xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 7b67d2e398861e9f3bdcc991cd0a900aa9c8d740)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "SourcePrinter.h"
24 #include "WasmDump.h"
25 #include "XCOFFDump.h"
26 #include "llvm/ADT/IndexedMap.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Triple.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Demangle/Demangle.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
41 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
42 #include "llvm/MC/MCInst.h"
43 #include "llvm/MC/MCInstPrinter.h"
44 #include "llvm/MC/MCInstrAnalysis.h"
45 #include "llvm/MC/MCInstrInfo.h"
46 #include "llvm/MC/MCObjectFileInfo.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/MC/MCSubtargetInfo.h"
49 #include "llvm/MC/MCTargetOptions.h"
50 #include "llvm/MC/TargetRegistry.h"
51 #include "llvm/Object/Archive.h"
52 #include "llvm/Object/COFF.h"
53 #include "llvm/Object/COFFImportFile.h"
54 #include "llvm/Object/ELFObjectFile.h"
55 #include "llvm/Object/FaultMapParser.h"
56 #include "llvm/Object/MachO.h"
57 #include "llvm/Object/MachOUniversal.h"
58 #include "llvm/Object/ObjectFile.h"
59 #include "llvm/Object/Wasm.h"
60 #include "llvm/Option/Arg.h"
61 #include "llvm/Option/ArgList.h"
62 #include "llvm/Option/Option.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/Errc.h"
66 #include "llvm/Support/FileSystem.h"
67 #include "llvm/Support/Format.h"
68 #include "llvm/Support/FormatVariadic.h"
69 #include "llvm/Support/GraphWriter.h"
70 #include "llvm/Support/Host.h"
71 #include "llvm/Support/InitLLVM.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/SourceMgr.h"
74 #include "llvm/Support/StringSaver.h"
75 #include "llvm/Support/TargetSelect.h"
76 #include "llvm/Support/WithColor.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <algorithm>
79 #include <cctype>
80 #include <cstring>
81 #include <system_error>
82 #include <unordered_map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::object;
87 using namespace llvm::objdump;
88 using namespace llvm::opt;
89 
90 namespace {
91 
92 class CommonOptTable : public opt::OptTable {
93 public:
94   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
95                  const char *Description)
96       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
97     setGroupedShortOptions(true);
98   }
99 
100   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
101     Argv0 = sys::path::filename(Argv0);
102     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
103                              ShowHidden, ShowHidden);
104     // TODO Replace this with OptTable API once it adds extrahelp support.
105     outs() << "\nPass @FILE as argument to read options from FILE.\n";
106   }
107 
108 private:
109   const char *Usage;
110   const char *Description;
111 };
112 
113 // ObjdumpOptID is in ObjdumpOptID.h
114 
115 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
116 #include "ObjdumpOpts.inc"
117 #undef PREFIX
118 
119 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
120 #define OBJDUMP_nullptr nullptr
121 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
122                HELPTEXT, METAVAR, VALUES)                                      \
123   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
124    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
125    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
126    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
127 #include "ObjdumpOpts.inc"
128 #undef OPTION
129 #undef OBJDUMP_nullptr
130 };
131 
132 class ObjdumpOptTable : public CommonOptTable {
133 public:
134   ObjdumpOptTable()
135       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
136                        "llvm object file dumper") {}
137 };
138 
139 enum OtoolOptID {
140   OTOOL_INVALID = 0, // This is not an option ID.
141 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
142                HELPTEXT, METAVAR, VALUES)                                      \
143   OTOOL_##ID,
144 #include "OtoolOpts.inc"
145 #undef OPTION
146 };
147 
148 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
149 #include "OtoolOpts.inc"
150 #undef PREFIX
151 
152 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
153 #define OTOOL_nullptr nullptr
154 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
155                HELPTEXT, METAVAR, VALUES)                                      \
156   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
157    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
158    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
159    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
160 #include "OtoolOpts.inc"
161 #undef OPTION
162 #undef OTOOL_nullptr
163 };
164 
165 class OtoolOptTable : public CommonOptTable {
166 public:
167   OtoolOptTable()
168       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
169                        "Mach-O object file displaying tool") {}
170 };
171 
172 } // namespace
173 
174 #define DEBUG_TYPE "objdump"
175 
176 static uint64_t AdjustVMA;
177 static bool AllHeaders;
178 static std::string ArchName;
179 bool objdump::ArchiveHeaders;
180 bool objdump::Demangle;
181 bool objdump::Disassemble;
182 bool objdump::DisassembleAll;
183 bool objdump::SymbolDescription;
184 static std::vector<std::string> DisassembleSymbols;
185 static bool DisassembleZeroes;
186 static std::vector<std::string> DisassemblerOptions;
187 DIDumpType objdump::DwarfDumpType;
188 static bool DynamicRelocations;
189 static bool FaultMapSection;
190 static bool FileHeaders;
191 bool objdump::SectionContents;
192 static std::vector<std::string> InputFilenames;
193 bool objdump::PrintLines;
194 static bool MachOOpt;
195 std::string objdump::MCPU;
196 std::vector<std::string> objdump::MAttrs;
197 bool objdump::ShowRawInsn;
198 bool objdump::LeadingAddr;
199 static bool RawClangAST;
200 bool objdump::Relocations;
201 bool objdump::PrintImmHex;
202 bool objdump::PrivateHeaders;
203 std::vector<std::string> objdump::FilterSections;
204 bool objdump::SectionHeaders;
205 static bool ShowLMA;
206 bool objdump::PrintSource;
207 
208 static uint64_t StartAddress;
209 static bool HasStartAddressFlag;
210 static uint64_t StopAddress = UINT64_MAX;
211 static bool HasStopAddressFlag;
212 
213 bool objdump::SymbolTable;
214 static bool SymbolizeOperands;
215 static bool DynamicSymbolTable;
216 std::string objdump::TripleName;
217 bool objdump::UnwindInfo;
218 static bool Wide;
219 std::string objdump::Prefix;
220 uint32_t objdump::PrefixStrip;
221 
222 DebugVarsFormat objdump::DbgVariables = DVDisabled;
223 
224 int objdump::DbgIndent = 52;
225 
226 static StringSet<> DisasmSymbolSet;
227 StringSet<> objdump::FoundSectionSet;
228 static StringRef ToolName;
229 
230 namespace {
231 struct FilterResult {
232   // True if the section should not be skipped.
233   bool Keep;
234 
235   // True if the index counter should be incremented, even if the section should
236   // be skipped. For example, sections may be skipped if they are not included
237   // in the --section flag, but we still want those to count toward the section
238   // count.
239   bool IncrementIndex;
240 };
241 } // namespace
242 
243 static FilterResult checkSectionFilter(object::SectionRef S) {
244   if (FilterSections.empty())
245     return {/*Keep=*/true, /*IncrementIndex=*/true};
246 
247   Expected<StringRef> SecNameOrErr = S.getName();
248   if (!SecNameOrErr) {
249     consumeError(SecNameOrErr.takeError());
250     return {/*Keep=*/false, /*IncrementIndex=*/false};
251   }
252   StringRef SecName = *SecNameOrErr;
253 
254   // StringSet does not allow empty key so avoid adding sections with
255   // no name (such as the section with index 0) here.
256   if (!SecName.empty())
257     FoundSectionSet.insert(SecName);
258 
259   // Only show the section if it's in the FilterSections list, but always
260   // increment so the indexing is stable.
261   return {/*Keep=*/is_contained(FilterSections, SecName),
262           /*IncrementIndex=*/true};
263 }
264 
265 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
266                                          uint64_t *Idx) {
267   // Start at UINT64_MAX so that the first index returned after an increment is
268   // zero (after the unsigned wrap).
269   if (Idx)
270     *Idx = UINT64_MAX;
271   return SectionFilter(
272       [Idx](object::SectionRef S) {
273         FilterResult Result = checkSectionFilter(S);
274         if (Idx != nullptr && Result.IncrementIndex)
275           *Idx += 1;
276         return Result.Keep;
277       },
278       O);
279 }
280 
281 std::string objdump::getFileNameForError(const object::Archive::Child &C,
282                                          unsigned Index) {
283   Expected<StringRef> NameOrErr = C.getName();
284   if (NameOrErr)
285     return std::string(NameOrErr.get());
286   // If we have an error getting the name then we print the index of the archive
287   // member. Since we are already in an error state, we just ignore this error.
288   consumeError(NameOrErr.takeError());
289   return "<file index: " + std::to_string(Index) + ">";
290 }
291 
292 void objdump::reportWarning(const Twine &Message, StringRef File) {
293   // Output order between errs() and outs() matters especially for archive
294   // files where the output is per member object.
295   outs().flush();
296   WithColor::warning(errs(), ToolName)
297       << "'" << File << "': " << Message << "\n";
298 }
299 
300 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
301   outs().flush();
302   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
303   exit(1);
304 }
305 
306 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
307                                        StringRef ArchiveName,
308                                        StringRef ArchitectureName) {
309   assert(E);
310   outs().flush();
311   WithColor::error(errs(), ToolName);
312   if (ArchiveName != "")
313     errs() << ArchiveName << "(" << FileName << ")";
314   else
315     errs() << "'" << FileName << "'";
316   if (!ArchitectureName.empty())
317     errs() << " (for architecture " << ArchitectureName << ")";
318   errs() << ": ";
319   logAllUnhandledErrors(std::move(E), errs());
320   exit(1);
321 }
322 
323 static void reportCmdLineWarning(const Twine &Message) {
324   WithColor::warning(errs(), ToolName) << Message << "\n";
325 }
326 
327 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
328   WithColor::error(errs(), ToolName) << Message << "\n";
329   exit(1);
330 }
331 
332 static void warnOnNoMatchForSections() {
333   SetVector<StringRef> MissingSections;
334   for (StringRef S : FilterSections) {
335     if (FoundSectionSet.count(S))
336       return;
337     // User may specify a unnamed section. Don't warn for it.
338     if (!S.empty())
339       MissingSections.insert(S);
340   }
341 
342   // Warn only if no section in FilterSections is matched.
343   for (StringRef S : MissingSections)
344     reportCmdLineWarning("section '" + S +
345                          "' mentioned in a -j/--section option, but not "
346                          "found in any input file");
347 }
348 
349 static const Target *getTarget(const ObjectFile *Obj) {
350   // Figure out the target triple.
351   Triple TheTriple("unknown-unknown-unknown");
352   if (TripleName.empty()) {
353     TheTriple = Obj->makeTriple();
354   } else {
355     TheTriple.setTriple(Triple::normalize(TripleName));
356     auto Arch = Obj->getArch();
357     if (Arch == Triple::arm || Arch == Triple::armeb)
358       Obj->setARMSubArch(TheTriple);
359   }
360 
361   // Get the target specific parser.
362   std::string Error;
363   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
364                                                          Error);
365   if (!TheTarget)
366     reportError(Obj->getFileName(), "can't find target: " + Error);
367 
368   // Update the triple name and return the found target.
369   TripleName = TheTriple.getTriple();
370   return TheTarget;
371 }
372 
373 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
374   return A.getOffset() < B.getOffset();
375 }
376 
377 static Error getRelocationValueString(const RelocationRef &Rel,
378                                       SmallVectorImpl<char> &Result) {
379   const ObjectFile *Obj = Rel.getObject();
380   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
381     return getELFRelocationValueString(ELF, Rel, Result);
382   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
383     return getCOFFRelocationValueString(COFF, Rel, Result);
384   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
385     return getWasmRelocationValueString(Wasm, Rel, Result);
386   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
387     return getMachORelocationValueString(MachO, Rel, Result);
388   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
389     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
390   llvm_unreachable("unknown object file format");
391 }
392 
393 /// Indicates whether this relocation should hidden when listing
394 /// relocations, usually because it is the trailing part of a multipart
395 /// relocation that will be printed as part of the leading relocation.
396 static bool getHidden(RelocationRef RelRef) {
397   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
398   if (!MachO)
399     return false;
400 
401   unsigned Arch = MachO->getArch();
402   DataRefImpl Rel = RelRef.getRawDataRefImpl();
403   uint64_t Type = MachO->getRelocationType(Rel);
404 
405   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
406   // is always hidden.
407   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
408     return Type == MachO::GENERIC_RELOC_PAIR;
409 
410   if (Arch == Triple::x86_64) {
411     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
412     // an X86_64_RELOC_SUBTRACTOR.
413     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
414       DataRefImpl RelPrev = Rel;
415       RelPrev.d.a--;
416       uint64_t PrevType = MachO->getRelocationType(RelPrev);
417       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
418         return true;
419     }
420   }
421 
422   return false;
423 }
424 
425 namespace {
426 
427 /// Get the column at which we want to start printing the instruction
428 /// disassembly, taking into account anything which appears to the left of it.
429 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
430   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
431 }
432 
433 static bool isAArch64Elf(const ObjectFile *Obj) {
434   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
435   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
436 }
437 
438 static bool isArmElf(const ObjectFile *Obj) {
439   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
440   return Elf && Elf->getEMachine() == ELF::EM_ARM;
441 }
442 
443 static bool hasMappingSymbols(const ObjectFile *Obj) {
444   return isArmElf(Obj) || isAArch64Elf(Obj);
445 }
446 
447 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
448                             const RelocationRef &Rel, uint64_t Address,
449                             bool Is64Bits) {
450   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
451   SmallString<16> Name;
452   SmallString<32> Val;
453   Rel.getTypeName(Name);
454   if (Error E = getRelocationValueString(Rel, Val))
455     reportError(std::move(E), FileName);
456   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
457 }
458 
459 class PrettyPrinter {
460 public:
461   virtual ~PrettyPrinter() = default;
462   virtual void
463   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
464             object::SectionedAddress Address, formatted_raw_ostream &OS,
465             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
466             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
467             LiveVariablePrinter &LVP) {
468     if (SP && (PrintSource || PrintLines))
469       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
470     LVP.printBetweenInsts(OS, false);
471 
472     size_t Start = OS.tell();
473     if (LeadingAddr)
474       OS << format("%8" PRIx64 ":", Address.Address);
475     if (ShowRawInsn) {
476       OS << ' ';
477       dumpBytes(Bytes, OS);
478     }
479 
480     // The output of printInst starts with a tab. Print some spaces so that
481     // the tab has 1 column and advances to the target tab stop.
482     unsigned TabStop = getInstStartColumn(STI);
483     unsigned Column = OS.tell() - Start;
484     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
485 
486     if (MI) {
487       // See MCInstPrinter::printInst. On targets where a PC relative immediate
488       // is relative to the next instruction and the length of a MCInst is
489       // difficult to measure (x86), this is the address of the next
490       // instruction.
491       uint64_t Addr =
492           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
493       IP.printInst(MI, Addr, "", STI, OS);
494     } else
495       OS << "\t<unknown>";
496   }
497 };
498 PrettyPrinter PrettyPrinterInst;
499 
500 class HexagonPrettyPrinter : public PrettyPrinter {
501 public:
502   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
503                  formatted_raw_ostream &OS) {
504     uint32_t opcode =
505       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
506     if (LeadingAddr)
507       OS << format("%8" PRIx64 ":", Address);
508     if (ShowRawInsn) {
509       OS << "\t";
510       dumpBytes(Bytes.slice(0, 4), OS);
511       OS << format("\t%08" PRIx32, opcode);
512     }
513   }
514   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
515                  object::SectionedAddress Address, formatted_raw_ostream &OS,
516                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
517                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
518                  LiveVariablePrinter &LVP) override {
519     if (SP && (PrintSource || PrintLines))
520       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
521     if (!MI) {
522       printLead(Bytes, Address.Address, OS);
523       OS << " <unknown>";
524       return;
525     }
526     std::string Buffer;
527     {
528       raw_string_ostream TempStream(Buffer);
529       IP.printInst(MI, Address.Address, "", STI, TempStream);
530     }
531     StringRef Contents(Buffer);
532     // Split off bundle attributes
533     auto PacketBundle = Contents.rsplit('\n');
534     // Split off first instruction from the rest
535     auto HeadTail = PacketBundle.first.split('\n');
536     auto Preamble = " { ";
537     auto Separator = "";
538 
539     // Hexagon's packets require relocations to be inline rather than
540     // clustered at the end of the packet.
541     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
542     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
543     auto PrintReloc = [&]() -> void {
544       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
545         if (RelCur->getOffset() == Address.Address) {
546           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
547           return;
548         }
549         ++RelCur;
550       }
551     };
552 
553     while (!HeadTail.first.empty()) {
554       OS << Separator;
555       Separator = "\n";
556       if (SP && (PrintSource || PrintLines))
557         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
558       printLead(Bytes, Address.Address, OS);
559       OS << Preamble;
560       Preamble = "   ";
561       StringRef Inst;
562       auto Duplex = HeadTail.first.split('\v');
563       if (!Duplex.second.empty()) {
564         OS << Duplex.first;
565         OS << "; ";
566         Inst = Duplex.second;
567       }
568       else
569         Inst = HeadTail.first;
570       OS << Inst;
571       HeadTail = HeadTail.second.split('\n');
572       if (HeadTail.first.empty())
573         OS << " } " << PacketBundle.second;
574       PrintReloc();
575       Bytes = Bytes.slice(4);
576       Address.Address += 4;
577     }
578   }
579 };
580 HexagonPrettyPrinter HexagonPrettyPrinterInst;
581 
582 class AMDGCNPrettyPrinter : public PrettyPrinter {
583 public:
584   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
585                  object::SectionedAddress Address, formatted_raw_ostream &OS,
586                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
587                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
588                  LiveVariablePrinter &LVP) override {
589     if (SP && (PrintSource || PrintLines))
590       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
591 
592     if (MI) {
593       SmallString<40> InstStr;
594       raw_svector_ostream IS(InstStr);
595 
596       IP.printInst(MI, Address.Address, "", STI, IS);
597 
598       OS << left_justify(IS.str(), 60);
599     } else {
600       // an unrecognized encoding - this is probably data so represent it
601       // using the .long directive, or .byte directive if fewer than 4 bytes
602       // remaining
603       if (Bytes.size() >= 4) {
604         OS << format("\t.long 0x%08" PRIx32 " ",
605                      support::endian::read32<support::little>(Bytes.data()));
606         OS.indent(42);
607       } else {
608           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
609           for (unsigned int i = 1; i < Bytes.size(); i++)
610             OS << format(", 0x%02" PRIx8, Bytes[i]);
611           OS.indent(55 - (6 * Bytes.size()));
612       }
613     }
614 
615     OS << format("// %012" PRIX64 ":", Address.Address);
616     if (Bytes.size() >= 4) {
617       // D should be casted to uint32_t here as it is passed by format to
618       // snprintf as vararg.
619       for (uint32_t D : makeArrayRef(
620                reinterpret_cast<const support::little32_t *>(Bytes.data()),
621                Bytes.size() / 4))
622         OS << format(" %08" PRIX32, D);
623     } else {
624       for (unsigned char B : Bytes)
625         OS << format(" %02" PRIX8, B);
626     }
627 
628     if (!Annot.empty())
629       OS << " // " << Annot;
630   }
631 };
632 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
633 
634 class BPFPrettyPrinter : public PrettyPrinter {
635 public:
636   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
637                  object::SectionedAddress Address, formatted_raw_ostream &OS,
638                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
639                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
640                  LiveVariablePrinter &LVP) override {
641     if (SP && (PrintSource || PrintLines))
642       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
643     if (LeadingAddr)
644       OS << format("%8" PRId64 ":", Address.Address / 8);
645     if (ShowRawInsn) {
646       OS << "\t";
647       dumpBytes(Bytes, OS);
648     }
649     if (MI)
650       IP.printInst(MI, Address.Address, "", STI, OS);
651     else
652       OS << "\t<unknown>";
653   }
654 };
655 BPFPrettyPrinter BPFPrettyPrinterInst;
656 
657 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
658   switch(Triple.getArch()) {
659   default:
660     return PrettyPrinterInst;
661   case Triple::hexagon:
662     return HexagonPrettyPrinterInst;
663   case Triple::amdgcn:
664     return AMDGCNPrettyPrinterInst;
665   case Triple::bpfel:
666   case Triple::bpfeb:
667     return BPFPrettyPrinterInst;
668   }
669 }
670 }
671 
672 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
673   assert(Obj->isELF());
674   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
675     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
676                          Obj->getFileName())
677         ->getType();
678   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
679     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
680                          Obj->getFileName())
681         ->getType();
682   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
683     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
684                          Obj->getFileName())
685         ->getType();
686   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
687     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
688                          Obj->getFileName())
689         ->getType();
690   llvm_unreachable("Unsupported binary format");
691 }
692 
693 template <class ELFT> static void
694 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
695                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
696   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
697     uint8_t SymbolType = Symbol.getELFType();
698     if (SymbolType == ELF::STT_SECTION)
699       continue;
700 
701     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
702     // ELFSymbolRef::getAddress() returns size instead of value for common
703     // symbols which is not desirable for disassembly output. Overriding.
704     if (SymbolType == ELF::STT_COMMON)
705       Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
706                               Obj->getFileName())
707                     ->st_value;
708 
709     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
710     if (Name.empty())
711       continue;
712 
713     section_iterator SecI =
714         unwrapOrError(Symbol.getSection(), Obj->getFileName());
715     if (SecI == Obj->section_end())
716       continue;
717 
718     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
719   }
720 }
721 
722 static void
723 addDynamicElfSymbols(const ObjectFile *Obj,
724                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
725   assert(Obj->isELF());
726   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
727     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
728   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
729     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
730   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
731     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
732   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
733     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
734   else
735     llvm_unreachable("Unsupported binary format");
736 }
737 
738 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile *Obj) {
739   for (auto SecI : Obj->sections()) {
740     const WasmSection &Section = Obj->getWasmSection(SecI);
741     if (Section.Type == wasm::WASM_SEC_CODE)
742       return SecI;
743   }
744   return None;
745 }
746 
747 static void
748 addMissingWasmCodeSymbols(const WasmObjectFile *Obj,
749                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
750   Optional<SectionRef> Section = getWasmCodeSection(Obj);
751   if (!Section)
752     return;
753   SectionSymbolsTy &Symbols = AllSymbols[*Section];
754 
755   std::set<uint64_t> SymbolAddresses;
756   for (const auto &Sym : Symbols)
757     SymbolAddresses.insert(Sym.Addr);
758 
759   for (const wasm::WasmFunction &Function : Obj->functions()) {
760     uint64_t Address = Function.CodeSectionOffset;
761     // Only add fallback symbols for functions not already present in the symbol
762     // table.
763     if (SymbolAddresses.count(Address))
764       continue;
765     // This function has no symbol, so it should have no SymbolName.
766     assert(Function.SymbolName.empty());
767     // We use DebugName for the name, though it may be empty if there is no
768     // "name" custom section, or that section is missing a name for this
769     // function.
770     StringRef Name = Function.DebugName;
771     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
772   }
773 }
774 
775 static void addPltEntries(const ObjectFile *Obj,
776                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
777                           StringSaver &Saver) {
778   Optional<SectionRef> Plt = None;
779   for (const SectionRef &Section : Obj->sections()) {
780     Expected<StringRef> SecNameOrErr = Section.getName();
781     if (!SecNameOrErr) {
782       consumeError(SecNameOrErr.takeError());
783       continue;
784     }
785     if (*SecNameOrErr == ".plt")
786       Plt = Section;
787   }
788   if (!Plt)
789     return;
790   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
791     for (auto PltEntry : ElfObj->getPltAddresses()) {
792       if (PltEntry.first) {
793         SymbolRef Symbol(*PltEntry.first, ElfObj);
794         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
795         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
796           if (!NameOrErr->empty())
797             AllSymbols[*Plt].emplace_back(
798                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
799                 SymbolType);
800           continue;
801         } else {
802           // The warning has been reported in disassembleObject().
803           consumeError(NameOrErr.takeError());
804         }
805       }
806       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
807                         " references an invalid symbol",
808                     Obj->getFileName());
809     }
810   }
811 }
812 
813 // Normally the disassembly output will skip blocks of zeroes. This function
814 // returns the number of zero bytes that can be skipped when dumping the
815 // disassembly of the instructions in Buf.
816 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
817   // Find the number of leading zeroes.
818   size_t N = 0;
819   while (N < Buf.size() && !Buf[N])
820     ++N;
821 
822   // We may want to skip blocks of zero bytes, but unless we see
823   // at least 8 of them in a row.
824   if (N < 8)
825     return 0;
826 
827   // We skip zeroes in multiples of 4 because do not want to truncate an
828   // instruction if it starts with a zero byte.
829   return N & ~0x3;
830 }
831 
832 // Returns a map from sections to their relocations.
833 static std::map<SectionRef, std::vector<RelocationRef>>
834 getRelocsMap(object::ObjectFile const &Obj) {
835   std::map<SectionRef, std::vector<RelocationRef>> Ret;
836   uint64_t I = (uint64_t)-1;
837   for (SectionRef Sec : Obj.sections()) {
838     ++I;
839     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
840     if (!RelocatedOrErr)
841       reportError(Obj.getFileName(),
842                   "section (" + Twine(I) +
843                       "): failed to get a relocated section: " +
844                       toString(RelocatedOrErr.takeError()));
845 
846     section_iterator Relocated = *RelocatedOrErr;
847     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
848       continue;
849     std::vector<RelocationRef> &V = Ret[*Relocated];
850     append_range(V, Sec.relocations());
851     // Sort relocations by address.
852     llvm::stable_sort(V, isRelocAddressLess);
853   }
854   return Ret;
855 }
856 
857 // Used for --adjust-vma to check if address should be adjusted by the
858 // specified value for a given section.
859 // For ELF we do not adjust non-allocatable sections like debug ones,
860 // because they are not loadable.
861 // TODO: implement for other file formats.
862 static bool shouldAdjustVA(const SectionRef &Section) {
863   const ObjectFile *Obj = Section.getObject();
864   if (Obj->isELF())
865     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
866   return false;
867 }
868 
869 
870 typedef std::pair<uint64_t, char> MappingSymbolPair;
871 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
872                                  uint64_t Address) {
873   auto It =
874       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
875         return Val.first <= Address;
876       });
877   // Return zero for any address before the first mapping symbol; this means
878   // we should use the default disassembly mode, depending on the target.
879   if (It == MappingSymbols.begin())
880     return '\x00';
881   return (It - 1)->second;
882 }
883 
884 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
885                                uint64_t End, const ObjectFile *Obj,
886                                ArrayRef<uint8_t> Bytes,
887                                ArrayRef<MappingSymbolPair> MappingSymbols,
888                                raw_ostream &OS) {
889   support::endianness Endian =
890       Obj->isLittleEndian() ? support::little : support::big;
891   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
892   if (Index + 4 <= End) {
893     dumpBytes(Bytes.slice(Index, 4), OS);
894     OS << "\t.word\t"
895            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
896                          10);
897     return 4;
898   }
899   if (Index + 2 <= End) {
900     dumpBytes(Bytes.slice(Index, 2), OS);
901     OS << "\t\t.short\t"
902            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
903                          6);
904     return 2;
905   }
906   dumpBytes(Bytes.slice(Index, 1), OS);
907   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
908   return 1;
909 }
910 
911 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
912                         ArrayRef<uint8_t> Bytes) {
913   // print out data up to 8 bytes at a time in hex and ascii
914   uint8_t AsciiData[9] = {'\0'};
915   uint8_t Byte;
916   int NumBytes = 0;
917 
918   for (; Index < End; ++Index) {
919     if (NumBytes == 0)
920       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
921     Byte = Bytes.slice(Index)[0];
922     outs() << format(" %02x", Byte);
923     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
924 
925     uint8_t IndentOffset = 0;
926     NumBytes++;
927     if (Index == End - 1 || NumBytes > 8) {
928       // Indent the space for less than 8 bytes data.
929       // 2 spaces for byte and one for space between bytes
930       IndentOffset = 3 * (8 - NumBytes);
931       for (int Excess = NumBytes; Excess < 8; Excess++)
932         AsciiData[Excess] = '\0';
933       NumBytes = 8;
934     }
935     if (NumBytes == 8) {
936       AsciiData[8] = '\0';
937       outs() << std::string(IndentOffset, ' ') << "         ";
938       outs() << reinterpret_cast<char *>(AsciiData);
939       outs() << '\n';
940       NumBytes = 0;
941     }
942   }
943 }
944 
945 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
946                                        const SymbolRef &Symbol) {
947   const StringRef FileName = Obj->getFileName();
948   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
949   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
950 
951   if (Obj->isXCOFF() && SymbolDescription) {
952     const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
953     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
954 
955     const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
956     Optional<XCOFF::StorageMappingClass> Smc =
957         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
958     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
959                         isLabel(XCOFFObj, Symbol));
960   } else if (Obj->isXCOFF()) {
961     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
962     return SymbolInfoTy(Addr, Name, SymType, true);
963   } else
964     return SymbolInfoTy(Addr, Name,
965                         Obj->isELF() ? getElfSymbolType(Obj, Symbol)
966                                      : (uint8_t)ELF::STT_NOTYPE);
967 }
968 
969 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
970                                           const uint64_t Addr, StringRef &Name,
971                                           uint8_t Type) {
972   if (Obj->isXCOFF() && SymbolDescription)
973     return SymbolInfoTy(Addr, Name, None, None, false);
974   else
975     return SymbolInfoTy(Addr, Name, Type);
976 }
977 
978 static void
979 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
980                           MCDisassembler *DisAsm, MCInstPrinter *IP,
981                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
982                           uint64_t Start, uint64_t End,
983                           std::unordered_map<uint64_t, std::string> &Labels) {
984   // So far only supports PowerPC and X86.
985   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
986     return;
987 
988   Labels.clear();
989   unsigned LabelCount = 0;
990   Start += SectionAddr;
991   End += SectionAddr;
992   uint64_t Index = Start;
993   while (Index < End) {
994     // Disassemble a real instruction and record function-local branch labels.
995     MCInst Inst;
996     uint64_t Size;
997     bool Disassembled = DisAsm->getInstruction(
998         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
999     if (Size == 0)
1000       Size = 1;
1001 
1002     if (Disassembled && MIA) {
1003       uint64_t Target;
1004       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1005       // On PowerPC, if the address of a branch is the same as the target, it
1006       // means that it's a function call. Do not mark the label for this case.
1007       if (TargetKnown && (Target >= Start && Target < End) &&
1008           !Labels.count(Target) &&
1009           !(STI->getTargetTriple().isPPC() && Target == Index))
1010         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1011     }
1012 
1013     Index += Size;
1014   }
1015 }
1016 
1017 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1018 // This is currently only used on AMDGPU, and assumes the format of the
1019 // void * argument passed to AMDGPU's createMCSymbolizer.
1020 static void addSymbolizer(
1021     MCContext &Ctx, const Target *Target, StringRef TripleName,
1022     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1023     SectionSymbolsTy &Symbols,
1024     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1025 
1026   std::unique_ptr<MCRelocationInfo> RelInfo(
1027       Target->createMCRelocationInfo(TripleName, Ctx));
1028   if (!RelInfo)
1029     return;
1030   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1031       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1032   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1033   DisAsm->setSymbolizer(std::move(Symbolizer));
1034 
1035   if (!SymbolizeOperands)
1036     return;
1037 
1038   // Synthesize labels referenced by branch instructions by
1039   // disassembling, discarding the output, and collecting the referenced
1040   // addresses from the symbolizer.
1041   for (size_t Index = 0; Index != Bytes.size();) {
1042     MCInst Inst;
1043     uint64_t Size;
1044     DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index,
1045                            nulls());
1046     if (Size == 0)
1047       Size = 1;
1048     Index += Size;
1049   }
1050   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1051   // Copy and sort to remove duplicates.
1052   std::vector<uint64_t> LabelAddrs;
1053   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1054                     LabelAddrsRef.end());
1055   llvm::sort(LabelAddrs);
1056   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1057                     LabelAddrs.begin());
1058   // Add the labels.
1059   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1060     auto Name = std::make_unique<std::string>();
1061     *Name = (Twine("L") + Twine(LabelNum)).str();
1062     SynthesizedLabelNames.push_back(std::move(Name));
1063     Symbols.push_back(SymbolInfoTy(
1064         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1065   }
1066   llvm::stable_sort(Symbols);
1067   // Recreate the symbolizer with the new symbols list.
1068   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1069   Symbolizer.reset(Target->createMCSymbolizer(
1070       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1071   DisAsm->setSymbolizer(std::move(Symbolizer));
1072 }
1073 
1074 static StringRef getSegmentName(const MachOObjectFile *MachO,
1075                                 const SectionRef &Section) {
1076   if (MachO) {
1077     DataRefImpl DR = Section.getRawDataRefImpl();
1078     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1079     return SegmentName;
1080   }
1081   return "";
1082 }
1083 
1084 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1085                                     const MCAsmInfo &MAI,
1086                                     const MCSubtargetInfo &STI,
1087                                     StringRef Comments,
1088                                     LiveVariablePrinter &LVP) {
1089   do {
1090     if (!Comments.empty()) {
1091       // Emit a line of comments.
1092       StringRef Comment;
1093       std::tie(Comment, Comments) = Comments.split('\n');
1094       // MAI.getCommentColumn() assumes that instructions are printed at the
1095       // position of 8, while getInstStartColumn() returns the actual position.
1096       unsigned CommentColumn =
1097           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1098       FOS.PadToColumn(CommentColumn);
1099       FOS << MAI.getCommentString() << ' ' << Comment;
1100     }
1101     LVP.printAfterInst(FOS);
1102     FOS << '\n';
1103   } while (!Comments.empty());
1104   FOS.flush();
1105 }
1106 
1107 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1108                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1109                               MCDisassembler *SecondaryDisAsm,
1110                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1111                               const MCSubtargetInfo *PrimarySTI,
1112                               const MCSubtargetInfo *SecondarySTI,
1113                               PrettyPrinter &PIP,
1114                               SourcePrinter &SP, bool InlineRelocs) {
1115   const MCSubtargetInfo *STI = PrimarySTI;
1116   MCDisassembler *DisAsm = PrimaryDisAsm;
1117   bool PrimaryIsThumb = false;
1118   if (isArmElf(Obj))
1119     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1120 
1121   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1122   if (InlineRelocs)
1123     RelocMap = getRelocsMap(*Obj);
1124   bool Is64Bits = Obj->getBytesInAddress() > 4;
1125 
1126   // Create a mapping from virtual address to symbol name.  This is used to
1127   // pretty print the symbols while disassembling.
1128   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1129   SectionSymbolsTy AbsoluteSymbols;
1130   const StringRef FileName = Obj->getFileName();
1131   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1132   for (const SymbolRef &Symbol : Obj->symbols()) {
1133     Expected<StringRef> NameOrErr = Symbol.getName();
1134     if (!NameOrErr) {
1135       reportWarning(toString(NameOrErr.takeError()), FileName);
1136       continue;
1137     }
1138     if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1139       continue;
1140 
1141     if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1142       continue;
1143 
1144     if (MachO) {
1145       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1146       // symbols that support MachO header introspection. They do not bind to
1147       // code locations and are irrelevant for disassembly.
1148       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1149         continue;
1150       // Don't ask a Mach-O STAB symbol for its section unless you know that
1151       // STAB symbol's section field refers to a valid section index. Otherwise
1152       // the symbol may error trying to load a section that does not exist.
1153       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1154       uint8_t NType = (MachO->is64Bit() ?
1155                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1156                        MachO->getSymbolTableEntry(SymDRI).n_type);
1157       if (NType & MachO::N_STAB)
1158         continue;
1159     }
1160 
1161     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1162     if (SecI != Obj->section_end())
1163       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1164     else
1165       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1166   }
1167 
1168   if (AllSymbols.empty() && Obj->isELF())
1169     addDynamicElfSymbols(Obj, AllSymbols);
1170 
1171   if (Obj->isWasm())
1172     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1173 
1174   BumpPtrAllocator A;
1175   StringSaver Saver(A);
1176   addPltEntries(Obj, AllSymbols, Saver);
1177 
1178   // Create a mapping from virtual address to section. An empty section can
1179   // cause more than one section at the same address. Sort such sections to be
1180   // before same-addressed non-empty sections so that symbol lookups prefer the
1181   // non-empty section.
1182   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1183   for (SectionRef Sec : Obj->sections())
1184     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1185   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1186     if (LHS.first != RHS.first)
1187       return LHS.first < RHS.first;
1188     return LHS.second.getSize() < RHS.second.getSize();
1189   });
1190 
1191   // Linked executables (.exe and .dll files) typically don't include a real
1192   // symbol table but they might contain an export table.
1193   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1194     for (const auto &ExportEntry : COFFObj->export_directories()) {
1195       StringRef Name;
1196       if (Error E = ExportEntry.getSymbolName(Name))
1197         reportError(std::move(E), Obj->getFileName());
1198       if (Name.empty())
1199         continue;
1200 
1201       uint32_t RVA;
1202       if (Error E = ExportEntry.getExportRVA(RVA))
1203         reportError(std::move(E), Obj->getFileName());
1204 
1205       uint64_t VA = COFFObj->getImageBase() + RVA;
1206       auto Sec = partition_point(
1207           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1208             return O.first <= VA;
1209           });
1210       if (Sec != SectionAddresses.begin()) {
1211         --Sec;
1212         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1213       } else
1214         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1215     }
1216   }
1217 
1218   // Sort all the symbols, this allows us to use a simple binary search to find
1219   // Multiple symbols can have the same address. Use a stable sort to stabilize
1220   // the output.
1221   StringSet<> FoundDisasmSymbolSet;
1222   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1223     llvm::stable_sort(SecSyms.second);
1224   llvm::stable_sort(AbsoluteSymbols);
1225 
1226   std::unique_ptr<DWARFContext> DICtx;
1227   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1228 
1229   if (DbgVariables != DVDisabled) {
1230     DICtx = DWARFContext::create(*Obj);
1231     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1232       LVP.addCompileUnit(CU->getUnitDIE(false));
1233   }
1234 
1235   LLVM_DEBUG(LVP.dump());
1236 
1237   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1238     if (FilterSections.empty() && !DisassembleAll &&
1239         (!Section.isText() || Section.isVirtual()))
1240       continue;
1241 
1242     uint64_t SectionAddr = Section.getAddress();
1243     uint64_t SectSize = Section.getSize();
1244     if (!SectSize)
1245       continue;
1246 
1247     // Get the list of all the symbols in this section.
1248     SectionSymbolsTy &Symbols = AllSymbols[Section];
1249     std::vector<MappingSymbolPair> MappingSymbols;
1250     if (hasMappingSymbols(Obj)) {
1251       for (const auto &Symb : Symbols) {
1252         uint64_t Address = Symb.Addr;
1253         StringRef Name = Symb.Name;
1254         if (Name.startswith("$d"))
1255           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1256         if (Name.startswith("$x"))
1257           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1258         if (Name.startswith("$a"))
1259           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1260         if (Name.startswith("$t"))
1261           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1262       }
1263     }
1264 
1265     llvm::sort(MappingSymbols);
1266 
1267     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1268         unwrapOrError(Section.getContents(), Obj->getFileName()));
1269 
1270     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1271     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1272       // AMDGPU disassembler uses symbolizer for printing labels
1273       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1274                     Symbols, SynthesizedLabelNames);
1275     }
1276 
1277     StringRef SegmentName = getSegmentName(MachO, Section);
1278     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1279     // If the section has no symbol at the start, just insert a dummy one.
1280     if (Symbols.empty() || Symbols[0].Addr != 0) {
1281       Symbols.insert(Symbols.begin(),
1282                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1283                                            Section.isText() ? ELF::STT_FUNC
1284                                                             : ELF::STT_OBJECT));
1285     }
1286 
1287     SmallString<40> Comments;
1288     raw_svector_ostream CommentStream(Comments);
1289 
1290     uint64_t VMAAdjustment = 0;
1291     if (shouldAdjustVA(Section))
1292       VMAAdjustment = AdjustVMA;
1293 
1294     // In executable and shared objects, r_offset holds a virtual address.
1295     // Subtract SectionAddr from the r_offset field of a relocation to get
1296     // the section offset.
1297     uint64_t RelAdjustment = Obj->isRelocatableObject() ? 0 : SectionAddr;
1298     uint64_t Size;
1299     uint64_t Index;
1300     bool PrintedSection = false;
1301     std::vector<RelocationRef> Rels = RelocMap[Section];
1302     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1303     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1304     // Disassemble symbol by symbol.
1305     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1306       std::string SymbolName = Symbols[SI].Name.str();
1307       if (Demangle)
1308         SymbolName = demangle(SymbolName);
1309 
1310       // Skip if --disassemble-symbols is not empty and the symbol is not in
1311       // the list.
1312       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1313         continue;
1314 
1315       uint64_t Start = Symbols[SI].Addr;
1316       if (Start < SectionAddr || StopAddress <= Start)
1317         continue;
1318       else
1319         FoundDisasmSymbolSet.insert(SymbolName);
1320 
1321       // The end is the section end, the beginning of the next symbol, or
1322       // --stop-address.
1323       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1324       if (SI + 1 < SE)
1325         End = std::min(End, Symbols[SI + 1].Addr);
1326       if (Start >= End || End <= StartAddress)
1327         continue;
1328       Start -= SectionAddr;
1329       End -= SectionAddr;
1330 
1331       if (!PrintedSection) {
1332         PrintedSection = true;
1333         outs() << "\nDisassembly of section ";
1334         if (!SegmentName.empty())
1335           outs() << SegmentName << ",";
1336         outs() << SectionName << ":\n";
1337       }
1338 
1339       outs() << '\n';
1340       if (LeadingAddr)
1341         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1342                          SectionAddr + Start + VMAAdjustment);
1343       if (Obj->isXCOFF() && SymbolDescription) {
1344         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1345       } else
1346         outs() << '<' << SymbolName << ">:\n";
1347 
1348       // Don't print raw contents of a virtual section. A virtual section
1349       // doesn't have any contents in the file.
1350       if (Section.isVirtual()) {
1351         outs() << "...\n";
1352         continue;
1353       }
1354 
1355       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1356                                           Bytes.slice(Start, End - Start),
1357                                           SectionAddr + Start, CommentStream);
1358       // To have round trippable disassembly, we fall back to decoding the
1359       // remaining bytes as instructions.
1360       //
1361       // If there is a failure, we disassemble the failed region as bytes before
1362       // falling back. The target is expected to print nothing in this case.
1363       //
1364       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1365       // Size bytes before falling back.
1366       // So if the entire symbol is 'eaten' by the target:
1367       //   Start += Size  // Now Start = End and we will never decode as
1368       //                  // instructions
1369       //
1370       // Right now, most targets return None i.e ignore to treat a symbol
1371       // separately. But WebAssembly decodes preludes for some symbols.
1372       //
1373       if (Status.hasValue()) {
1374         if (Status.getValue() == MCDisassembler::Fail) {
1375           outs() << "// Error in decoding " << SymbolName
1376                  << " : Decoding failed region as bytes.\n";
1377           for (uint64_t I = 0; I < Size; ++I) {
1378             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1379                    << "\n";
1380           }
1381         }
1382       } else {
1383         Size = 0;
1384       }
1385 
1386       Start += Size;
1387 
1388       Index = Start;
1389       if (SectionAddr < StartAddress)
1390         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1391 
1392       // If there is a data/common symbol inside an ELF text section and we are
1393       // only disassembling text (applicable all architectures), we are in a
1394       // situation where we must print the data and not disassemble it.
1395       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1396         uint8_t SymTy = Symbols[SI].Type;
1397         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1398           dumpELFData(SectionAddr, Index, End, Bytes);
1399           Index = End;
1400         }
1401       }
1402 
1403       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1404                              Symbols[SI].Type != ELF::STT_OBJECT &&
1405                              !DisassembleAll;
1406       bool DumpARMELFData = false;
1407       formatted_raw_ostream FOS(outs());
1408 
1409       std::unordered_map<uint64_t, std::string> AllLabels;
1410       if (SymbolizeOperands)
1411         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1412                                   SectionAddr, Index, End, AllLabels);
1413 
1414       while (Index < End) {
1415         // ARM and AArch64 ELF binaries can interleave data and text in the
1416         // same section. We rely on the markers introduced to understand what
1417         // we need to dump. If the data marker is within a function, it is
1418         // denoted as a word/short etc.
1419         if (CheckARMELFData) {
1420           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1421           DumpARMELFData = Kind == 'd';
1422           if (SecondarySTI) {
1423             if (Kind == 'a') {
1424               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1425               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1426             } else if (Kind == 't') {
1427               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1428               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1429             }
1430           }
1431         }
1432 
1433         if (DumpARMELFData) {
1434           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1435                                 MappingSymbols, FOS);
1436         } else {
1437           // When -z or --disassemble-zeroes are given we always dissasemble
1438           // them. Otherwise we might want to skip zero bytes we see.
1439           if (!DisassembleZeroes) {
1440             uint64_t MaxOffset = End - Index;
1441             // For --reloc: print zero blocks patched by relocations, so that
1442             // relocations can be shown in the dump.
1443             if (RelCur != RelEnd)
1444               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1445                                    MaxOffset);
1446 
1447             if (size_t N =
1448                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1449               FOS << "\t\t..." << '\n';
1450               Index += N;
1451               continue;
1452             }
1453           }
1454 
1455           // Print local label if there's any.
1456           auto Iter = AllLabels.find(SectionAddr + Index);
1457           if (Iter != AllLabels.end())
1458             FOS << "<" << Iter->second << ">:\n";
1459 
1460           // Disassemble a real instruction or a data when disassemble all is
1461           // provided
1462           MCInst Inst;
1463           bool Disassembled =
1464               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1465                                      SectionAddr + Index, CommentStream);
1466           if (Size == 0)
1467             Size = 1;
1468 
1469           LVP.update({Index, Section.getIndex()},
1470                      {Index + Size, Section.getIndex()}, Index + Size != End);
1471 
1472           IP->setCommentStream(CommentStream);
1473 
1474           PIP.printInst(
1475               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1476               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1477               "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
1478 
1479           IP->setCommentStream(llvm::nulls());
1480 
1481           // If disassembly has failed, avoid analysing invalid/incomplete
1482           // instruction information. Otherwise, try to resolve the target
1483           // address (jump target or memory operand address) and print it on the
1484           // right of the instruction.
1485           if (Disassembled && MIA) {
1486             // Branch targets are printed just after the instructions.
1487             llvm::raw_ostream *TargetOS = &FOS;
1488             uint64_t Target;
1489             bool PrintTarget =
1490                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1491             if (!PrintTarget)
1492               if (Optional<uint64_t> MaybeTarget =
1493                       MIA->evaluateMemoryOperandAddress(
1494                           Inst, STI, SectionAddr + Index, Size)) {
1495                 Target = *MaybeTarget;
1496                 PrintTarget = true;
1497                 // Do not print real address when symbolizing.
1498                 if (!SymbolizeOperands) {
1499                   // Memory operand addresses are printed as comments.
1500                   TargetOS = &CommentStream;
1501                   *TargetOS << "0x" << Twine::utohexstr(Target);
1502                 }
1503               }
1504             if (PrintTarget) {
1505               // In a relocatable object, the target's section must reside in
1506               // the same section as the call instruction or it is accessed
1507               // through a relocation.
1508               //
1509               // In a non-relocatable object, the target may be in any section.
1510               // In that case, locate the section(s) containing the target
1511               // address and find the symbol in one of those, if possible.
1512               //
1513               // N.B. We don't walk the relocations in the relocatable case yet.
1514               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1515               if (!Obj->isRelocatableObject()) {
1516                 auto It = llvm::partition_point(
1517                     SectionAddresses,
1518                     [=](const std::pair<uint64_t, SectionRef> &O) {
1519                       return O.first <= Target;
1520                     });
1521                 uint64_t TargetSecAddr = 0;
1522                 while (It != SectionAddresses.begin()) {
1523                   --It;
1524                   if (TargetSecAddr == 0)
1525                     TargetSecAddr = It->first;
1526                   if (It->first != TargetSecAddr)
1527                     break;
1528                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1529                 }
1530               } else {
1531                 TargetSectionSymbols.push_back(&Symbols);
1532               }
1533               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1534 
1535               // Find the last symbol in the first candidate section whose
1536               // offset is less than or equal to the target. If there are no
1537               // such symbols, try in the next section and so on, before finally
1538               // using the nearest preceding absolute symbol (if any), if there
1539               // are no other valid symbols.
1540               const SymbolInfoTy *TargetSym = nullptr;
1541               for (const SectionSymbolsTy *TargetSymbols :
1542                    TargetSectionSymbols) {
1543                 auto It = llvm::partition_point(
1544                     *TargetSymbols,
1545                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1546                 if (It != TargetSymbols->begin()) {
1547                   TargetSym = &*(It - 1);
1548                   break;
1549                 }
1550               }
1551 
1552               // Print the labels corresponding to the target if there's any.
1553               bool LabelAvailable = AllLabels.count(Target);
1554               if (TargetSym != nullptr) {
1555                 uint64_t TargetAddress = TargetSym->Addr;
1556                 uint64_t Disp = Target - TargetAddress;
1557                 std::string TargetName = TargetSym->Name.str();
1558                 if (Demangle)
1559                   TargetName = demangle(TargetName);
1560 
1561                 *TargetOS << " <";
1562                 if (!Disp) {
1563                   // Always Print the binary symbol precisely corresponding to
1564                   // the target address.
1565                   *TargetOS << TargetName;
1566                 } else if (!LabelAvailable) {
1567                   // Always Print the binary symbol plus an offset if there's no
1568                   // local label corresponding to the target address.
1569                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1570                 } else {
1571                   *TargetOS << AllLabels[Target];
1572                 }
1573                 *TargetOS << ">";
1574               } else if (LabelAvailable) {
1575                 *TargetOS << " <" << AllLabels[Target] << ">";
1576               }
1577               // By convention, each record in the comment stream should be
1578               // terminated.
1579               if (TargetOS == &CommentStream)
1580                 *TargetOS << "\n";
1581             }
1582           }
1583         }
1584 
1585         assert(Ctx.getAsmInfo());
1586         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1587                                 CommentStream.str(), LVP);
1588         Comments.clear();
1589 
1590         // Hexagon does this in pretty printer
1591         if (Obj->getArch() != Triple::hexagon) {
1592           // Print relocation for instruction and data.
1593           while (RelCur != RelEnd) {
1594             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1595             // If this relocation is hidden, skip it.
1596             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1597               ++RelCur;
1598               continue;
1599             }
1600 
1601             // Stop when RelCur's offset is past the disassembled
1602             // instruction/data. Note that it's possible the disassembled data
1603             // is not the complete data: we might see the relocation printed in
1604             // the middle of the data, but this matches the binutils objdump
1605             // output.
1606             if (Offset >= Index + Size)
1607               break;
1608 
1609             // When --adjust-vma is used, update the address printed.
1610             if (RelCur->getSymbol() != Obj->symbol_end()) {
1611               Expected<section_iterator> SymSI =
1612                   RelCur->getSymbol()->getSection();
1613               if (SymSI && *SymSI != Obj->section_end() &&
1614                   shouldAdjustVA(**SymSI))
1615                 Offset += AdjustVMA;
1616             }
1617 
1618             printRelocation(FOS, Obj->getFileName(), *RelCur,
1619                             SectionAddr + Offset, Is64Bits);
1620             LVP.printAfterOtherLine(FOS, true);
1621             ++RelCur;
1622           }
1623         }
1624 
1625         Index += Size;
1626       }
1627     }
1628   }
1629   StringSet<> MissingDisasmSymbolSet =
1630       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1631   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1632     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1633 }
1634 
1635 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1636   const Target *TheTarget = getTarget(Obj);
1637 
1638   // Package up features to be passed to target/subtarget
1639   SubtargetFeatures Features = Obj->getFeatures();
1640   if (!MAttrs.empty())
1641     for (unsigned I = 0; I != MAttrs.size(); ++I)
1642       Features.AddFeature(MAttrs[I]);
1643 
1644   std::unique_ptr<const MCRegisterInfo> MRI(
1645       TheTarget->createMCRegInfo(TripleName));
1646   if (!MRI)
1647     reportError(Obj->getFileName(),
1648                 "no register info for target " + TripleName);
1649 
1650   // Set up disassembler.
1651   MCTargetOptions MCOptions;
1652   std::unique_ptr<const MCAsmInfo> AsmInfo(
1653       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1654   if (!AsmInfo)
1655     reportError(Obj->getFileName(),
1656                 "no assembly info for target " + TripleName);
1657 
1658   if (MCPU.empty())
1659     MCPU = Obj->tryGetCPUName().getValueOr("").str();
1660 
1661   std::unique_ptr<const MCSubtargetInfo> STI(
1662       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1663   if (!STI)
1664     reportError(Obj->getFileName(),
1665                 "no subtarget info for target " + TripleName);
1666   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1667   if (!MII)
1668     reportError(Obj->getFileName(),
1669                 "no instruction info for target " + TripleName);
1670   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
1671   // FIXME: for now initialize MCObjectFileInfo with default values
1672   std::unique_ptr<MCObjectFileInfo> MOFI(
1673       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
1674   Ctx.setObjectFileInfo(MOFI.get());
1675 
1676   std::unique_ptr<MCDisassembler> DisAsm(
1677       TheTarget->createMCDisassembler(*STI, Ctx));
1678   if (!DisAsm)
1679     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1680 
1681   // If we have an ARM object file, we need a second disassembler, because
1682   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1683   // We use mapping symbols to switch between the two assemblers, where
1684   // appropriate.
1685   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1686   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1687   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1688     if (STI->checkFeatures("+thumb-mode"))
1689       Features.AddFeature("-thumb-mode");
1690     else
1691       Features.AddFeature("+thumb-mode");
1692     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1693                                                         Features.getString()));
1694     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1695   }
1696 
1697   std::unique_ptr<const MCInstrAnalysis> MIA(
1698       TheTarget->createMCInstrAnalysis(MII.get()));
1699 
1700   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1701   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1702       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1703   if (!IP)
1704     reportError(Obj->getFileName(),
1705                 "no instruction printer for target " + TripleName);
1706   IP->setPrintImmHex(PrintImmHex);
1707   IP->setPrintBranchImmAsAddress(true);
1708   IP->setSymbolizeOperands(SymbolizeOperands);
1709   IP->setMCInstrAnalysis(MIA.get());
1710 
1711   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1712   SourcePrinter SP(Obj, TheTarget->getName());
1713 
1714   for (StringRef Opt : DisassemblerOptions)
1715     if (!IP->applyTargetSpecificCLOption(Opt))
1716       reportError(Obj->getFileName(),
1717                   "Unrecognized disassembler option: " + Opt);
1718 
1719   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1720                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1721                     SP, InlineRelocs);
1722 }
1723 
1724 void objdump::printRelocations(const ObjectFile *Obj) {
1725   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1726                                                  "%08" PRIx64;
1727   // Regular objdump doesn't print relocations in non-relocatable object
1728   // files.
1729   if (!Obj->isRelocatableObject())
1730     return;
1731 
1732   // Build a mapping from relocation target to a vector of relocation
1733   // sections. Usually, there is an only one relocation section for
1734   // each relocated section.
1735   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1736   uint64_t Ndx;
1737   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1738     if (Section.relocation_begin() == Section.relocation_end())
1739       continue;
1740     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1741     if (!SecOrErr)
1742       reportError(Obj->getFileName(),
1743                   "section (" + Twine(Ndx) +
1744                       "): unable to get a relocation target: " +
1745                       toString(SecOrErr.takeError()));
1746     SecToRelSec[**SecOrErr].push_back(Section);
1747   }
1748 
1749   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1750     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1751     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
1752     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1753     uint32_t TypePadding = 24;
1754     outs() << left_justify("OFFSET", OffsetPadding) << " "
1755            << left_justify("TYPE", TypePadding) << " "
1756            << "VALUE\n";
1757 
1758     for (SectionRef Section : P.second) {
1759       for (const RelocationRef &Reloc : Section.relocations()) {
1760         uint64_t Address = Reloc.getOffset();
1761         SmallString<32> RelocName;
1762         SmallString<32> ValueStr;
1763         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1764           continue;
1765         Reloc.getTypeName(RelocName);
1766         if (Error E = getRelocationValueString(Reloc, ValueStr))
1767           reportError(std::move(E), Obj->getFileName());
1768 
1769         outs() << format(Fmt.data(), Address) << " "
1770                << left_justify(RelocName, TypePadding) << " " << ValueStr
1771                << "\n";
1772       }
1773     }
1774   }
1775 }
1776 
1777 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
1778   // For the moment, this option is for ELF only
1779   if (!Obj->isELF())
1780     return;
1781 
1782   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1783   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
1784         return Sec.getType() == ELF::SHT_DYNAMIC;
1785       })) {
1786     reportError(Obj->getFileName(), "not a dynamic object");
1787     return;
1788   }
1789 
1790   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1791   if (DynRelSec.empty())
1792     return;
1793 
1794   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
1795   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1796   const uint32_t TypePadding = 24;
1797   outs() << left_justify("OFFSET", OffsetPadding) << ' '
1798          << left_justify("TYPE", TypePadding) << " VALUE\n";
1799 
1800   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1801   for (const SectionRef &Section : DynRelSec)
1802     for (const RelocationRef &Reloc : Section.relocations()) {
1803       uint64_t Address = Reloc.getOffset();
1804       SmallString<32> RelocName;
1805       SmallString<32> ValueStr;
1806       Reloc.getTypeName(RelocName);
1807       if (Error E = getRelocationValueString(Reloc, ValueStr))
1808         reportError(std::move(E), Obj->getFileName());
1809       outs() << format(Fmt.data(), Address) << ' '
1810              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
1811     }
1812 }
1813 
1814 // Returns true if we need to show LMA column when dumping section headers. We
1815 // show it only when the platform is ELF and either we have at least one section
1816 // whose VMA and LMA are different and/or when --show-lma flag is used.
1817 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1818   if (!Obj->isELF())
1819     return false;
1820   for (const SectionRef &S : ToolSectionFilter(*Obj))
1821     if (S.getAddress() != getELFSectionLMA(S))
1822       return true;
1823   return ShowLMA;
1824 }
1825 
1826 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1827   // Default column width for names is 13 even if no names are that long.
1828   size_t MaxWidth = 13;
1829   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1830     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1831     MaxWidth = std::max(MaxWidth, Name.size());
1832   }
1833   return MaxWidth;
1834 }
1835 
1836 void objdump::printSectionHeaders(const ObjectFile *Obj) {
1837   size_t NameWidth = getMaxSectionNameWidth(Obj);
1838   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1839   bool HasLMAColumn = shouldDisplayLMA(Obj);
1840   outs() << "\nSections:\n";
1841   if (HasLMAColumn)
1842     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1843            << left_justify("VMA", AddressWidth) << " "
1844            << left_justify("LMA", AddressWidth) << " Type\n";
1845   else
1846     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1847            << left_justify("VMA", AddressWidth) << " Type\n";
1848 
1849   uint64_t Idx;
1850   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1851     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1852     uint64_t VMA = Section.getAddress();
1853     if (shouldAdjustVA(Section))
1854       VMA += AdjustVMA;
1855 
1856     uint64_t Size = Section.getSize();
1857 
1858     std::string Type = Section.isText() ? "TEXT" : "";
1859     if (Section.isData())
1860       Type += Type.empty() ? "DATA" : ", DATA";
1861     if (Section.isBSS())
1862       Type += Type.empty() ? "BSS" : ", BSS";
1863     if (Section.isDebugSection())
1864       Type += Type.empty() ? "DEBUG" : ", DEBUG";
1865 
1866     if (HasLMAColumn)
1867       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1868                        Name.str().c_str(), Size)
1869              << format_hex_no_prefix(VMA, AddressWidth) << " "
1870              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1871              << " " << Type << "\n";
1872     else
1873       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1874                        Name.str().c_str(), Size)
1875              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1876   }
1877 }
1878 
1879 void objdump::printSectionContents(const ObjectFile *Obj) {
1880   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1881 
1882   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1883     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1884     uint64_t BaseAddr = Section.getAddress();
1885     uint64_t Size = Section.getSize();
1886     if (!Size)
1887       continue;
1888 
1889     outs() << "Contents of section ";
1890     StringRef SegmentName = getSegmentName(MachO, Section);
1891     if (!SegmentName.empty())
1892       outs() << SegmentName << ",";
1893     outs() << Name << ":\n";
1894     if (Section.isBSS()) {
1895       outs() << format("<skipping contents of bss section at [%04" PRIx64
1896                        ", %04" PRIx64 ")>\n",
1897                        BaseAddr, BaseAddr + Size);
1898       continue;
1899     }
1900 
1901     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1902 
1903     // Dump out the content as hex and printable ascii characters.
1904     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1905       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1906       // Dump line of hex.
1907       for (std::size_t I = 0; I < 16; ++I) {
1908         if (I != 0 && I % 4 == 0)
1909           outs() << ' ';
1910         if (Addr + I < End)
1911           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1912                  << hexdigit(Contents[Addr + I] & 0xF, true);
1913         else
1914           outs() << "  ";
1915       }
1916       // Print ascii.
1917       outs() << "  ";
1918       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1919         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1920           outs() << Contents[Addr + I];
1921         else
1922           outs() << ".";
1923       }
1924       outs() << "\n";
1925     }
1926   }
1927 }
1928 
1929 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1930                                StringRef ArchitectureName, bool DumpDynamic) {
1931   if (O->isCOFF() && !DumpDynamic) {
1932     outs() << "\nSYMBOL TABLE:\n";
1933     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
1934     return;
1935   }
1936 
1937   const StringRef FileName = O->getFileName();
1938 
1939   if (!DumpDynamic) {
1940     outs() << "\nSYMBOL TABLE:\n";
1941     for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
1942       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
1943                   DumpDynamic);
1944     return;
1945   }
1946 
1947   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
1948   if (!O->isELF()) {
1949     reportWarning(
1950         "this operation is not currently supported for this file format",
1951         FileName);
1952     return;
1953   }
1954 
1955   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
1956   auto Symbols = ELF->getDynamicSymbolIterators();
1957   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
1958       ELF->readDynsymVersions();
1959   if (!SymbolVersionsOrErr) {
1960     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
1961     SymbolVersionsOrErr = std::vector<VersionEntry>();
1962     (void)!SymbolVersionsOrErr;
1963   }
1964   for (auto &Sym : Symbols)
1965     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
1966                 ArchitectureName, DumpDynamic);
1967 }
1968 
1969 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
1970                           ArrayRef<VersionEntry> SymbolVersions,
1971                           StringRef FileName, StringRef ArchiveName,
1972                           StringRef ArchitectureName, bool DumpDynamic) {
1973   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1974   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1975                                    ArchitectureName);
1976   if ((Address < StartAddress) || (Address > StopAddress))
1977     return;
1978   SymbolRef::Type Type =
1979       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
1980   uint32_t Flags =
1981       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
1982 
1983   // Don't ask a Mach-O STAB symbol for its section unless you know that
1984   // STAB symbol's section field refers to a valid section index. Otherwise
1985   // the symbol may error trying to load a section that does not exist.
1986   bool IsSTAB = false;
1987   if (MachO) {
1988     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1989     uint8_t NType =
1990         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
1991                           : MachO->getSymbolTableEntry(SymDRI).n_type);
1992     if (NType & MachO::N_STAB)
1993       IsSTAB = true;
1994   }
1995   section_iterator Section = IsSTAB
1996                                  ? O->section_end()
1997                                  : unwrapOrError(Symbol.getSection(), FileName,
1998                                                  ArchiveName, ArchitectureName);
1999 
2000   StringRef Name;
2001   if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
2002     if (Expected<StringRef> NameOrErr = Section->getName())
2003       Name = *NameOrErr;
2004     else
2005       consumeError(NameOrErr.takeError());
2006 
2007   } else {
2008     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2009                          ArchitectureName);
2010   }
2011 
2012   bool Global = Flags & SymbolRef::SF_Global;
2013   bool Weak = Flags & SymbolRef::SF_Weak;
2014   bool Absolute = Flags & SymbolRef::SF_Absolute;
2015   bool Common = Flags & SymbolRef::SF_Common;
2016   bool Hidden = Flags & SymbolRef::SF_Hidden;
2017 
2018   char GlobLoc = ' ';
2019   if ((Section != O->section_end() || Absolute) && !Weak)
2020     GlobLoc = Global ? 'g' : 'l';
2021   char IFunc = ' ';
2022   if (O->isELF()) {
2023     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2024       IFunc = 'i';
2025     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2026       GlobLoc = 'u';
2027   }
2028 
2029   char Debug = ' ';
2030   if (DumpDynamic)
2031     Debug = 'D';
2032   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2033     Debug = 'd';
2034 
2035   char FileFunc = ' ';
2036   if (Type == SymbolRef::ST_File)
2037     FileFunc = 'f';
2038   else if (Type == SymbolRef::ST_Function)
2039     FileFunc = 'F';
2040   else if (Type == SymbolRef::ST_Data)
2041     FileFunc = 'O';
2042 
2043   const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2044 
2045   outs() << format(Fmt, Address) << " "
2046          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2047          << (Weak ? 'w' : ' ') // Weak?
2048          << ' '                // Constructor. Not supported yet.
2049          << ' '                // Warning. Not supported yet.
2050          << IFunc              // Indirect reference to another symbol.
2051          << Debug              // Debugging (d) or dynamic (D) symbol.
2052          << FileFunc           // Name of function (F), file (f) or object (O).
2053          << ' ';
2054   if (Absolute) {
2055     outs() << "*ABS*";
2056   } else if (Common) {
2057     outs() << "*COM*";
2058   } else if (Section == O->section_end()) {
2059     if (O->isXCOFF()) {
2060       XCOFFSymbolRef XCOFFSym = dyn_cast<const XCOFFObjectFile>(O)->toSymbolRef(
2061           Symbol.getRawDataRefImpl());
2062       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2063         outs() << "*DEBUG*";
2064       else
2065         outs() << "*UND*";
2066     } else
2067       outs() << "*UND*";
2068   } else {
2069     StringRef SegmentName = getSegmentName(MachO, *Section);
2070     if (!SegmentName.empty())
2071       outs() << SegmentName << ",";
2072     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2073     outs() << SectionName;
2074     if (O->isXCOFF()) {
2075       Optional<SymbolRef> SymRef = getXCOFFSymbolContainingSymbolRef(
2076           dyn_cast<const XCOFFObjectFile>(O), Symbol);
2077       if (SymRef) {
2078 
2079         Expected<StringRef> NameOrErr = SymRef.getValue().getName();
2080 
2081         if (NameOrErr) {
2082           outs() << " (csect:";
2083           std::string SymName(NameOrErr.get());
2084 
2085           if (Demangle)
2086             SymName = demangle(SymName);
2087 
2088           if (SymbolDescription)
2089             SymName = getXCOFFSymbolDescription(
2090                 createSymbolInfo(O, SymRef.getValue()), SymName);
2091 
2092           outs() << ' ' << SymName;
2093           outs() << ") ";
2094         } else
2095           reportWarning(toString(NameOrErr.takeError()), FileName);
2096       }
2097     }
2098   }
2099 
2100   if (Common)
2101     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2102   else if (O->isXCOFF())
2103     outs() << '\t'
2104            << format(Fmt, dyn_cast<const XCOFFObjectFile>(O)->getSymbolSize(
2105                               Symbol.getRawDataRefImpl()));
2106   else if (O->isELF())
2107     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2108 
2109   if (O->isELF()) {
2110     if (!SymbolVersions.empty()) {
2111       const VersionEntry &Ver =
2112           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2113       std::string Str;
2114       if (!Ver.Name.empty())
2115         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2116       outs() << ' ' << left_justify(Str, 12);
2117     }
2118 
2119     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2120     switch (Other) {
2121     case ELF::STV_DEFAULT:
2122       break;
2123     case ELF::STV_INTERNAL:
2124       outs() << " .internal";
2125       break;
2126     case ELF::STV_HIDDEN:
2127       outs() << " .hidden";
2128       break;
2129     case ELF::STV_PROTECTED:
2130       outs() << " .protected";
2131       break;
2132     default:
2133       outs() << format(" 0x%02x", Other);
2134       break;
2135     }
2136   } else if (Hidden) {
2137     outs() << " .hidden";
2138   }
2139 
2140   std::string SymName(Name);
2141   if (Demangle)
2142     SymName = demangle(SymName);
2143 
2144   if (O->isXCOFF() && SymbolDescription)
2145     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2146 
2147   outs() << ' ' << SymName << '\n';
2148 }
2149 
2150 static void printUnwindInfo(const ObjectFile *O) {
2151   outs() << "Unwind info:\n\n";
2152 
2153   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2154     printCOFFUnwindInfo(Coff);
2155   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2156     printMachOUnwindInfo(MachO);
2157   else
2158     // TODO: Extract DWARF dump tool to objdump.
2159     WithColor::error(errs(), ToolName)
2160         << "This operation is only currently supported "
2161            "for COFF and MachO object files.\n";
2162 }
2163 
2164 /// Dump the raw contents of the __clangast section so the output can be piped
2165 /// into llvm-bcanalyzer.
2166 static void printRawClangAST(const ObjectFile *Obj) {
2167   if (outs().is_displayed()) {
2168     WithColor::error(errs(), ToolName)
2169         << "The -raw-clang-ast option will dump the raw binary contents of "
2170            "the clang ast section.\n"
2171            "Please redirect the output to a file or another program such as "
2172            "llvm-bcanalyzer.\n";
2173     return;
2174   }
2175 
2176   StringRef ClangASTSectionName("__clangast");
2177   if (Obj->isCOFF()) {
2178     ClangASTSectionName = "clangast";
2179   }
2180 
2181   Optional<object::SectionRef> ClangASTSection;
2182   for (auto Sec : ToolSectionFilter(*Obj)) {
2183     StringRef Name;
2184     if (Expected<StringRef> NameOrErr = Sec.getName())
2185       Name = *NameOrErr;
2186     else
2187       consumeError(NameOrErr.takeError());
2188 
2189     if (Name == ClangASTSectionName) {
2190       ClangASTSection = Sec;
2191       break;
2192     }
2193   }
2194   if (!ClangASTSection)
2195     return;
2196 
2197   StringRef ClangASTContents = unwrapOrError(
2198       ClangASTSection.getValue().getContents(), Obj->getFileName());
2199   outs().write(ClangASTContents.data(), ClangASTContents.size());
2200 }
2201 
2202 static void printFaultMaps(const ObjectFile *Obj) {
2203   StringRef FaultMapSectionName;
2204 
2205   if (Obj->isELF()) {
2206     FaultMapSectionName = ".llvm_faultmaps";
2207   } else if (Obj->isMachO()) {
2208     FaultMapSectionName = "__llvm_faultmaps";
2209   } else {
2210     WithColor::error(errs(), ToolName)
2211         << "This operation is only currently supported "
2212            "for ELF and Mach-O executable files.\n";
2213     return;
2214   }
2215 
2216   Optional<object::SectionRef> FaultMapSection;
2217 
2218   for (auto Sec : ToolSectionFilter(*Obj)) {
2219     StringRef Name;
2220     if (Expected<StringRef> NameOrErr = Sec.getName())
2221       Name = *NameOrErr;
2222     else
2223       consumeError(NameOrErr.takeError());
2224 
2225     if (Name == FaultMapSectionName) {
2226       FaultMapSection = Sec;
2227       break;
2228     }
2229   }
2230 
2231   outs() << "FaultMap table:\n";
2232 
2233   if (!FaultMapSection.hasValue()) {
2234     outs() << "<not found>\n";
2235     return;
2236   }
2237 
2238   StringRef FaultMapContents =
2239       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2240   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2241                      FaultMapContents.bytes_end());
2242 
2243   outs() << FMP;
2244 }
2245 
2246 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2247   if (O->isELF()) {
2248     printELFFileHeader(O);
2249     printELFDynamicSection(O);
2250     printELFSymbolVersionInfo(O);
2251     return;
2252   }
2253   if (O->isCOFF())
2254     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2255   if (O->isWasm())
2256     return printWasmFileHeader(O);
2257   if (O->isMachO()) {
2258     printMachOFileHeader(O);
2259     if (!OnlyFirst)
2260       printMachOLoadCommands(O);
2261     return;
2262   }
2263   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2264 }
2265 
2266 static void printFileHeaders(const ObjectFile *O) {
2267   if (!O->isELF() && !O->isCOFF())
2268     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2269 
2270   Triple::ArchType AT = O->getArch();
2271   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2272   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2273 
2274   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2275   outs() << "start address: "
2276          << "0x" << format(Fmt.data(), Address) << "\n";
2277 }
2278 
2279 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2280   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2281   if (!ModeOrErr) {
2282     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2283     consumeError(ModeOrErr.takeError());
2284     return;
2285   }
2286   sys::fs::perms Mode = ModeOrErr.get();
2287   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2288   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2289   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2290   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2291   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2292   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2293   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2294   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2295   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2296 
2297   outs() << " ";
2298 
2299   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2300                    unwrapOrError(C.getGID(), Filename),
2301                    unwrapOrError(C.getRawSize(), Filename));
2302 
2303   StringRef RawLastModified = C.getRawLastModified();
2304   unsigned Seconds;
2305   if (RawLastModified.getAsInteger(10, Seconds))
2306     outs() << "(date: \"" << RawLastModified
2307            << "\" contains non-decimal chars) ";
2308   else {
2309     // Since ctime(3) returns a 26 character string of the form:
2310     // "Sun Sep 16 01:03:52 1973\n\0"
2311     // just print 24 characters.
2312     time_t t = Seconds;
2313     outs() << format("%.24s ", ctime(&t));
2314   }
2315 
2316   StringRef Name = "";
2317   Expected<StringRef> NameOrErr = C.getName();
2318   if (!NameOrErr) {
2319     consumeError(NameOrErr.takeError());
2320     Name = unwrapOrError(C.getRawName(), Filename);
2321   } else {
2322     Name = NameOrErr.get();
2323   }
2324   outs() << Name << "\n";
2325 }
2326 
2327 // For ELF only now.
2328 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2329   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2330     if (Elf->getEType() != ELF::ET_REL)
2331       return true;
2332   }
2333   return false;
2334 }
2335 
2336 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2337                                             uint64_t Start, uint64_t Stop) {
2338   if (!shouldWarnForInvalidStartStopAddress(Obj))
2339     return;
2340 
2341   for (const SectionRef &Section : Obj->sections())
2342     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2343       uint64_t BaseAddr = Section.getAddress();
2344       uint64_t Size = Section.getSize();
2345       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2346         return;
2347     }
2348 
2349   if (!HasStartAddressFlag)
2350     reportWarning("no section has address less than 0x" +
2351                       Twine::utohexstr(Stop) + " specified by --stop-address",
2352                   Obj->getFileName());
2353   else if (!HasStopAddressFlag)
2354     reportWarning("no section has address greater than or equal to 0x" +
2355                       Twine::utohexstr(Start) + " specified by --start-address",
2356                   Obj->getFileName());
2357   else
2358     reportWarning("no section overlaps the range [0x" +
2359                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2360                       ") specified by --start-address/--stop-address",
2361                   Obj->getFileName());
2362 }
2363 
2364 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2365                        const Archive::Child *C = nullptr) {
2366   // Avoid other output when using a raw option.
2367   if (!RawClangAST) {
2368     outs() << '\n';
2369     if (A)
2370       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2371     else
2372       outs() << O->getFileName();
2373     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2374   }
2375 
2376   if (HasStartAddressFlag || HasStopAddressFlag)
2377     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2378 
2379   // Note: the order here matches GNU objdump for compatability.
2380   StringRef ArchiveName = A ? A->getFileName() : "";
2381   if (ArchiveHeaders && !MachOOpt && C)
2382     printArchiveChild(ArchiveName, *C);
2383   if (FileHeaders)
2384     printFileHeaders(O);
2385   if (PrivateHeaders || FirstPrivateHeader)
2386     printPrivateFileHeaders(O, FirstPrivateHeader);
2387   if (SectionHeaders)
2388     printSectionHeaders(O);
2389   if (SymbolTable)
2390     printSymbolTable(O, ArchiveName);
2391   if (DynamicSymbolTable)
2392     printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2393                      /*DumpDynamic=*/true);
2394   if (DwarfDumpType != DIDT_Null) {
2395     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2396     // Dump the complete DWARF structure.
2397     DIDumpOptions DumpOpts;
2398     DumpOpts.DumpType = DwarfDumpType;
2399     DICtx->dump(outs(), DumpOpts);
2400   }
2401   if (Relocations && !Disassemble)
2402     printRelocations(O);
2403   if (DynamicRelocations)
2404     printDynamicRelocations(O);
2405   if (SectionContents)
2406     printSectionContents(O);
2407   if (Disassemble)
2408     disassembleObject(O, Relocations);
2409   if (UnwindInfo)
2410     printUnwindInfo(O);
2411 
2412   // Mach-O specific options:
2413   if (ExportsTrie)
2414     printExportsTrie(O);
2415   if (Rebase)
2416     printRebaseTable(O);
2417   if (Bind)
2418     printBindTable(O);
2419   if (LazyBind)
2420     printLazyBindTable(O);
2421   if (WeakBind)
2422     printWeakBindTable(O);
2423 
2424   // Other special sections:
2425   if (RawClangAST)
2426     printRawClangAST(O);
2427   if (FaultMapSection)
2428     printFaultMaps(O);
2429 }
2430 
2431 static void dumpObject(const COFFImportFile *I, const Archive *A,
2432                        const Archive::Child *C = nullptr) {
2433   StringRef ArchiveName = A ? A->getFileName() : "";
2434 
2435   // Avoid other output when using a raw option.
2436   if (!RawClangAST)
2437     outs() << '\n'
2438            << ArchiveName << "(" << I->getFileName() << ")"
2439            << ":\tfile format COFF-import-file"
2440            << "\n\n";
2441 
2442   if (ArchiveHeaders && !MachOOpt && C)
2443     printArchiveChild(ArchiveName, *C);
2444   if (SymbolTable)
2445     printCOFFSymbolTable(I);
2446 }
2447 
2448 /// Dump each object file in \a a;
2449 static void dumpArchive(const Archive *A) {
2450   Error Err = Error::success();
2451   unsigned I = -1;
2452   for (auto &C : A->children(Err)) {
2453     ++I;
2454     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2455     if (!ChildOrErr) {
2456       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2457         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2458       continue;
2459     }
2460     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2461       dumpObject(O, A, &C);
2462     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2463       dumpObject(I, A, &C);
2464     else
2465       reportError(errorCodeToError(object_error::invalid_file_type),
2466                   A->getFileName());
2467   }
2468   if (Err)
2469     reportError(std::move(Err), A->getFileName());
2470 }
2471 
2472 /// Open file and figure out how to dump it.
2473 static void dumpInput(StringRef file) {
2474   // If we are using the Mach-O specific object file parser, then let it parse
2475   // the file and process the command line options.  So the -arch flags can
2476   // be used to select specific slices, etc.
2477   if (MachOOpt) {
2478     parseInputMachO(file);
2479     return;
2480   }
2481 
2482   // Attempt to open the binary.
2483   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2484   Binary &Binary = *OBinary.getBinary();
2485 
2486   if (Archive *A = dyn_cast<Archive>(&Binary))
2487     dumpArchive(A);
2488   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2489     dumpObject(O);
2490   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2491     parseInputMachO(UB);
2492   else
2493     reportError(errorCodeToError(object_error::invalid_file_type), file);
2494 }
2495 
2496 template <typename T>
2497 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2498                         T &Value) {
2499   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2500     StringRef V(A->getValue());
2501     if (!llvm::to_integer(V, Value, 0)) {
2502       reportCmdLineError(A->getSpelling() +
2503                          ": expected a non-negative integer, but got '" + V +
2504                          "'");
2505     }
2506   }
2507 }
2508 
2509 static void invalidArgValue(const opt::Arg *A) {
2510   reportCmdLineError("'" + StringRef(A->getValue()) +
2511                      "' is not a valid value for '" + A->getSpelling() + "'");
2512 }
2513 
2514 static std::vector<std::string>
2515 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2516   std::vector<std::string> Values;
2517   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2518     llvm::SmallVector<StringRef, 2> SplitValues;
2519     llvm::SplitString(Value, SplitValues, ",");
2520     for (StringRef SplitValue : SplitValues)
2521       Values.push_back(SplitValue.str());
2522   }
2523   return Values;
2524 }
2525 
2526 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2527   MachOOpt = true;
2528   FullLeadingAddr = true;
2529   PrintImmHex = true;
2530 
2531   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2532   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2533   if (InputArgs.hasArg(OTOOL_d))
2534     FilterSections.push_back("__DATA,__data");
2535   DylibId = InputArgs.hasArg(OTOOL_D);
2536   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2537   DataInCode = InputArgs.hasArg(OTOOL_G);
2538   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2539   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2540   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2541   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2542   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2543   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2544   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2545   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2546   InfoPlist = InputArgs.hasArg(OTOOL_P);
2547   Relocations = InputArgs.hasArg(OTOOL_r);
2548   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2549     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2550     FilterSections.push_back(Filter);
2551   }
2552   if (InputArgs.hasArg(OTOOL_t))
2553     FilterSections.push_back("__TEXT,__text");
2554   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2555             InputArgs.hasArg(OTOOL_o);
2556   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2557   if (InputArgs.hasArg(OTOOL_x))
2558     FilterSections.push_back(",__text");
2559   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2560 
2561   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2562   if (InputFilenames.empty())
2563     reportCmdLineError("no input file");
2564 
2565   for (const Arg *A : InputArgs) {
2566     const Option &O = A->getOption();
2567     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2568       reportCmdLineWarning(O.getPrefixedName() +
2569                            " is obsolete and not implemented");
2570     }
2571   }
2572 }
2573 
2574 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2575   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2576   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2577   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2578   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2579   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2580   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2581   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2582   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2583   DisassembleSymbols =
2584       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2585   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2586   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2587     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
2588                         .Case("frames", DIDT_DebugFrame)
2589                         .Default(DIDT_Null);
2590     if (DwarfDumpType == DIDT_Null)
2591       invalidArgValue(A);
2592   }
2593   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2594   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2595   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2596   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2597   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2598   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2599   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2600   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2601   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2602   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2603   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2604   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2605   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2606   PrintImmHex =
2607       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2608   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2609   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2610   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2611   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2612   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2613   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2614   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2615   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2616   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2617   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2618   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2619   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2620   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2621   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2622   Wide = InputArgs.hasArg(OBJDUMP_wide);
2623   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2624   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2625   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2626     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2627                        .Case("ascii", DVASCII)
2628                        .Case("unicode", DVUnicode)
2629                        .Default(DVInvalid);
2630     if (DbgVariables == DVInvalid)
2631       invalidArgValue(A);
2632   }
2633   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2634 
2635   parseMachOOptions(InputArgs);
2636 
2637   // Parse -M (--disassembler-options) and deprecated
2638   // --x86-asm-syntax={att,intel}.
2639   //
2640   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2641   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2642   // called too late. For now we have to use the internal cl::opt option.
2643   const char *AsmSyntax = nullptr;
2644   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2645                                           OBJDUMP_x86_asm_syntax_att,
2646                                           OBJDUMP_x86_asm_syntax_intel)) {
2647     switch (A->getOption().getID()) {
2648     case OBJDUMP_x86_asm_syntax_att:
2649       AsmSyntax = "--x86-asm-syntax=att";
2650       continue;
2651     case OBJDUMP_x86_asm_syntax_intel:
2652       AsmSyntax = "--x86-asm-syntax=intel";
2653       continue;
2654     }
2655 
2656     SmallVector<StringRef, 2> Values;
2657     llvm::SplitString(A->getValue(), Values, ",");
2658     for (StringRef V : Values) {
2659       if (V == "att")
2660         AsmSyntax = "--x86-asm-syntax=att";
2661       else if (V == "intel")
2662         AsmSyntax = "--x86-asm-syntax=intel";
2663       else
2664         DisassemblerOptions.push_back(V.str());
2665     }
2666   }
2667   if (AsmSyntax) {
2668     const char *Argv[] = {"llvm-objdump", AsmSyntax};
2669     llvm::cl::ParseCommandLineOptions(2, Argv);
2670   }
2671 
2672   // objdump defaults to a.out if no filenames specified.
2673   if (InputFilenames.empty())
2674     InputFilenames.push_back("a.out");
2675 }
2676 
2677 int main(int argc, char **argv) {
2678   using namespace llvm;
2679   InitLLVM X(argc, argv);
2680 
2681   ToolName = argv[0];
2682   std::unique_ptr<CommonOptTable> T;
2683   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2684 
2685   StringRef Stem = sys::path::stem(ToolName);
2686   auto Is = [=](StringRef Tool) {
2687     // We need to recognize the following filenames:
2688     //
2689     // llvm-objdump -> objdump
2690     // llvm-otool-10.exe -> otool
2691     // powerpc64-unknown-freebsd13-objdump -> objdump
2692     auto I = Stem.rfind_insensitive(Tool);
2693     return I != StringRef::npos &&
2694            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
2695   };
2696   if (Is("otool")) {
2697     T = std::make_unique<OtoolOptTable>();
2698     Unknown = OTOOL_UNKNOWN;
2699     HelpFlag = OTOOL_help;
2700     HelpHiddenFlag = OTOOL_help_hidden;
2701     VersionFlag = OTOOL_version;
2702   } else {
2703     T = std::make_unique<ObjdumpOptTable>();
2704     Unknown = OBJDUMP_UNKNOWN;
2705     HelpFlag = OBJDUMP_help;
2706     HelpHiddenFlag = OBJDUMP_help_hidden;
2707     VersionFlag = OBJDUMP_version;
2708   }
2709 
2710   BumpPtrAllocator A;
2711   StringSaver Saver(A);
2712   opt::InputArgList InputArgs =
2713       T->parseArgs(argc, argv, Unknown, Saver,
2714                    [&](StringRef Msg) { reportCmdLineError(Msg); });
2715 
2716   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
2717     T->printHelp(ToolName);
2718     return 0;
2719   }
2720   if (InputArgs.hasArg(HelpHiddenFlag)) {
2721     T->printHelp(ToolName, /*ShowHidden=*/true);
2722     return 0;
2723   }
2724 
2725   // Initialize targets and assembly printers/parsers.
2726   InitializeAllTargetInfos();
2727   InitializeAllTargetMCs();
2728   InitializeAllDisassemblers();
2729 
2730   if (InputArgs.hasArg(VersionFlag)) {
2731     cl::PrintVersionMessage();
2732     if (!Is("otool")) {
2733       outs() << '\n';
2734       TargetRegistry::printRegisteredTargetsForVersion(outs());
2735     }
2736     return 0;
2737   }
2738 
2739   if (Is("otool"))
2740     parseOtoolOptions(InputArgs);
2741   else
2742     parseObjdumpOptions(InputArgs);
2743 
2744   if (StartAddress >= StopAddress)
2745     reportCmdLineError("start address should be less than stop address");
2746 
2747   // Removes trailing separators from prefix.
2748   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2749     Prefix.pop_back();
2750 
2751   if (AllHeaders)
2752     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2753         SectionHeaders = SymbolTable = true;
2754 
2755   if (DisassembleAll || PrintSource || PrintLines ||
2756       !DisassembleSymbols.empty())
2757     Disassemble = true;
2758 
2759   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2760       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2761       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2762       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
2763       !(MachOOpt &&
2764         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2765          FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist ||
2766          LazyBind || LinkOptHints || ObjcMetaData || Rebase || Rpaths ||
2767          UniversalHeaders || WeakBind || !FilterSections.empty()))) {
2768     T->printHelp(ToolName);
2769     return 2;
2770   }
2771 
2772   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2773 
2774   llvm::for_each(InputFilenames, dumpInput);
2775 
2776   warnOnNoMatchForSections();
2777 
2778   return EXIT_SUCCESS;
2779 }
2780