1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "OffloadDump.h" 24 #include "SourcePrinter.h" 25 #include "WasmDump.h" 26 #include "XCOFFDump.h" 27 #include "llvm/ADT/IndexedMap.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 36 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 37 #include "llvm/Debuginfod/BuildIDFetcher.h" 38 #include "llvm/Debuginfod/Debuginfod.h" 39 #include "llvm/Debuginfod/HTTPClient.h" 40 #include "llvm/Demangle/Demangle.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/MCContext.h" 43 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 45 #include "llvm/MC/MCInst.h" 46 #include "llvm/MC/MCInstPrinter.h" 47 #include "llvm/MC/MCInstrAnalysis.h" 48 #include "llvm/MC/MCInstrInfo.h" 49 #include "llvm/MC/MCObjectFileInfo.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/MC/MCSubtargetInfo.h" 52 #include "llvm/MC/MCTargetOptions.h" 53 #include "llvm/MC/TargetRegistry.h" 54 #include "llvm/Object/Archive.h" 55 #include "llvm/Object/BuildID.h" 56 #include "llvm/Object/COFF.h" 57 #include "llvm/Object/COFFImportFile.h" 58 #include "llvm/Object/ELFObjectFile.h" 59 #include "llvm/Object/ELFTypes.h" 60 #include "llvm/Object/FaultMapParser.h" 61 #include "llvm/Object/MachO.h" 62 #include "llvm/Object/MachOUniversal.h" 63 #include "llvm/Object/ObjectFile.h" 64 #include "llvm/Object/OffloadBinary.h" 65 #include "llvm/Object/Wasm.h" 66 #include "llvm/Option/Arg.h" 67 #include "llvm/Option/ArgList.h" 68 #include "llvm/Option/Option.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/Errc.h" 72 #include "llvm/Support/FileSystem.h" 73 #include "llvm/Support/Format.h" 74 #include "llvm/Support/FormatVariadic.h" 75 #include "llvm/Support/GraphWriter.h" 76 #include "llvm/Support/InitLLVM.h" 77 #include "llvm/Support/MemoryBuffer.h" 78 #include "llvm/Support/SourceMgr.h" 79 #include "llvm/Support/StringSaver.h" 80 #include "llvm/Support/TargetSelect.h" 81 #include "llvm/Support/WithColor.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/TargetParser/Host.h" 84 #include "llvm/TargetParser/Triple.h" 85 #include <algorithm> 86 #include <cctype> 87 #include <cstring> 88 #include <optional> 89 #include <system_error> 90 #include <unordered_map> 91 #include <utility> 92 93 using namespace llvm; 94 using namespace llvm::object; 95 using namespace llvm::objdump; 96 using namespace llvm::opt; 97 98 namespace { 99 100 class CommonOptTable : public opt::GenericOptTable { 101 public: 102 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 103 const char *Description) 104 : opt::GenericOptTable(OptionInfos), Usage(Usage), 105 Description(Description) { 106 setGroupedShortOptions(true); 107 } 108 109 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 110 Argv0 = sys::path::filename(Argv0); 111 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), 112 Description, ShowHidden, ShowHidden); 113 // TODO Replace this with OptTable API once it adds extrahelp support. 114 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 115 } 116 117 private: 118 const char *Usage; 119 const char *Description; 120 }; 121 122 // ObjdumpOptID is in ObjdumpOptID.h 123 namespace objdump_opt { 124 #define PREFIX(NAME, VALUE) \ 125 static constexpr StringLiteral NAME##_init[] = VALUE; \ 126 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 127 std::size(NAME##_init) - 1); 128 #include "ObjdumpOpts.inc" 129 #undef PREFIX 130 131 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 132 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 133 HELPTEXT, METAVAR, VALUES) \ 134 {PREFIX, NAME, HELPTEXT, \ 135 METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ 136 PARAM, FLAGS, OBJDUMP_##GROUP, \ 137 OBJDUMP_##ALIAS, ALIASARGS, VALUES}, 138 #include "ObjdumpOpts.inc" 139 #undef OPTION 140 }; 141 } // namespace objdump_opt 142 143 class ObjdumpOptTable : public CommonOptTable { 144 public: 145 ObjdumpOptTable() 146 : CommonOptTable(objdump_opt::ObjdumpInfoTable, 147 " [options] <input object files>", 148 "llvm object file dumper") {} 149 }; 150 151 enum OtoolOptID { 152 OTOOL_INVALID = 0, // This is not an option ID. 153 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 154 HELPTEXT, METAVAR, VALUES) \ 155 OTOOL_##ID, 156 #include "OtoolOpts.inc" 157 #undef OPTION 158 }; 159 160 namespace otool { 161 #define PREFIX(NAME, VALUE) \ 162 static constexpr StringLiteral NAME##_init[] = VALUE; \ 163 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 164 std::size(NAME##_init) - 1); 165 #include "OtoolOpts.inc" 166 #undef PREFIX 167 168 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 169 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 170 HELPTEXT, METAVAR, VALUES) \ 171 {PREFIX, NAME, HELPTEXT, \ 172 METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ 173 PARAM, FLAGS, OTOOL_##GROUP, \ 174 OTOOL_##ALIAS, ALIASARGS, VALUES}, 175 #include "OtoolOpts.inc" 176 #undef OPTION 177 }; 178 } // namespace otool 179 180 class OtoolOptTable : public CommonOptTable { 181 public: 182 OtoolOptTable() 183 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", 184 "Mach-O object file displaying tool") {} 185 }; 186 187 } // namespace 188 189 #define DEBUG_TYPE "objdump" 190 191 static uint64_t AdjustVMA; 192 static bool AllHeaders; 193 static std::string ArchName; 194 bool objdump::ArchiveHeaders; 195 bool objdump::Demangle; 196 bool objdump::Disassemble; 197 bool objdump::DisassembleAll; 198 bool objdump::SymbolDescription; 199 static std::vector<std::string> DisassembleSymbols; 200 static bool DisassembleZeroes; 201 static std::vector<std::string> DisassemblerOptions; 202 DIDumpType objdump::DwarfDumpType; 203 static bool DynamicRelocations; 204 static bool FaultMapSection; 205 static bool FileHeaders; 206 bool objdump::SectionContents; 207 static std::vector<std::string> InputFilenames; 208 bool objdump::PrintLines; 209 static bool MachOOpt; 210 std::string objdump::MCPU; 211 std::vector<std::string> objdump::MAttrs; 212 bool objdump::ShowRawInsn; 213 bool objdump::LeadingAddr; 214 static bool Offloading; 215 static bool RawClangAST; 216 bool objdump::Relocations; 217 bool objdump::PrintImmHex; 218 bool objdump::PrivateHeaders; 219 std::vector<std::string> objdump::FilterSections; 220 bool objdump::SectionHeaders; 221 static bool ShowAllSymbols; 222 static bool ShowLMA; 223 bool objdump::PrintSource; 224 225 static uint64_t StartAddress; 226 static bool HasStartAddressFlag; 227 static uint64_t StopAddress = UINT64_MAX; 228 static bool HasStopAddressFlag; 229 230 bool objdump::SymbolTable; 231 static bool SymbolizeOperands; 232 static bool DynamicSymbolTable; 233 std::string objdump::TripleName; 234 bool objdump::UnwindInfo; 235 static bool Wide; 236 std::string objdump::Prefix; 237 uint32_t objdump::PrefixStrip; 238 239 DebugVarsFormat objdump::DbgVariables = DVDisabled; 240 241 int objdump::DbgIndent = 52; 242 243 static StringSet<> DisasmSymbolSet; 244 StringSet<> objdump::FoundSectionSet; 245 static StringRef ToolName; 246 247 std::unique_ptr<BuildIDFetcher> BIDFetcher; 248 ExitOnError ExitOnErr; 249 250 namespace { 251 struct FilterResult { 252 // True if the section should not be skipped. 253 bool Keep; 254 255 // True if the index counter should be incremented, even if the section should 256 // be skipped. For example, sections may be skipped if they are not included 257 // in the --section flag, but we still want those to count toward the section 258 // count. 259 bool IncrementIndex; 260 }; 261 } // namespace 262 263 static FilterResult checkSectionFilter(object::SectionRef S) { 264 if (FilterSections.empty()) 265 return {/*Keep=*/true, /*IncrementIndex=*/true}; 266 267 Expected<StringRef> SecNameOrErr = S.getName(); 268 if (!SecNameOrErr) { 269 consumeError(SecNameOrErr.takeError()); 270 return {/*Keep=*/false, /*IncrementIndex=*/false}; 271 } 272 StringRef SecName = *SecNameOrErr; 273 274 // StringSet does not allow empty key so avoid adding sections with 275 // no name (such as the section with index 0) here. 276 if (!SecName.empty()) 277 FoundSectionSet.insert(SecName); 278 279 // Only show the section if it's in the FilterSections list, but always 280 // increment so the indexing is stable. 281 return {/*Keep=*/is_contained(FilterSections, SecName), 282 /*IncrementIndex=*/true}; 283 } 284 285 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 286 uint64_t *Idx) { 287 // Start at UINT64_MAX so that the first index returned after an increment is 288 // zero (after the unsigned wrap). 289 if (Idx) 290 *Idx = UINT64_MAX; 291 return SectionFilter( 292 [Idx](object::SectionRef S) { 293 FilterResult Result = checkSectionFilter(S); 294 if (Idx != nullptr && Result.IncrementIndex) 295 *Idx += 1; 296 return Result.Keep; 297 }, 298 O); 299 } 300 301 std::string objdump::getFileNameForError(const object::Archive::Child &C, 302 unsigned Index) { 303 Expected<StringRef> NameOrErr = C.getName(); 304 if (NameOrErr) 305 return std::string(NameOrErr.get()); 306 // If we have an error getting the name then we print the index of the archive 307 // member. Since we are already in an error state, we just ignore this error. 308 consumeError(NameOrErr.takeError()); 309 return "<file index: " + std::to_string(Index) + ">"; 310 } 311 312 void objdump::reportWarning(const Twine &Message, StringRef File) { 313 // Output order between errs() and outs() matters especially for archive 314 // files where the output is per member object. 315 outs().flush(); 316 WithColor::warning(errs(), ToolName) 317 << "'" << File << "': " << Message << "\n"; 318 } 319 320 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 321 outs().flush(); 322 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 323 exit(1); 324 } 325 326 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 327 StringRef ArchiveName, 328 StringRef ArchitectureName) { 329 assert(E); 330 outs().flush(); 331 WithColor::error(errs(), ToolName); 332 if (ArchiveName != "") 333 errs() << ArchiveName << "(" << FileName << ")"; 334 else 335 errs() << "'" << FileName << "'"; 336 if (!ArchitectureName.empty()) 337 errs() << " (for architecture " << ArchitectureName << ")"; 338 errs() << ": "; 339 logAllUnhandledErrors(std::move(E), errs()); 340 exit(1); 341 } 342 343 static void reportCmdLineWarning(const Twine &Message) { 344 WithColor::warning(errs(), ToolName) << Message << "\n"; 345 } 346 347 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 348 WithColor::error(errs(), ToolName) << Message << "\n"; 349 exit(1); 350 } 351 352 static void warnOnNoMatchForSections() { 353 SetVector<StringRef> MissingSections; 354 for (StringRef S : FilterSections) { 355 if (FoundSectionSet.count(S)) 356 return; 357 // User may specify a unnamed section. Don't warn for it. 358 if (!S.empty()) 359 MissingSections.insert(S); 360 } 361 362 // Warn only if no section in FilterSections is matched. 363 for (StringRef S : MissingSections) 364 reportCmdLineWarning("section '" + S + 365 "' mentioned in a -j/--section option, but not " 366 "found in any input file"); 367 } 368 369 static const Target *getTarget(const ObjectFile *Obj) { 370 // Figure out the target triple. 371 Triple TheTriple("unknown-unknown-unknown"); 372 if (TripleName.empty()) { 373 TheTriple = Obj->makeTriple(); 374 } else { 375 TheTriple.setTriple(Triple::normalize(TripleName)); 376 auto Arch = Obj->getArch(); 377 if (Arch == Triple::arm || Arch == Triple::armeb) 378 Obj->setARMSubArch(TheTriple); 379 } 380 381 // Get the target specific parser. 382 std::string Error; 383 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 384 Error); 385 if (!TheTarget) 386 reportError(Obj->getFileName(), "can't find target: " + Error); 387 388 // Update the triple name and return the found target. 389 TripleName = TheTriple.getTriple(); 390 return TheTarget; 391 } 392 393 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 394 return A.getOffset() < B.getOffset(); 395 } 396 397 static Error getRelocationValueString(const RelocationRef &Rel, 398 SmallVectorImpl<char> &Result) { 399 const ObjectFile *Obj = Rel.getObject(); 400 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 401 return getELFRelocationValueString(ELF, Rel, Result); 402 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 403 return getCOFFRelocationValueString(COFF, Rel, Result); 404 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 405 return getWasmRelocationValueString(Wasm, Rel, Result); 406 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 407 return getMachORelocationValueString(MachO, Rel, Result); 408 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 409 return getXCOFFRelocationValueString(*XCOFF, Rel, Result); 410 llvm_unreachable("unknown object file format"); 411 } 412 413 /// Indicates whether this relocation should hidden when listing 414 /// relocations, usually because it is the trailing part of a multipart 415 /// relocation that will be printed as part of the leading relocation. 416 static bool getHidden(RelocationRef RelRef) { 417 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 418 if (!MachO) 419 return false; 420 421 unsigned Arch = MachO->getArch(); 422 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 423 uint64_t Type = MachO->getRelocationType(Rel); 424 425 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 426 // is always hidden. 427 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 428 return Type == MachO::GENERIC_RELOC_PAIR; 429 430 if (Arch == Triple::x86_64) { 431 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 432 // an X86_64_RELOC_SUBTRACTOR. 433 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 434 DataRefImpl RelPrev = Rel; 435 RelPrev.d.a--; 436 uint64_t PrevType = MachO->getRelocationType(RelPrev); 437 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 438 return true; 439 } 440 } 441 442 return false; 443 } 444 445 namespace { 446 447 /// Get the column at which we want to start printing the instruction 448 /// disassembly, taking into account anything which appears to the left of it. 449 unsigned getInstStartColumn(const MCSubtargetInfo &STI) { 450 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 451 } 452 453 static bool isAArch64Elf(const ObjectFile &Obj) { 454 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 455 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 456 } 457 458 static bool isArmElf(const ObjectFile &Obj) { 459 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 460 return Elf && Elf->getEMachine() == ELF::EM_ARM; 461 } 462 463 static bool isCSKYElf(const ObjectFile &Obj) { 464 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 465 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 466 } 467 468 static bool hasMappingSymbols(const ObjectFile &Obj) { 469 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 470 } 471 472 static bool isMappingSymbol(const SymbolInfoTy &Sym) { 473 return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") || 474 Sym.Name.startswith("$a") || Sym.Name.startswith("$t"); 475 } 476 477 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 478 const RelocationRef &Rel, uint64_t Address, 479 bool Is64Bits) { 480 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; 481 SmallString<16> Name; 482 SmallString<32> Val; 483 Rel.getTypeName(Name); 484 if (Error E = getRelocationValueString(Rel, Val)) 485 reportError(std::move(E), FileName); 486 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); 487 if (LeadingAddr) 488 OS << format(Fmt.data(), Address); 489 OS << Name << "\t" << Val; 490 } 491 492 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, 493 raw_ostream &OS) { 494 // The output of printInst starts with a tab. Print some spaces so that 495 // the tab has 1 column and advances to the target tab stop. 496 unsigned TabStop = getInstStartColumn(STI); 497 unsigned Column = OS.tell() - Start; 498 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 499 } 500 501 class PrettyPrinter { 502 public: 503 virtual ~PrettyPrinter() = default; 504 virtual void 505 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 506 object::SectionedAddress Address, formatted_raw_ostream &OS, 507 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 508 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 509 LiveVariablePrinter &LVP) { 510 if (SP && (PrintSource || PrintLines)) 511 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 512 LVP.printBetweenInsts(OS, false); 513 514 size_t Start = OS.tell(); 515 if (LeadingAddr) 516 OS << format("%8" PRIx64 ":", Address.Address); 517 if (ShowRawInsn) { 518 OS << ' '; 519 dumpBytes(Bytes, OS); 520 } 521 522 AlignToInstStartColumn(Start, STI, OS); 523 524 if (MI) { 525 // See MCInstPrinter::printInst. On targets where a PC relative immediate 526 // is relative to the next instruction and the length of a MCInst is 527 // difficult to measure (x86), this is the address of the next 528 // instruction. 529 uint64_t Addr = 530 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 531 IP.printInst(MI, Addr, "", STI, OS); 532 } else 533 OS << "\t<unknown>"; 534 } 535 }; 536 PrettyPrinter PrettyPrinterInst; 537 538 class HexagonPrettyPrinter : public PrettyPrinter { 539 public: 540 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 541 formatted_raw_ostream &OS) { 542 uint32_t opcode = 543 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 544 if (LeadingAddr) 545 OS << format("%8" PRIx64 ":", Address); 546 if (ShowRawInsn) { 547 OS << "\t"; 548 dumpBytes(Bytes.slice(0, 4), OS); 549 OS << format("\t%08" PRIx32, opcode); 550 } 551 } 552 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 553 object::SectionedAddress Address, formatted_raw_ostream &OS, 554 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 555 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 556 LiveVariablePrinter &LVP) override { 557 if (SP && (PrintSource || PrintLines)) 558 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 559 if (!MI) { 560 printLead(Bytes, Address.Address, OS); 561 OS << " <unknown>"; 562 return; 563 } 564 std::string Buffer; 565 { 566 raw_string_ostream TempStream(Buffer); 567 IP.printInst(MI, Address.Address, "", STI, TempStream); 568 } 569 StringRef Contents(Buffer); 570 // Split off bundle attributes 571 auto PacketBundle = Contents.rsplit('\n'); 572 // Split off first instruction from the rest 573 auto HeadTail = PacketBundle.first.split('\n'); 574 auto Preamble = " { "; 575 auto Separator = ""; 576 577 // Hexagon's packets require relocations to be inline rather than 578 // clustered at the end of the packet. 579 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 580 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 581 auto PrintReloc = [&]() -> void { 582 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 583 if (RelCur->getOffset() == Address.Address) { 584 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 585 return; 586 } 587 ++RelCur; 588 } 589 }; 590 591 while (!HeadTail.first.empty()) { 592 OS << Separator; 593 Separator = "\n"; 594 if (SP && (PrintSource || PrintLines)) 595 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 596 printLead(Bytes, Address.Address, OS); 597 OS << Preamble; 598 Preamble = " "; 599 StringRef Inst; 600 auto Duplex = HeadTail.first.split('\v'); 601 if (!Duplex.second.empty()) { 602 OS << Duplex.first; 603 OS << "; "; 604 Inst = Duplex.second; 605 } 606 else 607 Inst = HeadTail.first; 608 OS << Inst; 609 HeadTail = HeadTail.second.split('\n'); 610 if (HeadTail.first.empty()) 611 OS << " } " << PacketBundle.second; 612 PrintReloc(); 613 Bytes = Bytes.slice(4); 614 Address.Address += 4; 615 } 616 } 617 }; 618 HexagonPrettyPrinter HexagonPrettyPrinterInst; 619 620 class AMDGCNPrettyPrinter : public PrettyPrinter { 621 public: 622 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 623 object::SectionedAddress Address, formatted_raw_ostream &OS, 624 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 625 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 626 LiveVariablePrinter &LVP) override { 627 if (SP && (PrintSource || PrintLines)) 628 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 629 630 if (MI) { 631 SmallString<40> InstStr; 632 raw_svector_ostream IS(InstStr); 633 634 IP.printInst(MI, Address.Address, "", STI, IS); 635 636 OS << left_justify(IS.str(), 60); 637 } else { 638 // an unrecognized encoding - this is probably data so represent it 639 // using the .long directive, or .byte directive if fewer than 4 bytes 640 // remaining 641 if (Bytes.size() >= 4) { 642 OS << format("\t.long 0x%08" PRIx32 " ", 643 support::endian::read32<support::little>(Bytes.data())); 644 OS.indent(42); 645 } else { 646 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 647 for (unsigned int i = 1; i < Bytes.size(); i++) 648 OS << format(", 0x%02" PRIx8, Bytes[i]); 649 OS.indent(55 - (6 * Bytes.size())); 650 } 651 } 652 653 OS << format("// %012" PRIX64 ":", Address.Address); 654 if (Bytes.size() >= 4) { 655 // D should be casted to uint32_t here as it is passed by format to 656 // snprintf as vararg. 657 for (uint32_t D : 658 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), 659 Bytes.size() / 4)) 660 OS << format(" %08" PRIX32, D); 661 } else { 662 for (unsigned char B : Bytes) 663 OS << format(" %02" PRIX8, B); 664 } 665 666 if (!Annot.empty()) 667 OS << " // " << Annot; 668 } 669 }; 670 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 671 672 class BPFPrettyPrinter : public PrettyPrinter { 673 public: 674 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 675 object::SectionedAddress Address, formatted_raw_ostream &OS, 676 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 677 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 678 LiveVariablePrinter &LVP) override { 679 if (SP && (PrintSource || PrintLines)) 680 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 681 if (LeadingAddr) 682 OS << format("%8" PRId64 ":", Address.Address / 8); 683 if (ShowRawInsn) { 684 OS << "\t"; 685 dumpBytes(Bytes, OS); 686 } 687 if (MI) 688 IP.printInst(MI, Address.Address, "", STI, OS); 689 else 690 OS << "\t<unknown>"; 691 } 692 }; 693 BPFPrettyPrinter BPFPrettyPrinterInst; 694 695 class ARMPrettyPrinter : public PrettyPrinter { 696 public: 697 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 698 object::SectionedAddress Address, formatted_raw_ostream &OS, 699 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 700 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 701 LiveVariablePrinter &LVP) override { 702 if (SP && (PrintSource || PrintLines)) 703 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 704 LVP.printBetweenInsts(OS, false); 705 706 size_t Start = OS.tell(); 707 if (LeadingAddr) 708 OS << format("%8" PRIx64 ":", Address.Address); 709 if (ShowRawInsn) { 710 size_t Pos = 0, End = Bytes.size(); 711 if (STI.checkFeatures("+thumb-mode")) { 712 for (; Pos + 2 <= End; Pos += 2) 713 OS << ' ' 714 << format_hex_no_prefix( 715 llvm::support::endian::read<uint16_t>( 716 Bytes.data() + Pos, InstructionEndianness), 717 4); 718 } else { 719 for (; Pos + 4 <= End; Pos += 4) 720 OS << ' ' 721 << format_hex_no_prefix( 722 llvm::support::endian::read<uint32_t>( 723 Bytes.data() + Pos, InstructionEndianness), 724 8); 725 } 726 if (Pos < End) { 727 OS << ' '; 728 dumpBytes(Bytes.slice(Pos), OS); 729 } 730 } 731 732 AlignToInstStartColumn(Start, STI, OS); 733 734 if (MI) { 735 IP.printInst(MI, Address.Address, "", STI, OS); 736 } else 737 OS << "\t<unknown>"; 738 } 739 740 void setInstructionEndianness(llvm::support::endianness Endianness) { 741 InstructionEndianness = Endianness; 742 } 743 744 private: 745 llvm::support::endianness InstructionEndianness = llvm::support::little; 746 }; 747 ARMPrettyPrinter ARMPrettyPrinterInst; 748 749 class AArch64PrettyPrinter : public PrettyPrinter { 750 public: 751 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 752 object::SectionedAddress Address, formatted_raw_ostream &OS, 753 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 754 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 755 LiveVariablePrinter &LVP) override { 756 if (SP && (PrintSource || PrintLines)) 757 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 758 LVP.printBetweenInsts(OS, false); 759 760 size_t Start = OS.tell(); 761 if (LeadingAddr) 762 OS << format("%8" PRIx64 ":", Address.Address); 763 if (ShowRawInsn) { 764 size_t Pos = 0, End = Bytes.size(); 765 for (; Pos + 4 <= End; Pos += 4) 766 OS << ' ' 767 << format_hex_no_prefix( 768 llvm::support::endian::read<uint32_t>(Bytes.data() + Pos, 769 llvm::support::little), 770 8); 771 if (Pos < End) { 772 OS << ' '; 773 dumpBytes(Bytes.slice(Pos), OS); 774 } 775 } 776 777 AlignToInstStartColumn(Start, STI, OS); 778 779 if (MI) { 780 IP.printInst(MI, Address.Address, "", STI, OS); 781 } else 782 OS << "\t<unknown>"; 783 } 784 }; 785 AArch64PrettyPrinter AArch64PrettyPrinterInst; 786 787 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 788 switch(Triple.getArch()) { 789 default: 790 return PrettyPrinterInst; 791 case Triple::hexagon: 792 return HexagonPrettyPrinterInst; 793 case Triple::amdgcn: 794 return AMDGCNPrettyPrinterInst; 795 case Triple::bpfel: 796 case Triple::bpfeb: 797 return BPFPrettyPrinterInst; 798 case Triple::arm: 799 case Triple::armeb: 800 case Triple::thumb: 801 case Triple::thumbeb: 802 return ARMPrettyPrinterInst; 803 case Triple::aarch64: 804 case Triple::aarch64_be: 805 case Triple::aarch64_32: 806 return AArch64PrettyPrinterInst; 807 } 808 } 809 } 810 811 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { 812 assert(Obj.isELF()); 813 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 814 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 815 Obj.getFileName()) 816 ->getType(); 817 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 818 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 819 Obj.getFileName()) 820 ->getType(); 821 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 822 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 823 Obj.getFileName()) 824 ->getType(); 825 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 826 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 827 Obj.getFileName()) 828 ->getType(); 829 llvm_unreachable("Unsupported binary format"); 830 } 831 832 template <class ELFT> 833 static void 834 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, 835 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 836 for (auto Symbol : Obj.getDynamicSymbolIterators()) { 837 uint8_t SymbolType = Symbol.getELFType(); 838 if (SymbolType == ELF::STT_SECTION) 839 continue; 840 841 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); 842 // ELFSymbolRef::getAddress() returns size instead of value for common 843 // symbols which is not desirable for disassembly output. Overriding. 844 if (SymbolType == ELF::STT_COMMON) 845 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), 846 Obj.getFileName()) 847 ->st_value; 848 849 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); 850 if (Name.empty()) 851 continue; 852 853 section_iterator SecI = 854 unwrapOrError(Symbol.getSection(), Obj.getFileName()); 855 if (SecI == Obj.section_end()) 856 continue; 857 858 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 859 } 860 } 861 862 static void 863 addDynamicElfSymbols(const ELFObjectFileBase &Obj, 864 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 865 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 866 addDynamicElfSymbols(*Elf32LEObj, AllSymbols); 867 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 868 addDynamicElfSymbols(*Elf64LEObj, AllSymbols); 869 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 870 addDynamicElfSymbols(*Elf32BEObj, AllSymbols); 871 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 872 addDynamicElfSymbols(*Elf64BEObj, AllSymbols); 873 else 874 llvm_unreachable("Unsupported binary format"); 875 } 876 877 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { 878 for (auto SecI : Obj.sections()) { 879 const WasmSection &Section = Obj.getWasmSection(SecI); 880 if (Section.Type == wasm::WASM_SEC_CODE) 881 return SecI; 882 } 883 return std::nullopt; 884 } 885 886 static void 887 addMissingWasmCodeSymbols(const WasmObjectFile &Obj, 888 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 889 std::optional<SectionRef> Section = getWasmCodeSection(Obj); 890 if (!Section) 891 return; 892 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 893 894 std::set<uint64_t> SymbolAddresses; 895 for (const auto &Sym : Symbols) 896 SymbolAddresses.insert(Sym.Addr); 897 898 for (const wasm::WasmFunction &Function : Obj.functions()) { 899 uint64_t Address = Function.CodeSectionOffset; 900 // Only add fallback symbols for functions not already present in the symbol 901 // table. 902 if (SymbolAddresses.count(Address)) 903 continue; 904 // This function has no symbol, so it should have no SymbolName. 905 assert(Function.SymbolName.empty()); 906 // We use DebugName for the name, though it may be empty if there is no 907 // "name" custom section, or that section is missing a name for this 908 // function. 909 StringRef Name = Function.DebugName; 910 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 911 } 912 } 913 914 static void addPltEntries(const ObjectFile &Obj, 915 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 916 StringSaver &Saver) { 917 std::optional<SectionRef> Plt; 918 for (const SectionRef &Section : Obj.sections()) { 919 Expected<StringRef> SecNameOrErr = Section.getName(); 920 if (!SecNameOrErr) { 921 consumeError(SecNameOrErr.takeError()); 922 continue; 923 } 924 if (*SecNameOrErr == ".plt") 925 Plt = Section; 926 } 927 if (!Plt) 928 return; 929 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) { 930 for (auto PltEntry : ElfObj->getPltAddresses()) { 931 if (PltEntry.first) { 932 SymbolRef Symbol(*PltEntry.first, ElfObj); 933 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 934 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 935 if (!NameOrErr->empty()) 936 AllSymbols[*Plt].emplace_back( 937 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()), 938 SymbolType); 939 continue; 940 } else { 941 // The warning has been reported in disassembleObject(). 942 consumeError(NameOrErr.takeError()); 943 } 944 } 945 reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) + 946 " references an invalid symbol", 947 Obj.getFileName()); 948 } 949 } 950 } 951 952 // Normally the disassembly output will skip blocks of zeroes. This function 953 // returns the number of zero bytes that can be skipped when dumping the 954 // disassembly of the instructions in Buf. 955 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 956 // Find the number of leading zeroes. 957 size_t N = 0; 958 while (N < Buf.size() && !Buf[N]) 959 ++N; 960 961 // We may want to skip blocks of zero bytes, but unless we see 962 // at least 8 of them in a row. 963 if (N < 8) 964 return 0; 965 966 // We skip zeroes in multiples of 4 because do not want to truncate an 967 // instruction if it starts with a zero byte. 968 return N & ~0x3; 969 } 970 971 // Returns a map from sections to their relocations. 972 static std::map<SectionRef, std::vector<RelocationRef>> 973 getRelocsMap(object::ObjectFile const &Obj) { 974 std::map<SectionRef, std::vector<RelocationRef>> Ret; 975 uint64_t I = (uint64_t)-1; 976 for (SectionRef Sec : Obj.sections()) { 977 ++I; 978 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 979 if (!RelocatedOrErr) 980 reportError(Obj.getFileName(), 981 "section (" + Twine(I) + 982 "): failed to get a relocated section: " + 983 toString(RelocatedOrErr.takeError())); 984 985 section_iterator Relocated = *RelocatedOrErr; 986 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 987 continue; 988 std::vector<RelocationRef> &V = Ret[*Relocated]; 989 append_range(V, Sec.relocations()); 990 // Sort relocations by address. 991 llvm::stable_sort(V, isRelocAddressLess); 992 } 993 return Ret; 994 } 995 996 // Used for --adjust-vma to check if address should be adjusted by the 997 // specified value for a given section. 998 // For ELF we do not adjust non-allocatable sections like debug ones, 999 // because they are not loadable. 1000 // TODO: implement for other file formats. 1001 static bool shouldAdjustVA(const SectionRef &Section) { 1002 const ObjectFile *Obj = Section.getObject(); 1003 if (Obj->isELF()) 1004 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1005 return false; 1006 } 1007 1008 1009 typedef std::pair<uint64_t, char> MappingSymbolPair; 1010 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1011 uint64_t Address) { 1012 auto It = 1013 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1014 return Val.first <= Address; 1015 }); 1016 // Return zero for any address before the first mapping symbol; this means 1017 // we should use the default disassembly mode, depending on the target. 1018 if (It == MappingSymbols.begin()) 1019 return '\x00'; 1020 return (It - 1)->second; 1021 } 1022 1023 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1024 uint64_t End, const ObjectFile &Obj, 1025 ArrayRef<uint8_t> Bytes, 1026 ArrayRef<MappingSymbolPair> MappingSymbols, 1027 const MCSubtargetInfo &STI, raw_ostream &OS) { 1028 support::endianness Endian = 1029 Obj.isLittleEndian() ? support::little : support::big; 1030 size_t Start = OS.tell(); 1031 OS << format("%8" PRIx64 ": ", SectionAddr + Index); 1032 if (Index + 4 <= End) { 1033 dumpBytes(Bytes.slice(Index, 4), OS); 1034 AlignToInstStartColumn(Start, STI, OS); 1035 OS << "\t.word\t" 1036 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 1037 10); 1038 return 4; 1039 } 1040 if (Index + 2 <= End) { 1041 dumpBytes(Bytes.slice(Index, 2), OS); 1042 AlignToInstStartColumn(Start, STI, OS); 1043 OS << "\t.short\t" 1044 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); 1045 return 2; 1046 } 1047 dumpBytes(Bytes.slice(Index, 1), OS); 1048 AlignToInstStartColumn(Start, STI, OS); 1049 OS << "\t.byte\t" << format_hex(Bytes[Index], 4); 1050 return 1; 1051 } 1052 1053 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1054 ArrayRef<uint8_t> Bytes) { 1055 // print out data up to 8 bytes at a time in hex and ascii 1056 uint8_t AsciiData[9] = {'\0'}; 1057 uint8_t Byte; 1058 int NumBytes = 0; 1059 1060 for (; Index < End; ++Index) { 1061 if (NumBytes == 0) 1062 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1063 Byte = Bytes.slice(Index)[0]; 1064 outs() << format(" %02x", Byte); 1065 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1066 1067 uint8_t IndentOffset = 0; 1068 NumBytes++; 1069 if (Index == End - 1 || NumBytes > 8) { 1070 // Indent the space for less than 8 bytes data. 1071 // 2 spaces for byte and one for space between bytes 1072 IndentOffset = 3 * (8 - NumBytes); 1073 for (int Excess = NumBytes; Excess < 8; Excess++) 1074 AsciiData[Excess] = '\0'; 1075 NumBytes = 8; 1076 } 1077 if (NumBytes == 8) { 1078 AsciiData[8] = '\0'; 1079 outs() << std::string(IndentOffset, ' ') << " "; 1080 outs() << reinterpret_cast<char *>(AsciiData); 1081 outs() << '\n'; 1082 NumBytes = 0; 1083 } 1084 } 1085 } 1086 1087 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, 1088 const SymbolRef &Symbol) { 1089 const StringRef FileName = Obj.getFileName(); 1090 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 1091 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1092 1093 if (Obj.isXCOFF() && SymbolDescription) { 1094 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); 1095 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 1096 1097 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); 1098 std::optional<XCOFF::StorageMappingClass> Smc = 1099 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 1100 return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, 1101 isLabel(XCOFFObj, Symbol)); 1102 } else if (Obj.isXCOFF()) { 1103 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 1104 return SymbolInfoTy(Addr, Name, SymType, true); 1105 } else 1106 return SymbolInfoTy(Addr, Name, 1107 Obj.isELF() ? getElfSymbolType(Obj, Symbol) 1108 : (uint8_t)ELF::STT_NOTYPE); 1109 } 1110 1111 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, 1112 const uint64_t Addr, StringRef &Name, 1113 uint8_t Type) { 1114 if (Obj.isXCOFF() && SymbolDescription) 1115 return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false); 1116 else 1117 return SymbolInfoTy(Addr, Name, Type); 1118 } 1119 1120 static void 1121 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, 1122 uint64_t SectionAddr, uint64_t Start, uint64_t End, 1123 std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { 1124 if (AddrToBBAddrMap.empty()) 1125 return; 1126 Labels.clear(); 1127 uint64_t StartAddress = SectionAddr + Start; 1128 uint64_t EndAddress = SectionAddr + End; 1129 auto Iter = AddrToBBAddrMap.find(StartAddress); 1130 if (Iter == AddrToBBAddrMap.end()) 1131 return; 1132 for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) { 1133 uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr; 1134 if (BBAddress >= EndAddress) 1135 continue; 1136 Labels[BBAddress].push_back(("BB" + Twine(I)).str()); 1137 } 1138 } 1139 1140 static void collectLocalBranchTargets( 1141 ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm, 1142 MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr, 1143 uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) { 1144 // So far only supports PowerPC and X86. 1145 if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) 1146 return; 1147 1148 Labels.clear(); 1149 unsigned LabelCount = 0; 1150 Start += SectionAddr; 1151 End += SectionAddr; 1152 uint64_t Index = Start; 1153 while (Index < End) { 1154 // Disassemble a real instruction and record function-local branch labels. 1155 MCInst Inst; 1156 uint64_t Size; 1157 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); 1158 bool Disassembled = 1159 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); 1160 if (Size == 0) 1161 Size = std::min<uint64_t>(ThisBytes.size(), 1162 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1163 1164 if (Disassembled && MIA) { 1165 uint64_t Target; 1166 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1167 // On PowerPC, if the address of a branch is the same as the target, it 1168 // means that it's a function call. Do not mark the label for this case. 1169 if (TargetKnown && (Target >= Start && Target < End) && 1170 !Labels.count(Target) && 1171 !(STI->getTargetTriple().isPPC() && Target == Index)) 1172 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1173 } 1174 Index += Size; 1175 } 1176 } 1177 1178 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1179 // This is currently only used on AMDGPU, and assumes the format of the 1180 // void * argument passed to AMDGPU's createMCSymbolizer. 1181 static void addSymbolizer( 1182 MCContext &Ctx, const Target *Target, StringRef TripleName, 1183 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1184 SectionSymbolsTy &Symbols, 1185 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1186 1187 std::unique_ptr<MCRelocationInfo> RelInfo( 1188 Target->createMCRelocationInfo(TripleName, Ctx)); 1189 if (!RelInfo) 1190 return; 1191 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1192 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1193 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1194 DisAsm->setSymbolizer(std::move(Symbolizer)); 1195 1196 if (!SymbolizeOperands) 1197 return; 1198 1199 // Synthesize labels referenced by branch instructions by 1200 // disassembling, discarding the output, and collecting the referenced 1201 // addresses from the symbolizer. 1202 for (size_t Index = 0; Index != Bytes.size();) { 1203 MCInst Inst; 1204 uint64_t Size; 1205 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1206 const uint64_t ThisAddr = SectionAddr + Index; 1207 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); 1208 if (Size == 0) 1209 Size = std::min<uint64_t>(ThisBytes.size(), 1210 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1211 Index += Size; 1212 } 1213 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1214 // Copy and sort to remove duplicates. 1215 std::vector<uint64_t> LabelAddrs; 1216 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1217 LabelAddrsRef.end()); 1218 llvm::sort(LabelAddrs); 1219 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1220 LabelAddrs.begin()); 1221 // Add the labels. 1222 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1223 auto Name = std::make_unique<std::string>(); 1224 *Name = (Twine("L") + Twine(LabelNum)).str(); 1225 SynthesizedLabelNames.push_back(std::move(Name)); 1226 Symbols.push_back(SymbolInfoTy( 1227 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1228 } 1229 llvm::stable_sort(Symbols); 1230 // Recreate the symbolizer with the new symbols list. 1231 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1232 Symbolizer.reset(Target->createMCSymbolizer( 1233 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1234 DisAsm->setSymbolizer(std::move(Symbolizer)); 1235 } 1236 1237 static StringRef getSegmentName(const MachOObjectFile *MachO, 1238 const SectionRef &Section) { 1239 if (MachO) { 1240 DataRefImpl DR = Section.getRawDataRefImpl(); 1241 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1242 return SegmentName; 1243 } 1244 return ""; 1245 } 1246 1247 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1248 const MCAsmInfo &MAI, 1249 const MCSubtargetInfo &STI, 1250 StringRef Comments, 1251 LiveVariablePrinter &LVP) { 1252 do { 1253 if (!Comments.empty()) { 1254 // Emit a line of comments. 1255 StringRef Comment; 1256 std::tie(Comment, Comments) = Comments.split('\n'); 1257 // MAI.getCommentColumn() assumes that instructions are printed at the 1258 // position of 8, while getInstStartColumn() returns the actual position. 1259 unsigned CommentColumn = 1260 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1261 FOS.PadToColumn(CommentColumn); 1262 FOS << MAI.getCommentString() << ' ' << Comment; 1263 } 1264 LVP.printAfterInst(FOS); 1265 FOS << '\n'; 1266 } while (!Comments.empty()); 1267 FOS.flush(); 1268 } 1269 1270 static void createFakeELFSections(ObjectFile &Obj) { 1271 assert(Obj.isELF()); 1272 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1273 Elf32LEObj->createFakeSections(); 1274 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1275 Elf64LEObj->createFakeSections(); 1276 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1277 Elf32BEObj->createFakeSections(); 1278 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1279 Elf64BEObj->createFakeSections(); 1280 else 1281 llvm_unreachable("Unsupported binary format"); 1282 } 1283 1284 // Tries to fetch a more complete version of the given object file using its 1285 // Build ID. Returns std::nullopt if nothing was found. 1286 static std::optional<OwningBinary<Binary>> 1287 fetchBinaryByBuildID(const ObjectFile &Obj) { 1288 object::BuildIDRef BuildID = getBuildID(&Obj); 1289 if (BuildID.empty()) 1290 return std::nullopt; 1291 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 1292 if (!Path) 1293 return std::nullopt; 1294 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); 1295 if (!DebugBinary) { 1296 reportWarning(toString(DebugBinary.takeError()), *Path); 1297 return std::nullopt; 1298 } 1299 return std::move(*DebugBinary); 1300 } 1301 1302 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj, 1303 const ObjectFile &DbgObj, MCContext &Ctx, 1304 MCDisassembler *PrimaryDisAsm, 1305 MCDisassembler *SecondaryDisAsm, 1306 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1307 const MCSubtargetInfo *PrimarySTI, 1308 const MCSubtargetInfo *SecondarySTI, 1309 PrettyPrinter &PIP, SourcePrinter &SP, 1310 bool InlineRelocs) { 1311 const MCSubtargetInfo *STI = PrimarySTI; 1312 MCDisassembler *DisAsm = PrimaryDisAsm; 1313 bool PrimaryIsThumb = false; 1314 if (isArmElf(Obj)) 1315 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1316 1317 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1318 if (InlineRelocs) 1319 RelocMap = getRelocsMap(Obj); 1320 bool Is64Bits = Obj.getBytesInAddress() > 4; 1321 1322 // Create a mapping from virtual address to symbol name. This is used to 1323 // pretty print the symbols while disassembling. 1324 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1325 SectionSymbolsTy AbsoluteSymbols; 1326 const StringRef FileName = Obj.getFileName(); 1327 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); 1328 for (const SymbolRef &Symbol : Obj.symbols()) { 1329 Expected<StringRef> NameOrErr = Symbol.getName(); 1330 if (!NameOrErr) { 1331 reportWarning(toString(NameOrErr.takeError()), FileName); 1332 continue; 1333 } 1334 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) 1335 continue; 1336 1337 if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) 1338 continue; 1339 1340 if (MachO) { 1341 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1342 // symbols that support MachO header introspection. They do not bind to 1343 // code locations and are irrelevant for disassembly. 1344 if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) 1345 continue; 1346 // Don't ask a Mach-O STAB symbol for its section unless you know that 1347 // STAB symbol's section field refers to a valid section index. Otherwise 1348 // the symbol may error trying to load a section that does not exist. 1349 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1350 uint8_t NType = (MachO->is64Bit() ? 1351 MachO->getSymbol64TableEntry(SymDRI).n_type: 1352 MachO->getSymbolTableEntry(SymDRI).n_type); 1353 if (NType & MachO::N_STAB) 1354 continue; 1355 } 1356 1357 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1358 if (SecI != Obj.section_end()) 1359 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1360 else 1361 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1362 } 1363 1364 if (AllSymbols.empty() && Obj.isELF()) 1365 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); 1366 1367 if (Obj.isWasm()) 1368 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1369 1370 if (Obj.isELF() && Obj.sections().empty()) 1371 createFakeELFSections(Obj); 1372 1373 BumpPtrAllocator A; 1374 StringSaver Saver(A); 1375 addPltEntries(Obj, AllSymbols, Saver); 1376 1377 // Create a mapping from virtual address to section. An empty section can 1378 // cause more than one section at the same address. Sort such sections to be 1379 // before same-addressed non-empty sections so that symbol lookups prefer the 1380 // non-empty section. 1381 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1382 for (SectionRef Sec : Obj.sections()) 1383 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1384 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1385 if (LHS.first != RHS.first) 1386 return LHS.first < RHS.first; 1387 return LHS.second.getSize() < RHS.second.getSize(); 1388 }); 1389 1390 // Linked executables (.exe and .dll files) typically don't include a real 1391 // symbol table but they might contain an export table. 1392 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1393 for (const auto &ExportEntry : COFFObj->export_directories()) { 1394 StringRef Name; 1395 if (Error E = ExportEntry.getSymbolName(Name)) 1396 reportError(std::move(E), Obj.getFileName()); 1397 if (Name.empty()) 1398 continue; 1399 1400 uint32_t RVA; 1401 if (Error E = ExportEntry.getExportRVA(RVA)) 1402 reportError(std::move(E), Obj.getFileName()); 1403 1404 uint64_t VA = COFFObj->getImageBase() + RVA; 1405 auto Sec = partition_point( 1406 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1407 return O.first <= VA; 1408 }); 1409 if (Sec != SectionAddresses.begin()) { 1410 --Sec; 1411 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1412 } else 1413 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1414 } 1415 } 1416 1417 // Sort all the symbols, this allows us to use a simple binary search to find 1418 // Multiple symbols can have the same address. Use a stable sort to stabilize 1419 // the output. 1420 StringSet<> FoundDisasmSymbolSet; 1421 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1422 llvm::stable_sort(SecSyms.second); 1423 llvm::stable_sort(AbsoluteSymbols); 1424 1425 std::unique_ptr<DWARFContext> DICtx; 1426 LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); 1427 1428 if (DbgVariables != DVDisabled) { 1429 DICtx = DWARFContext::create(DbgObj); 1430 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1431 LVP.addCompileUnit(CU->getUnitDIE(false)); 1432 } 1433 1434 LLVM_DEBUG(LVP.dump()); 1435 1436 std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; 1437 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = 1438 std::nullopt) { 1439 AddrToBBAddrMap.clear(); 1440 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { 1441 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); 1442 if (!BBAddrMapsOrErr) { 1443 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); 1444 return; 1445 } 1446 for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) 1447 AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, 1448 std::move(FunctionBBAddrMap)); 1449 } 1450 }; 1451 1452 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a 1453 // single mapping, since they don't have any conflicts. 1454 if (SymbolizeOperands && !Obj.isRelocatableObject()) 1455 ReadBBAddrMap(); 1456 1457 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 1458 if (FilterSections.empty() && !DisassembleAll && 1459 (!Section.isText() || Section.isVirtual())) 1460 continue; 1461 1462 uint64_t SectionAddr = Section.getAddress(); 1463 uint64_t SectSize = Section.getSize(); 1464 if (!SectSize) 1465 continue; 1466 1467 // For relocatable object files, read the LLVM_BB_ADDR_MAP section 1468 // corresponding to this section, if present. 1469 if (SymbolizeOperands && Obj.isRelocatableObject()) 1470 ReadBBAddrMap(Section.getIndex()); 1471 1472 // Get the list of all the symbols in this section. 1473 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1474 std::vector<MappingSymbolPair> MappingSymbols; 1475 if (hasMappingSymbols(Obj)) { 1476 for (const auto &Symb : Symbols) { 1477 uint64_t Address = Symb.Addr; 1478 StringRef Name = Symb.Name; 1479 if (Name.startswith("$d")) 1480 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1481 if (Name.startswith("$x")) 1482 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1483 if (Name.startswith("$a")) 1484 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1485 if (Name.startswith("$t")) 1486 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1487 } 1488 } 1489 1490 llvm::sort(MappingSymbols); 1491 1492 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1493 unwrapOrError(Section.getContents(), Obj.getFileName())); 1494 1495 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1496 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { 1497 // AMDGPU disassembler uses symbolizer for printing labels 1498 addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, 1499 Symbols, SynthesizedLabelNames); 1500 } 1501 1502 StringRef SegmentName = getSegmentName(MachO, Section); 1503 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); 1504 // If the section has no symbol at the start, just insert a dummy one. 1505 if (Symbols.empty() || Symbols[0].Addr != 0) { 1506 Symbols.insert(Symbols.begin(), 1507 createDummySymbolInfo(Obj, SectionAddr, SectionName, 1508 Section.isText() ? ELF::STT_FUNC 1509 : ELF::STT_OBJECT)); 1510 } 1511 1512 SmallString<40> Comments; 1513 raw_svector_ostream CommentStream(Comments); 1514 1515 uint64_t VMAAdjustment = 0; 1516 if (shouldAdjustVA(Section)) 1517 VMAAdjustment = AdjustVMA; 1518 1519 // In executable and shared objects, r_offset holds a virtual address. 1520 // Subtract SectionAddr from the r_offset field of a relocation to get 1521 // the section offset. 1522 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; 1523 uint64_t Size; 1524 uint64_t Index; 1525 bool PrintedSection = false; 1526 std::vector<RelocationRef> Rels = RelocMap[Section]; 1527 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1528 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1529 1530 // Loop over each chunk of code between two points where at least 1531 // one symbol is defined. 1532 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { 1533 // Advance SI past all the symbols starting at the same address, 1534 // and make an ArrayRef of them. 1535 unsigned FirstSI = SI; 1536 uint64_t Start = Symbols[SI].Addr; 1537 ArrayRef<SymbolInfoTy> SymbolsHere; 1538 while (SI != SE && Symbols[SI].Addr == Start) 1539 ++SI; 1540 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); 1541 1542 // Get the demangled names of all those symbols. We end up with a vector 1543 // of StringRef that holds the names we're going to use, and a vector of 1544 // std::string that stores the new strings returned by demangle(), if 1545 // any. If we don't call demangle() then that vector can stay empty. 1546 std::vector<StringRef> SymNamesHere; 1547 std::vector<std::string> DemangledSymNamesHere; 1548 if (Demangle) { 1549 // Fetch the demangled names and store them locally. 1550 for (const SymbolInfoTy &Symbol : SymbolsHere) 1551 DemangledSymNamesHere.push_back(demangle(Symbol.Name.str())); 1552 // Now we've finished modifying that vector, it's safe to make 1553 // a vector of StringRefs pointing into it. 1554 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), 1555 DemangledSymNamesHere.end()); 1556 } else { 1557 for (const SymbolInfoTy &Symbol : SymbolsHere) 1558 SymNamesHere.push_back(Symbol.Name); 1559 } 1560 1561 // Distinguish ELF data from code symbols, which will be used later on to 1562 // decide whether to 'disassemble' this chunk as a data declaration via 1563 // dumpELFData(), or whether to treat it as code. 1564 // 1565 // If data _and_ code symbols are defined at the same address, the code 1566 // takes priority, on the grounds that disassembling code is our main 1567 // purpose here, and it would be a worse failure to _not_ interpret 1568 // something that _was_ meaningful as code than vice versa. 1569 // 1570 // Any ELF symbol type that is not clearly data will be regarded as code. 1571 // In particular, one of the uses of STT_NOTYPE is for branch targets 1572 // inside functions, for which STT_FUNC would be inaccurate. 1573 // 1574 // So here, we spot whether there's any non-data symbol present at all, 1575 // and only set the DisassembleAsData flag if there isn't. Also, we use 1576 // this distinction to inform the decision of which symbol to print at 1577 // the head of the section, so that if we're printing code, we print a 1578 // code-related symbol name to go with it. 1579 bool DisassembleAsData = false; 1580 size_t DisplaySymIndex = SymbolsHere.size() - 1; 1581 if (Obj.isELF() && !DisassembleAll && Section.isText()) { 1582 DisassembleAsData = true; // unless we find a code symbol below 1583 1584 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1585 uint8_t SymTy = SymbolsHere[i].Type; 1586 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { 1587 DisassembleAsData = false; 1588 DisplaySymIndex = i; 1589 } 1590 } 1591 } 1592 1593 // Decide which symbol(s) from this collection we're going to print. 1594 std::vector<bool> SymsToPrint(SymbolsHere.size(), false); 1595 // If the user has given the --disassemble-symbols option, then we must 1596 // display every symbol in that set, and no others. 1597 if (!DisasmSymbolSet.empty()) { 1598 bool FoundAny = false; 1599 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1600 if (DisasmSymbolSet.count(SymNamesHere[i])) { 1601 SymsToPrint[i] = true; 1602 FoundAny = true; 1603 } 1604 } 1605 1606 // And if none of the symbols here is one that the user asked for, skip 1607 // disassembling this entire chunk of code. 1608 if (!FoundAny) 1609 continue; 1610 } else { 1611 // Otherwise, print whichever symbol at this location is last in the 1612 // Symbols array, because that array is pre-sorted in a way intended to 1613 // correlate with priority of which symbol to display. 1614 SymsToPrint[DisplaySymIndex] = true; 1615 } 1616 1617 // Now that we know we're disassembling this section, override the choice 1618 // of which symbols to display by printing _all_ of them at this address 1619 // if the user asked for all symbols. 1620 // 1621 // That way, '--show-all-symbols --disassemble-symbol=foo' will print 1622 // only the chunk of code headed by 'foo', but also show any other 1623 // symbols defined at that address, such as aliases for 'foo', or the ARM 1624 // mapping symbol preceding its code. 1625 if (ShowAllSymbols) { 1626 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1627 SymsToPrint[i] = true; 1628 } 1629 1630 if (Start < SectionAddr || StopAddress <= Start) 1631 continue; 1632 1633 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1634 FoundDisasmSymbolSet.insert(SymNamesHere[i]); 1635 1636 // The end is the section end, the beginning of the next symbol, or 1637 // --stop-address. 1638 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1639 if (SI < SE) 1640 End = std::min(End, Symbols[SI].Addr); 1641 if (Start >= End || End <= StartAddress) 1642 continue; 1643 Start -= SectionAddr; 1644 End -= SectionAddr; 1645 1646 if (!PrintedSection) { 1647 PrintedSection = true; 1648 outs() << "\nDisassembly of section "; 1649 if (!SegmentName.empty()) 1650 outs() << SegmentName << ","; 1651 outs() << SectionName << ":\n"; 1652 } 1653 1654 outs() << '\n'; 1655 1656 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1657 if (!SymsToPrint[i]) 1658 continue; 1659 1660 const SymbolInfoTy &Symbol = SymbolsHere[i]; 1661 const StringRef SymbolName = SymNamesHere[i]; 1662 1663 if (LeadingAddr) 1664 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1665 SectionAddr + Start + VMAAdjustment); 1666 if (Obj.isXCOFF() && SymbolDescription) { 1667 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; 1668 } else 1669 outs() << '<' << SymbolName << ">:\n"; 1670 } 1671 1672 // Don't print raw contents of a virtual section. A virtual section 1673 // doesn't have any contents in the file. 1674 if (Section.isVirtual()) { 1675 outs() << "...\n"; 1676 continue; 1677 } 1678 1679 // See if any of the symbols defined at this location triggers target- 1680 // specific disassembly behavior, e.g. of special descriptors or function 1681 // prelude information. 1682 // 1683 // We stop this loop at the first symbol that triggers some kind of 1684 // interesting behavior (if any), on the assumption that if two symbols 1685 // defined at the same address trigger two conflicting symbol handlers, 1686 // the object file is probably confused anyway, and it would make even 1687 // less sense to present the output of _both_ handlers, because that 1688 // would describe the same data twice. 1689 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { 1690 SymbolInfoTy Symbol = SymbolsHere[SHI]; 1691 1692 auto Status = 1693 DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start), 1694 SectionAddr + Start, CommentStream); 1695 1696 if (!Status) { 1697 // If onSymbolStart returns std::nullopt, that means it didn't trigger 1698 // any interesting handling for this symbol. Try the other symbols 1699 // defined at this address. 1700 continue; 1701 } 1702 1703 if (*Status == MCDisassembler::Fail) { 1704 // If onSymbolStart returns Fail, that means it identified some kind 1705 // of special data at this address, but wasn't able to disassemble it 1706 // meaningfully. So we fall back to disassembling the failed region 1707 // as bytes, assuming that the target detected the failure before 1708 // printing anything. 1709 // 1710 // Return values Success or SoftFail (i.e no 'real' failure) are 1711 // expected to mean that the target has emitted its own output. 1712 // 1713 // Either way, 'Size' will have been set to the amount of data 1714 // covered by whatever prologue the target identified. So we advance 1715 // our own position to beyond that. Sometimes that will be the entire 1716 // distance to the next symbol, and sometimes it will be just a 1717 // prologue and we should start disassembling instructions from where 1718 // it left off. 1719 outs() << "// Error in decoding " << SymNamesHere[SHI] 1720 << " : Decoding failed region as bytes.\n"; 1721 for (uint64_t I = 0; I < Size; ++I) { 1722 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1723 << "\n"; 1724 } 1725 } 1726 Start += Size; 1727 break; 1728 } 1729 1730 Index = Start; 1731 if (SectionAddr < StartAddress) 1732 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1733 1734 if (DisassembleAsData) { 1735 dumpELFData(SectionAddr, Index, End, Bytes); 1736 Index = End; 1737 continue; 1738 } 1739 1740 bool DumpARMELFData = false; 1741 formatted_raw_ostream FOS(outs()); 1742 1743 std::unordered_map<uint64_t, std::string> AllLabels; 1744 std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; 1745 if (SymbolizeOperands) { 1746 collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, 1747 SectionAddr, Index, End, AllLabels); 1748 collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, 1749 BBAddrMapLabels); 1750 } 1751 1752 while (Index < End) { 1753 // ARM and AArch64 ELF binaries can interleave data and text in the 1754 // same section. We rely on the markers introduced to understand what 1755 // we need to dump. If the data marker is within a function, it is 1756 // denoted as a word/short etc. 1757 if (!MappingSymbols.empty()) { 1758 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1759 DumpARMELFData = Kind == 'd'; 1760 if (SecondarySTI) { 1761 if (Kind == 'a') { 1762 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1763 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1764 } else if (Kind == 't') { 1765 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1766 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1767 } 1768 } 1769 } 1770 1771 if (DumpARMELFData) { 1772 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1773 MappingSymbols, *STI, FOS); 1774 } else { 1775 // When -z or --disassemble-zeroes are given we always dissasemble 1776 // them. Otherwise we might want to skip zero bytes we see. 1777 if (!DisassembleZeroes) { 1778 uint64_t MaxOffset = End - Index; 1779 // For --reloc: print zero blocks patched by relocations, so that 1780 // relocations can be shown in the dump. 1781 if (RelCur != RelEnd) 1782 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 1783 MaxOffset); 1784 1785 if (size_t N = 1786 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1787 FOS << "\t\t..." << '\n'; 1788 Index += N; 1789 continue; 1790 } 1791 } 1792 1793 // Print local label if there's any. 1794 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); 1795 if (Iter1 != BBAddrMapLabels.end()) { 1796 for (StringRef Label : Iter1->second) 1797 FOS << "<" << Label << ">:\n"; 1798 } else { 1799 auto Iter2 = AllLabels.find(SectionAddr + Index); 1800 if (Iter2 != AllLabels.end()) 1801 FOS << "<" << Iter2->second << ">:\n"; 1802 } 1803 1804 // Disassemble a real instruction or a data when disassemble all is 1805 // provided 1806 MCInst Inst; 1807 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1808 uint64_t ThisAddr = SectionAddr + Index; 1809 bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes, 1810 ThisAddr, CommentStream); 1811 if (Size == 0) 1812 Size = std::min<uint64_t>( 1813 ThisBytes.size(), 1814 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); 1815 1816 LVP.update({Index, Section.getIndex()}, 1817 {Index + Size, Section.getIndex()}, Index + Size != End); 1818 1819 IP->setCommentStream(CommentStream); 1820 1821 PIP.printInst( 1822 *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), 1823 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 1824 "", *STI, &SP, Obj.getFileName(), &Rels, LVP); 1825 1826 IP->setCommentStream(llvm::nulls()); 1827 1828 // If disassembly has failed, avoid analysing invalid/incomplete 1829 // instruction information. Otherwise, try to resolve the target 1830 // address (jump target or memory operand address) and print it on the 1831 // right of the instruction. 1832 if (Disassembled && MIA) { 1833 // Branch targets are printed just after the instructions. 1834 llvm::raw_ostream *TargetOS = &FOS; 1835 uint64_t Target; 1836 bool PrintTarget = 1837 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); 1838 if (!PrintTarget) 1839 if (std::optional<uint64_t> MaybeTarget = 1840 MIA->evaluateMemoryOperandAddress( 1841 Inst, STI, SectionAddr + Index, Size)) { 1842 Target = *MaybeTarget; 1843 PrintTarget = true; 1844 // Do not print real address when symbolizing. 1845 if (!SymbolizeOperands) { 1846 // Memory operand addresses are printed as comments. 1847 TargetOS = &CommentStream; 1848 *TargetOS << "0x" << Twine::utohexstr(Target); 1849 } 1850 } 1851 if (PrintTarget) { 1852 // In a relocatable object, the target's section must reside in 1853 // the same section as the call instruction or it is accessed 1854 // through a relocation. 1855 // 1856 // In a non-relocatable object, the target may be in any section. 1857 // In that case, locate the section(s) containing the target 1858 // address and find the symbol in one of those, if possible. 1859 // 1860 // N.B. We don't walk the relocations in the relocatable case yet. 1861 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 1862 if (!Obj.isRelocatableObject()) { 1863 auto It = llvm::partition_point( 1864 SectionAddresses, 1865 [=](const std::pair<uint64_t, SectionRef> &O) { 1866 return O.first <= Target; 1867 }); 1868 uint64_t TargetSecAddr = 0; 1869 while (It != SectionAddresses.begin()) { 1870 --It; 1871 if (TargetSecAddr == 0) 1872 TargetSecAddr = It->first; 1873 if (It->first != TargetSecAddr) 1874 break; 1875 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 1876 } 1877 } else { 1878 TargetSectionSymbols.push_back(&Symbols); 1879 } 1880 TargetSectionSymbols.push_back(&AbsoluteSymbols); 1881 1882 // Find the last symbol in the first candidate section whose 1883 // offset is less than or equal to the target. If there are no 1884 // such symbols, try in the next section and so on, before finally 1885 // using the nearest preceding absolute symbol (if any), if there 1886 // are no other valid symbols. 1887 const SymbolInfoTy *TargetSym = nullptr; 1888 for (const SectionSymbolsTy *TargetSymbols : 1889 TargetSectionSymbols) { 1890 auto It = llvm::partition_point( 1891 *TargetSymbols, 1892 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 1893 while (It != TargetSymbols->begin()) { 1894 --It; 1895 // Skip mapping symbols to avoid possible ambiguity as they 1896 // do not allow uniquely identifying the target address. 1897 if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) { 1898 TargetSym = &*It; 1899 break; 1900 } 1901 } 1902 if (TargetSym) 1903 break; 1904 } 1905 1906 // Print the labels corresponding to the target if there's any. 1907 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); 1908 bool LabelAvailable = AllLabels.count(Target); 1909 if (TargetSym != nullptr) { 1910 uint64_t TargetAddress = TargetSym->Addr; 1911 uint64_t Disp = Target - TargetAddress; 1912 std::string TargetName = TargetSym->Name.str(); 1913 if (Demangle) 1914 TargetName = demangle(TargetName); 1915 1916 *TargetOS << " <"; 1917 if (!Disp) { 1918 // Always Print the binary symbol precisely corresponding to 1919 // the target address. 1920 *TargetOS << TargetName; 1921 } else if (BBAddrMapLabelAvailable) { 1922 *TargetOS << BBAddrMapLabels[Target].front(); 1923 } else if (LabelAvailable) { 1924 *TargetOS << AllLabels[Target]; 1925 } else { 1926 // Always Print the binary symbol plus an offset if there's no 1927 // local label corresponding to the target address. 1928 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 1929 } 1930 *TargetOS << ">"; 1931 } else if (BBAddrMapLabelAvailable) { 1932 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; 1933 } else if (LabelAvailable) { 1934 *TargetOS << " <" << AllLabels[Target] << ">"; 1935 } 1936 // By convention, each record in the comment stream should be 1937 // terminated. 1938 if (TargetOS == &CommentStream) 1939 *TargetOS << "\n"; 1940 } 1941 } 1942 } 1943 1944 assert(Ctx.getAsmInfo()); 1945 emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI, 1946 CommentStream.str(), LVP); 1947 Comments.clear(); 1948 1949 // Hexagon does this in pretty printer 1950 if (Obj.getArch() != Triple::hexagon) { 1951 // Print relocation for instruction and data. 1952 while (RelCur != RelEnd) { 1953 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 1954 // If this relocation is hidden, skip it. 1955 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1956 ++RelCur; 1957 continue; 1958 } 1959 1960 // Stop when RelCur's offset is past the disassembled 1961 // instruction/data. Note that it's possible the disassembled data 1962 // is not the complete data: we might see the relocation printed in 1963 // the middle of the data, but this matches the binutils objdump 1964 // output. 1965 if (Offset >= Index + Size) 1966 break; 1967 1968 // When --adjust-vma is used, update the address printed. 1969 if (RelCur->getSymbol() != Obj.symbol_end()) { 1970 Expected<section_iterator> SymSI = 1971 RelCur->getSymbol()->getSection(); 1972 if (SymSI && *SymSI != Obj.section_end() && 1973 shouldAdjustVA(**SymSI)) 1974 Offset += AdjustVMA; 1975 } 1976 1977 printRelocation(FOS, Obj.getFileName(), *RelCur, 1978 SectionAddr + Offset, Is64Bits); 1979 LVP.printAfterOtherLine(FOS, true); 1980 ++RelCur; 1981 } 1982 } 1983 1984 Index += Size; 1985 } 1986 } 1987 } 1988 StringSet<> MissingDisasmSymbolSet = 1989 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 1990 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 1991 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 1992 } 1993 1994 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { 1995 // If information useful for showing the disassembly is missing, try to find a 1996 // more complete binary and disassemble that instead. 1997 OwningBinary<Binary> FetchedBinary; 1998 if (Obj->symbols().empty()) { 1999 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = 2000 fetchBinaryByBuildID(*Obj)) { 2001 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { 2002 if (!O->symbols().empty() || 2003 (!O->sections().empty() && Obj->sections().empty())) { 2004 FetchedBinary = std::move(*FetchedBinaryOpt); 2005 Obj = O; 2006 } 2007 } 2008 } 2009 } 2010 2011 const Target *TheTarget = getTarget(Obj); 2012 2013 // Package up features to be passed to target/subtarget 2014 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); 2015 if (!FeaturesValue) 2016 reportError(FeaturesValue.takeError(), Obj->getFileName()); 2017 SubtargetFeatures Features = *FeaturesValue; 2018 if (!MAttrs.empty()) { 2019 for (unsigned I = 0; I != MAttrs.size(); ++I) 2020 Features.AddFeature(MAttrs[I]); 2021 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { 2022 Features.AddFeature("+all"); 2023 } 2024 2025 std::unique_ptr<const MCRegisterInfo> MRI( 2026 TheTarget->createMCRegInfo(TripleName)); 2027 if (!MRI) 2028 reportError(Obj->getFileName(), 2029 "no register info for target " + TripleName); 2030 2031 // Set up disassembler. 2032 MCTargetOptions MCOptions; 2033 std::unique_ptr<const MCAsmInfo> AsmInfo( 2034 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 2035 if (!AsmInfo) 2036 reportError(Obj->getFileName(), 2037 "no assembly info for target " + TripleName); 2038 2039 if (MCPU.empty()) 2040 MCPU = Obj->tryGetCPUName().value_or("").str(); 2041 2042 if (isArmElf(*Obj)) { 2043 // When disassembling big-endian Arm ELF, the instruction endianness is 2044 // determined in a complex way. In relocatable objects, AAELF32 mandates 2045 // that instruction endianness matches the ELF file endianness; in 2046 // executable images, that's true unless the file header has the EF_ARM_BE8 2047 // flag, in which case instructions are little-endian regardless of data 2048 // endianness. 2049 // 2050 // We must set the big-endian-instructions SubtargetFeature to make the 2051 // disassembler read the instructions the right way round, and also tell 2052 // our own prettyprinter to retrieve the encodings the same way to print in 2053 // hex. 2054 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); 2055 2056 if (Elf32BE && (Elf32BE->isRelocatableObject() || 2057 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { 2058 Features.AddFeature("+big-endian-instructions"); 2059 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big); 2060 } else { 2061 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little); 2062 } 2063 } 2064 2065 std::unique_ptr<const MCSubtargetInfo> STI( 2066 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 2067 if (!STI) 2068 reportError(Obj->getFileName(), 2069 "no subtarget info for target " + TripleName); 2070 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 2071 if (!MII) 2072 reportError(Obj->getFileName(), 2073 "no instruction info for target " + TripleName); 2074 MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); 2075 // FIXME: for now initialize MCObjectFileInfo with default values 2076 std::unique_ptr<MCObjectFileInfo> MOFI( 2077 TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); 2078 Ctx.setObjectFileInfo(MOFI.get()); 2079 2080 std::unique_ptr<MCDisassembler> DisAsm( 2081 TheTarget->createMCDisassembler(*STI, Ctx)); 2082 if (!DisAsm) 2083 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 2084 2085 // If we have an ARM object file, we need a second disassembler, because 2086 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2087 // We use mapping symbols to switch between the two assemblers, where 2088 // appropriate. 2089 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 2090 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 2091 if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) { 2092 if (STI->checkFeatures("+thumb-mode")) 2093 Features.AddFeature("-thumb-mode"); 2094 else 2095 Features.AddFeature("+thumb-mode"); 2096 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 2097 Features.getString())); 2098 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 2099 } 2100 2101 std::unique_ptr<const MCInstrAnalysis> MIA( 2102 TheTarget->createMCInstrAnalysis(MII.get())); 2103 2104 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 2105 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 2106 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 2107 if (!IP) 2108 reportError(Obj->getFileName(), 2109 "no instruction printer for target " + TripleName); 2110 IP->setPrintImmHex(PrintImmHex); 2111 IP->setPrintBranchImmAsAddress(true); 2112 IP->setSymbolizeOperands(SymbolizeOperands); 2113 IP->setMCInstrAnalysis(MIA.get()); 2114 2115 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 2116 2117 const ObjectFile *DbgObj = Obj; 2118 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { 2119 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = 2120 fetchBinaryByBuildID(*Obj)) { 2121 if (auto *FetchedObj = 2122 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { 2123 if (FetchedObj->hasDebugInfo()) { 2124 FetchedBinary = std::move(*DebugBinaryOpt); 2125 DbgObj = FetchedObj; 2126 } 2127 } 2128 } 2129 } 2130 2131 std::unique_ptr<object::Binary> DSYMBinary; 2132 std::unique_ptr<MemoryBuffer> DSYMBuf; 2133 if (!DbgObj->hasDebugInfo()) { 2134 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { 2135 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), 2136 DSYMBinary, DSYMBuf); 2137 if (!DbgObj) 2138 return; 2139 } 2140 } 2141 2142 SourcePrinter SP(DbgObj, TheTarget->getName()); 2143 2144 for (StringRef Opt : DisassemblerOptions) 2145 if (!IP->applyTargetSpecificCLOption(Opt)) 2146 reportError(Obj->getFileName(), 2147 "Unrecognized disassembler option: " + Opt); 2148 2149 disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(), 2150 SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(), 2151 SecondarySTI.get(), PIP, SP, InlineRelocs); 2152 } 2153 2154 void objdump::printRelocations(const ObjectFile *Obj) { 2155 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 2156 "%08" PRIx64; 2157 2158 // Build a mapping from relocation target to a vector of relocation 2159 // sections. Usually, there is an only one relocation section for 2160 // each relocated section. 2161 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2162 uint64_t Ndx; 2163 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 2164 if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) 2165 continue; 2166 if (Section.relocation_begin() == Section.relocation_end()) 2167 continue; 2168 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2169 if (!SecOrErr) 2170 reportError(Obj->getFileName(), 2171 "section (" + Twine(Ndx) + 2172 "): unable to get a relocation target: " + 2173 toString(SecOrErr.takeError())); 2174 SecToRelSec[**SecOrErr].push_back(Section); 2175 } 2176 2177 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2178 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 2179 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 2180 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 2181 uint32_t TypePadding = 24; 2182 outs() << left_justify("OFFSET", OffsetPadding) << " " 2183 << left_justify("TYPE", TypePadding) << " " 2184 << "VALUE\n"; 2185 2186 for (SectionRef Section : P.second) { 2187 for (const RelocationRef &Reloc : Section.relocations()) { 2188 uint64_t Address = Reloc.getOffset(); 2189 SmallString<32> RelocName; 2190 SmallString<32> ValueStr; 2191 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2192 continue; 2193 Reloc.getTypeName(RelocName); 2194 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2195 reportError(std::move(E), Obj->getFileName()); 2196 2197 outs() << format(Fmt.data(), Address) << " " 2198 << left_justify(RelocName, TypePadding) << " " << ValueStr 2199 << "\n"; 2200 } 2201 } 2202 } 2203 } 2204 2205 void objdump::printDynamicRelocations(const ObjectFile *Obj) { 2206 // For the moment, this option is for ELF only 2207 if (!Obj->isELF()) 2208 return; 2209 2210 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 2211 if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) { 2212 return Sec.getType() == ELF::SHT_DYNAMIC; 2213 })) { 2214 reportError(Obj->getFileName(), "not a dynamic object"); 2215 return; 2216 } 2217 2218 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 2219 if (DynRelSec.empty()) 2220 return; 2221 2222 outs() << "\nDYNAMIC RELOCATION RECORDS\n"; 2223 const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 2224 const uint32_t TypePadding = 24; 2225 outs() << left_justify("OFFSET", OffsetPadding) << ' ' 2226 << left_justify("TYPE", TypePadding) << " VALUE\n"; 2227 2228 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2229 for (const SectionRef &Section : DynRelSec) 2230 for (const RelocationRef &Reloc : Section.relocations()) { 2231 uint64_t Address = Reloc.getOffset(); 2232 SmallString<32> RelocName; 2233 SmallString<32> ValueStr; 2234 Reloc.getTypeName(RelocName); 2235 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2236 reportError(std::move(E), Obj->getFileName()); 2237 outs() << format(Fmt.data(), Address) << ' ' 2238 << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n'; 2239 } 2240 } 2241 2242 // Returns true if we need to show LMA column when dumping section headers. We 2243 // show it only when the platform is ELF and either we have at least one section 2244 // whose VMA and LMA are different and/or when --show-lma flag is used. 2245 static bool shouldDisplayLMA(const ObjectFile &Obj) { 2246 if (!Obj.isELF()) 2247 return false; 2248 for (const SectionRef &S : ToolSectionFilter(Obj)) 2249 if (S.getAddress() != getELFSectionLMA(S)) 2250 return true; 2251 return ShowLMA; 2252 } 2253 2254 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { 2255 // Default column width for names is 13 even if no names are that long. 2256 size_t MaxWidth = 13; 2257 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 2258 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2259 MaxWidth = std::max(MaxWidth, Name.size()); 2260 } 2261 return MaxWidth; 2262 } 2263 2264 void objdump::printSectionHeaders(ObjectFile &Obj) { 2265 if (Obj.isELF() && Obj.sections().empty()) 2266 createFakeELFSections(Obj); 2267 2268 size_t NameWidth = getMaxSectionNameWidth(Obj); 2269 size_t AddressWidth = 2 * Obj.getBytesInAddress(); 2270 bool HasLMAColumn = shouldDisplayLMA(Obj); 2271 outs() << "\nSections:\n"; 2272 if (HasLMAColumn) 2273 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2274 << left_justify("VMA", AddressWidth) << " " 2275 << left_justify("LMA", AddressWidth) << " Type\n"; 2276 else 2277 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2278 << left_justify("VMA", AddressWidth) << " Type\n"; 2279 2280 uint64_t Idx; 2281 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { 2282 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2283 uint64_t VMA = Section.getAddress(); 2284 if (shouldAdjustVA(Section)) 2285 VMA += AdjustVMA; 2286 2287 uint64_t Size = Section.getSize(); 2288 2289 std::string Type = Section.isText() ? "TEXT" : ""; 2290 if (Section.isData()) 2291 Type += Type.empty() ? "DATA" : ", DATA"; 2292 if (Section.isBSS()) 2293 Type += Type.empty() ? "BSS" : ", BSS"; 2294 if (Section.isDebugSection()) 2295 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 2296 2297 if (HasLMAColumn) 2298 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2299 Name.str().c_str(), Size) 2300 << format_hex_no_prefix(VMA, AddressWidth) << " " 2301 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2302 << " " << Type << "\n"; 2303 else 2304 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2305 Name.str().c_str(), Size) 2306 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2307 } 2308 } 2309 2310 void objdump::printSectionContents(const ObjectFile *Obj) { 2311 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 2312 2313 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2314 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2315 uint64_t BaseAddr = Section.getAddress(); 2316 uint64_t Size = Section.getSize(); 2317 if (!Size) 2318 continue; 2319 2320 outs() << "Contents of section "; 2321 StringRef SegmentName = getSegmentName(MachO, Section); 2322 if (!SegmentName.empty()) 2323 outs() << SegmentName << ","; 2324 outs() << Name << ":\n"; 2325 if (Section.isBSS()) { 2326 outs() << format("<skipping contents of bss section at [%04" PRIx64 2327 ", %04" PRIx64 ")>\n", 2328 BaseAddr, BaseAddr + Size); 2329 continue; 2330 } 2331 2332 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2333 2334 // Dump out the content as hex and printable ascii characters. 2335 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2336 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2337 // Dump line of hex. 2338 for (std::size_t I = 0; I < 16; ++I) { 2339 if (I != 0 && I % 4 == 0) 2340 outs() << ' '; 2341 if (Addr + I < End) 2342 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2343 << hexdigit(Contents[Addr + I] & 0xF, true); 2344 else 2345 outs() << " "; 2346 } 2347 // Print ascii. 2348 outs() << " "; 2349 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2350 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2351 outs() << Contents[Addr + I]; 2352 else 2353 outs() << "."; 2354 } 2355 outs() << "\n"; 2356 } 2357 } 2358 } 2359 2360 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName, 2361 StringRef ArchitectureName, bool DumpDynamic) { 2362 if (O.isCOFF() && !DumpDynamic) { 2363 outs() << "\nSYMBOL TABLE:\n"; 2364 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 2365 return; 2366 } 2367 2368 const StringRef FileName = O.getFileName(); 2369 2370 if (!DumpDynamic) { 2371 outs() << "\nSYMBOL TABLE:\n"; 2372 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) 2373 printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName, 2374 DumpDynamic); 2375 return; 2376 } 2377 2378 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 2379 if (!O.isELF()) { 2380 reportWarning( 2381 "this operation is not currently supported for this file format", 2382 FileName); 2383 return; 2384 } 2385 2386 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); 2387 auto Symbols = ELF->getDynamicSymbolIterators(); 2388 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 2389 ELF->readDynsymVersions(); 2390 if (!SymbolVersionsOrErr) { 2391 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 2392 SymbolVersionsOrErr = std::vector<VersionEntry>(); 2393 (void)!SymbolVersionsOrErr; 2394 } 2395 for (auto &Sym : Symbols) 2396 printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 2397 ArchitectureName, DumpDynamic); 2398 } 2399 2400 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol, 2401 ArrayRef<VersionEntry> SymbolVersions, 2402 StringRef FileName, StringRef ArchiveName, 2403 StringRef ArchitectureName, bool DumpDynamic) { 2404 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); 2405 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 2406 ArchitectureName); 2407 if ((Address < StartAddress) || (Address > StopAddress)) 2408 return; 2409 SymbolRef::Type Type = 2410 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 2411 uint32_t Flags = 2412 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 2413 2414 // Don't ask a Mach-O STAB symbol for its section unless you know that 2415 // STAB symbol's section field refers to a valid section index. Otherwise 2416 // the symbol may error trying to load a section that does not exist. 2417 bool IsSTAB = false; 2418 if (MachO) { 2419 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2420 uint8_t NType = 2421 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 2422 : MachO->getSymbolTableEntry(SymDRI).n_type); 2423 if (NType & MachO::N_STAB) 2424 IsSTAB = true; 2425 } 2426 section_iterator Section = IsSTAB 2427 ? O.section_end() 2428 : unwrapOrError(Symbol.getSection(), FileName, 2429 ArchiveName, ArchitectureName); 2430 2431 StringRef Name; 2432 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { 2433 if (Expected<StringRef> NameOrErr = Section->getName()) 2434 Name = *NameOrErr; 2435 else 2436 consumeError(NameOrErr.takeError()); 2437 2438 } else { 2439 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2440 ArchitectureName); 2441 } 2442 2443 bool Global = Flags & SymbolRef::SF_Global; 2444 bool Weak = Flags & SymbolRef::SF_Weak; 2445 bool Absolute = Flags & SymbolRef::SF_Absolute; 2446 bool Common = Flags & SymbolRef::SF_Common; 2447 bool Hidden = Flags & SymbolRef::SF_Hidden; 2448 2449 char GlobLoc = ' '; 2450 if ((Section != O.section_end() || Absolute) && !Weak) 2451 GlobLoc = Global ? 'g' : 'l'; 2452 char IFunc = ' '; 2453 if (O.isELF()) { 2454 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2455 IFunc = 'i'; 2456 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2457 GlobLoc = 'u'; 2458 } 2459 2460 char Debug = ' '; 2461 if (DumpDynamic) 2462 Debug = 'D'; 2463 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2464 Debug = 'd'; 2465 2466 char FileFunc = ' '; 2467 if (Type == SymbolRef::ST_File) 2468 FileFunc = 'f'; 2469 else if (Type == SymbolRef::ST_Function) 2470 FileFunc = 'F'; 2471 else if (Type == SymbolRef::ST_Data) 2472 FileFunc = 'O'; 2473 2474 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2475 2476 outs() << format(Fmt, Address) << " " 2477 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2478 << (Weak ? 'w' : ' ') // Weak? 2479 << ' ' // Constructor. Not supported yet. 2480 << ' ' // Warning. Not supported yet. 2481 << IFunc // Indirect reference to another symbol. 2482 << Debug // Debugging (d) or dynamic (D) symbol. 2483 << FileFunc // Name of function (F), file (f) or object (O). 2484 << ' '; 2485 if (Absolute) { 2486 outs() << "*ABS*"; 2487 } else if (Common) { 2488 outs() << "*COM*"; 2489 } else if (Section == O.section_end()) { 2490 if (O.isXCOFF()) { 2491 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( 2492 Symbol.getRawDataRefImpl()); 2493 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2494 outs() << "*DEBUG*"; 2495 else 2496 outs() << "*UND*"; 2497 } else 2498 outs() << "*UND*"; 2499 } else { 2500 StringRef SegmentName = getSegmentName(MachO, *Section); 2501 if (!SegmentName.empty()) 2502 outs() << SegmentName << ","; 2503 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2504 outs() << SectionName; 2505 if (O.isXCOFF()) { 2506 std::optional<SymbolRef> SymRef = 2507 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); 2508 if (SymRef) { 2509 2510 Expected<StringRef> NameOrErr = SymRef->getName(); 2511 2512 if (NameOrErr) { 2513 outs() << " (csect:"; 2514 std::string SymName(NameOrErr.get()); 2515 2516 if (Demangle) 2517 SymName = demangle(SymName); 2518 2519 if (SymbolDescription) 2520 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), 2521 SymName); 2522 2523 outs() << ' ' << SymName; 2524 outs() << ") "; 2525 } else 2526 reportWarning(toString(NameOrErr.takeError()), FileName); 2527 } 2528 } 2529 } 2530 2531 if (Common) 2532 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2533 else if (O.isXCOFF()) 2534 outs() << '\t' 2535 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( 2536 Symbol.getRawDataRefImpl())); 2537 else if (O.isELF()) 2538 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2539 2540 if (O.isELF()) { 2541 if (!SymbolVersions.empty()) { 2542 const VersionEntry &Ver = 2543 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2544 std::string Str; 2545 if (!Ver.Name.empty()) 2546 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2547 outs() << ' ' << left_justify(Str, 12); 2548 } 2549 2550 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2551 switch (Other) { 2552 case ELF::STV_DEFAULT: 2553 break; 2554 case ELF::STV_INTERNAL: 2555 outs() << " .internal"; 2556 break; 2557 case ELF::STV_HIDDEN: 2558 outs() << " .hidden"; 2559 break; 2560 case ELF::STV_PROTECTED: 2561 outs() << " .protected"; 2562 break; 2563 default: 2564 outs() << format(" 0x%02x", Other); 2565 break; 2566 } 2567 } else if (Hidden) { 2568 outs() << " .hidden"; 2569 } 2570 2571 std::string SymName(Name); 2572 if (Demangle) 2573 SymName = demangle(SymName); 2574 2575 if (O.isXCOFF() && SymbolDescription) 2576 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2577 2578 outs() << ' ' << SymName << '\n'; 2579 } 2580 2581 static void printUnwindInfo(const ObjectFile *O) { 2582 outs() << "Unwind info:\n\n"; 2583 2584 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2585 printCOFFUnwindInfo(Coff); 2586 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2587 printMachOUnwindInfo(MachO); 2588 else 2589 // TODO: Extract DWARF dump tool to objdump. 2590 WithColor::error(errs(), ToolName) 2591 << "This operation is only currently supported " 2592 "for COFF and MachO object files.\n"; 2593 } 2594 2595 /// Dump the raw contents of the __clangast section so the output can be piped 2596 /// into llvm-bcanalyzer. 2597 static void printRawClangAST(const ObjectFile *Obj) { 2598 if (outs().is_displayed()) { 2599 WithColor::error(errs(), ToolName) 2600 << "The -raw-clang-ast option will dump the raw binary contents of " 2601 "the clang ast section.\n" 2602 "Please redirect the output to a file or another program such as " 2603 "llvm-bcanalyzer.\n"; 2604 return; 2605 } 2606 2607 StringRef ClangASTSectionName("__clangast"); 2608 if (Obj->isCOFF()) { 2609 ClangASTSectionName = "clangast"; 2610 } 2611 2612 std::optional<object::SectionRef> ClangASTSection; 2613 for (auto Sec : ToolSectionFilter(*Obj)) { 2614 StringRef Name; 2615 if (Expected<StringRef> NameOrErr = Sec.getName()) 2616 Name = *NameOrErr; 2617 else 2618 consumeError(NameOrErr.takeError()); 2619 2620 if (Name == ClangASTSectionName) { 2621 ClangASTSection = Sec; 2622 break; 2623 } 2624 } 2625 if (!ClangASTSection) 2626 return; 2627 2628 StringRef ClangASTContents = 2629 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); 2630 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2631 } 2632 2633 static void printFaultMaps(const ObjectFile *Obj) { 2634 StringRef FaultMapSectionName; 2635 2636 if (Obj->isELF()) { 2637 FaultMapSectionName = ".llvm_faultmaps"; 2638 } else if (Obj->isMachO()) { 2639 FaultMapSectionName = "__llvm_faultmaps"; 2640 } else { 2641 WithColor::error(errs(), ToolName) 2642 << "This operation is only currently supported " 2643 "for ELF and Mach-O executable files.\n"; 2644 return; 2645 } 2646 2647 std::optional<object::SectionRef> FaultMapSection; 2648 2649 for (auto Sec : ToolSectionFilter(*Obj)) { 2650 StringRef Name; 2651 if (Expected<StringRef> NameOrErr = Sec.getName()) 2652 Name = *NameOrErr; 2653 else 2654 consumeError(NameOrErr.takeError()); 2655 2656 if (Name == FaultMapSectionName) { 2657 FaultMapSection = Sec; 2658 break; 2659 } 2660 } 2661 2662 outs() << "FaultMap table:\n"; 2663 2664 if (!FaultMapSection) { 2665 outs() << "<not found>\n"; 2666 return; 2667 } 2668 2669 StringRef FaultMapContents = 2670 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); 2671 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2672 FaultMapContents.bytes_end()); 2673 2674 outs() << FMP; 2675 } 2676 2677 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2678 if (O->isELF()) { 2679 printELFFileHeader(O); 2680 printELFDynamicSection(O); 2681 printELFSymbolVersionInfo(O); 2682 return; 2683 } 2684 if (O->isCOFF()) 2685 return printCOFFFileHeader(cast<object::COFFObjectFile>(*O)); 2686 if (O->isWasm()) 2687 return printWasmFileHeader(O); 2688 if (O->isMachO()) { 2689 printMachOFileHeader(O); 2690 if (!OnlyFirst) 2691 printMachOLoadCommands(O); 2692 return; 2693 } 2694 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2695 } 2696 2697 static void printFileHeaders(const ObjectFile *O) { 2698 if (!O->isELF() && !O->isCOFF()) 2699 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2700 2701 Triple::ArchType AT = O->getArch(); 2702 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2703 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2704 2705 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2706 outs() << "start address: " 2707 << "0x" << format(Fmt.data(), Address) << "\n"; 2708 } 2709 2710 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2711 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2712 if (!ModeOrErr) { 2713 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2714 consumeError(ModeOrErr.takeError()); 2715 return; 2716 } 2717 sys::fs::perms Mode = ModeOrErr.get(); 2718 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2719 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2720 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2721 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2722 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2723 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2724 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2725 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2726 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2727 2728 outs() << " "; 2729 2730 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2731 unwrapOrError(C.getGID(), Filename), 2732 unwrapOrError(C.getRawSize(), Filename)); 2733 2734 StringRef RawLastModified = C.getRawLastModified(); 2735 unsigned Seconds; 2736 if (RawLastModified.getAsInteger(10, Seconds)) 2737 outs() << "(date: \"" << RawLastModified 2738 << "\" contains non-decimal chars) "; 2739 else { 2740 // Since ctime(3) returns a 26 character string of the form: 2741 // "Sun Sep 16 01:03:52 1973\n\0" 2742 // just print 24 characters. 2743 time_t t = Seconds; 2744 outs() << format("%.24s ", ctime(&t)); 2745 } 2746 2747 StringRef Name = ""; 2748 Expected<StringRef> NameOrErr = C.getName(); 2749 if (!NameOrErr) { 2750 consumeError(NameOrErr.takeError()); 2751 Name = unwrapOrError(C.getRawName(), Filename); 2752 } else { 2753 Name = NameOrErr.get(); 2754 } 2755 outs() << Name << "\n"; 2756 } 2757 2758 // For ELF only now. 2759 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2760 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2761 if (Elf->getEType() != ELF::ET_REL) 2762 return true; 2763 } 2764 return false; 2765 } 2766 2767 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2768 uint64_t Start, uint64_t Stop) { 2769 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2770 return; 2771 2772 for (const SectionRef &Section : Obj->sections()) 2773 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2774 uint64_t BaseAddr = Section.getAddress(); 2775 uint64_t Size = Section.getSize(); 2776 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2777 return; 2778 } 2779 2780 if (!HasStartAddressFlag) 2781 reportWarning("no section has address less than 0x" + 2782 Twine::utohexstr(Stop) + " specified by --stop-address", 2783 Obj->getFileName()); 2784 else if (!HasStopAddressFlag) 2785 reportWarning("no section has address greater than or equal to 0x" + 2786 Twine::utohexstr(Start) + " specified by --start-address", 2787 Obj->getFileName()); 2788 else 2789 reportWarning("no section overlaps the range [0x" + 2790 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2791 ") specified by --start-address/--stop-address", 2792 Obj->getFileName()); 2793 } 2794 2795 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2796 const Archive::Child *C = nullptr) { 2797 // Avoid other output when using a raw option. 2798 if (!RawClangAST) { 2799 outs() << '\n'; 2800 if (A) 2801 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2802 else 2803 outs() << O->getFileName(); 2804 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2805 } 2806 2807 if (HasStartAddressFlag || HasStopAddressFlag) 2808 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2809 2810 // Note: the order here matches GNU objdump for compatability. 2811 StringRef ArchiveName = A ? A->getFileName() : ""; 2812 if (ArchiveHeaders && !MachOOpt && C) 2813 printArchiveChild(ArchiveName, *C); 2814 if (FileHeaders) 2815 printFileHeaders(O); 2816 if (PrivateHeaders || FirstPrivateHeader) 2817 printPrivateFileHeaders(O, FirstPrivateHeader); 2818 if (SectionHeaders) 2819 printSectionHeaders(*O); 2820 if (SymbolTable) 2821 printSymbolTable(*O, ArchiveName); 2822 if (DynamicSymbolTable) 2823 printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"", 2824 /*DumpDynamic=*/true); 2825 if (DwarfDumpType != DIDT_Null) { 2826 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2827 // Dump the complete DWARF structure. 2828 DIDumpOptions DumpOpts; 2829 DumpOpts.DumpType = DwarfDumpType; 2830 DICtx->dump(outs(), DumpOpts); 2831 } 2832 if (Relocations && !Disassemble) 2833 printRelocations(O); 2834 if (DynamicRelocations) 2835 printDynamicRelocations(O); 2836 if (SectionContents) 2837 printSectionContents(O); 2838 if (Disassemble) 2839 disassembleObject(O, Relocations); 2840 if (UnwindInfo) 2841 printUnwindInfo(O); 2842 2843 // Mach-O specific options: 2844 if (ExportsTrie) 2845 printExportsTrie(O); 2846 if (Rebase) 2847 printRebaseTable(O); 2848 if (Bind) 2849 printBindTable(O); 2850 if (LazyBind) 2851 printLazyBindTable(O); 2852 if (WeakBind) 2853 printWeakBindTable(O); 2854 2855 // Other special sections: 2856 if (RawClangAST) 2857 printRawClangAST(O); 2858 if (FaultMapSection) 2859 printFaultMaps(O); 2860 if (Offloading) 2861 dumpOffloadBinary(*O); 2862 } 2863 2864 static void dumpObject(const COFFImportFile *I, const Archive *A, 2865 const Archive::Child *C = nullptr) { 2866 StringRef ArchiveName = A ? A->getFileName() : ""; 2867 2868 // Avoid other output when using a raw option. 2869 if (!RawClangAST) 2870 outs() << '\n' 2871 << ArchiveName << "(" << I->getFileName() << ")" 2872 << ":\tfile format COFF-import-file" 2873 << "\n\n"; 2874 2875 if (ArchiveHeaders && !MachOOpt && C) 2876 printArchiveChild(ArchiveName, *C); 2877 if (SymbolTable) 2878 printCOFFSymbolTable(*I); 2879 } 2880 2881 /// Dump each object file in \a a; 2882 static void dumpArchive(const Archive *A) { 2883 Error Err = Error::success(); 2884 unsigned I = -1; 2885 for (auto &C : A->children(Err)) { 2886 ++I; 2887 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2888 if (!ChildOrErr) { 2889 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2890 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2891 continue; 2892 } 2893 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2894 dumpObject(O, A, &C); 2895 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2896 dumpObject(I, A, &C); 2897 else 2898 reportError(errorCodeToError(object_error::invalid_file_type), 2899 A->getFileName()); 2900 } 2901 if (Err) 2902 reportError(std::move(Err), A->getFileName()); 2903 } 2904 2905 /// Open file and figure out how to dump it. 2906 static void dumpInput(StringRef file) { 2907 // If we are using the Mach-O specific object file parser, then let it parse 2908 // the file and process the command line options. So the -arch flags can 2909 // be used to select specific slices, etc. 2910 if (MachOOpt) { 2911 parseInputMachO(file); 2912 return; 2913 } 2914 2915 // Attempt to open the binary. 2916 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2917 Binary &Binary = *OBinary.getBinary(); 2918 2919 if (Archive *A = dyn_cast<Archive>(&Binary)) 2920 dumpArchive(A); 2921 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2922 dumpObject(O); 2923 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2924 parseInputMachO(UB); 2925 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) 2926 dumpOffloadSections(*OB); 2927 else 2928 reportError(errorCodeToError(object_error::invalid_file_type), file); 2929 } 2930 2931 template <typename T> 2932 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 2933 T &Value) { 2934 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 2935 StringRef V(A->getValue()); 2936 if (!llvm::to_integer(V, Value, 0)) { 2937 reportCmdLineError(A->getSpelling() + 2938 ": expected a non-negative integer, but got '" + V + 2939 "'"); 2940 } 2941 } 2942 } 2943 2944 static object::BuildID parseBuildIDArg(const opt::Arg *A) { 2945 StringRef V(A->getValue()); 2946 object::BuildID BID = parseBuildID(V); 2947 if (BID.empty()) 2948 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + 2949 V + "'"); 2950 return BID; 2951 } 2952 2953 void objdump::invalidArgValue(const opt::Arg *A) { 2954 reportCmdLineError("'" + StringRef(A->getValue()) + 2955 "' is not a valid value for '" + A->getSpelling() + "'"); 2956 } 2957 2958 static std::vector<std::string> 2959 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 2960 std::vector<std::string> Values; 2961 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 2962 llvm::SmallVector<StringRef, 2> SplitValues; 2963 llvm::SplitString(Value, SplitValues, ","); 2964 for (StringRef SplitValue : SplitValues) 2965 Values.push_back(SplitValue.str()); 2966 } 2967 return Values; 2968 } 2969 2970 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 2971 MachOOpt = true; 2972 FullLeadingAddr = true; 2973 PrintImmHex = true; 2974 2975 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 2976 LinkOptHints = InputArgs.hasArg(OTOOL_C); 2977 if (InputArgs.hasArg(OTOOL_d)) 2978 FilterSections.push_back("__DATA,__data"); 2979 DylibId = InputArgs.hasArg(OTOOL_D); 2980 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 2981 DataInCode = InputArgs.hasArg(OTOOL_G); 2982 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 2983 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 2984 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 2985 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 2986 DylibsUsed = InputArgs.hasArg(OTOOL_L); 2987 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 2988 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 2989 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 2990 InfoPlist = InputArgs.hasArg(OTOOL_P); 2991 Relocations = InputArgs.hasArg(OTOOL_r); 2992 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 2993 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 2994 FilterSections.push_back(Filter); 2995 } 2996 if (InputArgs.hasArg(OTOOL_t)) 2997 FilterSections.push_back("__TEXT,__text"); 2998 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 2999 InputArgs.hasArg(OTOOL_o); 3000 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 3001 if (InputArgs.hasArg(OTOOL_x)) 3002 FilterSections.push_back(",__text"); 3003 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 3004 3005 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); 3006 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); 3007 3008 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 3009 if (InputFilenames.empty()) 3010 reportCmdLineError("no input file"); 3011 3012 for (const Arg *A : InputArgs) { 3013 const Option &O = A->getOption(); 3014 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 3015 reportCmdLineWarning(O.getPrefixedName() + 3016 " is obsolete and not implemented"); 3017 } 3018 } 3019 } 3020 3021 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 3022 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 3023 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 3024 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 3025 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 3026 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 3027 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 3028 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 3029 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 3030 DisassembleSymbols = 3031 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 3032 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 3033 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 3034 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 3035 .Case("frames", DIDT_DebugFrame) 3036 .Default(DIDT_Null); 3037 if (DwarfDumpType == DIDT_Null) 3038 invalidArgValue(A); 3039 } 3040 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 3041 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 3042 Offloading = InputArgs.hasArg(OBJDUMP_offloading); 3043 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 3044 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 3045 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 3046 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 3047 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 3048 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 3049 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 3050 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 3051 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 3052 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 3053 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 3054 PrintImmHex = 3055 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); 3056 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 3057 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 3058 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 3059 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); 3060 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 3061 PrintSource = InputArgs.hasArg(OBJDUMP_source); 3062 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 3063 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 3064 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 3065 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 3066 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 3067 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 3068 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 3069 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 3070 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 3071 Wide = InputArgs.hasArg(OBJDUMP_wide); 3072 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 3073 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 3074 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 3075 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 3076 .Case("ascii", DVASCII) 3077 .Case("unicode", DVUnicode) 3078 .Default(DVInvalid); 3079 if (DbgVariables == DVInvalid) 3080 invalidArgValue(A); 3081 } 3082 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 3083 3084 parseMachOOptions(InputArgs); 3085 3086 // Parse -M (--disassembler-options) and deprecated 3087 // --x86-asm-syntax={att,intel}. 3088 // 3089 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 3090 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 3091 // called too late. For now we have to use the internal cl::opt option. 3092 const char *AsmSyntax = nullptr; 3093 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 3094 OBJDUMP_x86_asm_syntax_att, 3095 OBJDUMP_x86_asm_syntax_intel)) { 3096 switch (A->getOption().getID()) { 3097 case OBJDUMP_x86_asm_syntax_att: 3098 AsmSyntax = "--x86-asm-syntax=att"; 3099 continue; 3100 case OBJDUMP_x86_asm_syntax_intel: 3101 AsmSyntax = "--x86-asm-syntax=intel"; 3102 continue; 3103 } 3104 3105 SmallVector<StringRef, 2> Values; 3106 llvm::SplitString(A->getValue(), Values, ","); 3107 for (StringRef V : Values) { 3108 if (V == "att") 3109 AsmSyntax = "--x86-asm-syntax=att"; 3110 else if (V == "intel") 3111 AsmSyntax = "--x86-asm-syntax=intel"; 3112 else 3113 DisassemblerOptions.push_back(V.str()); 3114 } 3115 } 3116 if (AsmSyntax) { 3117 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 3118 llvm::cl::ParseCommandLineOptions(2, Argv); 3119 } 3120 3121 // Look up any provided build IDs, then append them to the input filenames. 3122 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { 3123 object::BuildID BuildID = parseBuildIDArg(A); 3124 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 3125 if (!Path) { 3126 reportCmdLineError(A->getSpelling() + ": could not find build ID '" + 3127 A->getValue() + "'"); 3128 } 3129 InputFilenames.push_back(std::move(*Path)); 3130 } 3131 3132 // objdump defaults to a.out if no filenames specified. 3133 if (InputFilenames.empty()) 3134 InputFilenames.push_back("a.out"); 3135 } 3136 3137 int main(int argc, char **argv) { 3138 using namespace llvm; 3139 InitLLVM X(argc, argv); 3140 3141 ToolName = argv[0]; 3142 std::unique_ptr<CommonOptTable> T; 3143 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 3144 3145 StringRef Stem = sys::path::stem(ToolName); 3146 auto Is = [=](StringRef Tool) { 3147 // We need to recognize the following filenames: 3148 // 3149 // llvm-objdump -> objdump 3150 // llvm-otool-10.exe -> otool 3151 // powerpc64-unknown-freebsd13-objdump -> objdump 3152 auto I = Stem.rfind_insensitive(Tool); 3153 return I != StringRef::npos && 3154 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 3155 }; 3156 if (Is("otool")) { 3157 T = std::make_unique<OtoolOptTable>(); 3158 Unknown = OTOOL_UNKNOWN; 3159 HelpFlag = OTOOL_help; 3160 HelpHiddenFlag = OTOOL_help_hidden; 3161 VersionFlag = OTOOL_version; 3162 } else { 3163 T = std::make_unique<ObjdumpOptTable>(); 3164 Unknown = OBJDUMP_UNKNOWN; 3165 HelpFlag = OBJDUMP_help; 3166 HelpHiddenFlag = OBJDUMP_help_hidden; 3167 VersionFlag = OBJDUMP_version; 3168 } 3169 3170 BumpPtrAllocator A; 3171 StringSaver Saver(A); 3172 opt::InputArgList InputArgs = 3173 T->parseArgs(argc, argv, Unknown, Saver, 3174 [&](StringRef Msg) { reportCmdLineError(Msg); }); 3175 3176 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 3177 T->printHelp(ToolName); 3178 return 0; 3179 } 3180 if (InputArgs.hasArg(HelpHiddenFlag)) { 3181 T->printHelp(ToolName, /*ShowHidden=*/true); 3182 return 0; 3183 } 3184 3185 // Initialize targets and assembly printers/parsers. 3186 InitializeAllTargetInfos(); 3187 InitializeAllTargetMCs(); 3188 InitializeAllDisassemblers(); 3189 3190 if (InputArgs.hasArg(VersionFlag)) { 3191 cl::PrintVersionMessage(); 3192 if (!Is("otool")) { 3193 outs() << '\n'; 3194 TargetRegistry::printRegisteredTargetsForVersion(outs()); 3195 } 3196 return 0; 3197 } 3198 3199 // Initialize debuginfod. 3200 const bool ShouldUseDebuginfodByDefault = 3201 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); 3202 std::vector<std::string> DebugFileDirectories = 3203 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); 3204 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, 3205 ShouldUseDebuginfodByDefault)) { 3206 HTTPClient::initialize(); 3207 BIDFetcher = 3208 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); 3209 } else { 3210 BIDFetcher = 3211 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); 3212 } 3213 3214 if (Is("otool")) 3215 parseOtoolOptions(InputArgs); 3216 else 3217 parseObjdumpOptions(InputArgs); 3218 3219 if (StartAddress >= StopAddress) 3220 reportCmdLineError("start address should be less than stop address"); 3221 3222 // Removes trailing separators from prefix. 3223 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 3224 Prefix.pop_back(); 3225 3226 if (AllHeaders) 3227 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 3228 SectionHeaders = SymbolTable = true; 3229 3230 if (DisassembleAll || PrintSource || PrintLines || 3231 !DisassembleSymbols.empty()) 3232 Disassemble = true; 3233 3234 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 3235 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 3236 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 3237 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && 3238 !(MachOOpt && 3239 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || 3240 DylibsUsed || ExportsTrie || FirstPrivateHeader || 3241 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || 3242 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || 3243 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { 3244 T->printHelp(ToolName); 3245 return 2; 3246 } 3247 3248 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 3249 3250 llvm::for_each(InputFilenames, dumpInput); 3251 3252 warnOnNoMatchForSections(); 3253 3254 return EXIT_SUCCESS; 3255 } 3256