned int i = 1; i < Bytes.size(); i++)
738             OS << format(", 0x%02" PRIx8, Bytes[i]);
739           OS.indent(55 - (6 * Bytes.size()));
740       }
741     }
742 
743     OS << format("// %012" PRIX64 ": ", Address.Address);
744     if (Bytes.size() >=4) {
745       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
746                                  Bytes.size() / sizeof(U32)))
747         // D should be explicitly casted to uint32_t here as it is passed
748         // by format to snprintf as vararg.
749         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
750     } else {
751       for (unsigned int i = 0; i < Bytes.size(); i++)
752         OS << format("%02" PRIX8 " ", Bytes[i]);
753     }
754 
755     if (!Annot.empty())
756       OS << "// " << Annot;
757   }
758 };
759 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
760 
761 class BPFPrettyPrinter : public PrettyPrinter {
762 public:
763   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
764                  object::SectionedAddress Address, raw_ostream &OS,
765                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
766                  std::vector<RelocationRef> *Rels) override {
767     if (SP && (PrintSource || PrintLines))
768       SP->printSourceLine(OS, Address);
769     if (!NoLeadingAddr)
770       OS << format("%8" PRId64 ":", Address.Address / 8);
771     if (!NoShowRawInsn) {
772       OS << "\t";
773       dumpBytes(Bytes, OS);
774     }
775     if (MI)
776       IP.printInst(MI, OS, "", STI);
777     else
778       OS << "\t<unknown>";
779   }
780 };
781 BPFPrettyPrinter BPFPrettyPrinterInst;
782 
783 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
784   switch(Triple.getArch()) {
785   default:
786     return PrettyPrinterInst;
787   case Triple::hexagon:
788     return HexagonPrettyPrinterInst;
789   case Triple::amdgcn:
790     return AMDGCNPrettyPrinterInst;
791   case Triple::bpfel:
792   case Triple::bpfeb:
793     return BPFPrettyPrinterInst;
794   }
795 }
796 }
797 
798 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
799   assert(Obj->isELF());
800   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
801     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
802   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
803     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
804   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
805     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
806   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
807     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
808   llvm_unreachable("Unsupported binary format");
809 }
810 
811 template <class ELFT> static void
812 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
813                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
814   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
815     uint8_t SymbolType = Symbol.getELFType();
816     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
817       continue;
818 
819     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
820     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
821     if (Name.empty())
822       continue;
823 
824     section_iterator SecI =
825         unwrapOrError(Symbol.getSection(), Obj->getFileName());
826     if (SecI == Obj->section_end())
827       continue;
828 
829     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
830   }
831 }
832 
833 static void
834 addDynamicElfSymbols(const ObjectFile *Obj,
835                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
836   assert(Obj->isELF());
837   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
838     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
839   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
840     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
841   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
842     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
843   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
844     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
845   else
846     llvm_unreachable("Unsupported binary format");
847 }
848 
849 static void addPltEntries(const ObjectFile *Obj,
850                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
851                           StringSaver &Saver) {
852   Optional<SectionRef> Plt = None;
853   for (const SectionRef &Section : Obj->sections()) {
854     StringRef Name;
855     if (Section.getName(Name))
856       continue;
857     if (Name == ".plt")
858       Plt = Section;
859   }
860   if (!Plt)
861     return;
862   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
863     for (auto PltEntry : ElfObj->getPltAddresses()) {
864       SymbolRef Symbol(PltEntry.first, ElfObj);
865       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
866 
867       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
868       if (!Name.empty())
869         AllSymbols[*Plt].emplace_back(
870             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
871     }
872   }
873 }
874 
875 // Normally the disassembly output will skip blocks of zeroes. This function
876 // returns the number of zero bytes that can be skipped when dumping the
877 // disassembly of the instructions in Buf.
878 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
879   // Find the number of leading zeroes.
880   size_t N = 0;
881   while (N < Buf.size() && !Buf[N])
882     ++N;
883 
884   // We may want to skip blocks of zero bytes, but unless we see
885   // at least 8 of them in a row.
886   if (N < 8)
887     return 0;
888 
889   // We skip zeroes in multiples of 4 because do not want to truncate an
890   // instruction if it starts with a zero byte.
891   return N & ~0x3;
892 }
893 
894 // Returns a map from sections to their relocations.
895 static std::map<SectionRef, std::vector<RelocationRef>>
896 getRelocsMap(llvm::object::ObjectFile const &Obj) {
897   std::map<SectionRef, std::vector<RelocationRef>> Ret;
898   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
899     section_iterator RelSec = Section.getRelocatedSection();
900     if (RelSec == Obj.section_end())
901       continue;
902     std::vector<RelocationRef> &V = Ret[*RelSec];
903     for (const RelocationRef &R : Section.relocations())
904       V.push_back(R);
905     // Sort relocations by address.
906     llvm::sort(V, isRelocAddressLess);
907   }
908   return Ret;
909 }
910 
911 // Used for --adjust-vma to check if address should be adjusted by the
912 // specified value for a given section.
913 // For ELF we do not adjust non-allocatable sections like debug ones,
914 // because they are not loadable.
915 // TODO: implement for other file formats.
916 static bool shouldAdjustVA(const SectionRef &Section) {
917   const ObjectFile *Obj = Section.getObject();
918   if (isa<object::ELFObjectFileBase>(Obj))
919     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
920   return false;
921 }
922 
923 static uint64_t
924 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
925                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
926                const std::vector<uint64_t> &TextMappingSymsAddr) {
927   support::endianness Endian =
928       Obj->isLittleEndian() ? support::little : support::big;
929   while (Index < End) {
930     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
931     outs() << "\t";
932     if (Index + 4 <= End) {
933       dumpBytes(Bytes.slice(Index, 4), outs());
934       outs() << "\t.word\t"
935              << format_hex(
936                     support::endian::read32(Bytes.data() + Index, Endian), 10);
937       Index += 4;
938     } else if (Index + 2 <= End) {
939       dumpBytes(Bytes.slice(Index, 2), outs());
940       outs() << "\t\t.short\t"
941              << format_hex(
942                     support::endian::read16(Bytes.data() + Index, Endian), 6);
943       Index += 2;
944     } else {
945       dumpBytes(Bytes.slice(Index, 1), outs());
946       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
947       ++Index;
948     }
949     outs() << "\n";
950     if (std::binary_search(TextMappingSymsAddr.begin(),
951                            TextMappingSymsAddr.end(), Index))
952       break;
953   }
954   return Index;
955 }
956 
957 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
958                         ArrayRef<uint8_t> Bytes) {
959   // print out data up to 8 bytes at a time in hex and ascii
960   uint8_t AsciiData[9] = {'\0'};
961   uint8_t Byte;
962   int NumBytes = 0;
963 
964   for (; Index < End; ++Index) {
965     if (NumBytes == 0) {
966       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
967       outs() << "\t";
968     }
969     Byte = Bytes.slice(Index)[0];
970     outs() << format(" %02x", Byte);
971     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
972 
973     uint8_t IndentOffset = 0;
974     NumBytes++;
975     if (Index == End - 1 || NumBytes > 8) {
976       // Indent the space for less than 8 bytes data.
977       // 2 spaces for byte and one for space between bytes
978       IndentOffset = 3 * (8 - NumBytes);
979       for (int Excess = NumBytes; Excess < 8; Excess++)
980         AsciiData[Excess] = '\0';
981       NumBytes = 8;
982     }
983     if (NumBytes == 8) {
984       AsciiData[8] = '\0';
985       outs() << std::string(IndentOffset, ' ') << "         ";
986       outs() << reinterpret_cast<char *>(AsciiData);
987       outs() << '\n';
988       NumBytes = 0;
989     }
990   }
991 }
992 
993 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
994                               MCContext &Ctx, MCDisassembler *DisAsm,
995                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
996                               const MCSubtargetInfo *STI, PrettyPrinter &PIP,
997                               SourcePrinter &SP, bool InlineRelocs) {
998   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
999   if (InlineRelocs)
1000     RelocMap = getRelocsMap(*Obj);
1001 
1002   // Create a mapping from virtual address to symbol name.  This is used to
1003   // pretty print the symbols while disassembling.
1004   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1005   SectionSymbolsTy AbsoluteSymbols;
1006   const StringRef FileName = Obj->getFileName();
1007   for (const SymbolRef &Symbol : Obj->symbols()) {
1008     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1009 
1010     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1011     if (Name.empty())
1012       continue;
1013 
1014     uint8_t SymbolType = ELF::STT_NOTYPE;
1015     if (Obj->isELF()) {
1016       SymbolType = getElfSymbolType(Obj, Symbol);
1017       if (SymbolType == ELF::STT_SECTION)
1018         continue;
1019     }
1020 
1021     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1022     if (SecI != Obj->section_end())
1023       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1024     else
1025       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1026   }
1027   if (AllSymbols.empty() && Obj->isELF())
1028     addDynamicElfSymbols(Obj, AllSymbols);
1029 
1030   BumpPtrAllocator A;
1031   StringSaver Saver(A);
1032   addPltEntries(Obj, AllSymbols, Saver);
1033 
1034   // Create a mapping from virtual address to section.
1035   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1036   for (SectionRef Sec : Obj->sections())
1037     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1038   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1039 
1040   // Linked executables (.exe and .dll files) typically don't include a real
1041   // symbol table but they might contain an export table.
1042   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1043     for (const auto &ExportEntry : COFFObj->export_directories()) {
1044       StringRef Name;
1045       error(ExportEntry.getSymbolName(Name));
1046       if (Name.empty())
1047         continue;
1048       uint32_t RVA;
1049       error(ExportEntry.getExportRVA(RVA));
1050 
1051       uint64_t VA = COFFObj->getImageBase() + RVA;
1052       auto Sec = llvm::upper_bound(
1053           SectionAddresses, VA,
1054           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1055             return LHS < RHS.first;
1056           });
1057       if (Sec != SectionAddresses.begin()) {
1058         --Sec;
1059         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1060       } else
1061         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1062     }
1063   }
1064 
1065   // Sort all the symbols, this allows us to use a simple binary search to find
1066   // a symbol near an address.
1067   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1068     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1069   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1070 
1071   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1072     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1073       continue;
1074 
1075     uint64_t SectionAddr = Section.getAddress();
1076     uint64_t SectSize = Section.getSize();
1077     if (!SectSize)
1078       continue;
1079 
1080     // Get the list of all the symbols in this section.
1081     SectionSymbolsTy &Symbols = AllSymbols[Section];
1082     std::vector<uint64_t> DataMappingSymsAddr;
1083     std::vector<uint64_t> TextMappingSymsAddr;
1084     if (isArmElf(Obj)) {
1085       for (const auto &Symb : Symbols) {
1086         uint64_t Address = std::get<0>(Symb);
1087         StringRef Name = std::get<1>(Symb);
1088         if (Name.startswith("$d"))
1089           DataMappingSymsAddr.push_back(Address - SectionAddr);
1090         if (Name.startswith("$x"))
1091           TextMappingSymsAddr.push_back(Address - SectionAddr);
1092         if (Name.startswith("$a"))
1093           TextMappingSymsAddr.push_back(Address - SectionAddr);
1094         if (Name.startswith("$t"))
1095           TextMappingSymsAddr.push_back(Address - SectionAddr);
1096       }
1097     }
1098 
1099     llvm::sort(DataMappingSymsAddr);
1100     llvm::sort(TextMappingSymsAddr);
1101 
1102     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1103       // AMDGPU disassembler uses symbolizer for printing labels
1104       std::unique_ptr<MCRelocationInfo> RelInfo(
1105         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1106       if (RelInfo) {
1107         std::unique_ptr<MCSymbolizer> Symbolizer(
1108           TheTarget->createMCSymbolizer(
1109             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1110         DisAsm->setSymbolizer(std::move(Symbolizer));
1111       }
1112     }
1113 
1114     StringRef SegmentName = "";
1115     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1116       DataRefImpl DR = Section.getRawDataRefImpl();
1117       SegmentName = MachO->getSectionFinalSegmentName(DR);
1118     }
1119     StringRef SectionName;
1120     error(Section.getName(SectionName));
1121 
1122     // If the section has no symbol at the start, just insert a dummy one.
1123     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1124       Symbols.insert(
1125           Symbols.begin(),
1126           std::make_tuple(SectionAddr, SectionName,
1127                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1128     }
1129 
1130     SmallString<40> Comments;
1131     raw_svector_ostream CommentStream(Comments);
1132 
1133     StringRef BytesStr;
1134     error(Section.getContents(BytesStr));
1135     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(BytesStr);
1136 
1137     uint64_t VMAAdjustment = 0;
1138     if (shouldAdjustVA(Section))
1139       VMAAdjustment = AdjustVMA;
1140 
1141     uint64_t Size;
1142     uint64_t Index;
1143     bool PrintedSection = false;
1144     std::vector<RelocationRef> Rels = RelocMap[Section];
1145     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1146     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1147     // Disassemble symbol by symbol.
1148     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1149       uint64_t Start = std::get<0>(Symbols[SI]) - SectionAddr;
1150       // The end is either the section end or the beginning of the next
1151       // symbol.
1152       uint64_t End = (SI == SE - 1)
1153                          ? SectSize
1154                          : std::get<0>(Symbols[SI + 1]) - SectionAddr;
1155       // Don't try to disassemble beyond the end of section contents.
1156       if (End > SectSize)
1157         End = SectSize;
1158       // If this symbol has the same address as the next symbol, then skip it.
1159       if (Start >= End)
1160         continue;
1161 
1162       // Check if we need to skip symbol
1163       // Skip if the symbol's data is not between StartAddress and StopAddress
1164       if (End + SectionAddr <= StartAddress ||
1165           Start + SectionAddr >= StopAddress)
1166         continue;
1167 
1168       // Stop disassembly at the stop address specified
1169       if (End + SectionAddr > StopAddress)
1170         End = StopAddress - SectionAddr;
1171 
1172       /// Skip if user requested specific symbols and this is not in the list
1173       if (!DisasmFuncsSet.empty() &&
1174           !DisasmFuncsSet.count(std::get<1>(Symbols[SI])))
1175         continue;
1176 
1177       if (!PrintedSection) {
1178         PrintedSection = true;
1179         outs() << "Disassembly of section ";
1180         if (!SegmentName.empty())
1181           outs() << SegmentName << ",";
1182         outs() << SectionName << ':';
1183       }
1184 
1185       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1186         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1187           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1188           Start += 256;
1189         }
1190         if (SI == SE - 1 ||
1191             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1192           // cut trailing zeroes at the end of kernel
1193           // cut up to 256 bytes
1194           const uint64_t EndAlign = 256;
1195           const auto Limit = End - (std::min)(EndAlign, End - Start);
1196           while (End > Limit &&
1197             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1198             End -= 4;
1199         }
1200       }
1201 
1202       outs() << '\n';
1203       if (!NoLeadingAddr)
1204         outs() << format("%016" PRIx64 " ",
1205                          SectionAddr + Start + VMAAdjustment);
1206 
1207       StringRef SymbolName = std::get<1>(Symbols[SI]);
1208       if (Demangle)
1209         outs() << demangle(SymbolName) << ":\n";
1210       else
1211         outs() << SymbolName << ":\n";
1212 
1213       // Don't print raw contents of a virtual section. A virtual section
1214       // doesn't have any contents in the file.
1215       if (Section.isVirtual()) {
1216         outs() << "...\n";
1217         continue;
1218       }
1219 
1220 #ifndef NDEBUG
1221       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1222 #else
1223       raw_ostream &DebugOut = nulls();
1224 #endif
1225 
1226       // Some targets (like WebAssembly) have a special prelude at the start
1227       // of each symbol.
1228       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1229                             SectionAddr + Start, DebugOut, CommentStream);
1230       Start += Size;
1231 
1232       Index = Start;
1233       if (SectionAddr < StartAddress)
1234         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1235 
1236       // If there is a data symbol inside an ELF text section and we are
1237       // only disassembling text (applicable all architectures), we are in a
1238       // situation where we must print the data and not disassemble it.
1239       if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT &&
1240           !DisassembleAll && Section.isText()) {
1241         dumpELFData(SectionAddr, Index, End, Bytes);
1242         Index = End;
1243       }
1244 
1245       bool CheckARMELFData = isArmElf(Obj) &&
1246                              std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1247                              !DisassembleAll;
1248       while (Index < End) {
1249         // AArch64 ELF binaries can interleave data and text in the same
1250         // section. We rely on the markers introduced to understand what we
1251         // need to dump. If the data marker is within a function, it is
1252         // denoted as a word/short etc.
1253         if (CheckARMELFData &&
1254             std::binary_search(DataMappingSymsAddr.begin(),
1255                                DataMappingSymsAddr.end(), Index)) {
1256           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1257                                  TextMappingSymsAddr);
1258           continue;
1259         }
1260 
1261         // When -z or --disassemble-zeroes are given we always dissasemble
1262         // them. Otherwise we might want to skip zero bytes we see.
1263         if (!DisassembleZeroes) {
1264           uint64_t MaxOffset = End - Index;
1265           // For -reloc: print zero blocks patched by relocations, so that
1266           // relocations can be shown in the dump.
1267           if (RelCur != RelEnd)
1268             MaxOffset = RelCur->getOffset() - Index;
1269 
1270           if (size_t N =
1271                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1272             outs() << "\t\t..." << '\n';
1273             Index += N;
1274             continue;
1275           }
1276         }
1277 
1278         // Disassemble a real instruction or a data when disassemble all is
1279         // provided
1280         MCInst Inst;
1281         bool Disassembled = DisAsm->getInstruction(
1282             Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut,
1283             CommentStream);
1284         if (Size == 0)
1285           Size = 1;
1286 
1287         PIP.printInst(
1288             *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1289             {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, outs(),
1290             "", *STI, &SP, &Rels);
1291         outs() << CommentStream.str();
1292         Comments.clear();
1293 
1294         // Try to resolve the target of a call, tail call, etc. to a specific
1295         // symbol.
1296         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1297                     MIA->isConditionalBranch(Inst))) {
1298           uint64_t Target;
1299           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1300             // In a relocatable object, the target's section must reside in
1301             // the same section as the call instruction or it is accessed
1302             // through a relocation.
1303             //
1304             // In a non-relocatable object, the target may be in any section.
1305             //
1306             // N.B. We don't walk the relocations in the relocatable case yet.
1307             auto *TargetSectionSymbols = &Symbols;
1308             if (!Obj->isRelocatableObject()) {
1309               auto SectionAddress = llvm::upper_bound(
1310                   SectionAddresses, Target,
1311                   [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1312                     return LHS < RHS.first;
1313                   });
1314               if (SectionAddress != SectionAddresses.begin()) {
1315                 --SectionAddress;
1316                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1317               } else {
1318                 TargetSectionSymbols = &AbsoluteSymbols;
1319               }
1320             }
1321 
1322             // Find the first symbol in the section whose offset is less than
1323             // or equal to the target. If there isn't a section that contains
1324             // the target, find the nearest preceding absolute symbol.
1325             auto TargetSym = llvm::upper_bound(
1326                 *TargetSectionSymbols, Target,
1327                 [](uint64_t LHS,
1328                    const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1329                   return LHS < std::get<0>(RHS);
1330                 });
1331             if (TargetSym == TargetSectionSymbols->begin()) {
1332               TargetSectionSymbols = &AbsoluteSymbols;
1333               TargetSym = llvm::upper_bound(
1334                   AbsoluteSymbols, Target,
1335                   [](uint64_t LHS,
1336                      const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1337                     return LHS < std::get<0>(RHS);
1338                   });
1339             }
1340             if (TargetSym != TargetSectionSymbols->begin()) {
1341               --TargetSym;
1342               uint64_t TargetAddress = std::get<0>(*TargetSym);
1343               StringRef TargetName = std::get<1>(*TargetSym);
1344               outs() << " <" << TargetName;
1345               uint64_t Disp = Target - TargetAddress;
1346               if (Disp)
1347                 outs() << "+0x" << Twine::utohexstr(Disp);
1348               outs() << '>';
1349             }
1350           }
1351         }
1352         outs() << "\n";
1353 
1354         // Hexagon does this in pretty printer
1355         if (Obj->getArch() != Triple::hexagon) {
1356           // Print relocation for instruction.
1357           while (RelCur != RelEnd) {
1358             uint64_t Offset = RelCur->getOffset();
1359             // If this relocation is hidden, skip it.
1360             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1361               ++RelCur;
1362               continue;
1363             }
1364 
1365             // Stop when RelCur's offset is past the current instruction.
1366             if (Offset >= Index + Size)
1367               break;
1368 
1369             // When --adjust-vma is used, update the address printed.
1370             if (RelCur->getSymbol() != Obj->symbol_end()) {
1371               Expected<section_iterator> SymSI =
1372                   RelCur->getSymbol()->getSection();
1373               if (SymSI && *SymSI != Obj->section_end() &&
1374                   shouldAdjustVA(**SymSI))
1375                 Offset += AdjustVMA;
1376             }
1377 
1378             printRelocation(*RelCur, SectionAddr + Offset,
1379                             Obj->getBytesInAddress());
1380             ++RelCur;
1381           }
1382         }
1383 
1384         Index += Size;
1385       }
1386     }
1387   }
1388 }
1389 
1390 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1391   if (StartAddress > StopAddress)
1392     error("Start address should be less than stop address");
1393 
1394   const Target *TheTarget = getTarget(Obj);
1395 
1396   // Package up features to be passed to target/subtarget
1397   SubtargetFeatures Features = Obj->getFeatures();
1398   if (!MAttrs.empty())
1399     for (unsigned I = 0; I != MAttrs.size(); ++I)
1400       Features.AddFeature(MAttrs[I]);
1401 
1402   std::unique_ptr<const MCRegisterInfo> MRI(
1403       TheTarget->createMCRegInfo(TripleName));
1404   if (!MRI)
1405     report_error(Obj->getFileName(),
1406                  "no register info for target " + TripleName);
1407 
1408   // Set up disassembler.
1409   std::unique_ptr<const MCAsmInfo> AsmInfo(
1410       TheTarget->createMCAsmInfo(*MRI, TripleName));
1411   if (!AsmInfo)
1412     report_error(Obj->getFileName(),
1413                  "no assembly info for target " + TripleName);
1414   std::unique_ptr<const MCSubtargetInfo> STI(
1415       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1416   if (!STI)
1417     report_error(Obj->getFileName(),
1418                  "no subtarget info for target " + TripleName);
1419   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1420   if (!MII)
1421     report_error(Obj->getFileName(),
1422                  "no instruction info for target " + TripleName);
1423   MCObjectFileInfo MOFI;
1424   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1425   // FIXME: for now initialize MCObjectFileInfo with default values
1426   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1427 
1428   std::unique_ptr<MCDisassembler> DisAsm(
1429       TheTarget->createMCDisassembler(*STI, Ctx));
1430   if (!DisAsm)
1431     report_error(Obj->getFileName(),
1432                  "no disassembler for target " + TripleName);
1433 
1434   std::unique_ptr<const MCInstrAnalysis> MIA(
1435       TheTarget->createMCInstrAnalysis(MII.get()));
1436 
1437   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1438   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1439       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1440   if (!IP)
1441     report_error(Obj->getFileName(),
1442                  "no instruction printer for target " + TripleName);
1443   IP->setPrintImmHex(PrintImmHex);
1444 
1445   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1446   SourcePrinter SP(Obj, TheTarget->getName());
1447 
1448   for (StringRef Opt : DisassemblerOptions)
1449     if (!IP->applyTargetSpecificCLOption(Opt))
1450       error("Unrecognized disassembler option: " + Opt);
1451 
1452   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), MIA.get(), IP.get(),
1453                     STI.get(), PIP, SP, InlineRelocs);
1454 }
1455 
1456 void llvm::printRelocations(const ObjectFile *Obj) {
1457   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1458                                                  "%08" PRIx64;
1459   // Regular objdump doesn't print relocations in non-relocatable object
1460   // files.
1461   if (!Obj->isRelocatableObject())
1462     return;
1463 
1464   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1465     if (Section.relocation_begin() == Section.relocation_end())
1466       continue;
1467     StringRef SecName;
1468     error(Section.getName(SecName));
1469     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1470     for (const RelocationRef &Reloc : Section.relocations()) {
1471       uint64_t Address = Reloc.getOffset();
1472       SmallString<32> RelocName;
1473       SmallString<32> ValueStr;
1474       if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1475         continue;
1476       Reloc.getTypeName(RelocName);
1477       error(getRelocationValueString(Reloc, ValueStr));
1478       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1479              << ValueStr << "\n";
1480     }
1481     outs() << "\n";
1482   }
1483 }
1484 
1485 void llvm::printDynamicRelocations(const ObjectFile *Obj) {
1486   // For the moment, this option is for ELF only
1487   if (!Obj->isELF())
1488     return;
1489 
1490   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1491   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1492     error("not a dynamic object");
1493     return;
1494   }
1495 
1496   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1497   if (DynRelSec.empty())
1498     return;
1499 
1500   outs() << "DYNAMIC RELOCATION RECORDS\n";
1501   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1502   for (const SectionRef &Section : DynRelSec) {
1503     if (Section.relocation_begin() == Section.relocation_end())
1504       continue;
1505     for (const RelocationRef &Reloc : Section.relocations()) {
1506       uint64_t Address = Reloc.getOffset();
1507       SmallString<32> RelocName;
1508       SmallString<32> ValueStr;
1509       Reloc.getTypeName(RelocName);
1510       error(getRelocationValueString(Reloc, ValueStr));
1511       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1512              << ValueStr << "\n";
1513     }
1514   }
1515 }
1516 
1517 // Returns true if we need to show LMA column when dumping section headers. We
1518 // show it only when the platform is ELF and either we have at least one section
1519 // whose VMA and LMA are different and/or when --show-lma flag is used.
1520 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1521   if (!Obj->isELF())
1522     return false;
1523   for (const SectionRef &S : ToolSectionFilter(*Obj))
1524     if (S.getAddress() != getELFSectionLMA(S))
1525       return true;
1526   return ShowLMA;
1527 }
1528 
1529 void llvm::printSectionHeaders(const ObjectFile *Obj) {
1530   bool HasLMAColumn = shouldDisplayLMA(Obj);
1531   if (HasLMAColumn)
1532     outs() << "Sections:\n"
1533               "Idx Name          Size     VMA              LMA              "
1534               "Type\n";
1535   else
1536     outs() << "Sections:\n"
1537               "Idx Name          Size     VMA          Type\n";
1538 
1539   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1540     StringRef Name;
1541     error(Section.getName(Name));
1542     uint64_t VMA = Section.getAddress();
1543     if (shouldAdjustVA(Section))
1544       VMA += AdjustVMA;
1545 
1546     uint64_t Size = Section.getSize();
1547     bool Text = Section.isText();
1548     bool Data = Section.isData();
1549     bool BSS = Section.isBSS();
1550     std::string Type = (std::string(Text ? "TEXT " : "") +
1551                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1552 
1553     if (HasLMAColumn)
1554       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %016" PRIx64
1555                        " %s\n",
1556                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1557                        VMA, getELFSectionLMA(Section), Type.c_str());
1558     else
1559       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1560                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1561                        VMA, Type.c_str());
1562   }
1563   outs() << "\n";
1564 }
1565 
1566 void llvm::printSectionContents(const ObjectFile *Obj) {
1567   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1568     StringRef Name;
1569     StringRef Contents;
1570     error(Section.getName(Name));
1571     uint64_t BaseAddr = Section.getAddress();
1572     uint64_t Size = Section.getSize();
1573     if (!Size)
1574       continue;
1575 
1576     outs() << "Contents of section " << Name << ":\n";
1577     if (Section.isBSS()) {
1578       outs() << format("<skipping contents of bss section at [%04" PRIx64
1579                        ", %04" PRIx64 ")>\n",
1580                        BaseAddr, BaseAddr + Size);
1581       continue;
1582     }
1583 
1584     error(Section.getContents(Contents));
1585 
1586     // Dump out the content as hex and printable ascii characters.
1587     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1588       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1589       // Dump line of hex.
1590       for (std::size_t I = 0; I < 16; ++I) {
1591         if (I != 0 && I % 4 == 0)
1592           outs() << ' ';
1593         if (Addr + I < End)
1594           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1595                  << hexdigit(Contents[Addr + I] & 0xF, true);
1596         else
1597           outs() << "  ";
1598       }
1599       // Print ascii.
1600       outs() << "  ";
1601       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1602         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1603           outs() << Contents[Addr + I];
1604         else
1605           outs() << ".";
1606       }
1607       outs() << "\n";
1608     }
1609   }
1610 }
1611 
1612 void llvm::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1613                             StringRef ArchitectureName) {
1614   outs() << "SYMBOL TABLE:\n";
1615 
1616   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1617     printCOFFSymbolTable(Coff);
1618     return;
1619   }
1620 
1621   const StringRef FileName = O->getFileName();
1622   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1623     // Skip printing the special zero symbol when dumping an ELF file.
1624     // This makes the output consistent with the GNU objdump.
1625     if (I == O->symbol_begin() && isa<ELFObjectFileBase>(O))
1626       continue;
1627 
1628     const SymbolRef &Symbol = *I;
1629     uint64_t Address = unwrapOrError(Symbol.getAddress(), ArchiveName, FileName,
1630                                      ArchitectureName);
1631     if ((Address < StartAddress) || (Address > StopAddress))
1632       continue;
1633     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), ArchiveName,
1634                                          FileName, ArchitectureName);
1635     uint32_t Flags = Symbol.getFlags();
1636     section_iterator Section = unwrapOrError(Symbol.getSection(), ArchiveName,
1637                                              FileName, ArchitectureName);
1638     StringRef Name;
1639     if (Type == SymbolRef::ST_Debug && Section != O->section_end())
1640       Section->getName(Name);
1641     else
1642       Name = unwrapOrError(Symbol.getName(), ArchiveName, FileName,
1643                            ArchitectureName);
1644 
1645     bool Global = Flags & SymbolRef::SF_Global;
1646     bool Weak = Flags & SymbolRef::SF_Weak;
1647     bool Absolute = Flags & SymbolRef::SF_Absolute;
1648     bool Common = Flags & SymbolRef::SF_Common;
1649     bool Hidden = Flags & SymbolRef::SF_Hidden;
1650 
1651     char GlobLoc = ' ';
1652     if (Type != SymbolRef::ST_Unknown)
1653       GlobLoc = Global ? 'g' : 'l';
1654     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1655                  ? 'd' : ' ';
1656     char FileFunc = ' ';
1657     if (Type == SymbolRef::ST_File)
1658       FileFunc = 'f';
1659     else if (Type == SymbolRef::ST_Function)
1660       FileFunc = 'F';
1661     else if (Type == SymbolRef::ST_Data)
1662       FileFunc = 'O';
1663 
1664     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1665                                                    "%08" PRIx64;
1666 
1667     outs() << format(Fmt, Address) << " "
1668            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1669            << (Weak ? 'w' : ' ') // Weak?
1670            << ' ' // Constructor. Not supported yet.
1671            << ' ' // Warning. Not supported yet.
1672            << ' ' // Indirect reference to another symbol.
1673            << Debug // Debugging (d) or dynamic (D) symbol.
1674            << FileFunc // Name of function (F), file (f) or object (O).
1675            << ' ';
1676     if (Absolute) {
1677       outs() << "*ABS*";
1678     } else if (Common) {
1679       outs() << "*COM*";
1680     } else if (Section == O->section_end()) {
1681       outs() << "*UND*";
1682     } else {
1683       if (const MachOObjectFile *MachO =
1684           dyn_cast<const MachOObjectFile>(O)) {
1685         DataRefImpl DR = Section->getRawDataRefImpl();
1686         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1687         outs() << SegmentName << ",";
1688       }
1689       StringRef SectionName;
1690       error(Section->getName(SectionName));
1691       outs() << SectionName;
1692     }
1693 
1694     outs() << '\t';
1695     if (Common || isa<ELFObjectFileBase>(O)) {
1696       uint64_t Val =
1697           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1698       outs() << format("\t %08" PRIx64 " ", Val);
1699     }
1700 
1701     if (Hidden)
1702       outs() << ".hidden ";
1703 
1704     if (Demangle)
1705       outs() << demangle(Name) << '\n';
1706     else
1707       outs() << Name << '\n';
1708   }
1709 }
1710 
1711 static void printUnwindInfo(const ObjectFile *O) {
1712   outs() << "Unwind info:\n\n";
1713 
1714   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1715     printCOFFUnwindInfo(Coff);
1716   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1717     printMachOUnwindInfo(MachO);
1718   else
1719     // TODO: Extract DWARF dump tool to objdump.
1720     WithColor::error(errs(), ToolName)
1721         << "This operation is only currently supported "
1722            "for COFF and MachO object files.\n";
1723 }
1724 
1725 /// Dump the raw contents of the __clangast section so the output can be piped
1726 /// into llvm-bcanalyzer.
1727 void llvm::printRawClangAST(const ObjectFile *Obj) {
1728   if (outs().is_displayed()) {
1729     WithColor::error(errs(), ToolName)
1730         << "The -raw-clang-ast option will dump the raw binary contents of "
1731            "the clang ast section.\n"
1732            "Please redirect the output to a file or another program such as "
1733            "llvm-bcanalyzer.\n";
1734     return;
1735   }
1736 
1737   StringRef ClangASTSectionName("__clangast");
1738   if (isa<COFFObjectFile>(Obj)) {
1739     ClangASTSectionName = "clangast";
1740   }
1741 
1742   Optional<object::SectionRef> ClangASTSection;
1743   for (auto Sec : ToolSectionFilter(*Obj)) {
1744     StringRef Name;
1745     Sec.getName(Name);
1746     if (Name == ClangASTSectionName) {
1747       ClangASTSection = Sec;
1748       break;
1749     }
1750   }
1751   if (!ClangASTSection)
1752     return;
1753 
1754   StringRef ClangASTContents;
1755   error(ClangASTSection.getValue().getContents(ClangASTContents));
1756   outs().write(ClangASTContents.data(), ClangASTContents.size());
1757 }
1758 
1759 static void printFaultMaps(const ObjectFile *Obj) {
1760   StringRef FaultMapSectionName;
1761 
1762   if (isa<ELFObjectFileBase>(Obj)) {
1763     FaultMapSectionName = ".llvm_faultmaps";
1764   } else if (isa<MachOObjectFile>(Obj)) {
1765     FaultMapSectionName = "__llvm_faultmaps";
1766   } else {
1767     WithColor::error(errs(), ToolName)
1768         << "This operation is only currently supported "
1769            "for ELF and Mach-O executable files.\n";
1770     return;
1771   }
1772 
1773   Optional<object::SectionRef> FaultMapSection;
1774 
1775   for (auto Sec : ToolSectionFilter(*Obj)) {
1776     StringRef Name;
1777     Sec.getName(Name);
1778     if (Name == FaultMapSectionName) {
1779       FaultMapSection = Sec;
1780       break;
1781     }
1782   }
1783 
1784   outs() << "FaultMap table:\n";
1785 
1786   if (!FaultMapSection.hasValue()) {
1787     outs() << "<not found>\n";
1788     return;
1789   }
1790 
1791   StringRef FaultMapContents;
1792   error(FaultMapSection.getValue().getContents(FaultMapContents));
1793 
1794   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1795                      FaultMapContents.bytes_end());
1796 
1797   outs() << FMP;
1798 }
1799 
1800 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1801   if (O->isELF()) {
1802     printELFFileHeader(O);
1803     printELFDynamicSection(O);
1804     printELFSymbolVersionInfo(O);
1805     return;
1806   }
1807   if (O->isCOFF())
1808     return printCOFFFileHeader(O);
1809   if (O->isWasm())
1810     return printWasmFileHeader(O);
1811   if (O->isMachO()) {
1812     printMachOFileHeader(O);
1813     if (!OnlyFirst)
1814       printMachOLoadCommands(O);
1815     return;
1816   }
1817   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1818 }
1819 
1820 static void printFileHeaders(const ObjectFile *O) {
1821   if (!O->isELF() && !O->isCOFF())
1822     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1823 
1824   Triple::ArchType AT = O->getArch();
1825   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1826   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
1827 
1828   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1829   outs() << "start address: "
1830          << "0x" << format(Fmt.data(), Address) << "\n\n";
1831 }
1832 
1833 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1834   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1835   if (!ModeOrErr) {
1836     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1837     consumeError(ModeOrErr.takeError());
1838     return;
1839   }
1840   sys::fs::perms Mode = ModeOrErr.get();
1841   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1842   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1843   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1844   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1845   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1846   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1847   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1848   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1849   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1850 
1851   outs() << " ";
1852 
1853   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
1854                    unwrapOrError(C.getGID(), Filename),
1855                    unwrapOrError(C.getRawSize(), Filename));
1856 
1857   StringRef RawLastModified = C.getRawLastModified();
1858   unsigned Seconds;
1859   if (RawLastModified.getAsInteger(10, Seconds))
1860     outs() << "(date: \"" << RawLastModified
1861            << "\" contains non-decimal chars) ";
1862   else {
1863     // Since ctime(3) returns a 26 character string of the form:
1864     // "Sun Sep 16 01:03:52 1973\n\0"
1865     // just print 24 characters.
1866     time_t t = Seconds;
1867     outs() << format("%.24s ", ctime(&t));
1868   }
1869 
1870   StringRef Name = "";
1871   Expected<StringRef> NameOrErr = C.getName();
1872   if (!NameOrErr) {
1873     consumeError(NameOrErr.takeError());
1874     Name = unwrapOrError(C.getRawName(), Filename);
1875   } else {
1876     Name = NameOrErr.get();
1877   }
1878   outs() << Name << "\n";
1879 }
1880 
1881 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
1882                        const Archive::Child *C = nullptr) {
1883   // Avoid other output when using a raw option.
1884   if (!RawClangAST) {
1885     outs() << '\n';
1886     if (A)
1887       outs() << A->getFileName() << "(" << O->getFileName() << ")";
1888     else
1889       outs() << O->getFileName();
1890     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
1891   }
1892 
1893   StringRef ArchiveName = A ? A->getFileName() : "";
1894   if (FileHeaders)
1895     printFileHeaders(O);
1896   if (ArchiveHeaders && !MachOOpt && C)
1897     printArchiveChild(ArchiveName, *C);
1898   if (Disassemble)
1899     disassembleObject(O, Relocations);
1900   if (Relocations && !Disassemble)
1901     printRelocations(O);
1902   if (DynamicRelocations)
1903     printDynamicRelocations(O);
1904   if (SectionHeaders)
1905     printSectionHeaders(O);
1906   if (SectionContents)
1907     printSectionContents(O);
1908   if (SymbolTable)
1909     printSymbolTable(O, ArchiveName);
1910   if (UnwindInfo)
1911     printUnwindInfo(O);
1912   if (PrivateHeaders || FirstPrivateHeader)
1913     printPrivateFileHeaders(O, FirstPrivateHeader);
1914   if (ExportsTrie)
1915     printExportsTrie(O);
1916   if (Rebase)
1917     printRebaseTable(O);
1918   if (Bind)
1919     printBindTable(O);
1920   if (LazyBind)
1921     printLazyBindTable(O);
1922   if (WeakBind)
1923     printWeakBindTable(O);
1924   if (RawClangAST)
1925     printRawClangAST(O);
1926   if (FaultMapSection)
1927     printFaultMaps(O);
1928   if (DwarfDumpType != DIDT_Null) {
1929     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
1930     // Dump the complete DWARF structure.
1931     DIDumpOptions DumpOpts;
1932     DumpOpts.DumpType = DwarfDumpType;
1933     DICtx->dump(outs(), DumpOpts);
1934   }
1935 }
1936 
1937 static void dumpObject(const COFFImportFile *I, const Archive *A,
1938                        const Archive::Child *C = nullptr) {
1939   StringRef ArchiveName = A ? A->getFileName() : "";
1940 
1941   // Avoid other output when using a raw option.
1942   if (!RawClangAST)
1943     outs() << '\n'
1944            << ArchiveName << "(" << I->getFileName() << ")"
1945            << ":\tfile format COFF-import-file"
1946            << "\n\n";
1947 
1948   if (ArchiveHeaders && !MachOOpt && C)
1949     printArchiveChild(ArchiveName, *C);
1950   if (SymbolTable)
1951     printCOFFSymbolTable(I);
1952 }
1953 
1954 /// Dump each object file in \a a;
1955 static void dumpArchive(const Archive *A) {
1956   Error Err = Error::success();
1957   for (auto &C : A->children(Err)) {
1958     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1959     if (!ChildOrErr) {
1960       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1961         report_error(std::move(E), A->getFileName(), C);
1962       continue;
1963     }
1964     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
1965       dumpObject(O, A, &C);
1966     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
1967       dumpObject(I, A, &C);
1968     else
1969       report_error(errorCodeToError(object_error::invalid_file_type),
1970                    A->getFileName());
1971   }
1972   if (Err)
1973     report_error(std::move(Err), A->getFileName());
1974 }
1975 
1976 /// Open file and figure out how to dump it.
1977 static void dumpInput(StringRef file) {
1978   // If we are using the Mach-O specific object file parser, then let it parse
1979   // the file and process the command line options.  So the -arch flags can
1980   // be used to select specific slices, etc.
1981   if (MachOOpt) {
1982     parseInputMachO(file);
1983     return;
1984   }
1985 
1986   // Attempt to open the binary.
1987   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
1988   Binary &Binary = *OBinary.getBinary();
1989 
1990   if (Archive *A = dyn_cast<Archive>(&Binary))
1991     dumpArchive(A);
1992   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
1993     dumpObject(O);
1994   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
1995     parseInputMachO(UB);
1996   else
1997     report_error(errorCodeToError(object_error::invalid_file_type), file);
1998 }
1999 
2000 int main(int argc, char **argv) {
2001   InitLLVM X(argc, argv);
2002 
2003   // Initialize targets and assembly printers/parsers.
2004   llvm::InitializeAllTargetInfos();
2005   llvm::InitializeAllTargetMCs();
2006   llvm::InitializeAllDisassemblers();
2007 
2008   // Register the target printer for --version.
2009   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2010 
2011   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2012 
2013   ToolName = argv[0];
2014 
2015   // Defaults to a.out if no filenames specified.
2016   if (InputFilenames.empty())
2017     InputFilenames.push_back("a.out");
2018 
2019   if (AllHeaders)
2020     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2021         SectionHeaders = SymbolTable = true;
2022 
2023   if (DisassembleAll || PrintSource || PrintLines)
2024     Disassemble = true;
2025 
2026   if (!Disassemble
2027       && !Relocations
2028       && !DynamicRelocations
2029       && !SectionHeaders
2030       && !SectionContents
2031       && !SymbolTable
2032       && !UnwindInfo
2033       && !PrivateHeaders
2034       && !FileHeaders
2035       && !FirstPrivateHeader
2036       && !ExportsTrie
2037       && !Rebase
2038       && !Bind
2039       && !LazyBind
2040       && !WeakBind
2041       && !RawClangAST
2042       && !(UniversalHeaders && MachOOpt)
2043       && !ArchiveHeaders
2044       && !(IndirectSymbols && MachOOpt)
2045       && !(DataInCode && MachOOpt)
2046       && !(LinkOptHints && MachOOpt)
2047       && !(InfoPlist && MachOOpt)
2048       && !(DylibsUsed && MachOOpt)
2049       && !(DylibId && MachOOpt)
2050       && !(ObjcMetaData && MachOOpt)
2051       && !(!FilterSections.empty() && MachOOpt)
2052       && !FaultMapSection
2053       && DwarfDumpType == DIDT_Null) {
2054     cl::PrintHelpMessage();
2055     return 2;
2056   }
2057 
2058   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2059                         DisassembleFunctions.end());
2060 
2061   llvm::for_each(InputFilenames, dumpInput);
2062 
2063   return EXIT_SUCCESS;
2064 }
2065