xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 845d3295d4dd18c5027173a530b3ae4cf8b7807e)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/WithColor.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cctype>
66 #include <cstring>
67 #include <system_error>
68 #include <unordered_map>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace object;
73 
74 cl::opt<bool>
75     llvm::AllHeaders("all-headers",
76                      cl::desc("Display all available header information"));
77 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
78                                  cl::NotHidden, cl::aliasopt(AllHeaders));
79 
80 static cl::list<std::string>
81 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
82 
83 cl::opt<bool>
84 llvm::Disassemble("disassemble",
85   cl::desc("Display assembler mnemonics for the machine instructions"));
86 static cl::alias Disassembled("d", cl::desc("Alias for --disassemble"),
87                               cl::NotHidden, cl::aliasopt(Disassemble));
88 
89 cl::opt<bool>
90 llvm::DisassembleAll("disassemble-all",
91   cl::desc("Display assembler mnemonics for the machine instructions"));
92 static cl::alias DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
93                                  cl::NotHidden, cl::aliasopt(DisassembleAll));
94 
95 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
96                              cl::init(false));
97 
98 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
99                                cl::NotHidden, cl::aliasopt(llvm::Demangle));
100 
101 static cl::list<std::string>
102 DisassembleFunctions("df",
103                      cl::CommaSeparated,
104                      cl::desc("List of functions to disassemble"));
105 static StringSet<> DisasmFuncsSet;
106 
107 cl::opt<bool>
108 llvm::Relocations("reloc",
109                   cl::desc("Display the relocation entries in the file"));
110 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
111                                   cl::NotHidden,
112                                   cl::aliasopt(llvm::Relocations));
113 
114 cl::opt<bool>
115 llvm::DynamicRelocations("dynamic-reloc",
116   cl::desc("Display the dynamic relocation entries in the file"));
117 static cl::alias DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
118                                      cl::NotHidden,
119                                      cl::aliasopt(DynamicRelocations));
120 
121 cl::opt<bool>
122     llvm::SectionContents("full-contents",
123                           cl::desc("Display the content of each section"));
124 static cl::alias SectionContentsShort("s",
125                                       cl::desc("Alias for --full-contents"),
126                                       cl::NotHidden,
127                                       cl::aliasopt(SectionContents));
128 
129 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
130 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
131                                   cl::NotHidden,
132                                   cl::aliasopt(llvm::SymbolTable));
133 
134 cl::opt<bool>
135 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
136 
137 cl::opt<bool>
138 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
139 
140 cl::opt<bool>
141 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
142 
143 cl::opt<bool>
144 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
145 
146 cl::opt<bool>
147 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
148 
149 cl::opt<bool>
150 llvm::RawClangAST("raw-clang-ast",
151     cl::desc("Dump the raw binary contents of the clang AST section"));
152 
153 static cl::opt<bool>
154 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
155 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
156                         cl::aliasopt(MachOOpt));
157 
158 cl::opt<std::string>
159 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
160                                     "see -version for available targets"));
161 
162 cl::opt<std::string>
163 llvm::MCPU("mcpu",
164      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
165      cl::value_desc("cpu-name"),
166      cl::init(""));
167 
168 cl::opt<std::string>
169 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
170                                 "see -version for available targets"));
171 
172 cl::opt<bool>
173 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
174                                                  "headers for each section."));
175 static cl::alias SectionHeadersShort("headers",
176                                      cl::desc("Alias for --section-headers"),
177                                      cl::NotHidden,
178                                      cl::aliasopt(SectionHeaders));
179 static cl::alias SectionHeadersShorter("h",
180                                        cl::desc("Alias for --section-headers"),
181                                        cl::NotHidden,
182                                        cl::aliasopt(SectionHeaders));
183 
184 cl::list<std::string>
185 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
186                                          "With -macho dump segment,section"));
187 cl::alias static FilterSectionsj("j", cl::desc("Alias for --section"),
188                                  cl::NotHidden,
189                                  cl::aliasopt(llvm::FilterSections));
190 
191 cl::list<std::string>
192 llvm::MAttrs("mattr",
193   cl::CommaSeparated,
194   cl::desc("Target specific attributes"),
195   cl::value_desc("a1,+a2,-a3,..."));
196 
197 cl::opt<bool>
198 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
199                                                  "instructions, do not print "
200                                                  "the instruction bytes."));
201 cl::opt<bool>
202 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
203 
204 cl::opt<bool>
205 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
206 
207 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
208                                  cl::NotHidden, cl::aliasopt(UnwindInfo));
209 
210 cl::opt<bool>
211 llvm::PrivateHeaders("private-headers",
212                      cl::desc("Display format specific file headers"));
213 
214 cl::opt<bool>
215 llvm::FirstPrivateHeader("private-header",
216                          cl::desc("Display only the first format specific file "
217                                   "header"));
218 
219 static cl::alias PrivateHeadersShort("p",
220                                      cl::desc("Alias for --private-headers"),
221                                      cl::NotHidden,
222                                      cl::aliasopt(PrivateHeaders));
223 
224 cl::opt<bool> llvm::FileHeaders(
225     "file-headers",
226     cl::desc("Display the contents of the overall file header"));
227 
228 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
229                                   cl::NotHidden, cl::aliasopt(FileHeaders));
230 
231 cl::opt<bool>
232     llvm::ArchiveHeaders("archive-headers",
233                          cl::desc("Display archive header information"));
234 
235 cl::alias ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
236                               cl::NotHidden, cl::aliasopt(ArchiveHeaders));
237 
238 cl::opt<bool>
239     llvm::PrintImmHex("print-imm-hex",
240                       cl::desc("Use hex format for immediate values"));
241 
242 cl::opt<bool> PrintFaultMaps("fault-map-section",
243                              cl::desc("Display contents of faultmap section"));
244 
245 cl::opt<DIDumpType> llvm::DwarfDumpType(
246     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
247     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
248 
249 cl::opt<bool> PrintSource(
250     "source",
251     cl::desc(
252         "Display source inlined with disassembly. Implies disassemble object"));
253 
254 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), cl::NotHidden,
255                            cl::aliasopt(PrintSource));
256 
257 cl::opt<bool> PrintLines("line-numbers",
258                          cl::desc("Display source line numbers with "
259                                   "disassembly. Implies disassemble object"));
260 
261 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
262                           cl::NotHidden, cl::aliasopt(PrintLines));
263 
264 cl::opt<unsigned long long>
265     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
266                  cl::value_desc("address"), cl::init(0));
267 cl::opt<unsigned long long>
268     StopAddress("stop-address",
269                 cl::desc("Stop disassembly at address"),
270                 cl::value_desc("address"), cl::init(UINT64_MAX));
271 
272 cl::opt<bool> DisassembleZeroes(
273                 "disassemble-zeroes",
274                 cl::desc("Do not skip blocks of zeroes when disassembling"));
275 cl::alias DisassembleZeroesShort("z",
276                                  cl::desc("Alias for --disassemble-zeroes"),
277                                  cl::NotHidden,
278                                  cl::aliasopt(DisassembleZeroes));
279 
280 static StringRef ToolName;
281 
282 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
283 
284 namespace {
285 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
286 
287 class SectionFilterIterator {
288 public:
289   SectionFilterIterator(FilterPredicate P,
290                         llvm::object::section_iterator const &I,
291                         llvm::object::section_iterator const &E)
292       : Predicate(std::move(P)), Iterator(I), End(E) {
293     ScanPredicate();
294   }
295   const llvm::object::SectionRef &operator*() const { return *Iterator; }
296   SectionFilterIterator &operator++() {
297     ++Iterator;
298     ScanPredicate();
299     return *this;
300   }
301   bool operator!=(SectionFilterIterator const &Other) const {
302     return Iterator != Other.Iterator;
303   }
304 
305 private:
306   void ScanPredicate() {
307     while (Iterator != End && !Predicate(*Iterator)) {
308       ++Iterator;
309     }
310   }
311   FilterPredicate Predicate;
312   llvm::object::section_iterator Iterator;
313   llvm::object::section_iterator End;
314 };
315 
316 class SectionFilter {
317 public:
318   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
319       : Predicate(std::move(P)), Object(O) {}
320   SectionFilterIterator begin() {
321     return SectionFilterIterator(Predicate, Object.section_begin(),
322                                  Object.section_end());
323   }
324   SectionFilterIterator end() {
325     return SectionFilterIterator(Predicate, Object.section_end(),
326                                  Object.section_end());
327   }
328 
329 private:
330   FilterPredicate Predicate;
331   llvm::object::ObjectFile const &Object;
332 };
333 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
334   return SectionFilter(
335       [](llvm::object::SectionRef const &S) {
336         if (FilterSections.empty())
337           return true;
338         llvm::StringRef String;
339         std::error_code error = S.getName(String);
340         if (error)
341           return false;
342         return is_contained(FilterSections, String);
343       },
344       O);
345 }
346 }
347 
348 void llvm::error(std::error_code EC) {
349   if (!EC)
350     return;
351   WithColor::error(errs(), ToolName)
352       << "reading file: " << EC.message() << ".\n";
353   errs().flush();
354   exit(1);
355 }
356 
357 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
358   WithColor::error(errs(), ToolName) << Message << ".\n";
359   errs().flush();
360   exit(1);
361 }
362 
363 void llvm::warn(StringRef Message) {
364   WithColor::warning(errs(), ToolName) << Message << ".\n";
365   errs().flush();
366 }
367 
368 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
369                                                 Twine Message) {
370   WithColor::error(errs(), ToolName)
371       << "'" << File << "': " << Message << ".\n";
372   exit(1);
373 }
374 
375 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
376                                                 std::error_code EC) {
377   assert(EC);
378   WithColor::error(errs(), ToolName)
379       << "'" << File << "': " << EC.message() << ".\n";
380   exit(1);
381 }
382 
383 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
384                                                 llvm::Error E) {
385   assert(E);
386   std::string Buf;
387   raw_string_ostream OS(Buf);
388   logAllUnhandledErrors(std::move(E), OS);
389   OS.flush();
390   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
391   exit(1);
392 }
393 
394 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
395                                                 StringRef FileName,
396                                                 llvm::Error E,
397                                                 StringRef ArchitectureName) {
398   assert(E);
399   WithColor::error(errs(), ToolName);
400   if (ArchiveName != "")
401     errs() << ArchiveName << "(" << FileName << ")";
402   else
403     errs() << "'" << FileName << "'";
404   if (!ArchitectureName.empty())
405     errs() << " (for architecture " << ArchitectureName << ")";
406   std::string Buf;
407   raw_string_ostream OS(Buf);
408   logAllUnhandledErrors(std::move(E), OS);
409   OS.flush();
410   errs() << ": " << Buf;
411   exit(1);
412 }
413 
414 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
415                                                 const object::Archive::Child &C,
416                                                 llvm::Error E,
417                                                 StringRef ArchitectureName) {
418   Expected<StringRef> NameOrErr = C.getName();
419   // TODO: if we have a error getting the name then it would be nice to print
420   // the index of which archive member this is and or its offset in the
421   // archive instead of "???" as the name.
422   if (!NameOrErr) {
423     consumeError(NameOrErr.takeError());
424     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
425   } else
426     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
427                        ArchitectureName);
428 }
429 
430 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
431   // Figure out the target triple.
432   llvm::Triple TheTriple("unknown-unknown-unknown");
433   if (TripleName.empty()) {
434     if (Obj)
435       TheTriple = Obj->makeTriple();
436   } else {
437     TheTriple.setTriple(Triple::normalize(TripleName));
438 
439     // Use the triple, but also try to combine with ARM build attributes.
440     if (Obj) {
441       auto Arch = Obj->getArch();
442       if (Arch == Triple::arm || Arch == Triple::armeb)
443         Obj->setARMSubArch(TheTriple);
444     }
445   }
446 
447   // Get the target specific parser.
448   std::string Error;
449   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
450                                                          Error);
451   if (!TheTarget) {
452     if (Obj)
453       report_error(Obj->getFileName(), "can't find target: " + Error);
454     else
455       error("can't find target: " + Error);
456   }
457 
458   // Update the triple name and return the found target.
459   TripleName = TheTriple.getTriple();
460   return TheTarget;
461 }
462 
463 bool llvm::isRelocAddressLess(RelocationRef A, RelocationRef B) {
464   return A.getOffset() < B.getOffset();
465 }
466 
467 template <class ELFT>
468 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
469                                                 const RelocationRef &RelRef,
470                                                 SmallVectorImpl<char> &Result) {
471   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
472   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
473   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
474 
475   const ELFFile<ELFT> &EF = *Obj->getELFFile();
476   DataRefImpl Rel = RelRef.getRawDataRefImpl();
477   auto SecOrErr = EF.getSection(Rel.d.a);
478   if (!SecOrErr)
479     return errorToErrorCode(SecOrErr.takeError());
480 
481   int64_t Addend = 0;
482   // If there is no Symbol associated with the relocation, we set the undef
483   // boolean value to 'true'. This will prevent us from calling functions that
484   // requires the relocation to be associated with a symbol.
485   //
486   // In SHT_REL case we would need to read the addend from section data.
487   // GNU objdump does not do that and we just follow for simplicity.
488   bool Undef = false;
489   if ((*SecOrErr)->sh_type == ELF::SHT_RELA) {
490     const Elf_Rela *ERela = Obj->getRela(Rel);
491     Addend = ERela->r_addend;
492     Undef = ERela->getSymbol(false) == 0;
493   } else if ((*SecOrErr)->sh_type != ELF::SHT_REL) {
494     return object_error::parse_failed;
495   }
496 
497   // Default scheme is to print Target, as well as "+ <addend>" for nonzero
498   // addend. Should be acceptable for all normal purposes.
499   std::string FmtBuf;
500   raw_string_ostream Fmt(FmtBuf);
501 
502   if (!Undef) {
503     symbol_iterator SI = RelRef.getSymbol();
504     const Elf_Sym *Sym = Obj->getSymbol(SI->getRawDataRefImpl());
505     if (Sym->getType() == ELF::STT_SECTION) {
506       Expected<section_iterator> SymSI = SI->getSection();
507       if (!SymSI)
508         return errorToErrorCode(SymSI.takeError());
509       const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
510       auto SecName = EF.getSectionName(SymSec);
511       if (!SecName)
512         return errorToErrorCode(SecName.takeError());
513       Fmt << *SecName;
514     } else {
515       Expected<StringRef> SymName = SI->getName();
516       if (!SymName)
517         return errorToErrorCode(SymName.takeError());
518       if (Demangle)
519         Fmt << demangle(*SymName);
520       else
521         Fmt << *SymName;
522     }
523   } else {
524     Fmt << "*ABS*";
525   }
526 
527   if (Addend != 0)
528     Fmt << (Addend < 0 ? "" : "+") << Addend;
529   Fmt.flush();
530   Result.append(FmtBuf.begin(), FmtBuf.end());
531   return std::error_code();
532 }
533 
534 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
535                                                 const RelocationRef &Rel,
536                                                 SmallVectorImpl<char> &Result) {
537   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
538     return getRelocationValueString(ELF32LE, Rel, Result);
539   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
540     return getRelocationValueString(ELF64LE, Rel, Result);
541   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
542     return getRelocationValueString(ELF32BE, Rel, Result);
543   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
544   return getRelocationValueString(ELF64BE, Rel, Result);
545 }
546 
547 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
548                                                 const RelocationRef &Rel,
549                                                 SmallVectorImpl<char> &Result) {
550   symbol_iterator SymI = Rel.getSymbol();
551   Expected<StringRef> SymNameOrErr = SymI->getName();
552   if (!SymNameOrErr)
553     return errorToErrorCode(SymNameOrErr.takeError());
554   StringRef SymName = *SymNameOrErr;
555   Result.append(SymName.begin(), SymName.end());
556   return std::error_code();
557 }
558 
559 static void printRelocationTargetName(const MachOObjectFile *O,
560                                       const MachO::any_relocation_info &RE,
561                                       raw_string_ostream &Fmt) {
562   // Target of a scattered relocation is an address.  In the interest of
563   // generating pretty output, scan through the symbol table looking for a
564   // symbol that aligns with that address.  If we find one, print it.
565   // Otherwise, we just print the hex address of the target.
566   if (O->isRelocationScattered(RE)) {
567     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
568 
569     for (const SymbolRef &Symbol : O->symbols()) {
570       Expected<uint64_t> Addr = Symbol.getAddress();
571       if (!Addr)
572         report_error(O->getFileName(), Addr.takeError());
573       if (*Addr != Val)
574         continue;
575       Expected<StringRef> Name = Symbol.getName();
576       if (!Name)
577         report_error(O->getFileName(), Name.takeError());
578       Fmt << *Name;
579       return;
580     }
581 
582     // If we couldn't find a symbol that this relocation refers to, try
583     // to find a section beginning instead.
584     for (const SectionRef &Section : ToolSectionFilter(*O)) {
585       std::error_code ec;
586 
587       StringRef Name;
588       uint64_t Addr = Section.getAddress();
589       if (Addr != Val)
590         continue;
591       if ((ec = Section.getName(Name)))
592         report_error(O->getFileName(), ec);
593       Fmt << Name;
594       return;
595     }
596 
597     Fmt << format("0x%x", Val);
598     return;
599   }
600 
601   StringRef S;
602   bool isExtern = O->getPlainRelocationExternal(RE);
603   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
604 
605   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
606     Fmt << format("0x%0" PRIx64, Val);
607     return;
608   }
609 
610   if (isExtern) {
611     symbol_iterator SI = O->symbol_begin();
612     advance(SI, Val);
613     Expected<StringRef> SOrErr = SI->getName();
614     if (!SOrErr)
615       report_error(O->getFileName(), SOrErr.takeError());
616     S = *SOrErr;
617   } else {
618     section_iterator SI = O->section_begin();
619     // Adjust for the fact that sections are 1-indexed.
620     if (Val == 0) {
621       Fmt << "0 (?,?)";
622       return;
623     }
624     uint32_t I = Val - 1;
625     while (I != 0 && SI != O->section_end()) {
626       --I;
627       advance(SI, 1);
628     }
629     if (SI == O->section_end())
630       Fmt << Val << " (?,?)";
631     else
632       SI->getName(S);
633   }
634 
635   Fmt << S;
636 }
637 
638 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
639                                                 const RelocationRef &RelRef,
640                                                 SmallVectorImpl<char> &Result) {
641   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
642   symbol_iterator SI = RelRef.getSymbol();
643   std::string FmtBuf;
644   raw_string_ostream Fmt(FmtBuf);
645   if (SI == Obj->symbol_end()) {
646     // Not all wasm relocations have symbols associated with them.
647     // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
648     Fmt << Rel.Index;
649   } else {
650     Expected<StringRef> SymNameOrErr = SI->getName();
651     if (!SymNameOrErr)
652       return errorToErrorCode(SymNameOrErr.takeError());
653     StringRef SymName = *SymNameOrErr;
654     Result.append(SymName.begin(), SymName.end());
655   }
656   Fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
657   Fmt.flush();
658   Result.append(FmtBuf.begin(), FmtBuf.end());
659   return std::error_code();
660 }
661 
662 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
663                                                 const RelocationRef &RelRef,
664                                                 SmallVectorImpl<char> &Result) {
665   DataRefImpl Rel = RelRef.getRawDataRefImpl();
666   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
667 
668   unsigned Arch = Obj->getArch();
669 
670   std::string FmtBuf;
671   raw_string_ostream Fmt(FmtBuf);
672   unsigned Type = Obj->getAnyRelocationType(RE);
673   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
674 
675   // Determine any addends that should be displayed with the relocation.
676   // These require decoding the relocation type, which is triple-specific.
677 
678   // X86_64 has entirely custom relocation types.
679   if (Arch == Triple::x86_64) {
680     switch (Type) {
681     case MachO::X86_64_RELOC_GOT_LOAD:
682     case MachO::X86_64_RELOC_GOT: {
683       printRelocationTargetName(Obj, RE, Fmt);
684       Fmt << "@GOT";
685       if (IsPCRel)
686         Fmt << "PCREL";
687       break;
688     }
689     case MachO::X86_64_RELOC_SUBTRACTOR: {
690       DataRefImpl RelNext = Rel;
691       Obj->moveRelocationNext(RelNext);
692       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
693 
694       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
695       // X86_64_RELOC_UNSIGNED.
696       // NOTE: Scattered relocations don't exist on x86_64.
697       unsigned RType = Obj->getAnyRelocationType(RENext);
698       if (RType != MachO::X86_64_RELOC_UNSIGNED)
699         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
700                      "X86_64_RELOC_SUBTRACTOR.");
701 
702       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
703       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
704       printRelocationTargetName(Obj, RENext, Fmt);
705       Fmt << "-";
706       printRelocationTargetName(Obj, RE, Fmt);
707       break;
708     }
709     case MachO::X86_64_RELOC_TLV:
710       printRelocationTargetName(Obj, RE, Fmt);
711       Fmt << "@TLV";
712       if (IsPCRel)
713         Fmt << "P";
714       break;
715     case MachO::X86_64_RELOC_SIGNED_1:
716       printRelocationTargetName(Obj, RE, Fmt);
717       Fmt << "-1";
718       break;
719     case MachO::X86_64_RELOC_SIGNED_2:
720       printRelocationTargetName(Obj, RE, Fmt);
721       Fmt << "-2";
722       break;
723     case MachO::X86_64_RELOC_SIGNED_4:
724       printRelocationTargetName(Obj, RE, Fmt);
725       Fmt << "-4";
726       break;
727     default:
728       printRelocationTargetName(Obj, RE, Fmt);
729       break;
730     }
731     // X86 and ARM share some relocation types in common.
732   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
733              Arch == Triple::ppc) {
734     // Generic relocation types...
735     switch (Type) {
736     case MachO::GENERIC_RELOC_PAIR: // prints no info
737       return std::error_code();
738     case MachO::GENERIC_RELOC_SECTDIFF: {
739       DataRefImpl RelNext = Rel;
740       Obj->moveRelocationNext(RelNext);
741       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
742 
743       // X86 sect diff's must be followed by a relocation of type
744       // GENERIC_RELOC_PAIR.
745       unsigned RType = Obj->getAnyRelocationType(RENext);
746 
747       if (RType != MachO::GENERIC_RELOC_PAIR)
748         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
749                      "GENERIC_RELOC_SECTDIFF.");
750 
751       printRelocationTargetName(Obj, RE, Fmt);
752       Fmt << "-";
753       printRelocationTargetName(Obj, RENext, Fmt);
754       break;
755     }
756     }
757 
758     if (Arch == Triple::x86 || Arch == Triple::ppc) {
759       switch (Type) {
760       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
761         DataRefImpl RelNext = Rel;
762         Obj->moveRelocationNext(RelNext);
763         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
764 
765         // X86 sect diff's must be followed by a relocation of type
766         // GENERIC_RELOC_PAIR.
767         unsigned RType = Obj->getAnyRelocationType(RENext);
768         if (RType != MachO::GENERIC_RELOC_PAIR)
769           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
770                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
771 
772         printRelocationTargetName(Obj, RE, Fmt);
773         Fmt << "-";
774         printRelocationTargetName(Obj, RENext, Fmt);
775         break;
776       }
777       case MachO::GENERIC_RELOC_TLV: {
778         printRelocationTargetName(Obj, RE, Fmt);
779         Fmt << "@TLV";
780         if (IsPCRel)
781           Fmt << "P";
782         break;
783       }
784       default:
785         printRelocationTargetName(Obj, RE, Fmt);
786       }
787     } else { // ARM-specific relocations
788       switch (Type) {
789       case MachO::ARM_RELOC_HALF:
790       case MachO::ARM_RELOC_HALF_SECTDIFF: {
791         // Half relocations steal a bit from the length field to encode
792         // whether this is an upper16 or a lower16 relocation.
793         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
794 
795         if (isUpper)
796           Fmt << ":upper16:(";
797         else
798           Fmt << ":lower16:(";
799         printRelocationTargetName(Obj, RE, Fmt);
800 
801         DataRefImpl RelNext = Rel;
802         Obj->moveRelocationNext(RelNext);
803         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
804 
805         // ARM half relocs must be followed by a relocation of type
806         // ARM_RELOC_PAIR.
807         unsigned RType = Obj->getAnyRelocationType(RENext);
808         if (RType != MachO::ARM_RELOC_PAIR)
809           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
810                        "ARM_RELOC_HALF");
811 
812         // NOTE: The half of the target virtual address is stashed in the
813         // address field of the secondary relocation, but we can't reverse
814         // engineer the constant offset from it without decoding the movw/movt
815         // instruction to find the other half in its immediate field.
816 
817         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
818         // symbol/section pointer of the follow-on relocation.
819         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
820           Fmt << "-";
821           printRelocationTargetName(Obj, RENext, Fmt);
822         }
823 
824         Fmt << ")";
825         break;
826       }
827       default: { printRelocationTargetName(Obj, RE, Fmt); }
828       }
829     }
830   } else
831     printRelocationTargetName(Obj, RE, Fmt);
832 
833   Fmt.flush();
834   Result.append(FmtBuf.begin(), FmtBuf.end());
835   return std::error_code();
836 }
837 
838 static std::error_code getRelocationValueString(const RelocationRef &Rel,
839                                                 SmallVectorImpl<char> &Result) {
840   const ObjectFile *Obj = Rel.getObject();
841   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
842     return getRelocationValueString(ELF, Rel, Result);
843   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
844     return getRelocationValueString(COFF, Rel, Result);
845   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
846     return getRelocationValueString(Wasm, Rel, Result);
847   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
848     return getRelocationValueString(MachO, Rel, Result);
849   llvm_unreachable("unknown object file format");
850 }
851 
852 /// Indicates whether this relocation should hidden when listing
853 /// relocations, usually because it is the trailing part of a multipart
854 /// relocation that will be printed as part of the leading relocation.
855 static bool getHidden(RelocationRef RelRef) {
856   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
857   if (!MachO)
858     return false;
859 
860   unsigned Arch = MachO->getArch();
861   DataRefImpl Rel = RelRef.getRawDataRefImpl();
862   uint64_t Type = MachO->getRelocationType(Rel);
863 
864   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
865   // is always hidden.
866   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
867     return Type == MachO::GENERIC_RELOC_PAIR;
868 
869   if (Arch == Triple::x86_64) {
870     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
871     // an X86_64_RELOC_SUBTRACTOR.
872     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
873       DataRefImpl RelPrev = Rel;
874       RelPrev.d.a--;
875       uint64_t PrevType = MachO->getRelocationType(RelPrev);
876       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
877         return true;
878     }
879   }
880 
881   return false;
882 }
883 
884 namespace {
885 class SourcePrinter {
886 protected:
887   DILineInfo OldLineInfo;
888   const ObjectFile *Obj = nullptr;
889   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
890   // File name to file contents of source
891   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
892   // Mark the line endings of the cached source
893   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
894 
895 private:
896   bool cacheSource(const DILineInfo& LineInfoFile);
897 
898 public:
899   SourcePrinter() = default;
900   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
901     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
902         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
903         DefaultArch);
904     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
905   }
906   virtual ~SourcePrinter() = default;
907   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
908                                StringRef Delimiter = "; ");
909 };
910 
911 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
912   std::unique_ptr<MemoryBuffer> Buffer;
913   if (LineInfo.Source) {
914     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
915   } else {
916     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
917     if (!BufferOrError)
918       return false;
919     Buffer = std::move(*BufferOrError);
920   }
921   // Chomp the file to get lines
922   size_t BufferSize = Buffer->getBufferSize();
923   const char *BufferStart = Buffer->getBufferStart();
924   for (const char *Start = BufferStart, *End = BufferStart;
925        End < BufferStart + BufferSize; End++)
926     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
927         (*End == '\r' && *(End + 1) == '\n')) {
928       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
929       if (*End == '\r')
930         End++;
931       Start = End + 1;
932     }
933   SourceCache[LineInfo.FileName] = std::move(Buffer);
934   return true;
935 }
936 
937 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
938                                     StringRef Delimiter) {
939   if (!Symbolizer)
940     return;
941   DILineInfo LineInfo = DILineInfo();
942   auto ExpectecLineInfo =
943       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
944   if (!ExpectecLineInfo)
945     consumeError(ExpectecLineInfo.takeError());
946   else
947     LineInfo = *ExpectecLineInfo;
948 
949   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
950       LineInfo.Line == 0)
951     return;
952 
953   if (PrintLines)
954     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
955   if (PrintSource) {
956     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
957       if (!cacheSource(LineInfo))
958         return;
959     auto FileBuffer = SourceCache.find(LineInfo.FileName);
960     if (FileBuffer != SourceCache.end()) {
961       auto LineBuffer = LineCache.find(LineInfo.FileName);
962       if (LineBuffer != LineCache.end()) {
963         if (LineInfo.Line > LineBuffer->second.size())
964           return;
965         // Vector begins at 0, line numbers are non-zero
966         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
967            << "\n";
968       }
969     }
970   }
971   OldLineInfo = LineInfo;
972 }
973 
974 static bool isArmElf(const ObjectFile *Obj) {
975   return (Obj->isELF() &&
976           (Obj->getArch() == Triple::aarch64 ||
977            Obj->getArch() == Triple::aarch64_be ||
978            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
979            Obj->getArch() == Triple::thumb ||
980            Obj->getArch() == Triple::thumbeb));
981 }
982 
983 class PrettyPrinter {
984 public:
985   virtual ~PrettyPrinter() = default;
986   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
987                          ArrayRef<uint8_t> Bytes, uint64_t Address,
988                          raw_ostream &OS, StringRef Annot,
989                          MCSubtargetInfo const &STI, SourcePrinter *SP,
990                          std::vector<RelocationRef> *Rels = nullptr) {
991     if (SP && (PrintSource || PrintLines))
992       SP->printSourceLine(OS, Address);
993     if (!NoLeadingAddr)
994       OS << format("%8" PRIx64 ":", Address);
995     if (!NoShowRawInsn) {
996       OS << "\t";
997       dumpBytes(Bytes, OS);
998     }
999     if (MI)
1000       IP.printInst(MI, OS, "", STI);
1001     else
1002       OS << " <unknown>";
1003   }
1004 };
1005 PrettyPrinter PrettyPrinterInst;
1006 class HexagonPrettyPrinter : public PrettyPrinter {
1007 public:
1008   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1009                  raw_ostream &OS) {
1010     uint32_t opcode =
1011       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1012     if (!NoLeadingAddr)
1013       OS << format("%8" PRIx64 ":", Address);
1014     if (!NoShowRawInsn) {
1015       OS << "\t";
1016       dumpBytes(Bytes.slice(0, 4), OS);
1017       OS << format("%08" PRIx32, opcode);
1018     }
1019   }
1020   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1021                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1022                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1023                  std::vector<RelocationRef> *Rels) override {
1024     if (SP && (PrintSource || PrintLines))
1025       SP->printSourceLine(OS, Address, "");
1026     if (!MI) {
1027       printLead(Bytes, Address, OS);
1028       OS << " <unknown>";
1029       return;
1030     }
1031     std::string Buffer;
1032     {
1033       raw_string_ostream TempStream(Buffer);
1034       IP.printInst(MI, TempStream, "", STI);
1035     }
1036     StringRef Contents(Buffer);
1037     // Split off bundle attributes
1038     auto PacketBundle = Contents.rsplit('\n');
1039     // Split off first instruction from the rest
1040     auto HeadTail = PacketBundle.first.split('\n');
1041     auto Preamble = " { ";
1042     auto Separator = "";
1043     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
1044     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
1045     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
1046 
1047     // Hexagon's packets require relocations to be inline rather than
1048     // clustered at the end of the packet.
1049     auto PrintReloc = [&]() -> void {
1050       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address)) {
1051         if (RelCur->getOffset() == Address) {
1052           SmallString<16> Name;
1053           SmallString<32> Val;
1054           RelCur->getTypeName(Name);
1055           error(getRelocationValueString(*RelCur, Val));
1056           OS << Separator << format(Fmt.data(), Address) << Name << "\t" << Val
1057                 << "\n";
1058           return;
1059         }
1060         ++RelCur;
1061       }
1062     };
1063 
1064     while (!HeadTail.first.empty()) {
1065       OS << Separator;
1066       Separator = "\n";
1067       if (SP && (PrintSource || PrintLines))
1068         SP->printSourceLine(OS, Address, "");
1069       printLead(Bytes, Address, OS);
1070       OS << Preamble;
1071       Preamble = "   ";
1072       StringRef Inst;
1073       auto Duplex = HeadTail.first.split('\v');
1074       if (!Duplex.second.empty()) {
1075         OS << Duplex.first;
1076         OS << "; ";
1077         Inst = Duplex.second;
1078       }
1079       else
1080         Inst = HeadTail.first;
1081       OS << Inst;
1082       HeadTail = HeadTail.second.split('\n');
1083       if (HeadTail.first.empty())
1084         OS << " } " << PacketBundle.second;
1085       PrintReloc();
1086       Bytes = Bytes.slice(4);
1087       Address += 4;
1088     }
1089   }
1090 };
1091 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1092 
1093 class AMDGCNPrettyPrinter : public PrettyPrinter {
1094 public:
1095   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1096                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1097                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1098                  std::vector<RelocationRef> *Rels) override {
1099     if (SP && (PrintSource || PrintLines))
1100       SP->printSourceLine(OS, Address);
1101 
1102     typedef support::ulittle32_t U32;
1103 
1104     if (MI) {
1105       SmallString<40> InstStr;
1106       raw_svector_ostream IS(InstStr);
1107 
1108       IP.printInst(MI, IS, "", STI);
1109 
1110       OS << left_justify(IS.str(), 60);
1111     } else {
1112       // an unrecognized encoding - this is probably data so represent it
1113       // using the .long directive, or .byte directive if fewer than 4 bytes
1114       // remaining
1115       if (Bytes.size() >= 4) {
1116         OS << format("\t.long 0x%08" PRIx32 " ",
1117                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
1118         OS.indent(42);
1119       } else {
1120           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1121           for (unsigned int i = 1; i < Bytes.size(); i++)
1122             OS << format(", 0x%02" PRIx8, Bytes[i]);
1123           OS.indent(55 - (6 * Bytes.size()));
1124       }
1125     }
1126 
1127     OS << format("// %012" PRIX64 ": ", Address);
1128     if (Bytes.size() >=4) {
1129       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
1130                                  Bytes.size() / sizeof(U32)))
1131         // D should be explicitly casted to uint32_t here as it is passed
1132         // by format to snprintf as vararg.
1133         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
1134     } else {
1135       for (unsigned int i = 0; i < Bytes.size(); i++)
1136         OS << format("%02" PRIX8 " ", Bytes[i]);
1137     }
1138 
1139     if (!Annot.empty())
1140       OS << "// " << Annot;
1141   }
1142 };
1143 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1144 
1145 class BPFPrettyPrinter : public PrettyPrinter {
1146 public:
1147   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1148                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1149                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1150                  std::vector<RelocationRef> *Rels) override {
1151     if (SP && (PrintSource || PrintLines))
1152       SP->printSourceLine(OS, Address);
1153     if (!NoLeadingAddr)
1154       OS << format("%8" PRId64 ":", Address / 8);
1155     if (!NoShowRawInsn) {
1156       OS << "\t";
1157       dumpBytes(Bytes, OS);
1158     }
1159     if (MI)
1160       IP.printInst(MI, OS, "", STI);
1161     else
1162       OS << " <unknown>";
1163   }
1164 };
1165 BPFPrettyPrinter BPFPrettyPrinterInst;
1166 
1167 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1168   switch(Triple.getArch()) {
1169   default:
1170     return PrettyPrinterInst;
1171   case Triple::hexagon:
1172     return HexagonPrettyPrinterInst;
1173   case Triple::amdgcn:
1174     return AMDGCNPrettyPrinterInst;
1175   case Triple::bpfel:
1176   case Triple::bpfeb:
1177     return BPFPrettyPrinterInst;
1178   }
1179 }
1180 }
1181 
1182 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1183   assert(Obj->isELF());
1184   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1185     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1186   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1187     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1188   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1189     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1190   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1191     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1192   llvm_unreachable("Unsupported binary format");
1193 }
1194 
1195 template <class ELFT> static void
1196 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1197                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1198   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1199     uint8_t SymbolType = Symbol.getELFType();
1200     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1201       continue;
1202 
1203     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1204     if (!AddressOrErr)
1205       report_error(Obj->getFileName(), AddressOrErr.takeError());
1206 
1207     Expected<StringRef> Name = Symbol.getName();
1208     if (!Name)
1209       report_error(Obj->getFileName(), Name.takeError());
1210     if (Name->empty())
1211       continue;
1212 
1213     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1214     if (!SectionOrErr)
1215       report_error(Obj->getFileName(), SectionOrErr.takeError());
1216     section_iterator SecI = *SectionOrErr;
1217     if (SecI == Obj->section_end())
1218       continue;
1219 
1220     AllSymbols[*SecI].emplace_back(*AddressOrErr, *Name, SymbolType);
1221   }
1222 }
1223 
1224 static void
1225 addDynamicElfSymbols(const ObjectFile *Obj,
1226                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1227   assert(Obj->isELF());
1228   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1229     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1230   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1231     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1232   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1233     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1234   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1235     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1236   else
1237     llvm_unreachable("Unsupported binary format");
1238 }
1239 
1240 static void addPltEntries(const ObjectFile *Obj,
1241                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1242                           StringSaver &Saver) {
1243   Optional<SectionRef> Plt = None;
1244   for (const SectionRef &Section : Obj->sections()) {
1245     StringRef Name;
1246     if (Section.getName(Name))
1247       continue;
1248     if (Name == ".plt")
1249       Plt = Section;
1250   }
1251   if (!Plt)
1252     return;
1253   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1254     for (auto PltEntry : ElfObj->getPltAddresses()) {
1255       SymbolRef Symbol(PltEntry.first, ElfObj);
1256       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1257 
1258       Expected<StringRef> NameOrErr = Symbol.getName();
1259       if (!NameOrErr)
1260         report_error(Obj->getFileName(), NameOrErr.takeError());
1261       if (NameOrErr->empty())
1262         continue;
1263       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
1264 
1265       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
1266     }
1267   }
1268 }
1269 
1270 // Normally the disassembly output will skip blocks of zeroes. This function
1271 // returns the number of zero bytes that can be skipped when dumping the
1272 // disassembly of the instructions in Buf.
1273 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1274   // When -z or --disassemble-zeroes are given we always dissasemble them.
1275   if (DisassembleZeroes)
1276     return 0;
1277 
1278   // Find the number of leading zeroes.
1279   size_t N = 0;
1280   while (N < Buf.size() && !Buf[N])
1281     ++N;
1282 
1283   // We may want to skip blocks of zero bytes, but unless we see
1284   // at least 8 of them in a row.
1285   if (N < 8)
1286     return 0;
1287 
1288   // We skip zeroes in multiples of 4 because do not want to truncate an
1289   // instruction if it starts with a zero byte.
1290   return N & ~0x3;
1291 }
1292 
1293 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1294   if (StartAddress > StopAddress)
1295     error("Start address should be less than stop address");
1296 
1297   const Target *TheTarget = getTarget(Obj);
1298 
1299   // Package up features to be passed to target/subtarget
1300   SubtargetFeatures Features = Obj->getFeatures();
1301   if (!MAttrs.empty())
1302     for (unsigned I = 0; I != MAttrs.size(); ++I)
1303       Features.AddFeature(MAttrs[I]);
1304 
1305   std::unique_ptr<const MCRegisterInfo> MRI(
1306       TheTarget->createMCRegInfo(TripleName));
1307   if (!MRI)
1308     report_error(Obj->getFileName(), "no register info for target " +
1309                  TripleName);
1310 
1311   // Set up disassembler.
1312   std::unique_ptr<const MCAsmInfo> AsmInfo(
1313       TheTarget->createMCAsmInfo(*MRI, TripleName));
1314   if (!AsmInfo)
1315     report_error(Obj->getFileName(), "no assembly info for target " +
1316                  TripleName);
1317   std::unique_ptr<const MCSubtargetInfo> STI(
1318       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1319   if (!STI)
1320     report_error(Obj->getFileName(), "no subtarget info for target " +
1321                  TripleName);
1322   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1323   if (!MII)
1324     report_error(Obj->getFileName(), "no instruction info for target " +
1325                  TripleName);
1326   MCObjectFileInfo MOFI;
1327   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1328   // FIXME: for now initialize MCObjectFileInfo with default values
1329   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1330 
1331   std::unique_ptr<MCDisassembler> DisAsm(
1332     TheTarget->createMCDisassembler(*STI, Ctx));
1333   if (!DisAsm)
1334     report_error(Obj->getFileName(), "no disassembler for target " +
1335                  TripleName);
1336 
1337   std::unique_ptr<const MCInstrAnalysis> MIA(
1338       TheTarget->createMCInstrAnalysis(MII.get()));
1339 
1340   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1341   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1342       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1343   if (!IP)
1344     report_error(Obj->getFileName(), "no instruction printer for target " +
1345                  TripleName);
1346   IP->setPrintImmHex(PrintImmHex);
1347   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1348 
1349   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1350                                                  "\t\t\t%08" PRIx64 ":  ";
1351 
1352   SourcePrinter SP(Obj, TheTarget->getName());
1353 
1354   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1355   // in RelocSecs contain the relocations for section S.
1356   std::error_code EC;
1357   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1358   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1359     section_iterator Sec2 = Section.getRelocatedSection();
1360     if (Sec2 != Obj->section_end())
1361       SectionRelocMap[*Sec2].push_back(Section);
1362   }
1363 
1364   // Create a mapping from virtual address to symbol name.  This is used to
1365   // pretty print the symbols while disassembling.
1366   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1367   SectionSymbolsTy AbsoluteSymbols;
1368   for (const SymbolRef &Symbol : Obj->symbols()) {
1369     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1370     if (!AddressOrErr)
1371       report_error(Obj->getFileName(), AddressOrErr.takeError());
1372     uint64_t Address = *AddressOrErr;
1373 
1374     Expected<StringRef> Name = Symbol.getName();
1375     if (!Name)
1376       report_error(Obj->getFileName(), Name.takeError());
1377     if (Name->empty())
1378       continue;
1379 
1380     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1381     if (!SectionOrErr)
1382       report_error(Obj->getFileName(), SectionOrErr.takeError());
1383 
1384     uint8_t SymbolType = ELF::STT_NOTYPE;
1385     if (Obj->isELF())
1386       SymbolType = getElfSymbolType(Obj, Symbol);
1387 
1388     section_iterator SecI = *SectionOrErr;
1389     if (SecI != Obj->section_end())
1390       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1391     else
1392       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
1393 
1394 
1395   }
1396   if (AllSymbols.empty() && Obj->isELF())
1397     addDynamicElfSymbols(Obj, AllSymbols);
1398 
1399   BumpPtrAllocator A;
1400   StringSaver Saver(A);
1401   addPltEntries(Obj, AllSymbols, Saver);
1402 
1403   // Create a mapping from virtual address to section.
1404   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1405   for (SectionRef Sec : Obj->sections())
1406     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1407   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1408 
1409   // Linked executables (.exe and .dll files) typically don't include a real
1410   // symbol table but they might contain an export table.
1411   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1412     for (const auto &ExportEntry : COFFObj->export_directories()) {
1413       StringRef Name;
1414       error(ExportEntry.getSymbolName(Name));
1415       if (Name.empty())
1416         continue;
1417       uint32_t RVA;
1418       error(ExportEntry.getExportRVA(RVA));
1419 
1420       uint64_t VA = COFFObj->getImageBase() + RVA;
1421       auto Sec = std::upper_bound(
1422           SectionAddresses.begin(), SectionAddresses.end(), VA,
1423           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1424             return LHS < RHS.first;
1425           });
1426       if (Sec != SectionAddresses.begin())
1427         --Sec;
1428       else
1429         Sec = SectionAddresses.end();
1430 
1431       if (Sec != SectionAddresses.end())
1432         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1433       else
1434         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1435     }
1436   }
1437 
1438   // Sort all the symbols, this allows us to use a simple binary search to find
1439   // a symbol near an address.
1440   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1441     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1442   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1443 
1444   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1445     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1446       continue;
1447 
1448     uint64_t SectionAddr = Section.getAddress();
1449     uint64_t SectSize = Section.getSize();
1450     if (!SectSize)
1451       continue;
1452 
1453     // Get the list of all the symbols in this section.
1454     SectionSymbolsTy &Symbols = AllSymbols[Section];
1455     std::vector<uint64_t> DataMappingSymsAddr;
1456     std::vector<uint64_t> TextMappingSymsAddr;
1457     if (isArmElf(Obj)) {
1458       for (const auto &Symb : Symbols) {
1459         uint64_t Address = std::get<0>(Symb);
1460         StringRef Name = std::get<1>(Symb);
1461         if (Name.startswith("$d"))
1462           DataMappingSymsAddr.push_back(Address - SectionAddr);
1463         if (Name.startswith("$x"))
1464           TextMappingSymsAddr.push_back(Address - SectionAddr);
1465         if (Name.startswith("$a"))
1466           TextMappingSymsAddr.push_back(Address - SectionAddr);
1467         if (Name.startswith("$t"))
1468           TextMappingSymsAddr.push_back(Address - SectionAddr);
1469       }
1470     }
1471 
1472     llvm::sort(DataMappingSymsAddr);
1473     llvm::sort(TextMappingSymsAddr);
1474 
1475     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1476       // AMDGPU disassembler uses symbolizer for printing labels
1477       std::unique_ptr<MCRelocationInfo> RelInfo(
1478         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1479       if (RelInfo) {
1480         std::unique_ptr<MCSymbolizer> Symbolizer(
1481           TheTarget->createMCSymbolizer(
1482             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1483         DisAsm->setSymbolizer(std::move(Symbolizer));
1484       }
1485     }
1486 
1487     // Make a list of all the relocations for this section.
1488     std::vector<RelocationRef> Rels;
1489     if (InlineRelocs) {
1490       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1491         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1492           Rels.push_back(Reloc);
1493         }
1494       }
1495     }
1496 
1497     // Sort relocations by address.
1498     llvm::sort(Rels, isRelocAddressLess);
1499 
1500     StringRef SegmentName = "";
1501     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1502       DataRefImpl DR = Section.getRawDataRefImpl();
1503       SegmentName = MachO->getSectionFinalSegmentName(DR);
1504     }
1505     StringRef SectionName;
1506     error(Section.getName(SectionName));
1507 
1508     // If the section has no symbol at the start, just insert a dummy one.
1509     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1510       Symbols.insert(
1511           Symbols.begin(),
1512           std::make_tuple(SectionAddr, SectionName,
1513                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1514     }
1515 
1516     SmallString<40> Comments;
1517     raw_svector_ostream CommentStream(Comments);
1518 
1519     StringRef BytesStr;
1520     error(Section.getContents(BytesStr));
1521     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1522                             BytesStr.size());
1523 
1524     uint64_t Size;
1525     uint64_t Index;
1526     bool PrintedSection = false;
1527 
1528     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1529     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1530     // Disassemble symbol by symbol.
1531     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1532       uint64_t Start = std::get<0>(Symbols[SI]) - SectionAddr;
1533       // The end is either the section end or the beginning of the next
1534       // symbol.
1535       uint64_t End = (SI == SE - 1)
1536                          ? SectSize
1537                          : std::get<0>(Symbols[SI + 1]) - SectionAddr;
1538       // Don't try to disassemble beyond the end of section contents.
1539       if (End > SectSize)
1540         End = SectSize;
1541       // If this symbol has the same address as the next symbol, then skip it.
1542       if (Start >= End)
1543         continue;
1544 
1545       // Check if we need to skip symbol
1546       // Skip if the symbol's data is not between StartAddress and StopAddress
1547       if (End + SectionAddr < StartAddress ||
1548           Start + SectionAddr > StopAddress) {
1549         continue;
1550       }
1551 
1552       /// Skip if user requested specific symbols and this is not in the list
1553       if (!DisasmFuncsSet.empty() &&
1554           !DisasmFuncsSet.count(std::get<1>(Symbols[SI])))
1555         continue;
1556 
1557       if (!PrintedSection) {
1558         PrintedSection = true;
1559         outs() << "Disassembly of section ";
1560         if (!SegmentName.empty())
1561           outs() << SegmentName << ",";
1562         outs() << SectionName << ':';
1563       }
1564 
1565       // Stop disassembly at the stop address specified
1566       if (End + SectionAddr > StopAddress)
1567         End = StopAddress - SectionAddr;
1568 
1569       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1570         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1571           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1572           Start += 256;
1573         }
1574         if (SI == SE - 1 ||
1575             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1576           // cut trailing zeroes at the end of kernel
1577           // cut up to 256 bytes
1578           const uint64_t EndAlign = 256;
1579           const auto Limit = End - (std::min)(EndAlign, End - Start);
1580           while (End > Limit &&
1581             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1582             End -= 4;
1583         }
1584       }
1585 
1586       outs() << '\n';
1587       if (!NoLeadingAddr)
1588         outs() << format("%016" PRIx64 " ", SectionAddr + Start);
1589 
1590       StringRef SymbolName = std::get<1>(Symbols[SI]);
1591       if (Demangle)
1592         outs() << demangle(SymbolName) << ":\n";
1593       else
1594         outs() << SymbolName << ":\n";
1595 
1596       // Don't print raw contents of a virtual section. A virtual section
1597       // doesn't have any contents in the file.
1598       if (Section.isVirtual()) {
1599         outs() << "...\n";
1600         continue;
1601       }
1602 
1603 #ifndef NDEBUG
1604       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1605 #else
1606       raw_ostream &DebugOut = nulls();
1607 #endif
1608 
1609       // Some targets (like WebAssembly) have a special prelude at the start
1610       // of each symbol.
1611       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1612                             SectionAddr + Start, DebugOut, CommentStream);
1613       Start += Size;
1614 
1615       for (Index = Start; Index < End; Index += Size) {
1616         MCInst Inst;
1617 
1618         if (Index + SectionAddr < StartAddress ||
1619             Index + SectionAddr > StopAddress) {
1620           // skip byte by byte till StartAddress is reached
1621           Size = 1;
1622           continue;
1623         }
1624         // AArch64 ELF binaries can interleave data and text in the
1625         // same section. We rely on the markers introduced to
1626         // understand what we need to dump. If the data marker is within a
1627         // function, it is denoted as a word/short etc
1628         if (isArmElf(Obj) && std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1629             !DisassembleAll) {
1630           uint64_t Stride = 0;
1631 
1632           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1633                                       DataMappingSymsAddr.end(), Index);
1634           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1635             // Switch to data.
1636             while (Index < End) {
1637               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1638               outs() << "\t";
1639               if (Index + 4 <= End) {
1640                 Stride = 4;
1641                 dumpBytes(Bytes.slice(Index, 4), outs());
1642                 outs() << "\t.word\t";
1643                 uint32_t Data = 0;
1644                 if (Obj->isLittleEndian()) {
1645                   const auto Word =
1646                       reinterpret_cast<const support::ulittle32_t *>(
1647                           Bytes.data() + Index);
1648                   Data = *Word;
1649                 } else {
1650                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1651                       Bytes.data() + Index);
1652                   Data = *Word;
1653                 }
1654                 outs() << "0x" << format("%08" PRIx32, Data);
1655               } else if (Index + 2 <= End) {
1656                 Stride = 2;
1657                 dumpBytes(Bytes.slice(Index, 2), outs());
1658                 outs() << "\t\t.short\t";
1659                 uint16_t Data = 0;
1660                 if (Obj->isLittleEndian()) {
1661                   const auto Short =
1662                       reinterpret_cast<const support::ulittle16_t *>(
1663                           Bytes.data() + Index);
1664                   Data = *Short;
1665                 } else {
1666                   const auto Short =
1667                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1668                                                                   Index);
1669                   Data = *Short;
1670                 }
1671                 outs() << "0x" << format("%04" PRIx16, Data);
1672               } else {
1673                 Stride = 1;
1674                 dumpBytes(Bytes.slice(Index, 1), outs());
1675                 outs() << "\t\t.byte\t";
1676                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1677               }
1678               Index += Stride;
1679               outs() << "\n";
1680               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1681                                           TextMappingSymsAddr.end(), Index);
1682               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1683                 break;
1684             }
1685           }
1686         }
1687 
1688         // If there is a data symbol inside an ELF text section and we are only
1689         // disassembling text (applicable all architectures),
1690         // we are in a situation where we must print the data and not
1691         // disassemble it.
1692         if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT &&
1693             !DisassembleAll && Section.isText()) {
1694           // print out data up to 8 bytes at a time in hex and ascii
1695           uint8_t AsciiData[9] = {'\0'};
1696           uint8_t Byte;
1697           int NumBytes = 0;
1698 
1699           for (Index = Start; Index < End; Index += 1) {
1700             if (((SectionAddr + Index) < StartAddress) ||
1701                 ((SectionAddr + Index) > StopAddress))
1702               continue;
1703             if (NumBytes == 0) {
1704               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1705               outs() << "\t";
1706             }
1707             Byte = Bytes.slice(Index)[0];
1708             outs() << format(" %02x", Byte);
1709             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1710 
1711             uint8_t IndentOffset = 0;
1712             NumBytes++;
1713             if (Index == End - 1 || NumBytes > 8) {
1714               // Indent the space for less than 8 bytes data.
1715               // 2 spaces for byte and one for space between bytes
1716               IndentOffset = 3 * (8 - NumBytes);
1717               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1718                 AsciiData[Excess] = '\0';
1719               NumBytes = 8;
1720             }
1721             if (NumBytes == 8) {
1722               AsciiData[8] = '\0';
1723               outs() << std::string(IndentOffset, ' ') << "         ";
1724               outs() << reinterpret_cast<char *>(AsciiData);
1725               outs() << '\n';
1726               NumBytes = 0;
1727             }
1728           }
1729         }
1730         if (Index >= End)
1731           break;
1732 
1733         if (size_t N =
1734                 countSkippableZeroBytes(Bytes.slice(Index, End - Index))) {
1735           outs() << "\t\t..." << '\n';
1736           Index += N;
1737           if (Index >= End)
1738             break;
1739         }
1740 
1741         // Disassemble a real instruction or a data when disassemble all is
1742         // provided
1743         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1744                                                    SectionAddr + Index, DebugOut,
1745                                                    CommentStream);
1746         if (Size == 0)
1747           Size = 1;
1748 
1749         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1750                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1751                       *STI, &SP, &Rels);
1752         outs() << CommentStream.str();
1753         Comments.clear();
1754 
1755         // Try to resolve the target of a call, tail call, etc. to a specific
1756         // symbol.
1757         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1758                     MIA->isConditionalBranch(Inst))) {
1759           uint64_t Target;
1760           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1761             // In a relocatable object, the target's section must reside in
1762             // the same section as the call instruction or it is accessed
1763             // through a relocation.
1764             //
1765             // In a non-relocatable object, the target may be in any section.
1766             //
1767             // N.B. We don't walk the relocations in the relocatable case yet.
1768             auto *TargetSectionSymbols = &Symbols;
1769             if (!Obj->isRelocatableObject()) {
1770               auto SectionAddress = std::upper_bound(
1771                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1772                   [](uint64_t LHS,
1773                       const std::pair<uint64_t, SectionRef> &RHS) {
1774                     return LHS < RHS.first;
1775                   });
1776               if (SectionAddress != SectionAddresses.begin()) {
1777                 --SectionAddress;
1778                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1779               } else {
1780                 TargetSectionSymbols = &AbsoluteSymbols;
1781               }
1782             }
1783 
1784             // Find the first symbol in the section whose offset is less than
1785             // or equal to the target. If there isn't a section that contains
1786             // the target, find the nearest preceding absolute symbol.
1787             auto TargetSym = std::upper_bound(
1788                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1789                 Target, [](uint64_t LHS,
1790                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1791                   return LHS < std::get<0>(RHS);
1792                 });
1793             if (TargetSym == TargetSectionSymbols->begin()) {
1794               TargetSectionSymbols = &AbsoluteSymbols;
1795               TargetSym = std::upper_bound(
1796                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1797                   Target, [](uint64_t LHS,
1798                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1799                             return LHS < std::get<0>(RHS);
1800                           });
1801             }
1802             if (TargetSym != TargetSectionSymbols->begin()) {
1803               --TargetSym;
1804               uint64_t TargetAddress = std::get<0>(*TargetSym);
1805               StringRef TargetName = std::get<1>(*TargetSym);
1806               outs() << " <" << TargetName;
1807               uint64_t Disp = Target - TargetAddress;
1808               if (Disp)
1809                 outs() << "+0x" << Twine::utohexstr(Disp);
1810               outs() << '>';
1811             }
1812           }
1813         }
1814         outs() << "\n";
1815 
1816         // Hexagon does this in pretty printer
1817         if (Obj->getArch() != Triple::hexagon)
1818           // Print relocation for instruction.
1819           while (RelCur != RelEnd) {
1820             uint64_t Addr = RelCur->getOffset();
1821             SmallString<16> Name;
1822             SmallString<32> Val;
1823 
1824             // If this relocation is hidden, skip it.
1825             if (getHidden(*RelCur) || ((SectionAddr + Addr) < StartAddress)) {
1826               ++RelCur;
1827               continue;
1828             }
1829 
1830             // Stop when rel_cur's address is past the current instruction.
1831             if (Addr >= Index + Size)
1832               break;
1833             RelCur->getTypeName(Name);
1834             error(getRelocationValueString(*RelCur, Val));
1835             outs() << format(Fmt.data(), SectionAddr + Addr) << Name << "\t"
1836                    << Val << "\n";
1837             ++RelCur;
1838           }
1839       }
1840     }
1841   }
1842 }
1843 
1844 void llvm::printRelocations(const ObjectFile *Obj) {
1845   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1846                                                  "%08" PRIx64;
1847   // Regular objdump doesn't print relocations in non-relocatable object
1848   // files.
1849   if (!Obj->isRelocatableObject())
1850     return;
1851 
1852   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1853     if (Section.relocation_begin() == Section.relocation_end())
1854       continue;
1855     StringRef SecName;
1856     error(Section.getName(SecName));
1857     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1858     for (const RelocationRef &Reloc : Section.relocations()) {
1859       uint64_t Address = Reloc.getOffset();
1860       SmallString<32> RelocName;
1861       SmallString<32> ValueStr;
1862       if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1863         continue;
1864       Reloc.getTypeName(RelocName);
1865       error(getRelocationValueString(Reloc, ValueStr));
1866       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1867              << ValueStr << "\n";
1868     }
1869     outs() << "\n";
1870   }
1871 }
1872 
1873 void llvm::printDynamicRelocations(const ObjectFile *Obj) {
1874   // For the moment, this option is for ELF only
1875   if (!Obj->isELF())
1876     return;
1877 
1878   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1879   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1880     error("not a dynamic object");
1881     return;
1882   }
1883 
1884   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1885   if (DynRelSec.empty())
1886     return;
1887 
1888   outs() << "DYNAMIC RELOCATION RECORDS\n";
1889   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1890   for (const SectionRef &Section : DynRelSec) {
1891     if (Section.relocation_begin() == Section.relocation_end())
1892       continue;
1893     for (const RelocationRef &Reloc : Section.relocations()) {
1894       uint64_t Address = Reloc.getOffset();
1895       SmallString<32> RelocName;
1896       SmallString<32> ValueStr;
1897       Reloc.getTypeName(RelocName);
1898       error(getRelocationValueString(Reloc, ValueStr));
1899       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1900              << ValueStr << "\n";
1901     }
1902   }
1903 }
1904 
1905 void llvm::printSectionHeaders(const ObjectFile *Obj) {
1906   outs() << "Sections:\n"
1907             "Idx Name          Size      Address          Type\n";
1908   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1909     StringRef Name;
1910     error(Section.getName(Name));
1911     uint64_t Address = Section.getAddress();
1912     uint64_t Size = Section.getSize();
1913     bool Text = Section.isText();
1914     bool Data = Section.isData();
1915     bool BSS = Section.isBSS();
1916     std::string Type = (std::string(Text ? "TEXT " : "") +
1917                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1918     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1919                      (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1920                      Address, Type.c_str());
1921   }
1922   outs() << "\n";
1923 }
1924 
1925 void llvm::printSectionContents(const ObjectFile *Obj) {
1926   std::error_code EC;
1927   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1928     StringRef Name;
1929     StringRef Contents;
1930     error(Section.getName(Name));
1931     uint64_t BaseAddr = Section.getAddress();
1932     uint64_t Size = Section.getSize();
1933     if (!Size)
1934       continue;
1935 
1936     outs() << "Contents of section " << Name << ":\n";
1937     if (Section.isBSS()) {
1938       outs() << format("<skipping contents of bss section at [%04" PRIx64
1939                        ", %04" PRIx64 ")>\n",
1940                        BaseAddr, BaseAddr + Size);
1941       continue;
1942     }
1943 
1944     error(Section.getContents(Contents));
1945 
1946     // Dump out the content as hex and printable ascii characters.
1947     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1948       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1949       // Dump line of hex.
1950       for (std::size_t I = 0; I < 16; ++I) {
1951         if (I != 0 && I % 4 == 0)
1952           outs() << ' ';
1953         if (Addr + I < End)
1954           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1955                  << hexdigit(Contents[Addr + I] & 0xF, true);
1956         else
1957           outs() << "  ";
1958       }
1959       // Print ascii.
1960       outs() << "  ";
1961       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1962         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1963           outs() << Contents[Addr + I];
1964         else
1965           outs() << ".";
1966       }
1967       outs() << "\n";
1968     }
1969   }
1970 }
1971 
1972 void llvm::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1973                             StringRef ArchitectureName) {
1974   outs() << "SYMBOL TABLE:\n";
1975 
1976   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1977     printCOFFSymbolTable(Coff);
1978     return;
1979   }
1980 
1981   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1982     // Skip printing the special zero symbol when dumping an ELF file.
1983     // This makes the output consistent with the GNU objdump.
1984     if (I == O->symbol_begin() && isa<ELFObjectFileBase>(O))
1985       continue;
1986 
1987     const SymbolRef &Symbol = *I;
1988     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1989     if (!AddressOrError)
1990       report_error(ArchiveName, O->getFileName(), AddressOrError.takeError(),
1991                    ArchitectureName);
1992     uint64_t Address = *AddressOrError;
1993     if ((Address < StartAddress) || (Address > StopAddress))
1994       continue;
1995     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1996     if (!TypeOrError)
1997       report_error(ArchiveName, O->getFileName(), TypeOrError.takeError(),
1998                    ArchitectureName);
1999     SymbolRef::Type Type = *TypeOrError;
2000     uint32_t Flags = Symbol.getFlags();
2001     Expected<section_iterator> SectionOrErr = Symbol.getSection();
2002     if (!SectionOrErr)
2003       report_error(ArchiveName, O->getFileName(), SectionOrErr.takeError(),
2004                    ArchitectureName);
2005     section_iterator Section = *SectionOrErr;
2006     StringRef Name;
2007     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
2008       Section->getName(Name);
2009     } else {
2010       Expected<StringRef> NameOrErr = Symbol.getName();
2011       if (!NameOrErr)
2012         report_error(ArchiveName, O->getFileName(), NameOrErr.takeError(),
2013                      ArchitectureName);
2014       Name = *NameOrErr;
2015     }
2016 
2017     bool Global = Flags & SymbolRef::SF_Global;
2018     bool Weak = Flags & SymbolRef::SF_Weak;
2019     bool Absolute = Flags & SymbolRef::SF_Absolute;
2020     bool Common = Flags & SymbolRef::SF_Common;
2021     bool Hidden = Flags & SymbolRef::SF_Hidden;
2022 
2023     char GlobLoc = ' ';
2024     if (Type != SymbolRef::ST_Unknown)
2025       GlobLoc = Global ? 'g' : 'l';
2026     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2027                  ? 'd' : ' ';
2028     char FileFunc = ' ';
2029     if (Type == SymbolRef::ST_File)
2030       FileFunc = 'f';
2031     else if (Type == SymbolRef::ST_Function)
2032       FileFunc = 'F';
2033     else if (Type == SymbolRef::ST_Data)
2034       FileFunc = 'O';
2035 
2036     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
2037                                                    "%08" PRIx64;
2038 
2039     outs() << format(Fmt, Address) << " "
2040            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2041            << (Weak ? 'w' : ' ') // Weak?
2042            << ' ' // Constructor. Not supported yet.
2043            << ' ' // Warning. Not supported yet.
2044            << ' ' // Indirect reference to another symbol.
2045            << Debug // Debugging (d) or dynamic (D) symbol.
2046            << FileFunc // Name of function (F), file (f) or object (O).
2047            << ' ';
2048     if (Absolute) {
2049       outs() << "*ABS*";
2050     } else if (Common) {
2051       outs() << "*COM*";
2052     } else if (Section == O->section_end()) {
2053       outs() << "*UND*";
2054     } else {
2055       if (const MachOObjectFile *MachO =
2056           dyn_cast<const MachOObjectFile>(O)) {
2057         DataRefImpl DR = Section->getRawDataRefImpl();
2058         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
2059         outs() << SegmentName << ",";
2060       }
2061       StringRef SectionName;
2062       error(Section->getName(SectionName));
2063       outs() << SectionName;
2064     }
2065 
2066     outs() << '\t';
2067     if (Common || isa<ELFObjectFileBase>(O)) {
2068       uint64_t Val =
2069           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2070       outs() << format("\t %08" PRIx64 " ", Val);
2071     }
2072 
2073     if (Hidden)
2074       outs() << ".hidden ";
2075 
2076     if (Demangle)
2077       outs() << demangle(Name) << '\n';
2078     else
2079       outs() << Name << '\n';
2080   }
2081 }
2082 
2083 static void printUnwindInfo(const ObjectFile *O) {
2084   outs() << "Unwind info:\n\n";
2085 
2086   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2087     printCOFFUnwindInfo(Coff);
2088   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2089     printMachOUnwindInfo(MachO);
2090   else
2091     // TODO: Extract DWARF dump tool to objdump.
2092     WithColor::error(errs(), ToolName)
2093         << "This operation is only currently supported "
2094            "for COFF and MachO object files.\n";
2095 }
2096 
2097 void llvm::printExportsTrie(const ObjectFile *o) {
2098   outs() << "Exports trie:\n";
2099   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2100     printMachOExportsTrie(MachO);
2101   else
2102     WithColor::error(errs(), ToolName)
2103         << "This operation is only currently supported "
2104            "for Mach-O executable files.\n";
2105 }
2106 
2107 void llvm::printRebaseTable(ObjectFile *o) {
2108   outs() << "Rebase table:\n";
2109   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2110     printMachORebaseTable(MachO);
2111   else
2112     WithColor::error(errs(), ToolName)
2113         << "This operation is only currently supported "
2114            "for Mach-O executable files.\n";
2115 }
2116 
2117 void llvm::printBindTable(ObjectFile *o) {
2118   outs() << "Bind table:\n";
2119   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2120     printMachOBindTable(MachO);
2121   else
2122     WithColor::error(errs(), ToolName)
2123         << "This operation is only currently supported "
2124            "for Mach-O executable files.\n";
2125 }
2126 
2127 void llvm::printLazyBindTable(ObjectFile *o) {
2128   outs() << "Lazy bind table:\n";
2129   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2130     printMachOLazyBindTable(MachO);
2131   else
2132     WithColor::error(errs(), ToolName)
2133         << "This operation is only currently supported "
2134            "for Mach-O executable files.\n";
2135 }
2136 
2137 void llvm::printWeakBindTable(ObjectFile *o) {
2138   outs() << "Weak bind table:\n";
2139   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2140     printMachOWeakBindTable(MachO);
2141   else
2142     WithColor::error(errs(), ToolName)
2143         << "This operation is only currently supported "
2144            "for Mach-O executable files.\n";
2145 }
2146 
2147 /// Dump the raw contents of the __clangast section so the output can be piped
2148 /// into llvm-bcanalyzer.
2149 void llvm::printRawClangAST(const ObjectFile *Obj) {
2150   if (outs().is_displayed()) {
2151     WithColor::error(errs(), ToolName)
2152         << "The -raw-clang-ast option will dump the raw binary contents of "
2153            "the clang ast section.\n"
2154            "Please redirect the output to a file or another program such as "
2155            "llvm-bcanalyzer.\n";
2156     return;
2157   }
2158 
2159   StringRef ClangASTSectionName("__clangast");
2160   if (isa<COFFObjectFile>(Obj)) {
2161     ClangASTSectionName = "clangast";
2162   }
2163 
2164   Optional<object::SectionRef> ClangASTSection;
2165   for (auto Sec : ToolSectionFilter(*Obj)) {
2166     StringRef Name;
2167     Sec.getName(Name);
2168     if (Name == ClangASTSectionName) {
2169       ClangASTSection = Sec;
2170       break;
2171     }
2172   }
2173   if (!ClangASTSection)
2174     return;
2175 
2176   StringRef ClangASTContents;
2177   error(ClangASTSection.getValue().getContents(ClangASTContents));
2178   outs().write(ClangASTContents.data(), ClangASTContents.size());
2179 }
2180 
2181 static void printFaultMaps(const ObjectFile *Obj) {
2182   StringRef FaultMapSectionName;
2183 
2184   if (isa<ELFObjectFileBase>(Obj)) {
2185     FaultMapSectionName = ".llvm_faultmaps";
2186   } else if (isa<MachOObjectFile>(Obj)) {
2187     FaultMapSectionName = "__llvm_faultmaps";
2188   } else {
2189     WithColor::error(errs(), ToolName)
2190         << "This operation is only currently supported "
2191            "for ELF and Mach-O executable files.\n";
2192     return;
2193   }
2194 
2195   Optional<object::SectionRef> FaultMapSection;
2196 
2197   for (auto Sec : ToolSectionFilter(*Obj)) {
2198     StringRef Name;
2199     Sec.getName(Name);
2200     if (Name == FaultMapSectionName) {
2201       FaultMapSection = Sec;
2202       break;
2203     }
2204   }
2205 
2206   outs() << "FaultMap table:\n";
2207 
2208   if (!FaultMapSection.hasValue()) {
2209     outs() << "<not found>\n";
2210     return;
2211   }
2212 
2213   StringRef FaultMapContents;
2214   error(FaultMapSection.getValue().getContents(FaultMapContents));
2215 
2216   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2217                      FaultMapContents.bytes_end());
2218 
2219   outs() << FMP;
2220 }
2221 
2222 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2223   if (O->isELF()) {
2224     printELFFileHeader(O);
2225     return printELFDynamicSection(O);
2226   }
2227   if (O->isCOFF())
2228     return printCOFFFileHeader(O);
2229   if (O->isWasm())
2230     return printWasmFileHeader(O);
2231   if (O->isMachO()) {
2232     printMachOFileHeader(O);
2233     if (!OnlyFirst)
2234       printMachOLoadCommands(O);
2235     return;
2236   }
2237   report_error(O->getFileName(), "Invalid/Unsupported object file format");
2238 }
2239 
2240 static void printFileHeaders(const ObjectFile *O) {
2241   if (!O->isELF() && !O->isCOFF())
2242     report_error(O->getFileName(), "Invalid/Unsupported object file format");
2243 
2244   Triple::ArchType AT = O->getArch();
2245   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2246   Expected<uint64_t> StartAddrOrErr = O->getStartAddress();
2247   if (!StartAddrOrErr)
2248     report_error(O->getFileName(), StartAddrOrErr.takeError());
2249 
2250   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2251   uint64_t Address = StartAddrOrErr.get();
2252   outs() << "start address: "
2253          << "0x" << format(Fmt.data(), Address) << "\n\n";
2254 }
2255 
2256 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2257   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2258   if (!ModeOrErr) {
2259     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2260     consumeError(ModeOrErr.takeError());
2261     return;
2262   }
2263   sys::fs::perms Mode = ModeOrErr.get();
2264   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2265   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2266   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2267   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2268   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2269   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2270   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2271   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2272   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2273 
2274   outs() << " ";
2275 
2276   Expected<unsigned> UIDOrErr = C.getUID();
2277   if (!UIDOrErr)
2278     report_error(Filename, UIDOrErr.takeError());
2279   unsigned UID = UIDOrErr.get();
2280   outs() << format("%d/", UID);
2281 
2282   Expected<unsigned> GIDOrErr = C.getGID();
2283   if (!GIDOrErr)
2284     report_error(Filename, GIDOrErr.takeError());
2285   unsigned GID = GIDOrErr.get();
2286   outs() << format("%-d ", GID);
2287 
2288   Expected<uint64_t> Size = C.getRawSize();
2289   if (!Size)
2290     report_error(Filename, Size.takeError());
2291   outs() << format("%6" PRId64, Size.get()) << " ";
2292 
2293   StringRef RawLastModified = C.getRawLastModified();
2294   unsigned Seconds;
2295   if (RawLastModified.getAsInteger(10, Seconds))
2296     outs() << "(date: \"" << RawLastModified
2297            << "\" contains non-decimal chars) ";
2298   else {
2299     // Since ctime(3) returns a 26 character string of the form:
2300     // "Sun Sep 16 01:03:52 1973\n\0"
2301     // just print 24 characters.
2302     time_t t = Seconds;
2303     outs() << format("%.24s ", ctime(&t));
2304   }
2305 
2306   StringRef Name = "";
2307   Expected<StringRef> NameOrErr = C.getName();
2308   if (!NameOrErr) {
2309     consumeError(NameOrErr.takeError());
2310     Expected<StringRef> RawNameOrErr = C.getRawName();
2311     if (!RawNameOrErr)
2312       report_error(Filename, NameOrErr.takeError());
2313     Name = RawNameOrErr.get();
2314   } else {
2315     Name = NameOrErr.get();
2316   }
2317   outs() << Name << "\n";
2318 }
2319 
2320 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2321                        const Archive::Child *C = nullptr) {
2322   // Avoid other output when using a raw option.
2323   if (!RawClangAST) {
2324     outs() << '\n';
2325     if (A)
2326       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2327     else
2328       outs() << O->getFileName();
2329     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
2330   }
2331 
2332   StringRef ArchiveName = A ? A->getFileName() : "";
2333   if (FileHeaders)
2334     printFileHeaders(O);
2335   if (ArchiveHeaders && !MachOOpt && C)
2336     printArchiveChild(ArchiveName, *C);
2337   if (Disassemble)
2338     disassembleObject(O, Relocations);
2339   if (Relocations && !Disassemble)
2340     printRelocations(O);
2341   if (DynamicRelocations)
2342     printDynamicRelocations(O);
2343   if (SectionHeaders)
2344     printSectionHeaders(O);
2345   if (SectionContents)
2346     printSectionContents(O);
2347   if (SymbolTable)
2348     printSymbolTable(O, ArchiveName);
2349   if (UnwindInfo)
2350     printUnwindInfo(O);
2351   if (PrivateHeaders || FirstPrivateHeader)
2352     printPrivateFileHeaders(O, FirstPrivateHeader);
2353   if (ExportsTrie)
2354     printExportsTrie(O);
2355   if (Rebase)
2356     printRebaseTable(O);
2357   if (Bind)
2358     printBindTable(O);
2359   if (LazyBind)
2360     printLazyBindTable(O);
2361   if (WeakBind)
2362     printWeakBindTable(O);
2363   if (RawClangAST)
2364     printRawClangAST(O);
2365   if (PrintFaultMaps)
2366     printFaultMaps(O);
2367   if (DwarfDumpType != DIDT_Null) {
2368     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2369     // Dump the complete DWARF structure.
2370     DIDumpOptions DumpOpts;
2371     DumpOpts.DumpType = DwarfDumpType;
2372     DICtx->dump(outs(), DumpOpts);
2373   }
2374 }
2375 
2376 static void dumpObject(const COFFImportFile *I, const Archive *A,
2377                        const Archive::Child *C = nullptr) {
2378   StringRef ArchiveName = A ? A->getFileName() : "";
2379 
2380   // Avoid other output when using a raw option.
2381   if (!RawClangAST)
2382     outs() << '\n'
2383            << ArchiveName << "(" << I->getFileName() << ")"
2384            << ":\tfile format COFF-import-file"
2385            << "\n\n";
2386 
2387   if (ArchiveHeaders && !MachOOpt && C)
2388     printArchiveChild(ArchiveName, *C);
2389   if (SymbolTable)
2390     printCOFFSymbolTable(I);
2391 }
2392 
2393 /// Dump each object file in \a a;
2394 static void dumpArchive(const Archive *A) {
2395   Error Err = Error::success();
2396   for (auto &C : A->children(Err)) {
2397     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2398     if (!ChildOrErr) {
2399       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2400         report_error(A->getFileName(), C, std::move(E));
2401       continue;
2402     }
2403     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2404       dumpObject(O, A, &C);
2405     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2406       dumpObject(I, A, &C);
2407     else
2408       report_error(A->getFileName(), object_error::invalid_file_type);
2409   }
2410   if (Err)
2411     report_error(A->getFileName(), std::move(Err));
2412 }
2413 
2414 /// Open file and figure out how to dump it.
2415 static void dumpInput(StringRef file) {
2416   // If we are using the Mach-O specific object file parser, then let it parse
2417   // the file and process the command line options.  So the -arch flags can
2418   // be used to select specific slices, etc.
2419   if (MachOOpt) {
2420     parseInputMachO(file);
2421     return;
2422   }
2423 
2424   // Attempt to open the binary.
2425   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2426   if (!BinaryOrErr)
2427     report_error(file, BinaryOrErr.takeError());
2428   Binary &Binary = *BinaryOrErr.get().getBinary();
2429 
2430   if (Archive *A = dyn_cast<Archive>(&Binary))
2431     dumpArchive(A);
2432   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2433     dumpObject(O);
2434   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2435     parseInputMachO(UB);
2436   else
2437     report_error(file, object_error::invalid_file_type);
2438 }
2439 
2440 int main(int argc, char **argv) {
2441   InitLLVM X(argc, argv);
2442 
2443   // Initialize targets and assembly printers/parsers.
2444   llvm::InitializeAllTargetInfos();
2445   llvm::InitializeAllTargetMCs();
2446   llvm::InitializeAllDisassemblers();
2447 
2448   // Register the target printer for --version.
2449   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2450 
2451   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2452 
2453   ToolName = argv[0];
2454 
2455   // Defaults to a.out if no filenames specified.
2456   if (InputFilenames.empty())
2457     InputFilenames.push_back("a.out");
2458 
2459   if (AllHeaders)
2460     FileHeaders = PrivateHeaders = Relocations = SectionHeaders = SymbolTable =
2461         true;
2462 
2463   if (DisassembleAll || PrintSource || PrintLines)
2464     Disassemble = true;
2465 
2466   if (!Disassemble
2467       && !Relocations
2468       && !DynamicRelocations
2469       && !SectionHeaders
2470       && !SectionContents
2471       && !SymbolTable
2472       && !UnwindInfo
2473       && !PrivateHeaders
2474       && !FileHeaders
2475       && !FirstPrivateHeader
2476       && !ExportsTrie
2477       && !Rebase
2478       && !Bind
2479       && !LazyBind
2480       && !WeakBind
2481       && !RawClangAST
2482       && !(UniversalHeaders && MachOOpt)
2483       && !ArchiveHeaders
2484       && !(IndirectSymbols && MachOOpt)
2485       && !(DataInCode && MachOOpt)
2486       && !(LinkOptHints && MachOOpt)
2487       && !(InfoPlist && MachOOpt)
2488       && !(DylibsUsed && MachOOpt)
2489       && !(DylibId && MachOOpt)
2490       && !(ObjcMetaData && MachOOpt)
2491       && !(!FilterSections.empty() && MachOOpt)
2492       && !PrintFaultMaps
2493       && DwarfDumpType == DIDT_Null) {
2494     cl::PrintHelpMessage();
2495     return 2;
2496   }
2497 
2498   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2499                         DisassembleFunctions.end());
2500 
2501   llvm::for_each(InputFilenames, dumpInput);
2502 
2503   return EXIT_SUCCESS;
2504 }
2505