xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 8e29f3f1c35a88f00a0290b0280468d04932eeb5)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringSet.h"
34 #include "llvm/ADT/Triple.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
37 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
38 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
39 #include "llvm/Demangle/Demangle.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
43 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
44 #include "llvm/MC/MCInst.h"
45 #include "llvm/MC/MCInstPrinter.h"
46 #include "llvm/MC/MCInstrAnalysis.h"
47 #include "llvm/MC/MCInstrInfo.h"
48 #include "llvm/MC/MCObjectFileInfo.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/MC/MCSubtargetInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/COFF.h"
55 #include "llvm/Object/COFFImportFile.h"
56 #include "llvm/Object/ELFObjectFile.h"
57 #include "llvm/Object/ELFTypes.h"
58 #include "llvm/Object/FaultMapParser.h"
59 #include "llvm/Object/MachO.h"
60 #include "llvm/Object/MachOUniversal.h"
61 #include "llvm/Object/ObjectFile.h"
62 #include "llvm/Object/OffloadBinary.h"
63 #include "llvm/Object/Wasm.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/Option.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Errc.h"
70 #include "llvm/Support/FileSystem.h"
71 #include "llvm/Support/Format.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/GraphWriter.h"
74 #include "llvm/Support/Host.h"
75 #include "llvm/Support/InitLLVM.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <algorithm>
83 #include <cctype>
84 #include <cstring>
85 #include <system_error>
86 #include <unordered_map>
87 #include <utility>
88 
89 using namespace llvm;
90 using namespace llvm::object;
91 using namespace llvm::objdump;
92 using namespace llvm::opt;
93 
94 namespace {
95 
96 class CommonOptTable : public opt::OptTable {
97 public:
98   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
99                  const char *Description)
100       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
101     setGroupedShortOptions(true);
102   }
103 
104   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
105     Argv0 = sys::path::filename(Argv0);
106     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
107                              ShowHidden, ShowHidden);
108     // TODO Replace this with OptTable API once it adds extrahelp support.
109     outs() << "\nPass @FILE as argument to read options from FILE.\n";
110   }
111 
112 private:
113   const char *Usage;
114   const char *Description;
115 };
116 
117 // ObjdumpOptID is in ObjdumpOptID.h
118 
119 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
120 #include "ObjdumpOpts.inc"
121 #undef PREFIX
122 
123 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
124 #define OBJDUMP_nullptr nullptr
125 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
126                HELPTEXT, METAVAR, VALUES)                                      \
127   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
128    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
129    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
130    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
131 #include "ObjdumpOpts.inc"
132 #undef OPTION
133 #undef OBJDUMP_nullptr
134 };
135 
136 class ObjdumpOptTable : public CommonOptTable {
137 public:
138   ObjdumpOptTable()
139       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
140                        "llvm object file dumper") {}
141 };
142 
143 enum OtoolOptID {
144   OTOOL_INVALID = 0, // This is not an option ID.
145 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
146                HELPTEXT, METAVAR, VALUES)                                      \
147   OTOOL_##ID,
148 #include "OtoolOpts.inc"
149 #undef OPTION
150 };
151 
152 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
153 #include "OtoolOpts.inc"
154 #undef PREFIX
155 
156 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
157 #define OTOOL_nullptr nullptr
158 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
159                HELPTEXT, METAVAR, VALUES)                                      \
160   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
161    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
162    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
163    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
164 #include "OtoolOpts.inc"
165 #undef OPTION
166 #undef OTOOL_nullptr
167 };
168 
169 class OtoolOptTable : public CommonOptTable {
170 public:
171   OtoolOptTable()
172       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
173                        "Mach-O object file displaying tool") {}
174 };
175 
176 } // namespace
177 
178 #define DEBUG_TYPE "objdump"
179 
180 static uint64_t AdjustVMA;
181 static bool AllHeaders;
182 static std::string ArchName;
183 bool objdump::ArchiveHeaders;
184 bool objdump::Demangle;
185 bool objdump::Disassemble;
186 bool objdump::DisassembleAll;
187 bool objdump::SymbolDescription;
188 static std::vector<std::string> DisassembleSymbols;
189 static bool DisassembleZeroes;
190 static std::vector<std::string> DisassemblerOptions;
191 DIDumpType objdump::DwarfDumpType;
192 static bool DynamicRelocations;
193 static bool FaultMapSection;
194 static bool FileHeaders;
195 bool objdump::SectionContents;
196 static std::vector<std::string> InputFilenames;
197 bool objdump::PrintLines;
198 static bool MachOOpt;
199 std::string objdump::MCPU;
200 std::vector<std::string> objdump::MAttrs;
201 bool objdump::ShowRawInsn;
202 bool objdump::LeadingAddr;
203 static bool Offloading;
204 static bool RawClangAST;
205 bool objdump::Relocations;
206 bool objdump::PrintImmHex;
207 bool objdump::PrivateHeaders;
208 std::vector<std::string> objdump::FilterSections;
209 bool objdump::SectionHeaders;
210 static bool ShowAllSymbols;
211 static bool ShowLMA;
212 bool objdump::PrintSource;
213 
214 static uint64_t StartAddress;
215 static bool HasStartAddressFlag;
216 static uint64_t StopAddress = UINT64_MAX;
217 static bool HasStopAddressFlag;
218 
219 bool objdump::SymbolTable;
220 static bool SymbolizeOperands;
221 static bool DynamicSymbolTable;
222 std::string objdump::TripleName;
223 bool objdump::UnwindInfo;
224 static bool Wide;
225 std::string objdump::Prefix;
226 uint32_t objdump::PrefixStrip;
227 
228 DebugVarsFormat objdump::DbgVariables = DVDisabled;
229 
230 int objdump::DbgIndent = 52;
231 
232 static StringSet<> DisasmSymbolSet;
233 StringSet<> objdump::FoundSectionSet;
234 static StringRef ToolName;
235 
236 namespace {
237 struct FilterResult {
238   // True if the section should not be skipped.
239   bool Keep;
240 
241   // True if the index counter should be incremented, even if the section should
242   // be skipped. For example, sections may be skipped if they are not included
243   // in the --section flag, but we still want those to count toward the section
244   // count.
245   bool IncrementIndex;
246 };
247 } // namespace
248 
249 static FilterResult checkSectionFilter(object::SectionRef S) {
250   if (FilterSections.empty())
251     return {/*Keep=*/true, /*IncrementIndex=*/true};
252 
253   Expected<StringRef> SecNameOrErr = S.getName();
254   if (!SecNameOrErr) {
255     consumeError(SecNameOrErr.takeError());
256     return {/*Keep=*/false, /*IncrementIndex=*/false};
257   }
258   StringRef SecName = *SecNameOrErr;
259 
260   // StringSet does not allow empty key so avoid adding sections with
261   // no name (such as the section with index 0) here.
262   if (!SecName.empty())
263     FoundSectionSet.insert(SecName);
264 
265   // Only show the section if it's in the FilterSections list, but always
266   // increment so the indexing is stable.
267   return {/*Keep=*/is_contained(FilterSections, SecName),
268           /*IncrementIndex=*/true};
269 }
270 
271 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
272                                          uint64_t *Idx) {
273   // Start at UINT64_MAX so that the first index returned after an increment is
274   // zero (after the unsigned wrap).
275   if (Idx)
276     *Idx = UINT64_MAX;
277   return SectionFilter(
278       [Idx](object::SectionRef S) {
279         FilterResult Result = checkSectionFilter(S);
280         if (Idx != nullptr && Result.IncrementIndex)
281           *Idx += 1;
282         return Result.Keep;
283       },
284       O);
285 }
286 
287 std::string objdump::getFileNameForError(const object::Archive::Child &C,
288                                          unsigned Index) {
289   Expected<StringRef> NameOrErr = C.getName();
290   if (NameOrErr)
291     return std::string(NameOrErr.get());
292   // If we have an error getting the name then we print the index of the archive
293   // member. Since we are already in an error state, we just ignore this error.
294   consumeError(NameOrErr.takeError());
295   return "<file index: " + std::to_string(Index) + ">";
296 }
297 
298 void objdump::reportWarning(const Twine &Message, StringRef File) {
299   // Output order between errs() and outs() matters especially for archive
300   // files where the output is per member object.
301   outs().flush();
302   WithColor::warning(errs(), ToolName)
303       << "'" << File << "': " << Message << "\n";
304 }
305 
306 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
307   outs().flush();
308   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
309   exit(1);
310 }
311 
312 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
313                                        StringRef ArchiveName,
314                                        StringRef ArchitectureName) {
315   assert(E);
316   outs().flush();
317   WithColor::error(errs(), ToolName);
318   if (ArchiveName != "")
319     errs() << ArchiveName << "(" << FileName << ")";
320   else
321     errs() << "'" << FileName << "'";
322   if (!ArchitectureName.empty())
323     errs() << " (for architecture " << ArchitectureName << ")";
324   errs() << ": ";
325   logAllUnhandledErrors(std::move(E), errs());
326   exit(1);
327 }
328 
329 static void reportCmdLineWarning(const Twine &Message) {
330   WithColor::warning(errs(), ToolName) << Message << "\n";
331 }
332 
333 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
334   WithColor::error(errs(), ToolName) << Message << "\n";
335   exit(1);
336 }
337 
338 static void warnOnNoMatchForSections() {
339   SetVector<StringRef> MissingSections;
340   for (StringRef S : FilterSections) {
341     if (FoundSectionSet.count(S))
342       return;
343     // User may specify a unnamed section. Don't warn for it.
344     if (!S.empty())
345       MissingSections.insert(S);
346   }
347 
348   // Warn only if no section in FilterSections is matched.
349   for (StringRef S : MissingSections)
350     reportCmdLineWarning("section '" + S +
351                          "' mentioned in a -j/--section option, but not "
352                          "found in any input file");
353 }
354 
355 static const Target *getTarget(const ObjectFile *Obj) {
356   // Figure out the target triple.
357   Triple TheTriple("unknown-unknown-unknown");
358   if (TripleName.empty()) {
359     TheTriple = Obj->makeTriple();
360   } else {
361     TheTriple.setTriple(Triple::normalize(TripleName));
362     auto Arch = Obj->getArch();
363     if (Arch == Triple::arm || Arch == Triple::armeb)
364       Obj->setARMSubArch(TheTriple);
365   }
366 
367   // Get the target specific parser.
368   std::string Error;
369   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
370                                                          Error);
371   if (!TheTarget)
372     reportError(Obj->getFileName(), "can't find target: " + Error);
373 
374   // Update the triple name and return the found target.
375   TripleName = TheTriple.getTriple();
376   return TheTarget;
377 }
378 
379 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
380   return A.getOffset() < B.getOffset();
381 }
382 
383 static Error getRelocationValueString(const RelocationRef &Rel,
384                                       SmallVectorImpl<char> &Result) {
385   const ObjectFile *Obj = Rel.getObject();
386   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
387     return getELFRelocationValueString(ELF, Rel, Result);
388   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
389     return getCOFFRelocationValueString(COFF, Rel, Result);
390   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
391     return getWasmRelocationValueString(Wasm, Rel, Result);
392   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
393     return getMachORelocationValueString(MachO, Rel, Result);
394   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
395     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
396   llvm_unreachable("unknown object file format");
397 }
398 
399 /// Indicates whether this relocation should hidden when listing
400 /// relocations, usually because it is the trailing part of a multipart
401 /// relocation that will be printed as part of the leading relocation.
402 static bool getHidden(RelocationRef RelRef) {
403   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
404   if (!MachO)
405     return false;
406 
407   unsigned Arch = MachO->getArch();
408   DataRefImpl Rel = RelRef.getRawDataRefImpl();
409   uint64_t Type = MachO->getRelocationType(Rel);
410 
411   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
412   // is always hidden.
413   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
414     return Type == MachO::GENERIC_RELOC_PAIR;
415 
416   if (Arch == Triple::x86_64) {
417     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
418     // an X86_64_RELOC_SUBTRACTOR.
419     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
420       DataRefImpl RelPrev = Rel;
421       RelPrev.d.a--;
422       uint64_t PrevType = MachO->getRelocationType(RelPrev);
423       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
424         return true;
425     }
426   }
427 
428   return false;
429 }
430 
431 namespace {
432 
433 /// Get the column at which we want to start printing the instruction
434 /// disassembly, taking into account anything which appears to the left of it.
435 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
436   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
437 }
438 
439 static bool isAArch64Elf(const ObjectFile &Obj) {
440   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
441   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
442 }
443 
444 static bool isArmElf(const ObjectFile &Obj) {
445   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
446   return Elf && Elf->getEMachine() == ELF::EM_ARM;
447 }
448 
449 static bool isCSKYElf(const ObjectFile &Obj) {
450   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
451   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
452 }
453 
454 static bool hasMappingSymbols(const ObjectFile &Obj) {
455   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
456 }
457 
458 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
459                             const RelocationRef &Rel, uint64_t Address,
460                             bool Is64Bits) {
461   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
462   SmallString<16> Name;
463   SmallString<32> Val;
464   Rel.getTypeName(Name);
465   if (Error E = getRelocationValueString(Rel, Val))
466     reportError(std::move(E), FileName);
467   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
468 }
469 
470 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
471                                    raw_ostream &OS) {
472   // The output of printInst starts with a tab. Print some spaces so that
473   // the tab has 1 column and advances to the target tab stop.
474   unsigned TabStop = getInstStartColumn(STI);
475   unsigned Column = OS.tell() - Start;
476   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
477 }
478 
479 class PrettyPrinter {
480 public:
481   virtual ~PrettyPrinter() = default;
482   virtual void
483   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
484             object::SectionedAddress Address, formatted_raw_ostream &OS,
485             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
486             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
487             LiveVariablePrinter &LVP) {
488     if (SP && (PrintSource || PrintLines))
489       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
490     LVP.printBetweenInsts(OS, false);
491 
492     size_t Start = OS.tell();
493     if (LeadingAddr)
494       OS << format("%8" PRIx64 ":", Address.Address);
495     if (ShowRawInsn) {
496       OS << ' ';
497       dumpBytes(Bytes, OS);
498     }
499 
500     AlignToInstStartColumn(Start, STI, OS);
501 
502     if (MI) {
503       // See MCInstPrinter::printInst. On targets where a PC relative immediate
504       // is relative to the next instruction and the length of a MCInst is
505       // difficult to measure (x86), this is the address of the next
506       // instruction.
507       uint64_t Addr =
508           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
509       IP.printInst(MI, Addr, "", STI, OS);
510     } else
511       OS << "\t<unknown>";
512   }
513 };
514 PrettyPrinter PrettyPrinterInst;
515 
516 class HexagonPrettyPrinter : public PrettyPrinter {
517 public:
518   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
519                  formatted_raw_ostream &OS) {
520     uint32_t opcode =
521       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
522     if (LeadingAddr)
523       OS << format("%8" PRIx64 ":", Address);
524     if (ShowRawInsn) {
525       OS << "\t";
526       dumpBytes(Bytes.slice(0, 4), OS);
527       OS << format("\t%08" PRIx32, opcode);
528     }
529   }
530   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
531                  object::SectionedAddress Address, formatted_raw_ostream &OS,
532                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
533                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
534                  LiveVariablePrinter &LVP) override {
535     if (SP && (PrintSource || PrintLines))
536       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
537     if (!MI) {
538       printLead(Bytes, Address.Address, OS);
539       OS << " <unknown>";
540       return;
541     }
542     std::string Buffer;
543     {
544       raw_string_ostream TempStream(Buffer);
545       IP.printInst(MI, Address.Address, "", STI, TempStream);
546     }
547     StringRef Contents(Buffer);
548     // Split off bundle attributes
549     auto PacketBundle = Contents.rsplit('\n');
550     // Split off first instruction from the rest
551     auto HeadTail = PacketBundle.first.split('\n');
552     auto Preamble = " { ";
553     auto Separator = "";
554 
555     // Hexagon's packets require relocations to be inline rather than
556     // clustered at the end of the packet.
557     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
558     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
559     auto PrintReloc = [&]() -> void {
560       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
561         if (RelCur->getOffset() == Address.Address) {
562           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
563           return;
564         }
565         ++RelCur;
566       }
567     };
568 
569     while (!HeadTail.first.empty()) {
570       OS << Separator;
571       Separator = "\n";
572       if (SP && (PrintSource || PrintLines))
573         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
574       printLead(Bytes, Address.Address, OS);
575       OS << Preamble;
576       Preamble = "   ";
577       StringRef Inst;
578       auto Duplex = HeadTail.first.split('\v');
579       if (!Duplex.second.empty()) {
580         OS << Duplex.first;
581         OS << "; ";
582         Inst = Duplex.second;
583       }
584       else
585         Inst = HeadTail.first;
586       OS << Inst;
587       HeadTail = HeadTail.second.split('\n');
588       if (HeadTail.first.empty())
589         OS << " } " << PacketBundle.second;
590       PrintReloc();
591       Bytes = Bytes.slice(4);
592       Address.Address += 4;
593     }
594   }
595 };
596 HexagonPrettyPrinter HexagonPrettyPrinterInst;
597 
598 class AMDGCNPrettyPrinter : public PrettyPrinter {
599 public:
600   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
601                  object::SectionedAddress Address, formatted_raw_ostream &OS,
602                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
603                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
604                  LiveVariablePrinter &LVP) override {
605     if (SP && (PrintSource || PrintLines))
606       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
607 
608     if (MI) {
609       SmallString<40> InstStr;
610       raw_svector_ostream IS(InstStr);
611 
612       IP.printInst(MI, Address.Address, "", STI, IS);
613 
614       OS << left_justify(IS.str(), 60);
615     } else {
616       // an unrecognized encoding - this is probably data so represent it
617       // using the .long directive, or .byte directive if fewer than 4 bytes
618       // remaining
619       if (Bytes.size() >= 4) {
620         OS << format("\t.long 0x%08" PRIx32 " ",
621                      support::endian::read32<support::little>(Bytes.data()));
622         OS.indent(42);
623       } else {
624           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
625           for (unsigned int i = 1; i < Bytes.size(); i++)
626             OS << format(", 0x%02" PRIx8, Bytes[i]);
627           OS.indent(55 - (6 * Bytes.size()));
628       }
629     }
630 
631     OS << format("// %012" PRIX64 ":", Address.Address);
632     if (Bytes.size() >= 4) {
633       // D should be casted to uint32_t here as it is passed by format to
634       // snprintf as vararg.
635       for (uint32_t D : makeArrayRef(
636                reinterpret_cast<const support::little32_t *>(Bytes.data()),
637                Bytes.size() / 4))
638         OS << format(" %08" PRIX32, D);
639     } else {
640       for (unsigned char B : Bytes)
641         OS << format(" %02" PRIX8, B);
642     }
643 
644     if (!Annot.empty())
645       OS << " // " << Annot;
646   }
647 };
648 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
649 
650 class BPFPrettyPrinter : public PrettyPrinter {
651 public:
652   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
653                  object::SectionedAddress Address, formatted_raw_ostream &OS,
654                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
655                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
656                  LiveVariablePrinter &LVP) override {
657     if (SP && (PrintSource || PrintLines))
658       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
659     if (LeadingAddr)
660       OS << format("%8" PRId64 ":", Address.Address / 8);
661     if (ShowRawInsn) {
662       OS << "\t";
663       dumpBytes(Bytes, OS);
664     }
665     if (MI)
666       IP.printInst(MI, Address.Address, "", STI, OS);
667     else
668       OS << "\t<unknown>";
669   }
670 };
671 BPFPrettyPrinter BPFPrettyPrinterInst;
672 
673 class ARMPrettyPrinter : public PrettyPrinter {
674 public:
675   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
676                  object::SectionedAddress Address, formatted_raw_ostream &OS,
677                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
678                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
679                  LiveVariablePrinter &LVP) override {
680     if (SP && (PrintSource || PrintLines))
681       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
682     LVP.printBetweenInsts(OS, false);
683 
684     size_t Start = OS.tell();
685     if (LeadingAddr)
686       OS << format("%8" PRIx64 ":", Address.Address);
687     if (ShowRawInsn) {
688       size_t Pos = 0, End = Bytes.size();
689       if (STI.checkFeatures("+thumb-mode")) {
690         for (; Pos + 2 <= End; Pos += 2)
691           OS << ' '
692              << format_hex_no_prefix(
693                     llvm::support::endian::read<uint16_t>(
694                         Bytes.data() + Pos, InstructionEndianness),
695                     4);
696       } else {
697         for (; Pos + 4 <= End; Pos += 4)
698           OS << ' '
699              << format_hex_no_prefix(
700                     llvm::support::endian::read<uint32_t>(
701                         Bytes.data() + Pos, InstructionEndianness),
702                     8);
703       }
704       if (Pos < End) {
705         OS << ' ';
706         dumpBytes(Bytes.slice(Pos), OS);
707       }
708     }
709 
710     AlignToInstStartColumn(Start, STI, OS);
711 
712     if (MI) {
713       IP.printInst(MI, Address.Address, "", STI, OS);
714     } else
715       OS << "\t<unknown>";
716   }
717 
718   void setInstructionEndianness(llvm::support::endianness Endianness) {
719     InstructionEndianness = Endianness;
720   }
721 
722 private:
723   llvm::support::endianness InstructionEndianness = llvm::support::little;
724 };
725 ARMPrettyPrinter ARMPrettyPrinterInst;
726 
727 class AArch64PrettyPrinter : public PrettyPrinter {
728 public:
729   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
730                  object::SectionedAddress Address, formatted_raw_ostream &OS,
731                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
732                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
733                  LiveVariablePrinter &LVP) override {
734     if (SP && (PrintSource || PrintLines))
735       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
736     LVP.printBetweenInsts(OS, false);
737 
738     size_t Start = OS.tell();
739     if (LeadingAddr)
740       OS << format("%8" PRIx64 ":", Address.Address);
741     if (ShowRawInsn) {
742       size_t Pos = 0, End = Bytes.size();
743       for (; Pos + 4 <= End; Pos += 4)
744         OS << ' '
745            << format_hex_no_prefix(
746                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
747                                                         llvm::support::little),
748                   8);
749       if (Pos < End) {
750         OS << ' ';
751         dumpBytes(Bytes.slice(Pos), OS);
752       }
753     }
754 
755     AlignToInstStartColumn(Start, STI, OS);
756 
757     if (MI) {
758       IP.printInst(MI, Address.Address, "", STI, OS);
759     } else
760       OS << "\t<unknown>";
761   }
762 };
763 AArch64PrettyPrinter AArch64PrettyPrinterInst;
764 
765 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
766   switch(Triple.getArch()) {
767   default:
768     return PrettyPrinterInst;
769   case Triple::hexagon:
770     return HexagonPrettyPrinterInst;
771   case Triple::amdgcn:
772     return AMDGCNPrettyPrinterInst;
773   case Triple::bpfel:
774   case Triple::bpfeb:
775     return BPFPrettyPrinterInst;
776   case Triple::arm:
777   case Triple::armeb:
778   case Triple::thumb:
779   case Triple::thumbeb:
780     return ARMPrettyPrinterInst;
781   case Triple::aarch64:
782   case Triple::aarch64_be:
783   case Triple::aarch64_32:
784     return AArch64PrettyPrinterInst;
785   }
786 }
787 }
788 
789 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
790   assert(Obj.isELF());
791   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
792     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
793                          Obj.getFileName())
794         ->getType();
795   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
796     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
797                          Obj.getFileName())
798         ->getType();
799   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
800     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
801                          Obj.getFileName())
802         ->getType();
803   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
804     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
805                          Obj.getFileName())
806         ->getType();
807   llvm_unreachable("Unsupported binary format");
808 }
809 
810 template <class ELFT>
811 static void
812 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
813                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
814   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
815     uint8_t SymbolType = Symbol.getELFType();
816     if (SymbolType == ELF::STT_SECTION)
817       continue;
818 
819     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
820     // ELFSymbolRef::getAddress() returns size instead of value for common
821     // symbols which is not desirable for disassembly output. Overriding.
822     if (SymbolType == ELF::STT_COMMON)
823       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
824                               Obj.getFileName())
825                     ->st_value;
826 
827     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
828     if (Name.empty())
829       continue;
830 
831     section_iterator SecI =
832         unwrapOrError(Symbol.getSection(), Obj.getFileName());
833     if (SecI == Obj.section_end())
834       continue;
835 
836     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
837   }
838 }
839 
840 static void
841 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
842                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
843   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
844     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
845   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
846     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
847   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
848     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
849   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
850     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
851   else
852     llvm_unreachable("Unsupported binary format");
853 }
854 
855 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
856   for (auto SecI : Obj.sections()) {
857     const WasmSection &Section = Obj.getWasmSection(SecI);
858     if (Section.Type == wasm::WASM_SEC_CODE)
859       return SecI;
860   }
861   return None;
862 }
863 
864 static void
865 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
866                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
867   Optional<SectionRef> Section = getWasmCodeSection(Obj);
868   if (!Section)
869     return;
870   SectionSymbolsTy &Symbols = AllSymbols[*Section];
871 
872   std::set<uint64_t> SymbolAddresses;
873   for (const auto &Sym : Symbols)
874     SymbolAddresses.insert(Sym.Addr);
875 
876   for (const wasm::WasmFunction &Function : Obj.functions()) {
877     uint64_t Address = Function.CodeSectionOffset;
878     // Only add fallback symbols for functions not already present in the symbol
879     // table.
880     if (SymbolAddresses.count(Address))
881       continue;
882     // This function has no symbol, so it should have no SymbolName.
883     assert(Function.SymbolName.empty());
884     // We use DebugName for the name, though it may be empty if there is no
885     // "name" custom section, or that section is missing a name for this
886     // function.
887     StringRef Name = Function.DebugName;
888     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
889   }
890 }
891 
892 static void addPltEntries(const ObjectFile &Obj,
893                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
894                           StringSaver &Saver) {
895   Optional<SectionRef> Plt;
896   for (const SectionRef &Section : Obj.sections()) {
897     Expected<StringRef> SecNameOrErr = Section.getName();
898     if (!SecNameOrErr) {
899       consumeError(SecNameOrErr.takeError());
900       continue;
901     }
902     if (*SecNameOrErr == ".plt")
903       Plt = Section;
904   }
905   if (!Plt)
906     return;
907   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) {
908     for (auto PltEntry : ElfObj->getPltAddresses()) {
909       if (PltEntry.first) {
910         SymbolRef Symbol(*PltEntry.first, ElfObj);
911         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
912         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
913           if (!NameOrErr->empty())
914             AllSymbols[*Plt].emplace_back(
915                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
916                 SymbolType);
917           continue;
918         } else {
919           // The warning has been reported in disassembleObject().
920           consumeError(NameOrErr.takeError());
921         }
922       }
923       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
924                         " references an invalid symbol",
925                     Obj.getFileName());
926     }
927   }
928 }
929 
930 // Normally the disassembly output will skip blocks of zeroes. This function
931 // returns the number of zero bytes that can be skipped when dumping the
932 // disassembly of the instructions in Buf.
933 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
934   // Find the number of leading zeroes.
935   size_t N = 0;
936   while (N < Buf.size() && !Buf[N])
937     ++N;
938 
939   // We may want to skip blocks of zero bytes, but unless we see
940   // at least 8 of them in a row.
941   if (N < 8)
942     return 0;
943 
944   // We skip zeroes in multiples of 4 because do not want to truncate an
945   // instruction if it starts with a zero byte.
946   return N & ~0x3;
947 }
948 
949 // Returns a map from sections to their relocations.
950 static std::map<SectionRef, std::vector<RelocationRef>>
951 getRelocsMap(object::ObjectFile const &Obj) {
952   std::map<SectionRef, std::vector<RelocationRef>> Ret;
953   uint64_t I = (uint64_t)-1;
954   for (SectionRef Sec : Obj.sections()) {
955     ++I;
956     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
957     if (!RelocatedOrErr)
958       reportError(Obj.getFileName(),
959                   "section (" + Twine(I) +
960                       "): failed to get a relocated section: " +
961                       toString(RelocatedOrErr.takeError()));
962 
963     section_iterator Relocated = *RelocatedOrErr;
964     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
965       continue;
966     std::vector<RelocationRef> &V = Ret[*Relocated];
967     append_range(V, Sec.relocations());
968     // Sort relocations by address.
969     llvm::stable_sort(V, isRelocAddressLess);
970   }
971   return Ret;
972 }
973 
974 // Used for --adjust-vma to check if address should be adjusted by the
975 // specified value for a given section.
976 // For ELF we do not adjust non-allocatable sections like debug ones,
977 // because they are not loadable.
978 // TODO: implement for other file formats.
979 static bool shouldAdjustVA(const SectionRef &Section) {
980   const ObjectFile *Obj = Section.getObject();
981   if (Obj->isELF())
982     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
983   return false;
984 }
985 
986 
987 typedef std::pair<uint64_t, char> MappingSymbolPair;
988 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
989                                  uint64_t Address) {
990   auto It =
991       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
992         return Val.first <= Address;
993       });
994   // Return zero for any address before the first mapping symbol; this means
995   // we should use the default disassembly mode, depending on the target.
996   if (It == MappingSymbols.begin())
997     return '\x00';
998   return (It - 1)->second;
999 }
1000 
1001 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1002                                uint64_t End, const ObjectFile &Obj,
1003                                ArrayRef<uint8_t> Bytes,
1004                                ArrayRef<MappingSymbolPair> MappingSymbols,
1005                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1006   support::endianness Endian =
1007       Obj.isLittleEndian() ? support::little : support::big;
1008   size_t Start = OS.tell();
1009   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1010   if (Index + 4 <= End) {
1011     dumpBytes(Bytes.slice(Index, 4), OS);
1012     AlignToInstStartColumn(Start, STI, OS);
1013     OS << "\t.word\t"
1014            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1015                          10);
1016     return 4;
1017   }
1018   if (Index + 2 <= End) {
1019     dumpBytes(Bytes.slice(Index, 2), OS);
1020     AlignToInstStartColumn(Start, STI, OS);
1021     OS << "\t.short\t"
1022        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1023     return 2;
1024   }
1025   dumpBytes(Bytes.slice(Index, 1), OS);
1026   AlignToInstStartColumn(Start, STI, OS);
1027   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1028   return 1;
1029 }
1030 
1031 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1032                         ArrayRef<uint8_t> Bytes) {
1033   // print out data up to 8 bytes at a time in hex and ascii
1034   uint8_t AsciiData[9] = {'\0'};
1035   uint8_t Byte;
1036   int NumBytes = 0;
1037 
1038   for (; Index < End; ++Index) {
1039     if (NumBytes == 0)
1040       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1041     Byte = Bytes.slice(Index)[0];
1042     outs() << format(" %02x", Byte);
1043     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1044 
1045     uint8_t IndentOffset = 0;
1046     NumBytes++;
1047     if (Index == End - 1 || NumBytes > 8) {
1048       // Indent the space for less than 8 bytes data.
1049       // 2 spaces for byte and one for space between bytes
1050       IndentOffset = 3 * (8 - NumBytes);
1051       for (int Excess = NumBytes; Excess < 8; Excess++)
1052         AsciiData[Excess] = '\0';
1053       NumBytes = 8;
1054     }
1055     if (NumBytes == 8) {
1056       AsciiData[8] = '\0';
1057       outs() << std::string(IndentOffset, ' ') << "         ";
1058       outs() << reinterpret_cast<char *>(AsciiData);
1059       outs() << '\n';
1060       NumBytes = 0;
1061     }
1062   }
1063 }
1064 
1065 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1066                                        const SymbolRef &Symbol) {
1067   const StringRef FileName = Obj.getFileName();
1068   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1069   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1070 
1071   if (Obj.isXCOFF() && SymbolDescription) {
1072     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1073     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1074 
1075     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1076     Optional<XCOFF::StorageMappingClass> Smc =
1077         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1078     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1079                         isLabel(XCOFFObj, Symbol));
1080   } else if (Obj.isXCOFF()) {
1081     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1082     return SymbolInfoTy(Addr, Name, SymType, true);
1083   } else
1084     return SymbolInfoTy(Addr, Name,
1085                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1086                                     : (uint8_t)ELF::STT_NOTYPE);
1087 }
1088 
1089 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1090                                           const uint64_t Addr, StringRef &Name,
1091                                           uint8_t Type) {
1092   if (Obj.isXCOFF() && SymbolDescription)
1093     return SymbolInfoTy(Addr, Name, None, None, false);
1094   else
1095     return SymbolInfoTy(Addr, Name, Type);
1096 }
1097 
1098 static void
1099 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1100                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1101                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1102   if (AddrToBBAddrMap.empty())
1103     return;
1104   Labels.clear();
1105   uint64_t StartAddress = SectionAddr + Start;
1106   uint64_t EndAddress = SectionAddr + End;
1107   auto Iter = AddrToBBAddrMap.find(StartAddress);
1108   if (Iter == AddrToBBAddrMap.end())
1109     return;
1110   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1111     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1112     if (BBAddress >= EndAddress)
1113       continue;
1114     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1115   }
1116 }
1117 
1118 static void collectLocalBranchTargets(
1119     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1120     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1121     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1122   // So far only supports PowerPC and X86.
1123   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1124     return;
1125 
1126   Labels.clear();
1127   unsigned LabelCount = 0;
1128   Start += SectionAddr;
1129   End += SectionAddr;
1130   uint64_t Index = Start;
1131   while (Index < End) {
1132     // Disassemble a real instruction and record function-local branch labels.
1133     MCInst Inst;
1134     uint64_t Size;
1135     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1136     bool Disassembled =
1137         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1138     if (Size == 0)
1139       Size = std::min<uint64_t>(ThisBytes.size(),
1140                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1141 
1142     if (Disassembled && MIA) {
1143       uint64_t Target;
1144       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1145       // On PowerPC, if the address of a branch is the same as the target, it
1146       // means that it's a function call. Do not mark the label for this case.
1147       if (TargetKnown && (Target >= Start && Target < End) &&
1148           !Labels.count(Target) &&
1149           !(STI->getTargetTriple().isPPC() && Target == Index))
1150         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1151     }
1152     Index += Size;
1153   }
1154 }
1155 
1156 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1157 // This is currently only used on AMDGPU, and assumes the format of the
1158 // void * argument passed to AMDGPU's createMCSymbolizer.
1159 static void addSymbolizer(
1160     MCContext &Ctx, const Target *Target, StringRef TripleName,
1161     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1162     SectionSymbolsTy &Symbols,
1163     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1164 
1165   std::unique_ptr<MCRelocationInfo> RelInfo(
1166       Target->createMCRelocationInfo(TripleName, Ctx));
1167   if (!RelInfo)
1168     return;
1169   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1170       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1171   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1172   DisAsm->setSymbolizer(std::move(Symbolizer));
1173 
1174   if (!SymbolizeOperands)
1175     return;
1176 
1177   // Synthesize labels referenced by branch instructions by
1178   // disassembling, discarding the output, and collecting the referenced
1179   // addresses from the symbolizer.
1180   for (size_t Index = 0; Index != Bytes.size();) {
1181     MCInst Inst;
1182     uint64_t Size;
1183     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1184     DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1185     if (Size == 0)
1186       Size = std::min<uint64_t>(ThisBytes.size(),
1187                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1188     Index += Size;
1189   }
1190   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1191   // Copy and sort to remove duplicates.
1192   std::vector<uint64_t> LabelAddrs;
1193   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1194                     LabelAddrsRef.end());
1195   llvm::sort(LabelAddrs);
1196   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1197                     LabelAddrs.begin());
1198   // Add the labels.
1199   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1200     auto Name = std::make_unique<std::string>();
1201     *Name = (Twine("L") + Twine(LabelNum)).str();
1202     SynthesizedLabelNames.push_back(std::move(Name));
1203     Symbols.push_back(SymbolInfoTy(
1204         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1205   }
1206   llvm::stable_sort(Symbols);
1207   // Recreate the symbolizer with the new symbols list.
1208   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1209   Symbolizer.reset(Target->createMCSymbolizer(
1210       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1211   DisAsm->setSymbolizer(std::move(Symbolizer));
1212 }
1213 
1214 static StringRef getSegmentName(const MachOObjectFile *MachO,
1215                                 const SectionRef &Section) {
1216   if (MachO) {
1217     DataRefImpl DR = Section.getRawDataRefImpl();
1218     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1219     return SegmentName;
1220   }
1221   return "";
1222 }
1223 
1224 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1225                                     const MCAsmInfo &MAI,
1226                                     const MCSubtargetInfo &STI,
1227                                     StringRef Comments,
1228                                     LiveVariablePrinter &LVP) {
1229   do {
1230     if (!Comments.empty()) {
1231       // Emit a line of comments.
1232       StringRef Comment;
1233       std::tie(Comment, Comments) = Comments.split('\n');
1234       // MAI.getCommentColumn() assumes that instructions are printed at the
1235       // position of 8, while getInstStartColumn() returns the actual position.
1236       unsigned CommentColumn =
1237           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1238       FOS.PadToColumn(CommentColumn);
1239       FOS << MAI.getCommentString() << ' ' << Comment;
1240     }
1241     LVP.printAfterInst(FOS);
1242     FOS << '\n';
1243   } while (!Comments.empty());
1244   FOS.flush();
1245 }
1246 
1247 static void createFakeELFSections(ObjectFile &Obj) {
1248   assert(Obj.isELF());
1249   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1250     Elf32LEObj->createFakeSections();
1251   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1252     Elf64LEObj->createFakeSections();
1253   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1254     Elf32BEObj->createFakeSections();
1255   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1256     Elf64BEObj->createFakeSections();
1257   else
1258     llvm_unreachable("Unsupported binary format");
1259 }
1260 
1261 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1262                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1263                               MCDisassembler *SecondaryDisAsm,
1264                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1265                               const MCSubtargetInfo *PrimarySTI,
1266                               const MCSubtargetInfo *SecondarySTI,
1267                               PrettyPrinter &PIP, SourcePrinter &SP,
1268                               bool InlineRelocs) {
1269   const MCSubtargetInfo *STI = PrimarySTI;
1270   MCDisassembler *DisAsm = PrimaryDisAsm;
1271   bool PrimaryIsThumb = false;
1272   if (isArmElf(Obj))
1273     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1274 
1275   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1276   if (InlineRelocs)
1277     RelocMap = getRelocsMap(Obj);
1278   bool Is64Bits = Obj.getBytesInAddress() > 4;
1279 
1280   // Create a mapping from virtual address to symbol name.  This is used to
1281   // pretty print the symbols while disassembling.
1282   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1283   SectionSymbolsTy AbsoluteSymbols;
1284   const StringRef FileName = Obj.getFileName();
1285   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1286   for (const SymbolRef &Symbol : Obj.symbols()) {
1287     Expected<StringRef> NameOrErr = Symbol.getName();
1288     if (!NameOrErr) {
1289       reportWarning(toString(NameOrErr.takeError()), FileName);
1290       continue;
1291     }
1292     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1293       continue;
1294 
1295     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1296       continue;
1297 
1298     if (MachO) {
1299       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1300       // symbols that support MachO header introspection. They do not bind to
1301       // code locations and are irrelevant for disassembly.
1302       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1303         continue;
1304       // Don't ask a Mach-O STAB symbol for its section unless you know that
1305       // STAB symbol's section field refers to a valid section index. Otherwise
1306       // the symbol may error trying to load a section that does not exist.
1307       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1308       uint8_t NType = (MachO->is64Bit() ?
1309                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1310                        MachO->getSymbolTableEntry(SymDRI).n_type);
1311       if (NType & MachO::N_STAB)
1312         continue;
1313     }
1314 
1315     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1316     if (SecI != Obj.section_end())
1317       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1318     else
1319       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1320   }
1321 
1322   if (AllSymbols.empty() && Obj.isELF())
1323     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1324 
1325   if (Obj.isWasm())
1326     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1327 
1328   if (Obj.isELF() && Obj.sections().empty())
1329     createFakeELFSections(Obj);
1330 
1331   BumpPtrAllocator A;
1332   StringSaver Saver(A);
1333   addPltEntries(Obj, AllSymbols, Saver);
1334 
1335   // Create a mapping from virtual address to section. An empty section can
1336   // cause more than one section at the same address. Sort such sections to be
1337   // before same-addressed non-empty sections so that symbol lookups prefer the
1338   // non-empty section.
1339   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1340   for (SectionRef Sec : Obj.sections())
1341     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1342   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1343     if (LHS.first != RHS.first)
1344       return LHS.first < RHS.first;
1345     return LHS.second.getSize() < RHS.second.getSize();
1346   });
1347 
1348   // Linked executables (.exe and .dll files) typically don't include a real
1349   // symbol table but they might contain an export table.
1350   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1351     for (const auto &ExportEntry : COFFObj->export_directories()) {
1352       StringRef Name;
1353       if (Error E = ExportEntry.getSymbolName(Name))
1354         reportError(std::move(E), Obj.getFileName());
1355       if (Name.empty())
1356         continue;
1357 
1358       uint32_t RVA;
1359       if (Error E = ExportEntry.getExportRVA(RVA))
1360         reportError(std::move(E), Obj.getFileName());
1361 
1362       uint64_t VA = COFFObj->getImageBase() + RVA;
1363       auto Sec = partition_point(
1364           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1365             return O.first <= VA;
1366           });
1367       if (Sec != SectionAddresses.begin()) {
1368         --Sec;
1369         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1370       } else
1371         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1372     }
1373   }
1374 
1375   // Sort all the symbols, this allows us to use a simple binary search to find
1376   // Multiple symbols can have the same address. Use a stable sort to stabilize
1377   // the output.
1378   StringSet<> FoundDisasmSymbolSet;
1379   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1380     llvm::stable_sort(SecSyms.second);
1381   llvm::stable_sort(AbsoluteSymbols);
1382 
1383   std::unique_ptr<DWARFContext> DICtx;
1384   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1385 
1386   if (DbgVariables != DVDisabled) {
1387     DICtx = DWARFContext::create(Obj);
1388     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1389       LVP.addCompileUnit(CU->getUnitDIE(false));
1390   }
1391 
1392   LLVM_DEBUG(LVP.dump());
1393 
1394   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1395   auto ReadBBAddrMap = [&](Optional<unsigned> SectionIndex = None) {
1396     AddrToBBAddrMap.clear();
1397     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1398       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1399       if (!BBAddrMapsOrErr)
1400           reportWarning(toString(BBAddrMapsOrErr.takeError()),
1401                         Obj.getFileName());
1402       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1403         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1404                                 std::move(FunctionBBAddrMap));
1405     }
1406   };
1407 
1408   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1409   // single mapping, since they don't have any conflicts.
1410   if (SymbolizeOperands && !Obj.isRelocatableObject())
1411     ReadBBAddrMap();
1412 
1413   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1414     if (FilterSections.empty() && !DisassembleAll &&
1415         (!Section.isText() || Section.isVirtual()))
1416       continue;
1417 
1418     uint64_t SectionAddr = Section.getAddress();
1419     uint64_t SectSize = Section.getSize();
1420     if (!SectSize)
1421       continue;
1422 
1423     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1424     // corresponding to this section, if present.
1425     if (SymbolizeOperands && Obj.isRelocatableObject())
1426       ReadBBAddrMap(Section.getIndex());
1427 
1428     // Get the list of all the symbols in this section.
1429     SectionSymbolsTy &Symbols = AllSymbols[Section];
1430     std::vector<MappingSymbolPair> MappingSymbols;
1431     if (hasMappingSymbols(Obj)) {
1432       for (const auto &Symb : Symbols) {
1433         uint64_t Address = Symb.Addr;
1434         StringRef Name = Symb.Name;
1435         if (Name.startswith("$d"))
1436           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1437         if (Name.startswith("$x"))
1438           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1439         if (Name.startswith("$a"))
1440           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1441         if (Name.startswith("$t"))
1442           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1443       }
1444     }
1445 
1446     llvm::sort(MappingSymbols);
1447 
1448     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1449         unwrapOrError(Section.getContents(), Obj.getFileName()));
1450 
1451     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1452     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1453       // AMDGPU disassembler uses symbolizer for printing labels
1454       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1455                     Symbols, SynthesizedLabelNames);
1456     }
1457 
1458     StringRef SegmentName = getSegmentName(MachO, Section);
1459     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1460     // If the section has no symbol at the start, just insert a dummy one.
1461     if (Symbols.empty() || Symbols[0].Addr != 0) {
1462       Symbols.insert(Symbols.begin(),
1463                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1464                                            Section.isText() ? ELF::STT_FUNC
1465                                                             : ELF::STT_OBJECT));
1466     }
1467 
1468     SmallString<40> Comments;
1469     raw_svector_ostream CommentStream(Comments);
1470 
1471     uint64_t VMAAdjustment = 0;
1472     if (shouldAdjustVA(Section))
1473       VMAAdjustment = AdjustVMA;
1474 
1475     // In executable and shared objects, r_offset holds a virtual address.
1476     // Subtract SectionAddr from the r_offset field of a relocation to get
1477     // the section offset.
1478     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1479     uint64_t Size;
1480     uint64_t Index;
1481     bool PrintedSection = false;
1482     std::vector<RelocationRef> Rels = RelocMap[Section];
1483     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1484     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1485 
1486     // Loop over each chunk of code between two points where at least
1487     // one symbol is defined.
1488     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1489       // Advance SI past all the symbols starting at the same address,
1490       // and make an ArrayRef of them.
1491       unsigned FirstSI = SI;
1492       uint64_t Start = Symbols[SI].Addr;
1493       ArrayRef<SymbolInfoTy> SymbolsHere;
1494       while (SI != SE && Symbols[SI].Addr == Start)
1495         ++SI;
1496       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1497 
1498       // Get the demangled names of all those symbols. We end up with a vector
1499       // of StringRef that holds the names we're going to use, and a vector of
1500       // std::string that stores the new strings returned by demangle(), if
1501       // any. If we don't call demangle() then that vector can stay empty.
1502       std::vector<StringRef> SymNamesHere;
1503       std::vector<std::string> DemangledSymNamesHere;
1504       if (Demangle) {
1505         // Fetch the demangled names and store them locally.
1506         for (const SymbolInfoTy &Symbol : SymbolsHere)
1507           DemangledSymNamesHere.push_back(demangle(Symbol.Name.str()));
1508         // Now we've finished modifying that vector, it's safe to make
1509         // a vector of StringRefs pointing into it.
1510         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1511                             DemangledSymNamesHere.end());
1512       } else {
1513         for (const SymbolInfoTy &Symbol : SymbolsHere)
1514           SymNamesHere.push_back(Symbol.Name);
1515       }
1516 
1517       // Distinguish ELF data from code symbols, which will be used later on to
1518       // decide whether to 'disassemble' this chunk as a data declaration via
1519       // dumpELFData(), or whether to treat it as code.
1520       //
1521       // If data _and_ code symbols are defined at the same address, the code
1522       // takes priority, on the grounds that disassembling code is our main
1523       // purpose here, and it would be a worse failure to _not_ interpret
1524       // something that _was_ meaningful as code than vice versa.
1525       //
1526       // Any ELF symbol type that is not clearly data will be regarded as code.
1527       // In particular, one of the uses of STT_NOTYPE is for branch targets
1528       // inside functions, for which STT_FUNC would be inaccurate.
1529       //
1530       // So here, we spot whether there's any non-data symbol present at all,
1531       // and only set the DisassembleAsData flag if there isn't. Also, we use
1532       // this distinction to inform the decision of which symbol to print at
1533       // the head of the section, so that if we're printing code, we print a
1534       // code-related symbol name to go with it.
1535       bool DisassembleAsData = false;
1536       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1537       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1538         DisassembleAsData = true; // unless we find a code symbol below
1539 
1540         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1541           uint8_t SymTy = SymbolsHere[i].Type;
1542           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1543             DisassembleAsData = false;
1544             DisplaySymIndex = i;
1545           }
1546         }
1547       }
1548 
1549       // Decide which symbol(s) from this collection we're going to print.
1550       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1551       // If the user has given the --disassemble-symbols option, then we must
1552       // display every symbol in that set, and no others.
1553       if (!DisasmSymbolSet.empty()) {
1554         bool FoundAny = false;
1555         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1556           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1557             SymsToPrint[i] = true;
1558             FoundAny = true;
1559           }
1560         }
1561 
1562         // And if none of the symbols here is one that the user asked for, skip
1563         // disassembling this entire chunk of code.
1564         if (!FoundAny)
1565           continue;
1566       } else {
1567         // Otherwise, print whichever symbol at this location is last in the
1568         // Symbols array, because that array is pre-sorted in a way intended to
1569         // correlate with priority of which symbol to display.
1570         SymsToPrint[DisplaySymIndex] = true;
1571       }
1572 
1573       // Now that we know we're disassembling this section, override the choice
1574       // of which symbols to display by printing _all_ of them at this address
1575       // if the user asked for all symbols.
1576       //
1577       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1578       // only the chunk of code headed by 'foo', but also show any other
1579       // symbols defined at that address, such as aliases for 'foo', or the ARM
1580       // mapping symbol preceding its code.
1581       if (ShowAllSymbols) {
1582         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1583           SymsToPrint[i] = true;
1584       }
1585 
1586       if (Start < SectionAddr || StopAddress <= Start)
1587         continue;
1588 
1589       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1590         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1591 
1592       // The end is the section end, the beginning of the next symbol, or
1593       // --stop-address.
1594       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1595       if (SI < SE)
1596         End = std::min(End, Symbols[SI].Addr);
1597       if (Start >= End || End <= StartAddress)
1598         continue;
1599       Start -= SectionAddr;
1600       End -= SectionAddr;
1601 
1602       if (!PrintedSection) {
1603         PrintedSection = true;
1604         outs() << "\nDisassembly of section ";
1605         if (!SegmentName.empty())
1606           outs() << SegmentName << ",";
1607         outs() << SectionName << ":\n";
1608       }
1609 
1610       outs() << '\n';
1611 
1612       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1613         if (!SymsToPrint[i])
1614           continue;
1615 
1616         const SymbolInfoTy &Symbol = SymbolsHere[i];
1617         const StringRef SymbolName = SymNamesHere[i];
1618 
1619         if (LeadingAddr)
1620           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1621                            SectionAddr + Start + VMAAdjustment);
1622         if (Obj.isXCOFF() && SymbolDescription) {
1623           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1624         } else
1625           outs() << '<' << SymbolName << ">:\n";
1626       }
1627 
1628       // Don't print raw contents of a virtual section. A virtual section
1629       // doesn't have any contents in the file.
1630       if (Section.isVirtual()) {
1631         outs() << "...\n";
1632         continue;
1633       }
1634 
1635       // See if any of the symbols defined at this location triggers target-
1636       // specific disassembly behavior, e.g. of special descriptors or function
1637       // prelude information.
1638       //
1639       // We stop this loop at the first symbol that triggers some kind of
1640       // interesting behavior (if any), on the assumption that if two symbols
1641       // defined at the same address trigger two conflicting symbol handlers,
1642       // the object file is probably confused anyway, and it would make even
1643       // less sense to present the output of _both_ handlers, because that
1644       // would describe the same data twice.
1645       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1646         SymbolInfoTy Symbol = SymbolsHere[SHI];
1647 
1648         auto Status =
1649             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1650                                   SectionAddr + Start, CommentStream);
1651 
1652         if (!Status) {
1653           // If onSymbolStart returns None, that means it didn't trigger any
1654           // interesting handling for this symbol. Try the other symbols
1655           // defined at this address.
1656           continue;
1657         }
1658 
1659         if (Status.value() == MCDisassembler::Fail) {
1660           // If onSymbolStart returns Fail, that means it identified some kind
1661           // of special data at this address, but wasn't able to disassemble it
1662           // meaningfully. So we fall back to disassembling the failed region
1663           // as bytes, assuming that the target detected the failure before
1664           // printing anything.
1665           //
1666           // Return values Success or SoftFail (i.e no 'real' failure) are
1667           // expected to mean that the target has emitted its own output.
1668           //
1669           // Either way, 'Size' will have been set to the amount of data
1670           // covered by whatever prologue the target identified. So we advance
1671           // our own position to beyond that. Sometimes that will be the entire
1672           // distance to the next symbol, and sometimes it will be just a
1673           // prologue and we should start disassembling instructions from where
1674           // it left off.
1675           outs() << "// Error in decoding " << SymNamesHere[SHI]
1676                  << " : Decoding failed region as bytes.\n";
1677           for (uint64_t I = 0; I < Size; ++I) {
1678             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1679                    << "\n";
1680           }
1681         }
1682         Start += Size;
1683         break;
1684       }
1685 
1686       Index = Start;
1687       if (SectionAddr < StartAddress)
1688         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1689 
1690       if (DisassembleAsData) {
1691         dumpELFData(SectionAddr, Index, End, Bytes);
1692         Index = End;
1693         continue;
1694       }
1695 
1696       bool DumpARMELFData = false;
1697       formatted_raw_ostream FOS(outs());
1698 
1699       std::unordered_map<uint64_t, std::string> AllLabels;
1700       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1701       if (SymbolizeOperands) {
1702         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1703                                   SectionAddr, Index, End, AllLabels);
1704         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1705                                BBAddrMapLabels);
1706       }
1707 
1708       while (Index < End) {
1709         // ARM and AArch64 ELF binaries can interleave data and text in the
1710         // same section. We rely on the markers introduced to understand what
1711         // we need to dump. If the data marker is within a function, it is
1712         // denoted as a word/short etc.
1713         if (!MappingSymbols.empty()) {
1714           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1715           DumpARMELFData = Kind == 'd';
1716           if (SecondarySTI) {
1717             if (Kind == 'a') {
1718               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1719               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1720             } else if (Kind == 't') {
1721               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1722               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1723             }
1724           }
1725         }
1726 
1727         if (DumpARMELFData) {
1728           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1729                                 MappingSymbols, *STI, FOS);
1730         } else {
1731           // When -z or --disassemble-zeroes are given we always dissasemble
1732           // them. Otherwise we might want to skip zero bytes we see.
1733           if (!DisassembleZeroes) {
1734             uint64_t MaxOffset = End - Index;
1735             // For --reloc: print zero blocks patched by relocations, so that
1736             // relocations can be shown in the dump.
1737             if (RelCur != RelEnd)
1738               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1739                                    MaxOffset);
1740 
1741             if (size_t N =
1742                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1743               FOS << "\t\t..." << '\n';
1744               Index += N;
1745               continue;
1746             }
1747           }
1748 
1749           // Print local label if there's any.
1750           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1751           if (Iter1 != BBAddrMapLabels.end()) {
1752             for (StringRef Label : Iter1->second)
1753               FOS << "<" << Label << ">:\n";
1754           } else {
1755             auto Iter2 = AllLabels.find(SectionAddr + Index);
1756             if (Iter2 != AllLabels.end())
1757               FOS << "<" << Iter2->second << ">:\n";
1758           }
1759 
1760           // Disassemble a real instruction or a data when disassemble all is
1761           // provided
1762           MCInst Inst;
1763           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1764           uint64_t ThisAddr = SectionAddr + Index;
1765           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1766                                                      ThisAddr, CommentStream);
1767           if (Size == 0)
1768             Size = std::min<uint64_t>(
1769                 ThisBytes.size(),
1770                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1771 
1772           LVP.update({Index, Section.getIndex()},
1773                      {Index + Size, Section.getIndex()}, Index + Size != End);
1774 
1775           IP->setCommentStream(CommentStream);
1776 
1777           PIP.printInst(
1778               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1779               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1780               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1781 
1782           IP->setCommentStream(llvm::nulls());
1783 
1784           // If disassembly has failed, avoid analysing invalid/incomplete
1785           // instruction information. Otherwise, try to resolve the target
1786           // address (jump target or memory operand address) and print it on the
1787           // right of the instruction.
1788           if (Disassembled && MIA) {
1789             // Branch targets are printed just after the instructions.
1790             llvm::raw_ostream *TargetOS = &FOS;
1791             uint64_t Target;
1792             bool PrintTarget =
1793                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1794             if (!PrintTarget)
1795               if (Optional<uint64_t> MaybeTarget =
1796                       MIA->evaluateMemoryOperandAddress(
1797                           Inst, STI, SectionAddr + Index, Size)) {
1798                 Target = *MaybeTarget;
1799                 PrintTarget = true;
1800                 // Do not print real address when symbolizing.
1801                 if (!SymbolizeOperands) {
1802                   // Memory operand addresses are printed as comments.
1803                   TargetOS = &CommentStream;
1804                   *TargetOS << "0x" << Twine::utohexstr(Target);
1805                 }
1806               }
1807             if (PrintTarget) {
1808               // In a relocatable object, the target's section must reside in
1809               // the same section as the call instruction or it is accessed
1810               // through a relocation.
1811               //
1812               // In a non-relocatable object, the target may be in any section.
1813               // In that case, locate the section(s) containing the target
1814               // address and find the symbol in one of those, if possible.
1815               //
1816               // N.B. We don't walk the relocations in the relocatable case yet.
1817               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1818               if (!Obj.isRelocatableObject()) {
1819                 auto It = llvm::partition_point(
1820                     SectionAddresses,
1821                     [=](const std::pair<uint64_t, SectionRef> &O) {
1822                       return O.first <= Target;
1823                     });
1824                 uint64_t TargetSecAddr = 0;
1825                 while (It != SectionAddresses.begin()) {
1826                   --It;
1827                   if (TargetSecAddr == 0)
1828                     TargetSecAddr = It->first;
1829                   if (It->first != TargetSecAddr)
1830                     break;
1831                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1832                 }
1833               } else {
1834                 TargetSectionSymbols.push_back(&Symbols);
1835               }
1836               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1837 
1838               // Find the last symbol in the first candidate section whose
1839               // offset is less than or equal to the target. If there are no
1840               // such symbols, try in the next section and so on, before finally
1841               // using the nearest preceding absolute symbol (if any), if there
1842               // are no other valid symbols.
1843               const SymbolInfoTy *TargetSym = nullptr;
1844               for (const SectionSymbolsTy *TargetSymbols :
1845                    TargetSectionSymbols) {
1846                 auto It = llvm::partition_point(
1847                     *TargetSymbols,
1848                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1849                 if (It != TargetSymbols->begin()) {
1850                   TargetSym = &*(It - 1);
1851                   break;
1852                 }
1853               }
1854 
1855               // Print the labels corresponding to the target if there's any.
1856               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1857               bool LabelAvailable = AllLabels.count(Target);
1858               if (TargetSym != nullptr) {
1859                 uint64_t TargetAddress = TargetSym->Addr;
1860                 uint64_t Disp = Target - TargetAddress;
1861                 std::string TargetName = TargetSym->Name.str();
1862                 if (Demangle)
1863                   TargetName = demangle(TargetName);
1864 
1865                 *TargetOS << " <";
1866                 if (!Disp) {
1867                   // Always Print the binary symbol precisely corresponding to
1868                   // the target address.
1869                   *TargetOS << TargetName;
1870                 } else if (BBAddrMapLabelAvailable) {
1871                   *TargetOS << BBAddrMapLabels[Target].front();
1872                 } else if (LabelAvailable) {
1873                   *TargetOS << AllLabels[Target];
1874                 } else {
1875                   // Always Print the binary symbol plus an offset if there's no
1876                   // local label corresponding to the target address.
1877                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1878                 }
1879                 *TargetOS << ">";
1880               } else if (BBAddrMapLabelAvailable) {
1881                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1882               } else if (LabelAvailable) {
1883                 *TargetOS << " <" << AllLabels[Target] << ">";
1884               }
1885               // By convention, each record in the comment stream should be
1886               // terminated.
1887               if (TargetOS == &CommentStream)
1888                 *TargetOS << "\n";
1889             }
1890           }
1891         }
1892 
1893         assert(Ctx.getAsmInfo());
1894         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1895                                 CommentStream.str(), LVP);
1896         Comments.clear();
1897 
1898         // Hexagon does this in pretty printer
1899         if (Obj.getArch() != Triple::hexagon) {
1900           // Print relocation for instruction and data.
1901           while (RelCur != RelEnd) {
1902             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1903             // If this relocation is hidden, skip it.
1904             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1905               ++RelCur;
1906               continue;
1907             }
1908 
1909             // Stop when RelCur's offset is past the disassembled
1910             // instruction/data. Note that it's possible the disassembled data
1911             // is not the complete data: we might see the relocation printed in
1912             // the middle of the data, but this matches the binutils objdump
1913             // output.
1914             if (Offset >= Index + Size)
1915               break;
1916 
1917             // When --adjust-vma is used, update the address printed.
1918             if (RelCur->getSymbol() != Obj.symbol_end()) {
1919               Expected<section_iterator> SymSI =
1920                   RelCur->getSymbol()->getSection();
1921               if (SymSI && *SymSI != Obj.section_end() &&
1922                   shouldAdjustVA(**SymSI))
1923                 Offset += AdjustVMA;
1924             }
1925 
1926             printRelocation(FOS, Obj.getFileName(), *RelCur,
1927                             SectionAddr + Offset, Is64Bits);
1928             LVP.printAfterOtherLine(FOS, true);
1929             ++RelCur;
1930           }
1931         }
1932 
1933         Index += Size;
1934       }
1935     }
1936   }
1937   StringSet<> MissingDisasmSymbolSet =
1938       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1939   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1940     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1941 }
1942 
1943 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
1944   const Target *TheTarget = getTarget(Obj);
1945 
1946   // Package up features to be passed to target/subtarget
1947   SubtargetFeatures Features = Obj->getFeatures();
1948   if (!MAttrs.empty()) {
1949     for (unsigned I = 0; I != MAttrs.size(); ++I)
1950       Features.AddFeature(MAttrs[I]);
1951   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
1952     Features.AddFeature("+all");
1953   }
1954 
1955   std::unique_ptr<const MCRegisterInfo> MRI(
1956       TheTarget->createMCRegInfo(TripleName));
1957   if (!MRI)
1958     reportError(Obj->getFileName(),
1959                 "no register info for target " + TripleName);
1960 
1961   // Set up disassembler.
1962   MCTargetOptions MCOptions;
1963   std::unique_ptr<const MCAsmInfo> AsmInfo(
1964       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1965   if (!AsmInfo)
1966     reportError(Obj->getFileName(),
1967                 "no assembly info for target " + TripleName);
1968 
1969   if (MCPU.empty())
1970     MCPU = Obj->tryGetCPUName().value_or("").str();
1971 
1972   if (isArmElf(*Obj)) {
1973     // When disassembling big-endian Arm ELF, the instruction endianness is
1974     // determined in a complex way. In relocatable objects, AAELF32 mandates
1975     // that instruction endianness matches the ELF file endianness; in
1976     // executable images, that's true unless the file header has the EF_ARM_BE8
1977     // flag, in which case instructions are little-endian regardless of data
1978     // endianness.
1979     //
1980     // We must set the big-endian-instructions SubtargetFeature to make the
1981     // disassembler read the instructions the right way round, and also tell
1982     // our own prettyprinter to retrieve the encodings the same way to print in
1983     // hex.
1984     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
1985 
1986     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
1987                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
1988       Features.AddFeature("+big-endian-instructions");
1989       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
1990     } else {
1991       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
1992     }
1993   }
1994 
1995   std::unique_ptr<const MCSubtargetInfo> STI(
1996       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1997   if (!STI)
1998     reportError(Obj->getFileName(),
1999                 "no subtarget info for target " + TripleName);
2000   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2001   if (!MII)
2002     reportError(Obj->getFileName(),
2003                 "no instruction info for target " + TripleName);
2004   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
2005   // FIXME: for now initialize MCObjectFileInfo with default values
2006   std::unique_ptr<MCObjectFileInfo> MOFI(
2007       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
2008   Ctx.setObjectFileInfo(MOFI.get());
2009 
2010   std::unique_ptr<MCDisassembler> DisAsm(
2011       TheTarget->createMCDisassembler(*STI, Ctx));
2012   if (!DisAsm)
2013     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2014 
2015   // If we have an ARM object file, we need a second disassembler, because
2016   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2017   // We use mapping symbols to switch between the two assemblers, where
2018   // appropriate.
2019   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2020   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2021   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
2022     if (STI->checkFeatures("+thumb-mode"))
2023       Features.AddFeature("-thumb-mode");
2024     else
2025       Features.AddFeature("+thumb-mode");
2026     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2027                                                         Features.getString()));
2028     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2029   }
2030 
2031   std::unique_ptr<const MCInstrAnalysis> MIA(
2032       TheTarget->createMCInstrAnalysis(MII.get()));
2033 
2034   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2035   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2036       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2037   if (!IP)
2038     reportError(Obj->getFileName(),
2039                 "no instruction printer for target " + TripleName);
2040   IP->setPrintImmHex(PrintImmHex);
2041   IP->setPrintBranchImmAsAddress(true);
2042   IP->setSymbolizeOperands(SymbolizeOperands);
2043   IP->setMCInstrAnalysis(MIA.get());
2044 
2045   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2046   SourcePrinter SP(Obj, TheTarget->getName());
2047 
2048   for (StringRef Opt : DisassemblerOptions)
2049     if (!IP->applyTargetSpecificCLOption(Opt))
2050       reportError(Obj->getFileName(),
2051                   "Unrecognized disassembler option: " + Opt);
2052 
2053   disassembleObject(TheTarget, *Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
2054                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, SP,
2055                     InlineRelocs);
2056 }
2057 
2058 void objdump::printRelocations(const ObjectFile *Obj) {
2059   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2060                                                  "%08" PRIx64;
2061 
2062   // Build a mapping from relocation target to a vector of relocation
2063   // sections. Usually, there is an only one relocation section for
2064   // each relocated section.
2065   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2066   uint64_t Ndx;
2067   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2068     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2069       continue;
2070     if (Section.relocation_begin() == Section.relocation_end())
2071       continue;
2072     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2073     if (!SecOrErr)
2074       reportError(Obj->getFileName(),
2075                   "section (" + Twine(Ndx) +
2076                       "): unable to get a relocation target: " +
2077                       toString(SecOrErr.takeError()));
2078     SecToRelSec[**SecOrErr].push_back(Section);
2079   }
2080 
2081   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2082     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2083     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2084     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2085     uint32_t TypePadding = 24;
2086     outs() << left_justify("OFFSET", OffsetPadding) << " "
2087            << left_justify("TYPE", TypePadding) << " "
2088            << "VALUE\n";
2089 
2090     for (SectionRef Section : P.second) {
2091       for (const RelocationRef &Reloc : Section.relocations()) {
2092         uint64_t Address = Reloc.getOffset();
2093         SmallString<32> RelocName;
2094         SmallString<32> ValueStr;
2095         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2096           continue;
2097         Reloc.getTypeName(RelocName);
2098         if (Error E = getRelocationValueString(Reloc, ValueStr))
2099           reportError(std::move(E), Obj->getFileName());
2100 
2101         outs() << format(Fmt.data(), Address) << " "
2102                << left_justify(RelocName, TypePadding) << " " << ValueStr
2103                << "\n";
2104       }
2105     }
2106   }
2107 }
2108 
2109 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2110   // For the moment, this option is for ELF only
2111   if (!Obj->isELF())
2112     return;
2113 
2114   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2115   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
2116         return Sec.getType() == ELF::SHT_DYNAMIC;
2117       })) {
2118     reportError(Obj->getFileName(), "not a dynamic object");
2119     return;
2120   }
2121 
2122   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2123   if (DynRelSec.empty())
2124     return;
2125 
2126   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
2127   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2128   const uint32_t TypePadding = 24;
2129   outs() << left_justify("OFFSET", OffsetPadding) << ' '
2130          << left_justify("TYPE", TypePadding) << " VALUE\n";
2131 
2132   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2133   for (const SectionRef &Section : DynRelSec)
2134     for (const RelocationRef &Reloc : Section.relocations()) {
2135       uint64_t Address = Reloc.getOffset();
2136       SmallString<32> RelocName;
2137       SmallString<32> ValueStr;
2138       Reloc.getTypeName(RelocName);
2139       if (Error E = getRelocationValueString(Reloc, ValueStr))
2140         reportError(std::move(E), Obj->getFileName());
2141       outs() << format(Fmt.data(), Address) << ' '
2142              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2143     }
2144 }
2145 
2146 // Returns true if we need to show LMA column when dumping section headers. We
2147 // show it only when the platform is ELF and either we have at least one section
2148 // whose VMA and LMA are different and/or when --show-lma flag is used.
2149 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2150   if (!Obj.isELF())
2151     return false;
2152   for (const SectionRef &S : ToolSectionFilter(Obj))
2153     if (S.getAddress() != getELFSectionLMA(S))
2154       return true;
2155   return ShowLMA;
2156 }
2157 
2158 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2159   // Default column width for names is 13 even if no names are that long.
2160   size_t MaxWidth = 13;
2161   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2162     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2163     MaxWidth = std::max(MaxWidth, Name.size());
2164   }
2165   return MaxWidth;
2166 }
2167 
2168 void objdump::printSectionHeaders(ObjectFile &Obj) {
2169   size_t NameWidth = getMaxSectionNameWidth(Obj);
2170   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2171   bool HasLMAColumn = shouldDisplayLMA(Obj);
2172   outs() << "\nSections:\n";
2173   if (HasLMAColumn)
2174     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2175            << left_justify("VMA", AddressWidth) << " "
2176            << left_justify("LMA", AddressWidth) << " Type\n";
2177   else
2178     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2179            << left_justify("VMA", AddressWidth) << " Type\n";
2180 
2181   if (Obj.isELF() && Obj.sections().empty())
2182     createFakeELFSections(Obj);
2183 
2184   uint64_t Idx;
2185   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2186     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2187     uint64_t VMA = Section.getAddress();
2188     if (shouldAdjustVA(Section))
2189       VMA += AdjustVMA;
2190 
2191     uint64_t Size = Section.getSize();
2192 
2193     std::string Type = Section.isText() ? "TEXT" : "";
2194     if (Section.isData())
2195       Type += Type.empty() ? "DATA" : ", DATA";
2196     if (Section.isBSS())
2197       Type += Type.empty() ? "BSS" : ", BSS";
2198     if (Section.isDebugSection())
2199       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2200 
2201     if (HasLMAColumn)
2202       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2203                        Name.str().c_str(), Size)
2204              << format_hex_no_prefix(VMA, AddressWidth) << " "
2205              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2206              << " " << Type << "\n";
2207     else
2208       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2209                        Name.str().c_str(), Size)
2210              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2211   }
2212 }
2213 
2214 void objdump::printSectionContents(const ObjectFile *Obj) {
2215   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2216 
2217   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2218     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2219     uint64_t BaseAddr = Section.getAddress();
2220     uint64_t Size = Section.getSize();
2221     if (!Size)
2222       continue;
2223 
2224     outs() << "Contents of section ";
2225     StringRef SegmentName = getSegmentName(MachO, Section);
2226     if (!SegmentName.empty())
2227       outs() << SegmentName << ",";
2228     outs() << Name << ":\n";
2229     if (Section.isBSS()) {
2230       outs() << format("<skipping contents of bss section at [%04" PRIx64
2231                        ", %04" PRIx64 ")>\n",
2232                        BaseAddr, BaseAddr + Size);
2233       continue;
2234     }
2235 
2236     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2237 
2238     // Dump out the content as hex and printable ascii characters.
2239     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2240       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2241       // Dump line of hex.
2242       for (std::size_t I = 0; I < 16; ++I) {
2243         if (I != 0 && I % 4 == 0)
2244           outs() << ' ';
2245         if (Addr + I < End)
2246           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2247                  << hexdigit(Contents[Addr + I] & 0xF, true);
2248         else
2249           outs() << "  ";
2250       }
2251       // Print ascii.
2252       outs() << "  ";
2253       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2254         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2255           outs() << Contents[Addr + I];
2256         else
2257           outs() << ".";
2258       }
2259       outs() << "\n";
2260     }
2261   }
2262 }
2263 
2264 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2265                                StringRef ArchitectureName, bool DumpDynamic) {
2266   if (O.isCOFF() && !DumpDynamic) {
2267     outs() << "\nSYMBOL TABLE:\n";
2268     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2269     return;
2270   }
2271 
2272   const StringRef FileName = O.getFileName();
2273 
2274   if (!DumpDynamic) {
2275     outs() << "\nSYMBOL TABLE:\n";
2276     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2277       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2278                   DumpDynamic);
2279     return;
2280   }
2281 
2282   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2283   if (!O.isELF()) {
2284     reportWarning(
2285         "this operation is not currently supported for this file format",
2286         FileName);
2287     return;
2288   }
2289 
2290   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2291   auto Symbols = ELF->getDynamicSymbolIterators();
2292   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2293       ELF->readDynsymVersions();
2294   if (!SymbolVersionsOrErr) {
2295     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2296     SymbolVersionsOrErr = std::vector<VersionEntry>();
2297     (void)!SymbolVersionsOrErr;
2298   }
2299   for (auto &Sym : Symbols)
2300     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2301                 ArchitectureName, DumpDynamic);
2302 }
2303 
2304 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2305                           ArrayRef<VersionEntry> SymbolVersions,
2306                           StringRef FileName, StringRef ArchiveName,
2307                           StringRef ArchitectureName, bool DumpDynamic) {
2308   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2309   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2310                                    ArchitectureName);
2311   if ((Address < StartAddress) || (Address > StopAddress))
2312     return;
2313   SymbolRef::Type Type =
2314       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2315   uint32_t Flags =
2316       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2317 
2318   // Don't ask a Mach-O STAB symbol for its section unless you know that
2319   // STAB symbol's section field refers to a valid section index. Otherwise
2320   // the symbol may error trying to load a section that does not exist.
2321   bool IsSTAB = false;
2322   if (MachO) {
2323     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2324     uint8_t NType =
2325         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2326                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2327     if (NType & MachO::N_STAB)
2328       IsSTAB = true;
2329   }
2330   section_iterator Section = IsSTAB
2331                                  ? O.section_end()
2332                                  : unwrapOrError(Symbol.getSection(), FileName,
2333                                                  ArchiveName, ArchitectureName);
2334 
2335   StringRef Name;
2336   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2337     if (Expected<StringRef> NameOrErr = Section->getName())
2338       Name = *NameOrErr;
2339     else
2340       consumeError(NameOrErr.takeError());
2341 
2342   } else {
2343     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2344                          ArchitectureName);
2345   }
2346 
2347   bool Global = Flags & SymbolRef::SF_Global;
2348   bool Weak = Flags & SymbolRef::SF_Weak;
2349   bool Absolute = Flags & SymbolRef::SF_Absolute;
2350   bool Common = Flags & SymbolRef::SF_Common;
2351   bool Hidden = Flags & SymbolRef::SF_Hidden;
2352 
2353   char GlobLoc = ' ';
2354   if ((Section != O.section_end() || Absolute) && !Weak)
2355     GlobLoc = Global ? 'g' : 'l';
2356   char IFunc = ' ';
2357   if (O.isELF()) {
2358     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2359       IFunc = 'i';
2360     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2361       GlobLoc = 'u';
2362   }
2363 
2364   char Debug = ' ';
2365   if (DumpDynamic)
2366     Debug = 'D';
2367   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2368     Debug = 'd';
2369 
2370   char FileFunc = ' ';
2371   if (Type == SymbolRef::ST_File)
2372     FileFunc = 'f';
2373   else if (Type == SymbolRef::ST_Function)
2374     FileFunc = 'F';
2375   else if (Type == SymbolRef::ST_Data)
2376     FileFunc = 'O';
2377 
2378   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2379 
2380   outs() << format(Fmt, Address) << " "
2381          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2382          << (Weak ? 'w' : ' ') // Weak?
2383          << ' '                // Constructor. Not supported yet.
2384          << ' '                // Warning. Not supported yet.
2385          << IFunc              // Indirect reference to another symbol.
2386          << Debug              // Debugging (d) or dynamic (D) symbol.
2387          << FileFunc           // Name of function (F), file (f) or object (O).
2388          << ' ';
2389   if (Absolute) {
2390     outs() << "*ABS*";
2391   } else if (Common) {
2392     outs() << "*COM*";
2393   } else if (Section == O.section_end()) {
2394     if (O.isXCOFF()) {
2395       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2396           Symbol.getRawDataRefImpl());
2397       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2398         outs() << "*DEBUG*";
2399       else
2400         outs() << "*UND*";
2401     } else
2402       outs() << "*UND*";
2403   } else {
2404     StringRef SegmentName = getSegmentName(MachO, *Section);
2405     if (!SegmentName.empty())
2406       outs() << SegmentName << ",";
2407     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2408     outs() << SectionName;
2409     if (O.isXCOFF()) {
2410       Optional<SymbolRef> SymRef =
2411           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2412       if (SymRef) {
2413 
2414         Expected<StringRef> NameOrErr = SymRef->getName();
2415 
2416         if (NameOrErr) {
2417           outs() << " (csect:";
2418           std::string SymName(NameOrErr.get());
2419 
2420           if (Demangle)
2421             SymName = demangle(SymName);
2422 
2423           if (SymbolDescription)
2424             SymName = getXCOFFSymbolDescription(
2425                 createSymbolInfo(O, SymRef.value()), SymName);
2426 
2427           outs() << ' ' << SymName;
2428           outs() << ") ";
2429         } else
2430           reportWarning(toString(NameOrErr.takeError()), FileName);
2431       }
2432     }
2433   }
2434 
2435   if (Common)
2436     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2437   else if (O.isXCOFF())
2438     outs() << '\t'
2439            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2440                               Symbol.getRawDataRefImpl()));
2441   else if (O.isELF())
2442     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2443 
2444   if (O.isELF()) {
2445     if (!SymbolVersions.empty()) {
2446       const VersionEntry &Ver =
2447           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2448       std::string Str;
2449       if (!Ver.Name.empty())
2450         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2451       outs() << ' ' << left_justify(Str, 12);
2452     }
2453 
2454     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2455     switch (Other) {
2456     case ELF::STV_DEFAULT:
2457       break;
2458     case ELF::STV_INTERNAL:
2459       outs() << " .internal";
2460       break;
2461     case ELF::STV_HIDDEN:
2462       outs() << " .hidden";
2463       break;
2464     case ELF::STV_PROTECTED:
2465       outs() << " .protected";
2466       break;
2467     default:
2468       outs() << format(" 0x%02x", Other);
2469       break;
2470     }
2471   } else if (Hidden) {
2472     outs() << " .hidden";
2473   }
2474 
2475   std::string SymName(Name);
2476   if (Demangle)
2477     SymName = demangle(SymName);
2478 
2479   if (O.isXCOFF() && SymbolDescription)
2480     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2481 
2482   outs() << ' ' << SymName << '\n';
2483 }
2484 
2485 static void printUnwindInfo(const ObjectFile *O) {
2486   outs() << "Unwind info:\n\n";
2487 
2488   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2489     printCOFFUnwindInfo(Coff);
2490   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2491     printMachOUnwindInfo(MachO);
2492   else
2493     // TODO: Extract DWARF dump tool to objdump.
2494     WithColor::error(errs(), ToolName)
2495         << "This operation is only currently supported "
2496            "for COFF and MachO object files.\n";
2497 }
2498 
2499 /// Dump the raw contents of the __clangast section so the output can be piped
2500 /// into llvm-bcanalyzer.
2501 static void printRawClangAST(const ObjectFile *Obj) {
2502   if (outs().is_displayed()) {
2503     WithColor::error(errs(), ToolName)
2504         << "The -raw-clang-ast option will dump the raw binary contents of "
2505            "the clang ast section.\n"
2506            "Please redirect the output to a file or another program such as "
2507            "llvm-bcanalyzer.\n";
2508     return;
2509   }
2510 
2511   StringRef ClangASTSectionName("__clangast");
2512   if (Obj->isCOFF()) {
2513     ClangASTSectionName = "clangast";
2514   }
2515 
2516   Optional<object::SectionRef> ClangASTSection;
2517   for (auto Sec : ToolSectionFilter(*Obj)) {
2518     StringRef Name;
2519     if (Expected<StringRef> NameOrErr = Sec.getName())
2520       Name = *NameOrErr;
2521     else
2522       consumeError(NameOrErr.takeError());
2523 
2524     if (Name == ClangASTSectionName) {
2525       ClangASTSection = Sec;
2526       break;
2527     }
2528   }
2529   if (!ClangASTSection)
2530     return;
2531 
2532   StringRef ClangASTContents =
2533       unwrapOrError(ClangASTSection.value().getContents(), Obj->getFileName());
2534   outs().write(ClangASTContents.data(), ClangASTContents.size());
2535 }
2536 
2537 static void printFaultMaps(const ObjectFile *Obj) {
2538   StringRef FaultMapSectionName;
2539 
2540   if (Obj->isELF()) {
2541     FaultMapSectionName = ".llvm_faultmaps";
2542   } else if (Obj->isMachO()) {
2543     FaultMapSectionName = "__llvm_faultmaps";
2544   } else {
2545     WithColor::error(errs(), ToolName)
2546         << "This operation is only currently supported "
2547            "for ELF and Mach-O executable files.\n";
2548     return;
2549   }
2550 
2551   Optional<object::SectionRef> FaultMapSection;
2552 
2553   for (auto Sec : ToolSectionFilter(*Obj)) {
2554     StringRef Name;
2555     if (Expected<StringRef> NameOrErr = Sec.getName())
2556       Name = *NameOrErr;
2557     else
2558       consumeError(NameOrErr.takeError());
2559 
2560     if (Name == FaultMapSectionName) {
2561       FaultMapSection = Sec;
2562       break;
2563     }
2564   }
2565 
2566   outs() << "FaultMap table:\n";
2567 
2568   if (!FaultMapSection) {
2569     outs() << "<not found>\n";
2570     return;
2571   }
2572 
2573   StringRef FaultMapContents =
2574       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2575   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2576                      FaultMapContents.bytes_end());
2577 
2578   outs() << FMP;
2579 }
2580 
2581 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2582   if (O->isELF()) {
2583     printELFFileHeader(O);
2584     printELFDynamicSection(O);
2585     printELFSymbolVersionInfo(O);
2586     return;
2587   }
2588   if (O->isCOFF())
2589     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2590   if (O->isWasm())
2591     return printWasmFileHeader(O);
2592   if (O->isMachO()) {
2593     printMachOFileHeader(O);
2594     if (!OnlyFirst)
2595       printMachOLoadCommands(O);
2596     return;
2597   }
2598   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2599 }
2600 
2601 static void printFileHeaders(const ObjectFile *O) {
2602   if (!O->isELF() && !O->isCOFF())
2603     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2604 
2605   Triple::ArchType AT = O->getArch();
2606   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2607   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2608 
2609   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2610   outs() << "start address: "
2611          << "0x" << format(Fmt.data(), Address) << "\n";
2612 }
2613 
2614 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2615   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2616   if (!ModeOrErr) {
2617     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2618     consumeError(ModeOrErr.takeError());
2619     return;
2620   }
2621   sys::fs::perms Mode = ModeOrErr.get();
2622   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2623   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2624   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2625   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2626   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2627   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2628   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2629   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2630   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2631 
2632   outs() << " ";
2633 
2634   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2635                    unwrapOrError(C.getGID(), Filename),
2636                    unwrapOrError(C.getRawSize(), Filename));
2637 
2638   StringRef RawLastModified = C.getRawLastModified();
2639   unsigned Seconds;
2640   if (RawLastModified.getAsInteger(10, Seconds))
2641     outs() << "(date: \"" << RawLastModified
2642            << "\" contains non-decimal chars) ";
2643   else {
2644     // Since ctime(3) returns a 26 character string of the form:
2645     // "Sun Sep 16 01:03:52 1973\n\0"
2646     // just print 24 characters.
2647     time_t t = Seconds;
2648     outs() << format("%.24s ", ctime(&t));
2649   }
2650 
2651   StringRef Name = "";
2652   Expected<StringRef> NameOrErr = C.getName();
2653   if (!NameOrErr) {
2654     consumeError(NameOrErr.takeError());
2655     Name = unwrapOrError(C.getRawName(), Filename);
2656   } else {
2657     Name = NameOrErr.get();
2658   }
2659   outs() << Name << "\n";
2660 }
2661 
2662 // For ELF only now.
2663 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2664   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2665     if (Elf->getEType() != ELF::ET_REL)
2666       return true;
2667   }
2668   return false;
2669 }
2670 
2671 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2672                                             uint64_t Start, uint64_t Stop) {
2673   if (!shouldWarnForInvalidStartStopAddress(Obj))
2674     return;
2675 
2676   for (const SectionRef &Section : Obj->sections())
2677     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2678       uint64_t BaseAddr = Section.getAddress();
2679       uint64_t Size = Section.getSize();
2680       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2681         return;
2682     }
2683 
2684   if (!HasStartAddressFlag)
2685     reportWarning("no section has address less than 0x" +
2686                       Twine::utohexstr(Stop) + " specified by --stop-address",
2687                   Obj->getFileName());
2688   else if (!HasStopAddressFlag)
2689     reportWarning("no section has address greater than or equal to 0x" +
2690                       Twine::utohexstr(Start) + " specified by --start-address",
2691                   Obj->getFileName());
2692   else
2693     reportWarning("no section overlaps the range [0x" +
2694                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2695                       ") specified by --start-address/--stop-address",
2696                   Obj->getFileName());
2697 }
2698 
2699 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2700                        const Archive::Child *C = nullptr) {
2701   // Avoid other output when using a raw option.
2702   if (!RawClangAST) {
2703     outs() << '\n';
2704     if (A)
2705       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2706     else
2707       outs() << O->getFileName();
2708     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2709   }
2710 
2711   if (HasStartAddressFlag || HasStopAddressFlag)
2712     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2713 
2714   // Note: the order here matches GNU objdump for compatability.
2715   StringRef ArchiveName = A ? A->getFileName() : "";
2716   if (ArchiveHeaders && !MachOOpt && C)
2717     printArchiveChild(ArchiveName, *C);
2718   if (FileHeaders)
2719     printFileHeaders(O);
2720   if (PrivateHeaders || FirstPrivateHeader)
2721     printPrivateFileHeaders(O, FirstPrivateHeader);
2722   if (SectionHeaders)
2723     printSectionHeaders(*O);
2724   if (SymbolTable)
2725     printSymbolTable(*O, ArchiveName);
2726   if (DynamicSymbolTable)
2727     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2728                      /*DumpDynamic=*/true);
2729   if (DwarfDumpType != DIDT_Null) {
2730     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2731     // Dump the complete DWARF structure.
2732     DIDumpOptions DumpOpts;
2733     DumpOpts.DumpType = DwarfDumpType;
2734     DICtx->dump(outs(), DumpOpts);
2735   }
2736   if (Relocations && !Disassemble)
2737     printRelocations(O);
2738   if (DynamicRelocations)
2739     printDynamicRelocations(O);
2740   if (SectionContents)
2741     printSectionContents(O);
2742   if (Disassemble)
2743     disassembleObject(O, Relocations);
2744   if (UnwindInfo)
2745     printUnwindInfo(O);
2746 
2747   // Mach-O specific options:
2748   if (ExportsTrie)
2749     printExportsTrie(O);
2750   if (Rebase)
2751     printRebaseTable(O);
2752   if (Bind)
2753     printBindTable(O);
2754   if (LazyBind)
2755     printLazyBindTable(O);
2756   if (WeakBind)
2757     printWeakBindTable(O);
2758 
2759   // Other special sections:
2760   if (RawClangAST)
2761     printRawClangAST(O);
2762   if (FaultMapSection)
2763     printFaultMaps(O);
2764   if (Offloading)
2765     dumpOffloadBinary(*O);
2766 }
2767 
2768 static void dumpObject(const COFFImportFile *I, const Archive *A,
2769                        const Archive::Child *C = nullptr) {
2770   StringRef ArchiveName = A ? A->getFileName() : "";
2771 
2772   // Avoid other output when using a raw option.
2773   if (!RawClangAST)
2774     outs() << '\n'
2775            << ArchiveName << "(" << I->getFileName() << ")"
2776            << ":\tfile format COFF-import-file"
2777            << "\n\n";
2778 
2779   if (ArchiveHeaders && !MachOOpt && C)
2780     printArchiveChild(ArchiveName, *C);
2781   if (SymbolTable)
2782     printCOFFSymbolTable(*I);
2783 }
2784 
2785 /// Dump each object file in \a a;
2786 static void dumpArchive(const Archive *A) {
2787   Error Err = Error::success();
2788   unsigned I = -1;
2789   for (auto &C : A->children(Err)) {
2790     ++I;
2791     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2792     if (!ChildOrErr) {
2793       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2794         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2795       continue;
2796     }
2797     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2798       dumpObject(O, A, &C);
2799     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2800       dumpObject(I, A, &C);
2801     else
2802       reportError(errorCodeToError(object_error::invalid_file_type),
2803                   A->getFileName());
2804   }
2805   if (Err)
2806     reportError(std::move(Err), A->getFileName());
2807 }
2808 
2809 /// Open file and figure out how to dump it.
2810 static void dumpInput(StringRef file) {
2811   // If we are using the Mach-O specific object file parser, then let it parse
2812   // the file and process the command line options.  So the -arch flags can
2813   // be used to select specific slices, etc.
2814   if (MachOOpt) {
2815     parseInputMachO(file);
2816     return;
2817   }
2818 
2819   // Attempt to open the binary.
2820   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2821   Binary &Binary = *OBinary.getBinary();
2822 
2823   if (Archive *A = dyn_cast<Archive>(&Binary))
2824     dumpArchive(A);
2825   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2826     dumpObject(O);
2827   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2828     parseInputMachO(UB);
2829   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2830     dumpOffloadSections(*OB);
2831   else
2832     reportError(errorCodeToError(object_error::invalid_file_type), file);
2833 }
2834 
2835 template <typename T>
2836 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2837                         T &Value) {
2838   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2839     StringRef V(A->getValue());
2840     if (!llvm::to_integer(V, Value, 0)) {
2841       reportCmdLineError(A->getSpelling() +
2842                          ": expected a non-negative integer, but got '" + V +
2843                          "'");
2844     }
2845   }
2846 }
2847 
2848 static void invalidArgValue(const opt::Arg *A) {
2849   reportCmdLineError("'" + StringRef(A->getValue()) +
2850                      "' is not a valid value for '" + A->getSpelling() + "'");
2851 }
2852 
2853 static std::vector<std::string>
2854 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2855   std::vector<std::string> Values;
2856   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2857     llvm::SmallVector<StringRef, 2> SplitValues;
2858     llvm::SplitString(Value, SplitValues, ",");
2859     for (StringRef SplitValue : SplitValues)
2860       Values.push_back(SplitValue.str());
2861   }
2862   return Values;
2863 }
2864 
2865 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2866   MachOOpt = true;
2867   FullLeadingAddr = true;
2868   PrintImmHex = true;
2869 
2870   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2871   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2872   if (InputArgs.hasArg(OTOOL_d))
2873     FilterSections.push_back("__DATA,__data");
2874   DylibId = InputArgs.hasArg(OTOOL_D);
2875   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2876   DataInCode = InputArgs.hasArg(OTOOL_G);
2877   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2878   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2879   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2880   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2881   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2882   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2883   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2884   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2885   InfoPlist = InputArgs.hasArg(OTOOL_P);
2886   Relocations = InputArgs.hasArg(OTOOL_r);
2887   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2888     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2889     FilterSections.push_back(Filter);
2890   }
2891   if (InputArgs.hasArg(OTOOL_t))
2892     FilterSections.push_back("__TEXT,__text");
2893   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2894             InputArgs.hasArg(OTOOL_o);
2895   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2896   if (InputArgs.hasArg(OTOOL_x))
2897     FilterSections.push_back(",__text");
2898   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2899 
2900   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
2901   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
2902 
2903   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2904   if (InputFilenames.empty())
2905     reportCmdLineError("no input file");
2906 
2907   for (const Arg *A : InputArgs) {
2908     const Option &O = A->getOption();
2909     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2910       reportCmdLineWarning(O.getPrefixedName() +
2911                            " is obsolete and not implemented");
2912     }
2913   }
2914 }
2915 
2916 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2917   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2918   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2919   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2920   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2921   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2922   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2923   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2924   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2925   DisassembleSymbols =
2926       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2927   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2928   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2929     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
2930                         .Case("frames", DIDT_DebugFrame)
2931                         .Default(DIDT_Null);
2932     if (DwarfDumpType == DIDT_Null)
2933       invalidArgValue(A);
2934   }
2935   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2936   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2937   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
2938   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2939   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2940   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2941   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2942   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2943   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2944   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2945   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2946   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2947   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2948   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2949   PrintImmHex =
2950       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2951   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2952   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2953   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2954   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
2955   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2956   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2957   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2958   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2959   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2960   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2961   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2962   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2963   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2964   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2965   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2966   Wide = InputArgs.hasArg(OBJDUMP_wide);
2967   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2968   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2969   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2970     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2971                        .Case("ascii", DVASCII)
2972                        .Case("unicode", DVUnicode)
2973                        .Default(DVInvalid);
2974     if (DbgVariables == DVInvalid)
2975       invalidArgValue(A);
2976   }
2977   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2978 
2979   parseMachOOptions(InputArgs);
2980 
2981   // Parse -M (--disassembler-options) and deprecated
2982   // --x86-asm-syntax={att,intel}.
2983   //
2984   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2985   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2986   // called too late. For now we have to use the internal cl::opt option.
2987   const char *AsmSyntax = nullptr;
2988   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2989                                           OBJDUMP_x86_asm_syntax_att,
2990                                           OBJDUMP_x86_asm_syntax_intel)) {
2991     switch (A->getOption().getID()) {
2992     case OBJDUMP_x86_asm_syntax_att:
2993       AsmSyntax = "--x86-asm-syntax=att";
2994       continue;
2995     case OBJDUMP_x86_asm_syntax_intel:
2996       AsmSyntax = "--x86-asm-syntax=intel";
2997       continue;
2998     }
2999 
3000     SmallVector<StringRef, 2> Values;
3001     llvm::SplitString(A->getValue(), Values, ",");
3002     for (StringRef V : Values) {
3003       if (V == "att")
3004         AsmSyntax = "--x86-asm-syntax=att";
3005       else if (V == "intel")
3006         AsmSyntax = "--x86-asm-syntax=intel";
3007       else
3008         DisassemblerOptions.push_back(V.str());
3009     }
3010   }
3011   if (AsmSyntax) {
3012     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3013     llvm::cl::ParseCommandLineOptions(2, Argv);
3014   }
3015 
3016   // objdump defaults to a.out if no filenames specified.
3017   if (InputFilenames.empty())
3018     InputFilenames.push_back("a.out");
3019 }
3020 
3021 int main(int argc, char **argv) {
3022   using namespace llvm;
3023   InitLLVM X(argc, argv);
3024 
3025   ToolName = argv[0];
3026   std::unique_ptr<CommonOptTable> T;
3027   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3028 
3029   StringRef Stem = sys::path::stem(ToolName);
3030   auto Is = [=](StringRef Tool) {
3031     // We need to recognize the following filenames:
3032     //
3033     // llvm-objdump -> objdump
3034     // llvm-otool-10.exe -> otool
3035     // powerpc64-unknown-freebsd13-objdump -> objdump
3036     auto I = Stem.rfind_insensitive(Tool);
3037     return I != StringRef::npos &&
3038            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3039   };
3040   if (Is("otool")) {
3041     T = std::make_unique<OtoolOptTable>();
3042     Unknown = OTOOL_UNKNOWN;
3043     HelpFlag = OTOOL_help;
3044     HelpHiddenFlag = OTOOL_help_hidden;
3045     VersionFlag = OTOOL_version;
3046   } else {
3047     T = std::make_unique<ObjdumpOptTable>();
3048     Unknown = OBJDUMP_UNKNOWN;
3049     HelpFlag = OBJDUMP_help;
3050     HelpHiddenFlag = OBJDUMP_help_hidden;
3051     VersionFlag = OBJDUMP_version;
3052   }
3053 
3054   BumpPtrAllocator A;
3055   StringSaver Saver(A);
3056   opt::InputArgList InputArgs =
3057       T->parseArgs(argc, argv, Unknown, Saver,
3058                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3059 
3060   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3061     T->printHelp(ToolName);
3062     return 0;
3063   }
3064   if (InputArgs.hasArg(HelpHiddenFlag)) {
3065     T->printHelp(ToolName, /*ShowHidden=*/true);
3066     return 0;
3067   }
3068 
3069   // Initialize targets and assembly printers/parsers.
3070   InitializeAllTargetInfos();
3071   InitializeAllTargetMCs();
3072   InitializeAllDisassemblers();
3073 
3074   if (InputArgs.hasArg(VersionFlag)) {
3075     cl::PrintVersionMessage();
3076     if (!Is("otool")) {
3077       outs() << '\n';
3078       TargetRegistry::printRegisteredTargetsForVersion(outs());
3079     }
3080     return 0;
3081   }
3082 
3083   if (Is("otool"))
3084     parseOtoolOptions(InputArgs);
3085   else
3086     parseObjdumpOptions(InputArgs);
3087 
3088   if (StartAddress >= StopAddress)
3089     reportCmdLineError("start address should be less than stop address");
3090 
3091   // Removes trailing separators from prefix.
3092   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3093     Prefix.pop_back();
3094 
3095   if (AllHeaders)
3096     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3097         SectionHeaders = SymbolTable = true;
3098 
3099   if (DisassembleAll || PrintSource || PrintLines ||
3100       !DisassembleSymbols.empty())
3101     Disassemble = true;
3102 
3103   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3104       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3105       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3106       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3107       !(MachOOpt &&
3108         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3109          DylibsUsed || ExportsTrie || FirstPrivateHeader || FunctionStarts ||
3110          IndirectSymbols || InfoPlist || LazyBind || LinkOptHints ||
3111          ObjcMetaData || Rebase || Rpaths || UniversalHeaders || WeakBind ||
3112          !FilterSections.empty()))) {
3113     T->printHelp(ToolName);
3114     return 2;
3115   }
3116 
3117   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3118 
3119   llvm::for_each(InputFilenames, dumpInput);
3120 
3121   warnOnNoMatchForSections();
3122 
3123   return EXIT_SUCCESS;
3124 }
3125