1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "OffloadDump.h" 24 #include "SourcePrinter.h" 25 #include "WasmDump.h" 26 #include "XCOFFDump.h" 27 #include "llvm/ADT/IndexedMap.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 36 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 37 #include "llvm/Debuginfod/BuildIDFetcher.h" 38 #include "llvm/Debuginfod/Debuginfod.h" 39 #include "llvm/Debuginfod/HTTPClient.h" 40 #include "llvm/Demangle/Demangle.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/MCContext.h" 43 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 45 #include "llvm/MC/MCInst.h" 46 #include "llvm/MC/MCInstPrinter.h" 47 #include "llvm/MC/MCInstrAnalysis.h" 48 #include "llvm/MC/MCInstrInfo.h" 49 #include "llvm/MC/MCObjectFileInfo.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/MC/MCSubtargetInfo.h" 52 #include "llvm/MC/MCTargetOptions.h" 53 #include "llvm/MC/TargetRegistry.h" 54 #include "llvm/Object/Archive.h" 55 #include "llvm/Object/BuildID.h" 56 #include "llvm/Object/COFF.h" 57 #include "llvm/Object/COFFImportFile.h" 58 #include "llvm/Object/ELFObjectFile.h" 59 #include "llvm/Object/ELFTypes.h" 60 #include "llvm/Object/FaultMapParser.h" 61 #include "llvm/Object/MachO.h" 62 #include "llvm/Object/MachOUniversal.h" 63 #include "llvm/Object/ObjectFile.h" 64 #include "llvm/Object/OffloadBinary.h" 65 #include "llvm/Object/Wasm.h" 66 #include "llvm/Option/Arg.h" 67 #include "llvm/Option/ArgList.h" 68 #include "llvm/Option/Option.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/Errc.h" 72 #include "llvm/Support/FileSystem.h" 73 #include "llvm/Support/Format.h" 74 #include "llvm/Support/FormatVariadic.h" 75 #include "llvm/Support/GraphWriter.h" 76 #include "llvm/Support/InitLLVM.h" 77 #include "llvm/Support/MemoryBuffer.h" 78 #include "llvm/Support/SourceMgr.h" 79 #include "llvm/Support/StringSaver.h" 80 #include "llvm/Support/TargetSelect.h" 81 #include "llvm/Support/WithColor.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/TargetParser/Host.h" 84 #include "llvm/TargetParser/Triple.h" 85 #include <algorithm> 86 #include <cctype> 87 #include <cstring> 88 #include <optional> 89 #include <system_error> 90 #include <unordered_map> 91 #include <utility> 92 93 using namespace llvm; 94 using namespace llvm::object; 95 using namespace llvm::objdump; 96 using namespace llvm::opt; 97 98 namespace { 99 100 class CommonOptTable : public opt::GenericOptTable { 101 public: 102 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 103 const char *Description) 104 : opt::GenericOptTable(OptionInfos), Usage(Usage), 105 Description(Description) { 106 setGroupedShortOptions(true); 107 } 108 109 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 110 Argv0 = sys::path::filename(Argv0); 111 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), 112 Description, ShowHidden, ShowHidden); 113 // TODO Replace this with OptTable API once it adds extrahelp support. 114 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 115 } 116 117 private: 118 const char *Usage; 119 const char *Description; 120 }; 121 122 // ObjdumpOptID is in ObjdumpOptID.h 123 namespace objdump_opt { 124 #define PREFIX(NAME, VALUE) \ 125 static constexpr StringLiteral NAME##_init[] = VALUE; \ 126 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 127 std::size(NAME##_init) - 1); 128 #include "ObjdumpOpts.inc" 129 #undef PREFIX 130 131 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 132 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 133 HELPTEXT, METAVAR, VALUES) \ 134 {PREFIX, NAME, HELPTEXT, \ 135 METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ 136 PARAM, FLAGS, OBJDUMP_##GROUP, \ 137 OBJDUMP_##ALIAS, ALIASARGS, VALUES}, 138 #include "ObjdumpOpts.inc" 139 #undef OPTION 140 }; 141 } // namespace objdump_opt 142 143 class ObjdumpOptTable : public CommonOptTable { 144 public: 145 ObjdumpOptTable() 146 : CommonOptTable(objdump_opt::ObjdumpInfoTable, 147 " [options] <input object files>", 148 "llvm object file dumper") {} 149 }; 150 151 enum OtoolOptID { 152 OTOOL_INVALID = 0, // This is not an option ID. 153 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 154 HELPTEXT, METAVAR, VALUES) \ 155 OTOOL_##ID, 156 #include "OtoolOpts.inc" 157 #undef OPTION 158 }; 159 160 namespace otool { 161 #define PREFIX(NAME, VALUE) \ 162 static constexpr StringLiteral NAME##_init[] = VALUE; \ 163 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 164 std::size(NAME##_init) - 1); 165 #include "OtoolOpts.inc" 166 #undef PREFIX 167 168 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 169 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 170 HELPTEXT, METAVAR, VALUES) \ 171 {PREFIX, NAME, HELPTEXT, \ 172 METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ 173 PARAM, FLAGS, OTOOL_##GROUP, \ 174 OTOOL_##ALIAS, ALIASARGS, VALUES}, 175 #include "OtoolOpts.inc" 176 #undef OPTION 177 }; 178 } // namespace otool 179 180 class OtoolOptTable : public CommonOptTable { 181 public: 182 OtoolOptTable() 183 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", 184 "Mach-O object file displaying tool") {} 185 }; 186 187 } // namespace 188 189 #define DEBUG_TYPE "objdump" 190 191 static uint64_t AdjustVMA; 192 static bool AllHeaders; 193 static std::string ArchName; 194 bool objdump::ArchiveHeaders; 195 bool objdump::Demangle; 196 bool objdump::Disassemble; 197 bool objdump::DisassembleAll; 198 bool objdump::SymbolDescription; 199 static std::vector<std::string> DisassembleSymbols; 200 static bool DisassembleZeroes; 201 static std::vector<std::string> DisassemblerOptions; 202 DIDumpType objdump::DwarfDumpType; 203 static bool DynamicRelocations; 204 static bool FaultMapSection; 205 static bool FileHeaders; 206 bool objdump::SectionContents; 207 static std::vector<std::string> InputFilenames; 208 bool objdump::PrintLines; 209 static bool MachOOpt; 210 std::string objdump::MCPU; 211 std::vector<std::string> objdump::MAttrs; 212 bool objdump::ShowRawInsn; 213 bool objdump::LeadingAddr; 214 static bool Offloading; 215 static bool RawClangAST; 216 bool objdump::Relocations; 217 bool objdump::PrintImmHex; 218 bool objdump::PrivateHeaders; 219 std::vector<std::string> objdump::FilterSections; 220 bool objdump::SectionHeaders; 221 static bool ShowAllSymbols; 222 static bool ShowLMA; 223 bool objdump::PrintSource; 224 225 static uint64_t StartAddress; 226 static bool HasStartAddressFlag; 227 static uint64_t StopAddress = UINT64_MAX; 228 static bool HasStopAddressFlag; 229 230 bool objdump::SymbolTable; 231 static bool SymbolizeOperands; 232 static bool DynamicSymbolTable; 233 std::string objdump::TripleName; 234 bool objdump::UnwindInfo; 235 static bool Wide; 236 std::string objdump::Prefix; 237 uint32_t objdump::PrefixStrip; 238 239 DebugVarsFormat objdump::DbgVariables = DVDisabled; 240 241 int objdump::DbgIndent = 52; 242 243 static StringSet<> DisasmSymbolSet; 244 StringSet<> objdump::FoundSectionSet; 245 static StringRef ToolName; 246 247 std::unique_ptr<BuildIDFetcher> BIDFetcher; 248 ExitOnError ExitOnErr; 249 250 namespace { 251 struct FilterResult { 252 // True if the section should not be skipped. 253 bool Keep; 254 255 // True if the index counter should be incremented, even if the section should 256 // be skipped. For example, sections may be skipped if they are not included 257 // in the --section flag, but we still want those to count toward the section 258 // count. 259 bool IncrementIndex; 260 }; 261 } // namespace 262 263 static FilterResult checkSectionFilter(object::SectionRef S) { 264 if (FilterSections.empty()) 265 return {/*Keep=*/true, /*IncrementIndex=*/true}; 266 267 Expected<StringRef> SecNameOrErr = S.getName(); 268 if (!SecNameOrErr) { 269 consumeError(SecNameOrErr.takeError()); 270 return {/*Keep=*/false, /*IncrementIndex=*/false}; 271 } 272 StringRef SecName = *SecNameOrErr; 273 274 // StringSet does not allow empty key so avoid adding sections with 275 // no name (such as the section with index 0) here. 276 if (!SecName.empty()) 277 FoundSectionSet.insert(SecName); 278 279 // Only show the section if it's in the FilterSections list, but always 280 // increment so the indexing is stable. 281 return {/*Keep=*/is_contained(FilterSections, SecName), 282 /*IncrementIndex=*/true}; 283 } 284 285 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 286 uint64_t *Idx) { 287 // Start at UINT64_MAX so that the first index returned after an increment is 288 // zero (after the unsigned wrap). 289 if (Idx) 290 *Idx = UINT64_MAX; 291 return SectionFilter( 292 [Idx](object::SectionRef S) { 293 FilterResult Result = checkSectionFilter(S); 294 if (Idx != nullptr && Result.IncrementIndex) 295 *Idx += 1; 296 return Result.Keep; 297 }, 298 O); 299 } 300 301 std::string objdump::getFileNameForError(const object::Archive::Child &C, 302 unsigned Index) { 303 Expected<StringRef> NameOrErr = C.getName(); 304 if (NameOrErr) 305 return std::string(NameOrErr.get()); 306 // If we have an error getting the name then we print the index of the archive 307 // member. Since we are already in an error state, we just ignore this error. 308 consumeError(NameOrErr.takeError()); 309 return "<file index: " + std::to_string(Index) + ">"; 310 } 311 312 void objdump::reportWarning(const Twine &Message, StringRef File) { 313 // Output order between errs() and outs() matters especially for archive 314 // files where the output is per member object. 315 outs().flush(); 316 WithColor::warning(errs(), ToolName) 317 << "'" << File << "': " << Message << "\n"; 318 } 319 320 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 321 outs().flush(); 322 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 323 exit(1); 324 } 325 326 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 327 StringRef ArchiveName, 328 StringRef ArchitectureName) { 329 assert(E); 330 outs().flush(); 331 WithColor::error(errs(), ToolName); 332 if (ArchiveName != "") 333 errs() << ArchiveName << "(" << FileName << ")"; 334 else 335 errs() << "'" << FileName << "'"; 336 if (!ArchitectureName.empty()) 337 errs() << " (for architecture " << ArchitectureName << ")"; 338 errs() << ": "; 339 logAllUnhandledErrors(std::move(E), errs()); 340 exit(1); 341 } 342 343 static void reportCmdLineWarning(const Twine &Message) { 344 WithColor::warning(errs(), ToolName) << Message << "\n"; 345 } 346 347 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 348 WithColor::error(errs(), ToolName) << Message << "\n"; 349 exit(1); 350 } 351 352 static void warnOnNoMatchForSections() { 353 SetVector<StringRef> MissingSections; 354 for (StringRef S : FilterSections) { 355 if (FoundSectionSet.count(S)) 356 return; 357 // User may specify a unnamed section. Don't warn for it. 358 if (!S.empty()) 359 MissingSections.insert(S); 360 } 361 362 // Warn only if no section in FilterSections is matched. 363 for (StringRef S : MissingSections) 364 reportCmdLineWarning("section '" + S + 365 "' mentioned in a -j/--section option, but not " 366 "found in any input file"); 367 } 368 369 static const Target *getTarget(const ObjectFile *Obj) { 370 // Figure out the target triple. 371 Triple TheTriple("unknown-unknown-unknown"); 372 if (TripleName.empty()) { 373 TheTriple = Obj->makeTriple(); 374 } else { 375 TheTriple.setTriple(Triple::normalize(TripleName)); 376 auto Arch = Obj->getArch(); 377 if (Arch == Triple::arm || Arch == Triple::armeb) 378 Obj->setARMSubArch(TheTriple); 379 } 380 381 // Get the target specific parser. 382 std::string Error; 383 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 384 Error); 385 if (!TheTarget) 386 reportError(Obj->getFileName(), "can't find target: " + Error); 387 388 // Update the triple name and return the found target. 389 TripleName = TheTriple.getTriple(); 390 return TheTarget; 391 } 392 393 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 394 return A.getOffset() < B.getOffset(); 395 } 396 397 static Error getRelocationValueString(const RelocationRef &Rel, 398 SmallVectorImpl<char> &Result) { 399 const ObjectFile *Obj = Rel.getObject(); 400 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 401 return getELFRelocationValueString(ELF, Rel, Result); 402 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 403 return getCOFFRelocationValueString(COFF, Rel, Result); 404 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 405 return getWasmRelocationValueString(Wasm, Rel, Result); 406 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 407 return getMachORelocationValueString(MachO, Rel, Result); 408 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 409 return getXCOFFRelocationValueString(*XCOFF, Rel, Result); 410 llvm_unreachable("unknown object file format"); 411 } 412 413 /// Indicates whether this relocation should hidden when listing 414 /// relocations, usually because it is the trailing part of a multipart 415 /// relocation that will be printed as part of the leading relocation. 416 static bool getHidden(RelocationRef RelRef) { 417 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 418 if (!MachO) 419 return false; 420 421 unsigned Arch = MachO->getArch(); 422 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 423 uint64_t Type = MachO->getRelocationType(Rel); 424 425 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 426 // is always hidden. 427 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 428 return Type == MachO::GENERIC_RELOC_PAIR; 429 430 if (Arch == Triple::x86_64) { 431 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 432 // an X86_64_RELOC_SUBTRACTOR. 433 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 434 DataRefImpl RelPrev = Rel; 435 RelPrev.d.a--; 436 uint64_t PrevType = MachO->getRelocationType(RelPrev); 437 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 438 return true; 439 } 440 } 441 442 return false; 443 } 444 445 namespace { 446 447 /// Get the column at which we want to start printing the instruction 448 /// disassembly, taking into account anything which appears to the left of it. 449 unsigned getInstStartColumn(const MCSubtargetInfo &STI) { 450 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 451 } 452 453 static bool isAArch64Elf(const ObjectFile &Obj) { 454 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 455 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 456 } 457 458 static bool isArmElf(const ObjectFile &Obj) { 459 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 460 return Elf && Elf->getEMachine() == ELF::EM_ARM; 461 } 462 463 static bool isCSKYElf(const ObjectFile &Obj) { 464 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 465 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 466 } 467 468 static bool hasMappingSymbols(const ObjectFile &Obj) { 469 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 470 } 471 472 static bool isMappingSymbol(const SymbolInfoTy &Sym) { 473 return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") || 474 Sym.Name.startswith("$a") || Sym.Name.startswith("$t"); 475 } 476 477 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 478 const RelocationRef &Rel, uint64_t Address, 479 bool Is64Bits) { 480 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; 481 SmallString<16> Name; 482 SmallString<32> Val; 483 Rel.getTypeName(Name); 484 if (Error E = getRelocationValueString(Rel, Val)) 485 reportError(std::move(E), FileName); 486 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); 487 if (LeadingAddr) 488 OS << format(Fmt.data(), Address); 489 OS << Name << "\t" << Val; 490 } 491 492 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, 493 raw_ostream &OS) { 494 // The output of printInst starts with a tab. Print some spaces so that 495 // the tab has 1 column and advances to the target tab stop. 496 unsigned TabStop = getInstStartColumn(STI); 497 unsigned Column = OS.tell() - Start; 498 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 499 } 500 501 class PrettyPrinter { 502 public: 503 virtual ~PrettyPrinter() = default; 504 virtual void 505 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 506 object::SectionedAddress Address, formatted_raw_ostream &OS, 507 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 508 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 509 LiveVariablePrinter &LVP) { 510 if (SP && (PrintSource || PrintLines)) 511 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 512 LVP.printBetweenInsts(OS, false); 513 514 size_t Start = OS.tell(); 515 if (LeadingAddr) 516 OS << format("%8" PRIx64 ":", Address.Address); 517 if (ShowRawInsn) { 518 OS << ' '; 519 dumpBytes(Bytes, OS); 520 } 521 522 AlignToInstStartColumn(Start, STI, OS); 523 524 if (MI) { 525 // See MCInstPrinter::printInst. On targets where a PC relative immediate 526 // is relative to the next instruction and the length of a MCInst is 527 // difficult to measure (x86), this is the address of the next 528 // instruction. 529 uint64_t Addr = 530 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 531 IP.printInst(MI, Addr, "", STI, OS); 532 } else 533 OS << "\t<unknown>"; 534 } 535 }; 536 PrettyPrinter PrettyPrinterInst; 537 538 class HexagonPrettyPrinter : public PrettyPrinter { 539 public: 540 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 541 formatted_raw_ostream &OS) { 542 uint32_t opcode = 543 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 544 if (LeadingAddr) 545 OS << format("%8" PRIx64 ":", Address); 546 if (ShowRawInsn) { 547 OS << "\t"; 548 dumpBytes(Bytes.slice(0, 4), OS); 549 OS << format("\t%08" PRIx32, opcode); 550 } 551 } 552 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 553 object::SectionedAddress Address, formatted_raw_ostream &OS, 554 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 555 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 556 LiveVariablePrinter &LVP) override { 557 if (SP && (PrintSource || PrintLines)) 558 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 559 if (!MI) { 560 printLead(Bytes, Address.Address, OS); 561 OS << " <unknown>"; 562 return; 563 } 564 std::string Buffer; 565 { 566 raw_string_ostream TempStream(Buffer); 567 IP.printInst(MI, Address.Address, "", STI, TempStream); 568 } 569 StringRef Contents(Buffer); 570 // Split off bundle attributes 571 auto PacketBundle = Contents.rsplit('\n'); 572 // Split off first instruction from the rest 573 auto HeadTail = PacketBundle.first.split('\n'); 574 auto Preamble = " { "; 575 auto Separator = ""; 576 577 // Hexagon's packets require relocations to be inline rather than 578 // clustered at the end of the packet. 579 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 580 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 581 auto PrintReloc = [&]() -> void { 582 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 583 if (RelCur->getOffset() == Address.Address) { 584 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 585 return; 586 } 587 ++RelCur; 588 } 589 }; 590 591 while (!HeadTail.first.empty()) { 592 OS << Separator; 593 Separator = "\n"; 594 if (SP && (PrintSource || PrintLines)) 595 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 596 printLead(Bytes, Address.Address, OS); 597 OS << Preamble; 598 Preamble = " "; 599 StringRef Inst; 600 auto Duplex = HeadTail.first.split('\v'); 601 if (!Duplex.second.empty()) { 602 OS << Duplex.first; 603 OS << "; "; 604 Inst = Duplex.second; 605 } 606 else 607 Inst = HeadTail.first; 608 OS << Inst; 609 HeadTail = HeadTail.second.split('\n'); 610 if (HeadTail.first.empty()) 611 OS << " } " << PacketBundle.second; 612 PrintReloc(); 613 Bytes = Bytes.slice(4); 614 Address.Address += 4; 615 } 616 } 617 }; 618 HexagonPrettyPrinter HexagonPrettyPrinterInst; 619 620 class AMDGCNPrettyPrinter : public PrettyPrinter { 621 public: 622 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 623 object::SectionedAddress Address, formatted_raw_ostream &OS, 624 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 625 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 626 LiveVariablePrinter &LVP) override { 627 if (SP && (PrintSource || PrintLines)) 628 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 629 630 if (MI) { 631 SmallString<40> InstStr; 632 raw_svector_ostream IS(InstStr); 633 634 IP.printInst(MI, Address.Address, "", STI, IS); 635 636 OS << left_justify(IS.str(), 60); 637 } else { 638 // an unrecognized encoding - this is probably data so represent it 639 // using the .long directive, or .byte directive if fewer than 4 bytes 640 // remaining 641 if (Bytes.size() >= 4) { 642 OS << format("\t.long 0x%08" PRIx32 " ", 643 support::endian::read32<support::little>(Bytes.data())); 644 OS.indent(42); 645 } else { 646 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 647 for (unsigned int i = 1; i < Bytes.size(); i++) 648 OS << format(", 0x%02" PRIx8, Bytes[i]); 649 OS.indent(55 - (6 * Bytes.size())); 650 } 651 } 652 653 OS << format("// %012" PRIX64 ":", Address.Address); 654 if (Bytes.size() >= 4) { 655 // D should be casted to uint32_t here as it is passed by format to 656 // snprintf as vararg. 657 for (uint32_t D : 658 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), 659 Bytes.size() / 4)) 660 OS << format(" %08" PRIX32, D); 661 } else { 662 for (unsigned char B : Bytes) 663 OS << format(" %02" PRIX8, B); 664 } 665 666 if (!Annot.empty()) 667 OS << " // " << Annot; 668 } 669 }; 670 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 671 672 class BPFPrettyPrinter : public PrettyPrinter { 673 public: 674 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 675 object::SectionedAddress Address, formatted_raw_ostream &OS, 676 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 677 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 678 LiveVariablePrinter &LVP) override { 679 if (SP && (PrintSource || PrintLines)) 680 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 681 if (LeadingAddr) 682 OS << format("%8" PRId64 ":", Address.Address / 8); 683 if (ShowRawInsn) { 684 OS << "\t"; 685 dumpBytes(Bytes, OS); 686 } 687 if (MI) 688 IP.printInst(MI, Address.Address, "", STI, OS); 689 else 690 OS << "\t<unknown>"; 691 } 692 }; 693 BPFPrettyPrinter BPFPrettyPrinterInst; 694 695 class ARMPrettyPrinter : public PrettyPrinter { 696 public: 697 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 698 object::SectionedAddress Address, formatted_raw_ostream &OS, 699 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 700 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 701 LiveVariablePrinter &LVP) override { 702 if (SP && (PrintSource || PrintLines)) 703 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 704 LVP.printBetweenInsts(OS, false); 705 706 size_t Start = OS.tell(); 707 if (LeadingAddr) 708 OS << format("%8" PRIx64 ":", Address.Address); 709 if (ShowRawInsn) { 710 size_t Pos = 0, End = Bytes.size(); 711 if (STI.checkFeatures("+thumb-mode")) { 712 for (; Pos + 2 <= End; Pos += 2) 713 OS << ' ' 714 << format_hex_no_prefix( 715 llvm::support::endian::read<uint16_t>( 716 Bytes.data() + Pos, InstructionEndianness), 717 4); 718 } else { 719 for (; Pos + 4 <= End; Pos += 4) 720 OS << ' ' 721 << format_hex_no_prefix( 722 llvm::support::endian::read<uint32_t>( 723 Bytes.data() + Pos, InstructionEndianness), 724 8); 725 } 726 if (Pos < End) { 727 OS << ' '; 728 dumpBytes(Bytes.slice(Pos), OS); 729 } 730 } 731 732 AlignToInstStartColumn(Start, STI, OS); 733 734 if (MI) { 735 IP.printInst(MI, Address.Address, "", STI, OS); 736 } else 737 OS << "\t<unknown>"; 738 } 739 740 void setInstructionEndianness(llvm::support::endianness Endianness) { 741 InstructionEndianness = Endianness; 742 } 743 744 private: 745 llvm::support::endianness InstructionEndianness = llvm::support::little; 746 }; 747 ARMPrettyPrinter ARMPrettyPrinterInst; 748 749 class AArch64PrettyPrinter : public PrettyPrinter { 750 public: 751 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 752 object::SectionedAddress Address, formatted_raw_ostream &OS, 753 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 754 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 755 LiveVariablePrinter &LVP) override { 756 if (SP && (PrintSource || PrintLines)) 757 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 758 LVP.printBetweenInsts(OS, false); 759 760 size_t Start = OS.tell(); 761 if (LeadingAddr) 762 OS << format("%8" PRIx64 ":", Address.Address); 763 if (ShowRawInsn) { 764 size_t Pos = 0, End = Bytes.size(); 765 for (; Pos + 4 <= End; Pos += 4) 766 OS << ' ' 767 << format_hex_no_prefix( 768 llvm::support::endian::read<uint32_t>(Bytes.data() + Pos, 769 llvm::support::little), 770 8); 771 if (Pos < End) { 772 OS << ' '; 773 dumpBytes(Bytes.slice(Pos), OS); 774 } 775 } 776 777 AlignToInstStartColumn(Start, STI, OS); 778 779 if (MI) { 780 IP.printInst(MI, Address.Address, "", STI, OS); 781 } else 782 OS << "\t<unknown>"; 783 } 784 }; 785 AArch64PrettyPrinter AArch64PrettyPrinterInst; 786 787 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 788 switch(Triple.getArch()) { 789 default: 790 return PrettyPrinterInst; 791 case Triple::hexagon: 792 return HexagonPrettyPrinterInst; 793 case Triple::amdgcn: 794 return AMDGCNPrettyPrinterInst; 795 case Triple::bpfel: 796 case Triple::bpfeb: 797 return BPFPrettyPrinterInst; 798 case Triple::arm: 799 case Triple::armeb: 800 case Triple::thumb: 801 case Triple::thumbeb: 802 return ARMPrettyPrinterInst; 803 case Triple::aarch64: 804 case Triple::aarch64_be: 805 case Triple::aarch64_32: 806 return AArch64PrettyPrinterInst; 807 } 808 } 809 } 810 811 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { 812 assert(Obj.isELF()); 813 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 814 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 815 Obj.getFileName()) 816 ->getType(); 817 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 818 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 819 Obj.getFileName()) 820 ->getType(); 821 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 822 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 823 Obj.getFileName()) 824 ->getType(); 825 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 826 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 827 Obj.getFileName()) 828 ->getType(); 829 llvm_unreachable("Unsupported binary format"); 830 } 831 832 template <class ELFT> 833 static void 834 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, 835 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 836 for (auto Symbol : Obj.getDynamicSymbolIterators()) { 837 uint8_t SymbolType = Symbol.getELFType(); 838 if (SymbolType == ELF::STT_SECTION) 839 continue; 840 841 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); 842 // ELFSymbolRef::getAddress() returns size instead of value for common 843 // symbols which is not desirable for disassembly output. Overriding. 844 if (SymbolType == ELF::STT_COMMON) 845 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), 846 Obj.getFileName()) 847 ->st_value; 848 849 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); 850 if (Name.empty()) 851 continue; 852 853 section_iterator SecI = 854 unwrapOrError(Symbol.getSection(), Obj.getFileName()); 855 if (SecI == Obj.section_end()) 856 continue; 857 858 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 859 } 860 } 861 862 static void 863 addDynamicElfSymbols(const ELFObjectFileBase &Obj, 864 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 865 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 866 addDynamicElfSymbols(*Elf32LEObj, AllSymbols); 867 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 868 addDynamicElfSymbols(*Elf64LEObj, AllSymbols); 869 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 870 addDynamicElfSymbols(*Elf32BEObj, AllSymbols); 871 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 872 addDynamicElfSymbols(*Elf64BEObj, AllSymbols); 873 else 874 llvm_unreachable("Unsupported binary format"); 875 } 876 877 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { 878 for (auto SecI : Obj.sections()) { 879 const WasmSection &Section = Obj.getWasmSection(SecI); 880 if (Section.Type == wasm::WASM_SEC_CODE) 881 return SecI; 882 } 883 return std::nullopt; 884 } 885 886 static void 887 addMissingWasmCodeSymbols(const WasmObjectFile &Obj, 888 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 889 std::optional<SectionRef> Section = getWasmCodeSection(Obj); 890 if (!Section) 891 return; 892 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 893 894 std::set<uint64_t> SymbolAddresses; 895 for (const auto &Sym : Symbols) 896 SymbolAddresses.insert(Sym.Addr); 897 898 for (const wasm::WasmFunction &Function : Obj.functions()) { 899 uint64_t Address = Function.CodeSectionOffset; 900 // Only add fallback symbols for functions not already present in the symbol 901 // table. 902 if (SymbolAddresses.count(Address)) 903 continue; 904 // This function has no symbol, so it should have no SymbolName. 905 assert(Function.SymbolName.empty()); 906 // We use DebugName for the name, though it may be empty if there is no 907 // "name" custom section, or that section is missing a name for this 908 // function. 909 StringRef Name = Function.DebugName; 910 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 911 } 912 } 913 914 static void addPltEntries(const ObjectFile &Obj, 915 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 916 StringSaver &Saver) { 917 auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj); 918 if (!ElfObj) 919 return; 920 std::optional<SectionRef> Plt; 921 for (const SectionRef &Section : Obj.sections()) { 922 Expected<StringRef> SecNameOrErr = Section.getName(); 923 if (!SecNameOrErr) { 924 consumeError(SecNameOrErr.takeError()); 925 continue; 926 } 927 if (*SecNameOrErr == ".plt") 928 Plt = Section; 929 } 930 if (!Plt) 931 return; 932 for (auto PltEntry : ElfObj->getPltAddresses()) { 933 if (PltEntry.first) { 934 SymbolRef Symbol(*PltEntry.first, ElfObj); 935 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 936 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 937 if (!NameOrErr->empty()) 938 AllSymbols[*Plt].emplace_back( 939 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()), 940 SymbolType); 941 continue; 942 } else { 943 // The warning has been reported in disassembleObject(). 944 consumeError(NameOrErr.takeError()); 945 } 946 } 947 reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) + 948 " references an invalid symbol", 949 Obj.getFileName()); 950 } 951 } 952 953 // Normally the disassembly output will skip blocks of zeroes. This function 954 // returns the number of zero bytes that can be skipped when dumping the 955 // disassembly of the instructions in Buf. 956 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 957 // Find the number of leading zeroes. 958 size_t N = 0; 959 while (N < Buf.size() && !Buf[N]) 960 ++N; 961 962 // We may want to skip blocks of zero bytes, but unless we see 963 // at least 8 of them in a row. 964 if (N < 8) 965 return 0; 966 967 // We skip zeroes in multiples of 4 because do not want to truncate an 968 // instruction if it starts with a zero byte. 969 return N & ~0x3; 970 } 971 972 // Returns a map from sections to their relocations. 973 static std::map<SectionRef, std::vector<RelocationRef>> 974 getRelocsMap(object::ObjectFile const &Obj) { 975 std::map<SectionRef, std::vector<RelocationRef>> Ret; 976 uint64_t I = (uint64_t)-1; 977 for (SectionRef Sec : Obj.sections()) { 978 ++I; 979 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 980 if (!RelocatedOrErr) 981 reportError(Obj.getFileName(), 982 "section (" + Twine(I) + 983 "): failed to get a relocated section: " + 984 toString(RelocatedOrErr.takeError())); 985 986 section_iterator Relocated = *RelocatedOrErr; 987 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 988 continue; 989 std::vector<RelocationRef> &V = Ret[*Relocated]; 990 append_range(V, Sec.relocations()); 991 // Sort relocations by address. 992 llvm::stable_sort(V, isRelocAddressLess); 993 } 994 return Ret; 995 } 996 997 // Used for --adjust-vma to check if address should be adjusted by the 998 // specified value for a given section. 999 // For ELF we do not adjust non-allocatable sections like debug ones, 1000 // because they are not loadable. 1001 // TODO: implement for other file formats. 1002 static bool shouldAdjustVA(const SectionRef &Section) { 1003 const ObjectFile *Obj = Section.getObject(); 1004 if (Obj->isELF()) 1005 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1006 return false; 1007 } 1008 1009 1010 typedef std::pair<uint64_t, char> MappingSymbolPair; 1011 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1012 uint64_t Address) { 1013 auto It = 1014 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1015 return Val.first <= Address; 1016 }); 1017 // Return zero for any address before the first mapping symbol; this means 1018 // we should use the default disassembly mode, depending on the target. 1019 if (It == MappingSymbols.begin()) 1020 return '\x00'; 1021 return (It - 1)->second; 1022 } 1023 1024 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1025 uint64_t End, const ObjectFile &Obj, 1026 ArrayRef<uint8_t> Bytes, 1027 ArrayRef<MappingSymbolPair> MappingSymbols, 1028 const MCSubtargetInfo &STI, raw_ostream &OS) { 1029 support::endianness Endian = 1030 Obj.isLittleEndian() ? support::little : support::big; 1031 size_t Start = OS.tell(); 1032 OS << format("%8" PRIx64 ": ", SectionAddr + Index); 1033 if (Index + 4 <= End) { 1034 dumpBytes(Bytes.slice(Index, 4), OS); 1035 AlignToInstStartColumn(Start, STI, OS); 1036 OS << "\t.word\t" 1037 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 1038 10); 1039 return 4; 1040 } 1041 if (Index + 2 <= End) { 1042 dumpBytes(Bytes.slice(Index, 2), OS); 1043 AlignToInstStartColumn(Start, STI, OS); 1044 OS << "\t.short\t" 1045 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); 1046 return 2; 1047 } 1048 dumpBytes(Bytes.slice(Index, 1), OS); 1049 AlignToInstStartColumn(Start, STI, OS); 1050 OS << "\t.byte\t" << format_hex(Bytes[Index], 4); 1051 return 1; 1052 } 1053 1054 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1055 ArrayRef<uint8_t> Bytes) { 1056 // print out data up to 8 bytes at a time in hex and ascii 1057 uint8_t AsciiData[9] = {'\0'}; 1058 uint8_t Byte; 1059 int NumBytes = 0; 1060 1061 for (; Index < End; ++Index) { 1062 if (NumBytes == 0) 1063 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1064 Byte = Bytes.slice(Index)[0]; 1065 outs() << format(" %02x", Byte); 1066 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1067 1068 uint8_t IndentOffset = 0; 1069 NumBytes++; 1070 if (Index == End - 1 || NumBytes > 8) { 1071 // Indent the space for less than 8 bytes data. 1072 // 2 spaces for byte and one for space between bytes 1073 IndentOffset = 3 * (8 - NumBytes); 1074 for (int Excess = NumBytes; Excess < 8; Excess++) 1075 AsciiData[Excess] = '\0'; 1076 NumBytes = 8; 1077 } 1078 if (NumBytes == 8) { 1079 AsciiData[8] = '\0'; 1080 outs() << std::string(IndentOffset, ' ') << " "; 1081 outs() << reinterpret_cast<char *>(AsciiData); 1082 outs() << '\n'; 1083 NumBytes = 0; 1084 } 1085 } 1086 } 1087 1088 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, 1089 const SymbolRef &Symbol) { 1090 const StringRef FileName = Obj.getFileName(); 1091 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 1092 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1093 1094 if (Obj.isXCOFF() && SymbolDescription) { 1095 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); 1096 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 1097 1098 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); 1099 std::optional<XCOFF::StorageMappingClass> Smc = 1100 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 1101 return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, 1102 isLabel(XCOFFObj, Symbol)); 1103 } else if (Obj.isXCOFF()) { 1104 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 1105 return SymbolInfoTy(Addr, Name, SymType, true); 1106 } else 1107 return SymbolInfoTy(Addr, Name, 1108 Obj.isELF() ? getElfSymbolType(Obj, Symbol) 1109 : (uint8_t)ELF::STT_NOTYPE); 1110 } 1111 1112 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, 1113 const uint64_t Addr, StringRef &Name, 1114 uint8_t Type) { 1115 if (Obj.isXCOFF() && SymbolDescription) 1116 return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false); 1117 else 1118 return SymbolInfoTy(Addr, Name, Type); 1119 } 1120 1121 static void 1122 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, 1123 uint64_t SectionAddr, uint64_t Start, uint64_t End, 1124 std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { 1125 if (AddrToBBAddrMap.empty()) 1126 return; 1127 Labels.clear(); 1128 uint64_t StartAddress = SectionAddr + Start; 1129 uint64_t EndAddress = SectionAddr + End; 1130 auto Iter = AddrToBBAddrMap.find(StartAddress); 1131 if (Iter == AddrToBBAddrMap.end()) 1132 return; 1133 for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) { 1134 uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr; 1135 if (BBAddress >= EndAddress) 1136 continue; 1137 Labels[BBAddress].push_back(("BB" + Twine(I)).str()); 1138 } 1139 } 1140 1141 static void collectLocalBranchTargets( 1142 ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm, 1143 MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr, 1144 uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) { 1145 // So far only supports PowerPC and X86. 1146 if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) 1147 return; 1148 1149 Labels.clear(); 1150 unsigned LabelCount = 0; 1151 Start += SectionAddr; 1152 End += SectionAddr; 1153 uint64_t Index = Start; 1154 while (Index < End) { 1155 // Disassemble a real instruction and record function-local branch labels. 1156 MCInst Inst; 1157 uint64_t Size; 1158 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); 1159 bool Disassembled = 1160 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); 1161 if (Size == 0) 1162 Size = std::min<uint64_t>(ThisBytes.size(), 1163 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1164 1165 if (Disassembled && MIA) { 1166 uint64_t Target; 1167 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1168 // On PowerPC, if the address of a branch is the same as the target, it 1169 // means that it's a function call. Do not mark the label for this case. 1170 if (TargetKnown && (Target >= Start && Target < End) && 1171 !Labels.count(Target) && 1172 !(STI->getTargetTriple().isPPC() && Target == Index)) 1173 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1174 } 1175 Index += Size; 1176 } 1177 } 1178 1179 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1180 // This is currently only used on AMDGPU, and assumes the format of the 1181 // void * argument passed to AMDGPU's createMCSymbolizer. 1182 static void addSymbolizer( 1183 MCContext &Ctx, const Target *Target, StringRef TripleName, 1184 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1185 SectionSymbolsTy &Symbols, 1186 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1187 1188 std::unique_ptr<MCRelocationInfo> RelInfo( 1189 Target->createMCRelocationInfo(TripleName, Ctx)); 1190 if (!RelInfo) 1191 return; 1192 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1193 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1194 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1195 DisAsm->setSymbolizer(std::move(Symbolizer)); 1196 1197 if (!SymbolizeOperands) 1198 return; 1199 1200 // Synthesize labels referenced by branch instructions by 1201 // disassembling, discarding the output, and collecting the referenced 1202 // addresses from the symbolizer. 1203 for (size_t Index = 0; Index != Bytes.size();) { 1204 MCInst Inst; 1205 uint64_t Size; 1206 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1207 const uint64_t ThisAddr = SectionAddr + Index; 1208 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); 1209 if (Size == 0) 1210 Size = std::min<uint64_t>(ThisBytes.size(), 1211 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1212 Index += Size; 1213 } 1214 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1215 // Copy and sort to remove duplicates. 1216 std::vector<uint64_t> LabelAddrs; 1217 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1218 LabelAddrsRef.end()); 1219 llvm::sort(LabelAddrs); 1220 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1221 LabelAddrs.begin()); 1222 // Add the labels. 1223 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1224 auto Name = std::make_unique<std::string>(); 1225 *Name = (Twine("L") + Twine(LabelNum)).str(); 1226 SynthesizedLabelNames.push_back(std::move(Name)); 1227 Symbols.push_back(SymbolInfoTy( 1228 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1229 } 1230 llvm::stable_sort(Symbols); 1231 // Recreate the symbolizer with the new symbols list. 1232 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1233 Symbolizer.reset(Target->createMCSymbolizer( 1234 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1235 DisAsm->setSymbolizer(std::move(Symbolizer)); 1236 } 1237 1238 static StringRef getSegmentName(const MachOObjectFile *MachO, 1239 const SectionRef &Section) { 1240 if (MachO) { 1241 DataRefImpl DR = Section.getRawDataRefImpl(); 1242 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1243 return SegmentName; 1244 } 1245 return ""; 1246 } 1247 1248 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1249 const MCAsmInfo &MAI, 1250 const MCSubtargetInfo &STI, 1251 StringRef Comments, 1252 LiveVariablePrinter &LVP) { 1253 do { 1254 if (!Comments.empty()) { 1255 // Emit a line of comments. 1256 StringRef Comment; 1257 std::tie(Comment, Comments) = Comments.split('\n'); 1258 // MAI.getCommentColumn() assumes that instructions are printed at the 1259 // position of 8, while getInstStartColumn() returns the actual position. 1260 unsigned CommentColumn = 1261 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1262 FOS.PadToColumn(CommentColumn); 1263 FOS << MAI.getCommentString() << ' ' << Comment; 1264 } 1265 LVP.printAfterInst(FOS); 1266 FOS << '\n'; 1267 } while (!Comments.empty()); 1268 FOS.flush(); 1269 } 1270 1271 static void createFakeELFSections(ObjectFile &Obj) { 1272 assert(Obj.isELF()); 1273 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1274 Elf32LEObj->createFakeSections(); 1275 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1276 Elf64LEObj->createFakeSections(); 1277 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1278 Elf32BEObj->createFakeSections(); 1279 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1280 Elf64BEObj->createFakeSections(); 1281 else 1282 llvm_unreachable("Unsupported binary format"); 1283 } 1284 1285 // Tries to fetch a more complete version of the given object file using its 1286 // Build ID. Returns std::nullopt if nothing was found. 1287 static std::optional<OwningBinary<Binary>> 1288 fetchBinaryByBuildID(const ObjectFile &Obj) { 1289 object::BuildIDRef BuildID = getBuildID(&Obj); 1290 if (BuildID.empty()) 1291 return std::nullopt; 1292 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 1293 if (!Path) 1294 return std::nullopt; 1295 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); 1296 if (!DebugBinary) { 1297 reportWarning(toString(DebugBinary.takeError()), *Path); 1298 return std::nullopt; 1299 } 1300 return std::move(*DebugBinary); 1301 } 1302 1303 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj, 1304 const ObjectFile &DbgObj, MCContext &Ctx, 1305 MCDisassembler *PrimaryDisAsm, 1306 MCDisassembler *SecondaryDisAsm, 1307 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1308 const MCSubtargetInfo *PrimarySTI, 1309 const MCSubtargetInfo *SecondarySTI, 1310 PrettyPrinter &PIP, SourcePrinter &SP, 1311 bool InlineRelocs) { 1312 const MCSubtargetInfo *STI = PrimarySTI; 1313 MCDisassembler *DisAsm = PrimaryDisAsm; 1314 bool PrimaryIsThumb = false; 1315 if (isArmElf(Obj)) 1316 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1317 1318 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1319 if (InlineRelocs) 1320 RelocMap = getRelocsMap(Obj); 1321 bool Is64Bits = Obj.getBytesInAddress() > 4; 1322 1323 // Create a mapping from virtual address to symbol name. This is used to 1324 // pretty print the symbols while disassembling. 1325 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1326 SectionSymbolsTy AbsoluteSymbols; 1327 const StringRef FileName = Obj.getFileName(); 1328 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); 1329 for (const SymbolRef &Symbol : Obj.symbols()) { 1330 Expected<StringRef> NameOrErr = Symbol.getName(); 1331 if (!NameOrErr) { 1332 reportWarning(toString(NameOrErr.takeError()), FileName); 1333 continue; 1334 } 1335 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) 1336 continue; 1337 1338 if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) 1339 continue; 1340 1341 if (MachO) { 1342 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1343 // symbols that support MachO header introspection. They do not bind to 1344 // code locations and are irrelevant for disassembly. 1345 if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) 1346 continue; 1347 // Don't ask a Mach-O STAB symbol for its section unless you know that 1348 // STAB symbol's section field refers to a valid section index. Otherwise 1349 // the symbol may error trying to load a section that does not exist. 1350 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1351 uint8_t NType = (MachO->is64Bit() ? 1352 MachO->getSymbol64TableEntry(SymDRI).n_type: 1353 MachO->getSymbolTableEntry(SymDRI).n_type); 1354 if (NType & MachO::N_STAB) 1355 continue; 1356 } 1357 1358 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1359 if (SecI != Obj.section_end()) 1360 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1361 else 1362 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1363 } 1364 1365 if (AllSymbols.empty() && Obj.isELF()) 1366 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); 1367 1368 if (Obj.isWasm()) 1369 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1370 1371 if (Obj.isELF() && Obj.sections().empty()) 1372 createFakeELFSections(Obj); 1373 1374 BumpPtrAllocator A; 1375 StringSaver Saver(A); 1376 addPltEntries(Obj, AllSymbols, Saver); 1377 1378 // Create a mapping from virtual address to section. An empty section can 1379 // cause more than one section at the same address. Sort such sections to be 1380 // before same-addressed non-empty sections so that symbol lookups prefer the 1381 // non-empty section. 1382 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1383 for (SectionRef Sec : Obj.sections()) 1384 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1385 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1386 if (LHS.first != RHS.first) 1387 return LHS.first < RHS.first; 1388 return LHS.second.getSize() < RHS.second.getSize(); 1389 }); 1390 1391 // Linked executables (.exe and .dll files) typically don't include a real 1392 // symbol table but they might contain an export table. 1393 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1394 for (const auto &ExportEntry : COFFObj->export_directories()) { 1395 StringRef Name; 1396 if (Error E = ExportEntry.getSymbolName(Name)) 1397 reportError(std::move(E), Obj.getFileName()); 1398 if (Name.empty()) 1399 continue; 1400 1401 uint32_t RVA; 1402 if (Error E = ExportEntry.getExportRVA(RVA)) 1403 reportError(std::move(E), Obj.getFileName()); 1404 1405 uint64_t VA = COFFObj->getImageBase() + RVA; 1406 auto Sec = partition_point( 1407 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1408 return O.first <= VA; 1409 }); 1410 if (Sec != SectionAddresses.begin()) { 1411 --Sec; 1412 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1413 } else 1414 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1415 } 1416 } 1417 1418 // Sort all the symbols, this allows us to use a simple binary search to find 1419 // Multiple symbols can have the same address. Use a stable sort to stabilize 1420 // the output. 1421 StringSet<> FoundDisasmSymbolSet; 1422 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1423 llvm::stable_sort(SecSyms.second); 1424 llvm::stable_sort(AbsoluteSymbols); 1425 1426 std::unique_ptr<DWARFContext> DICtx; 1427 LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); 1428 1429 if (DbgVariables != DVDisabled) { 1430 DICtx = DWARFContext::create(DbgObj); 1431 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1432 LVP.addCompileUnit(CU->getUnitDIE(false)); 1433 } 1434 1435 LLVM_DEBUG(LVP.dump()); 1436 1437 std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; 1438 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = 1439 std::nullopt) { 1440 AddrToBBAddrMap.clear(); 1441 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { 1442 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); 1443 if (!BBAddrMapsOrErr) { 1444 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); 1445 return; 1446 } 1447 for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) 1448 AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, 1449 std::move(FunctionBBAddrMap)); 1450 } 1451 }; 1452 1453 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a 1454 // single mapping, since they don't have any conflicts. 1455 if (SymbolizeOperands && !Obj.isRelocatableObject()) 1456 ReadBBAddrMap(); 1457 1458 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 1459 if (FilterSections.empty() && !DisassembleAll && 1460 (!Section.isText() || Section.isVirtual())) 1461 continue; 1462 1463 uint64_t SectionAddr = Section.getAddress(); 1464 uint64_t SectSize = Section.getSize(); 1465 if (!SectSize) 1466 continue; 1467 1468 // For relocatable object files, read the LLVM_BB_ADDR_MAP section 1469 // corresponding to this section, if present. 1470 if (SymbolizeOperands && Obj.isRelocatableObject()) 1471 ReadBBAddrMap(Section.getIndex()); 1472 1473 // Get the list of all the symbols in this section. 1474 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1475 std::vector<MappingSymbolPair> MappingSymbols; 1476 if (hasMappingSymbols(Obj)) { 1477 for (const auto &Symb : Symbols) { 1478 uint64_t Address = Symb.Addr; 1479 StringRef Name = Symb.Name; 1480 if (Name.startswith("$d")) 1481 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1482 if (Name.startswith("$x")) 1483 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1484 if (Name.startswith("$a")) 1485 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1486 if (Name.startswith("$t")) 1487 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1488 } 1489 } 1490 1491 llvm::sort(MappingSymbols); 1492 1493 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1494 unwrapOrError(Section.getContents(), Obj.getFileName())); 1495 1496 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1497 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { 1498 // AMDGPU disassembler uses symbolizer for printing labels 1499 addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, 1500 Symbols, SynthesizedLabelNames); 1501 } 1502 1503 StringRef SegmentName = getSegmentName(MachO, Section); 1504 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); 1505 // If the section has no symbol at the start, just insert a dummy one. 1506 if (Symbols.empty() || Symbols[0].Addr != 0) { 1507 Symbols.insert(Symbols.begin(), 1508 createDummySymbolInfo(Obj, SectionAddr, SectionName, 1509 Section.isText() ? ELF::STT_FUNC 1510 : ELF::STT_OBJECT)); 1511 } 1512 1513 SmallString<40> Comments; 1514 raw_svector_ostream CommentStream(Comments); 1515 1516 uint64_t VMAAdjustment = 0; 1517 if (shouldAdjustVA(Section)) 1518 VMAAdjustment = AdjustVMA; 1519 1520 // In executable and shared objects, r_offset holds a virtual address. 1521 // Subtract SectionAddr from the r_offset field of a relocation to get 1522 // the section offset. 1523 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; 1524 uint64_t Size; 1525 uint64_t Index; 1526 bool PrintedSection = false; 1527 std::vector<RelocationRef> Rels = RelocMap[Section]; 1528 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1529 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1530 1531 // Loop over each chunk of code between two points where at least 1532 // one symbol is defined. 1533 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { 1534 // Advance SI past all the symbols starting at the same address, 1535 // and make an ArrayRef of them. 1536 unsigned FirstSI = SI; 1537 uint64_t Start = Symbols[SI].Addr; 1538 ArrayRef<SymbolInfoTy> SymbolsHere; 1539 while (SI != SE && Symbols[SI].Addr == Start) 1540 ++SI; 1541 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); 1542 1543 // Get the demangled names of all those symbols. We end up with a vector 1544 // of StringRef that holds the names we're going to use, and a vector of 1545 // std::string that stores the new strings returned by demangle(), if 1546 // any. If we don't call demangle() then that vector can stay empty. 1547 std::vector<StringRef> SymNamesHere; 1548 std::vector<std::string> DemangledSymNamesHere; 1549 if (Demangle) { 1550 // Fetch the demangled names and store them locally. 1551 for (const SymbolInfoTy &Symbol : SymbolsHere) 1552 DemangledSymNamesHere.push_back(demangle(Symbol.Name.str())); 1553 // Now we've finished modifying that vector, it's safe to make 1554 // a vector of StringRefs pointing into it. 1555 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), 1556 DemangledSymNamesHere.end()); 1557 } else { 1558 for (const SymbolInfoTy &Symbol : SymbolsHere) 1559 SymNamesHere.push_back(Symbol.Name); 1560 } 1561 1562 // Distinguish ELF data from code symbols, which will be used later on to 1563 // decide whether to 'disassemble' this chunk as a data declaration via 1564 // dumpELFData(), or whether to treat it as code. 1565 // 1566 // If data _and_ code symbols are defined at the same address, the code 1567 // takes priority, on the grounds that disassembling code is our main 1568 // purpose here, and it would be a worse failure to _not_ interpret 1569 // something that _was_ meaningful as code than vice versa. 1570 // 1571 // Any ELF symbol type that is not clearly data will be regarded as code. 1572 // In particular, one of the uses of STT_NOTYPE is for branch targets 1573 // inside functions, for which STT_FUNC would be inaccurate. 1574 // 1575 // So here, we spot whether there's any non-data symbol present at all, 1576 // and only set the DisassembleAsData flag if there isn't. Also, we use 1577 // this distinction to inform the decision of which symbol to print at 1578 // the head of the section, so that if we're printing code, we print a 1579 // code-related symbol name to go with it. 1580 bool DisassembleAsData = false; 1581 size_t DisplaySymIndex = SymbolsHere.size() - 1; 1582 if (Obj.isELF() && !DisassembleAll && Section.isText()) { 1583 DisassembleAsData = true; // unless we find a code symbol below 1584 1585 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1586 uint8_t SymTy = SymbolsHere[i].Type; 1587 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { 1588 DisassembleAsData = false; 1589 DisplaySymIndex = i; 1590 } 1591 } 1592 } 1593 1594 // Decide which symbol(s) from this collection we're going to print. 1595 std::vector<bool> SymsToPrint(SymbolsHere.size(), false); 1596 // If the user has given the --disassemble-symbols option, then we must 1597 // display every symbol in that set, and no others. 1598 if (!DisasmSymbolSet.empty()) { 1599 bool FoundAny = false; 1600 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1601 if (DisasmSymbolSet.count(SymNamesHere[i])) { 1602 SymsToPrint[i] = true; 1603 FoundAny = true; 1604 } 1605 } 1606 1607 // And if none of the symbols here is one that the user asked for, skip 1608 // disassembling this entire chunk of code. 1609 if (!FoundAny) 1610 continue; 1611 } else { 1612 // Otherwise, print whichever symbol at this location is last in the 1613 // Symbols array, because that array is pre-sorted in a way intended to 1614 // correlate with priority of which symbol to display. 1615 SymsToPrint[DisplaySymIndex] = true; 1616 } 1617 1618 // Now that we know we're disassembling this section, override the choice 1619 // of which symbols to display by printing _all_ of them at this address 1620 // if the user asked for all symbols. 1621 // 1622 // That way, '--show-all-symbols --disassemble-symbol=foo' will print 1623 // only the chunk of code headed by 'foo', but also show any other 1624 // symbols defined at that address, such as aliases for 'foo', or the ARM 1625 // mapping symbol preceding its code. 1626 if (ShowAllSymbols) { 1627 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1628 SymsToPrint[i] = true; 1629 } 1630 1631 if (Start < SectionAddr || StopAddress <= Start) 1632 continue; 1633 1634 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1635 FoundDisasmSymbolSet.insert(SymNamesHere[i]); 1636 1637 // The end is the section end, the beginning of the next symbol, or 1638 // --stop-address. 1639 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1640 if (SI < SE) 1641 End = std::min(End, Symbols[SI].Addr); 1642 if (Start >= End || End <= StartAddress) 1643 continue; 1644 Start -= SectionAddr; 1645 End -= SectionAddr; 1646 1647 if (!PrintedSection) { 1648 PrintedSection = true; 1649 outs() << "\nDisassembly of section "; 1650 if (!SegmentName.empty()) 1651 outs() << SegmentName << ","; 1652 outs() << SectionName << ":\n"; 1653 } 1654 1655 outs() << '\n'; 1656 1657 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1658 if (!SymsToPrint[i]) 1659 continue; 1660 1661 const SymbolInfoTy &Symbol = SymbolsHere[i]; 1662 const StringRef SymbolName = SymNamesHere[i]; 1663 1664 if (LeadingAddr) 1665 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1666 SectionAddr + Start + VMAAdjustment); 1667 if (Obj.isXCOFF() && SymbolDescription) { 1668 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; 1669 } else 1670 outs() << '<' << SymbolName << ">:\n"; 1671 } 1672 1673 // Don't print raw contents of a virtual section. A virtual section 1674 // doesn't have any contents in the file. 1675 if (Section.isVirtual()) { 1676 outs() << "...\n"; 1677 continue; 1678 } 1679 1680 // See if any of the symbols defined at this location triggers target- 1681 // specific disassembly behavior, e.g. of special descriptors or function 1682 // prelude information. 1683 // 1684 // We stop this loop at the first symbol that triggers some kind of 1685 // interesting behavior (if any), on the assumption that if two symbols 1686 // defined at the same address trigger two conflicting symbol handlers, 1687 // the object file is probably confused anyway, and it would make even 1688 // less sense to present the output of _both_ handlers, because that 1689 // would describe the same data twice. 1690 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { 1691 SymbolInfoTy Symbol = SymbolsHere[SHI]; 1692 1693 auto Status = 1694 DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start), 1695 SectionAddr + Start, CommentStream); 1696 1697 if (!Status) { 1698 // If onSymbolStart returns std::nullopt, that means it didn't trigger 1699 // any interesting handling for this symbol. Try the other symbols 1700 // defined at this address. 1701 continue; 1702 } 1703 1704 if (*Status == MCDisassembler::Fail) { 1705 // If onSymbolStart returns Fail, that means it identified some kind 1706 // of special data at this address, but wasn't able to disassemble it 1707 // meaningfully. So we fall back to disassembling the failed region 1708 // as bytes, assuming that the target detected the failure before 1709 // printing anything. 1710 // 1711 // Return values Success or SoftFail (i.e no 'real' failure) are 1712 // expected to mean that the target has emitted its own output. 1713 // 1714 // Either way, 'Size' will have been set to the amount of data 1715 // covered by whatever prologue the target identified. So we advance 1716 // our own position to beyond that. Sometimes that will be the entire 1717 // distance to the next symbol, and sometimes it will be just a 1718 // prologue and we should start disassembling instructions from where 1719 // it left off. 1720 outs() << "// Error in decoding " << SymNamesHere[SHI] 1721 << " : Decoding failed region as bytes.\n"; 1722 for (uint64_t I = 0; I < Size; ++I) { 1723 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1724 << "\n"; 1725 } 1726 } 1727 Start += Size; 1728 break; 1729 } 1730 1731 Index = Start; 1732 if (SectionAddr < StartAddress) 1733 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1734 1735 if (DisassembleAsData) { 1736 dumpELFData(SectionAddr, Index, End, Bytes); 1737 Index = End; 1738 continue; 1739 } 1740 1741 bool DumpARMELFData = false; 1742 formatted_raw_ostream FOS(outs()); 1743 1744 std::unordered_map<uint64_t, std::string> AllLabels; 1745 std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; 1746 if (SymbolizeOperands) { 1747 collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, 1748 SectionAddr, Index, End, AllLabels); 1749 collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, 1750 BBAddrMapLabels); 1751 } 1752 1753 while (Index < End) { 1754 // ARM and AArch64 ELF binaries can interleave data and text in the 1755 // same section. We rely on the markers introduced to understand what 1756 // we need to dump. If the data marker is within a function, it is 1757 // denoted as a word/short etc. 1758 if (!MappingSymbols.empty()) { 1759 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1760 DumpARMELFData = Kind == 'd'; 1761 if (SecondarySTI) { 1762 if (Kind == 'a') { 1763 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1764 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1765 } else if (Kind == 't') { 1766 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1767 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1768 } 1769 } 1770 } 1771 1772 if (DumpARMELFData) { 1773 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1774 MappingSymbols, *STI, FOS); 1775 } else { 1776 // When -z or --disassemble-zeroes are given we always dissasemble 1777 // them. Otherwise we might want to skip zero bytes we see. 1778 if (!DisassembleZeroes) { 1779 uint64_t MaxOffset = End - Index; 1780 // For --reloc: print zero blocks patched by relocations, so that 1781 // relocations can be shown in the dump. 1782 if (RelCur != RelEnd) 1783 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 1784 MaxOffset); 1785 1786 if (size_t N = 1787 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1788 FOS << "\t\t..." << '\n'; 1789 Index += N; 1790 continue; 1791 } 1792 } 1793 1794 // Print local label if there's any. 1795 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); 1796 if (Iter1 != BBAddrMapLabels.end()) { 1797 for (StringRef Label : Iter1->second) 1798 FOS << "<" << Label << ">:\n"; 1799 } else { 1800 auto Iter2 = AllLabels.find(SectionAddr + Index); 1801 if (Iter2 != AllLabels.end()) 1802 FOS << "<" << Iter2->second << ">:\n"; 1803 } 1804 1805 // Disassemble a real instruction or a data when disassemble all is 1806 // provided 1807 MCInst Inst; 1808 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1809 uint64_t ThisAddr = SectionAddr + Index; 1810 bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes, 1811 ThisAddr, CommentStream); 1812 if (Size == 0) 1813 Size = std::min<uint64_t>( 1814 ThisBytes.size(), 1815 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); 1816 1817 LVP.update({Index, Section.getIndex()}, 1818 {Index + Size, Section.getIndex()}, Index + Size != End); 1819 1820 IP->setCommentStream(CommentStream); 1821 1822 PIP.printInst( 1823 *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), 1824 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 1825 "", *STI, &SP, Obj.getFileName(), &Rels, LVP); 1826 1827 IP->setCommentStream(llvm::nulls()); 1828 1829 // If disassembly has failed, avoid analysing invalid/incomplete 1830 // instruction information. Otherwise, try to resolve the target 1831 // address (jump target or memory operand address) and print it on the 1832 // right of the instruction. 1833 if (Disassembled && MIA) { 1834 // Branch targets are printed just after the instructions. 1835 llvm::raw_ostream *TargetOS = &FOS; 1836 uint64_t Target; 1837 bool PrintTarget = 1838 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); 1839 if (!PrintTarget) 1840 if (std::optional<uint64_t> MaybeTarget = 1841 MIA->evaluateMemoryOperandAddress( 1842 Inst, STI, SectionAddr + Index, Size)) { 1843 Target = *MaybeTarget; 1844 PrintTarget = true; 1845 // Do not print real address when symbolizing. 1846 if (!SymbolizeOperands) { 1847 // Memory operand addresses are printed as comments. 1848 TargetOS = &CommentStream; 1849 *TargetOS << "0x" << Twine::utohexstr(Target); 1850 } 1851 } 1852 if (PrintTarget) { 1853 // In a relocatable object, the target's section must reside in 1854 // the same section as the call instruction or it is accessed 1855 // through a relocation. 1856 // 1857 // In a non-relocatable object, the target may be in any section. 1858 // In that case, locate the section(s) containing the target 1859 // address and find the symbol in one of those, if possible. 1860 // 1861 // N.B. We don't walk the relocations in the relocatable case yet. 1862 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 1863 if (!Obj.isRelocatableObject()) { 1864 auto It = llvm::partition_point( 1865 SectionAddresses, 1866 [=](const std::pair<uint64_t, SectionRef> &O) { 1867 return O.first <= Target; 1868 }); 1869 uint64_t TargetSecAddr = 0; 1870 while (It != SectionAddresses.begin()) { 1871 --It; 1872 if (TargetSecAddr == 0) 1873 TargetSecAddr = It->first; 1874 if (It->first != TargetSecAddr) 1875 break; 1876 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 1877 } 1878 } else { 1879 TargetSectionSymbols.push_back(&Symbols); 1880 } 1881 TargetSectionSymbols.push_back(&AbsoluteSymbols); 1882 1883 // Find the last symbol in the first candidate section whose 1884 // offset is less than or equal to the target. If there are no 1885 // such symbols, try in the next section and so on, before finally 1886 // using the nearest preceding absolute symbol (if any), if there 1887 // are no other valid symbols. 1888 const SymbolInfoTy *TargetSym = nullptr; 1889 for (const SectionSymbolsTy *TargetSymbols : 1890 TargetSectionSymbols) { 1891 auto It = llvm::partition_point( 1892 *TargetSymbols, 1893 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 1894 while (It != TargetSymbols->begin()) { 1895 --It; 1896 // Skip mapping symbols to avoid possible ambiguity as they 1897 // do not allow uniquely identifying the target address. 1898 if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) { 1899 TargetSym = &*It; 1900 break; 1901 } 1902 } 1903 if (TargetSym) 1904 break; 1905 } 1906 1907 // Print the labels corresponding to the target if there's any. 1908 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); 1909 bool LabelAvailable = AllLabels.count(Target); 1910 if (TargetSym != nullptr) { 1911 uint64_t TargetAddress = TargetSym->Addr; 1912 uint64_t Disp = Target - TargetAddress; 1913 std::string TargetName = TargetSym->Name.str(); 1914 if (Demangle) 1915 TargetName = demangle(TargetName); 1916 1917 *TargetOS << " <"; 1918 if (!Disp) { 1919 // Always Print the binary symbol precisely corresponding to 1920 // the target address. 1921 *TargetOS << TargetName; 1922 } else if (BBAddrMapLabelAvailable) { 1923 *TargetOS << BBAddrMapLabels[Target].front(); 1924 } else if (LabelAvailable) { 1925 *TargetOS << AllLabels[Target]; 1926 } else { 1927 // Always Print the binary symbol plus an offset if there's no 1928 // local label corresponding to the target address. 1929 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 1930 } 1931 *TargetOS << ">"; 1932 } else if (BBAddrMapLabelAvailable) { 1933 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; 1934 } else if (LabelAvailable) { 1935 *TargetOS << " <" << AllLabels[Target] << ">"; 1936 } 1937 // By convention, each record in the comment stream should be 1938 // terminated. 1939 if (TargetOS == &CommentStream) 1940 *TargetOS << "\n"; 1941 } 1942 } 1943 } 1944 1945 assert(Ctx.getAsmInfo()); 1946 emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI, 1947 CommentStream.str(), LVP); 1948 Comments.clear(); 1949 1950 // Hexagon does this in pretty printer 1951 if (Obj.getArch() != Triple::hexagon) { 1952 // Print relocation for instruction and data. 1953 while (RelCur != RelEnd) { 1954 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 1955 // If this relocation is hidden, skip it. 1956 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1957 ++RelCur; 1958 continue; 1959 } 1960 1961 // Stop when RelCur's offset is past the disassembled 1962 // instruction/data. Note that it's possible the disassembled data 1963 // is not the complete data: we might see the relocation printed in 1964 // the middle of the data, but this matches the binutils objdump 1965 // output. 1966 if (Offset >= Index + Size) 1967 break; 1968 1969 // When --adjust-vma is used, update the address printed. 1970 if (RelCur->getSymbol() != Obj.symbol_end()) { 1971 Expected<section_iterator> SymSI = 1972 RelCur->getSymbol()->getSection(); 1973 if (SymSI && *SymSI != Obj.section_end() && 1974 shouldAdjustVA(**SymSI)) 1975 Offset += AdjustVMA; 1976 } 1977 1978 printRelocation(FOS, Obj.getFileName(), *RelCur, 1979 SectionAddr + Offset, Is64Bits); 1980 LVP.printAfterOtherLine(FOS, true); 1981 ++RelCur; 1982 } 1983 } 1984 1985 Index += Size; 1986 } 1987 } 1988 } 1989 StringSet<> MissingDisasmSymbolSet = 1990 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 1991 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 1992 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 1993 } 1994 1995 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { 1996 // If information useful for showing the disassembly is missing, try to find a 1997 // more complete binary and disassemble that instead. 1998 OwningBinary<Binary> FetchedBinary; 1999 if (Obj->symbols().empty()) { 2000 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = 2001 fetchBinaryByBuildID(*Obj)) { 2002 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { 2003 if (!O->symbols().empty() || 2004 (!O->sections().empty() && Obj->sections().empty())) { 2005 FetchedBinary = std::move(*FetchedBinaryOpt); 2006 Obj = O; 2007 } 2008 } 2009 } 2010 } 2011 2012 const Target *TheTarget = getTarget(Obj); 2013 2014 // Package up features to be passed to target/subtarget 2015 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); 2016 if (!FeaturesValue) 2017 reportError(FeaturesValue.takeError(), Obj->getFileName()); 2018 SubtargetFeatures Features = *FeaturesValue; 2019 if (!MAttrs.empty()) { 2020 for (unsigned I = 0; I != MAttrs.size(); ++I) 2021 Features.AddFeature(MAttrs[I]); 2022 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { 2023 Features.AddFeature("+all"); 2024 } 2025 2026 std::unique_ptr<const MCRegisterInfo> MRI( 2027 TheTarget->createMCRegInfo(TripleName)); 2028 if (!MRI) 2029 reportError(Obj->getFileName(), 2030 "no register info for target " + TripleName); 2031 2032 // Set up disassembler. 2033 MCTargetOptions MCOptions; 2034 std::unique_ptr<const MCAsmInfo> AsmInfo( 2035 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 2036 if (!AsmInfo) 2037 reportError(Obj->getFileName(), 2038 "no assembly info for target " + TripleName); 2039 2040 if (MCPU.empty()) 2041 MCPU = Obj->tryGetCPUName().value_or("").str(); 2042 2043 if (isArmElf(*Obj)) { 2044 // When disassembling big-endian Arm ELF, the instruction endianness is 2045 // determined in a complex way. In relocatable objects, AAELF32 mandates 2046 // that instruction endianness matches the ELF file endianness; in 2047 // executable images, that's true unless the file header has the EF_ARM_BE8 2048 // flag, in which case instructions are little-endian regardless of data 2049 // endianness. 2050 // 2051 // We must set the big-endian-instructions SubtargetFeature to make the 2052 // disassembler read the instructions the right way round, and also tell 2053 // our own prettyprinter to retrieve the encodings the same way to print in 2054 // hex. 2055 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); 2056 2057 if (Elf32BE && (Elf32BE->isRelocatableObject() || 2058 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { 2059 Features.AddFeature("+big-endian-instructions"); 2060 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big); 2061 } else { 2062 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little); 2063 } 2064 } 2065 2066 std::unique_ptr<const MCSubtargetInfo> STI( 2067 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 2068 if (!STI) 2069 reportError(Obj->getFileName(), 2070 "no subtarget info for target " + TripleName); 2071 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 2072 if (!MII) 2073 reportError(Obj->getFileName(), 2074 "no instruction info for target " + TripleName); 2075 MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); 2076 // FIXME: for now initialize MCObjectFileInfo with default values 2077 std::unique_ptr<MCObjectFileInfo> MOFI( 2078 TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); 2079 Ctx.setObjectFileInfo(MOFI.get()); 2080 2081 std::unique_ptr<MCDisassembler> DisAsm( 2082 TheTarget->createMCDisassembler(*STI, Ctx)); 2083 if (!DisAsm) 2084 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 2085 2086 // If we have an ARM object file, we need a second disassembler, because 2087 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2088 // We use mapping symbols to switch between the two assemblers, where 2089 // appropriate. 2090 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 2091 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 2092 if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) { 2093 if (STI->checkFeatures("+thumb-mode")) 2094 Features.AddFeature("-thumb-mode"); 2095 else 2096 Features.AddFeature("+thumb-mode"); 2097 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 2098 Features.getString())); 2099 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 2100 } 2101 2102 std::unique_ptr<const MCInstrAnalysis> MIA( 2103 TheTarget->createMCInstrAnalysis(MII.get())); 2104 2105 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 2106 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 2107 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 2108 if (!IP) 2109 reportError(Obj->getFileName(), 2110 "no instruction printer for target " + TripleName); 2111 IP->setPrintImmHex(PrintImmHex); 2112 IP->setPrintBranchImmAsAddress(true); 2113 IP->setSymbolizeOperands(SymbolizeOperands); 2114 IP->setMCInstrAnalysis(MIA.get()); 2115 2116 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 2117 2118 const ObjectFile *DbgObj = Obj; 2119 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { 2120 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = 2121 fetchBinaryByBuildID(*Obj)) { 2122 if (auto *FetchedObj = 2123 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { 2124 if (FetchedObj->hasDebugInfo()) { 2125 FetchedBinary = std::move(*DebugBinaryOpt); 2126 DbgObj = FetchedObj; 2127 } 2128 } 2129 } 2130 } 2131 2132 std::unique_ptr<object::Binary> DSYMBinary; 2133 std::unique_ptr<MemoryBuffer> DSYMBuf; 2134 if (!DbgObj->hasDebugInfo()) { 2135 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { 2136 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), 2137 DSYMBinary, DSYMBuf); 2138 if (!DbgObj) 2139 return; 2140 } 2141 } 2142 2143 SourcePrinter SP(DbgObj, TheTarget->getName()); 2144 2145 for (StringRef Opt : DisassemblerOptions) 2146 if (!IP->applyTargetSpecificCLOption(Opt)) 2147 reportError(Obj->getFileName(), 2148 "Unrecognized disassembler option: " + Opt); 2149 2150 disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(), 2151 SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(), 2152 SecondarySTI.get(), PIP, SP, InlineRelocs); 2153 } 2154 2155 void objdump::printRelocations(const ObjectFile *Obj) { 2156 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 2157 "%08" PRIx64; 2158 2159 // Build a mapping from relocation target to a vector of relocation 2160 // sections. Usually, there is an only one relocation section for 2161 // each relocated section. 2162 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2163 uint64_t Ndx; 2164 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 2165 if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) 2166 continue; 2167 if (Section.relocation_begin() == Section.relocation_end()) 2168 continue; 2169 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2170 if (!SecOrErr) 2171 reportError(Obj->getFileName(), 2172 "section (" + Twine(Ndx) + 2173 "): unable to get a relocation target: " + 2174 toString(SecOrErr.takeError())); 2175 SecToRelSec[**SecOrErr].push_back(Section); 2176 } 2177 2178 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2179 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 2180 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 2181 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 2182 uint32_t TypePadding = 24; 2183 outs() << left_justify("OFFSET", OffsetPadding) << " " 2184 << left_justify("TYPE", TypePadding) << " " 2185 << "VALUE\n"; 2186 2187 for (SectionRef Section : P.second) { 2188 for (const RelocationRef &Reloc : Section.relocations()) { 2189 uint64_t Address = Reloc.getOffset(); 2190 SmallString<32> RelocName; 2191 SmallString<32> ValueStr; 2192 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2193 continue; 2194 Reloc.getTypeName(RelocName); 2195 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2196 reportError(std::move(E), Obj->getFileName()); 2197 2198 outs() << format(Fmt.data(), Address) << " " 2199 << left_justify(RelocName, TypePadding) << " " << ValueStr 2200 << "\n"; 2201 } 2202 } 2203 } 2204 } 2205 2206 void objdump::printDynamicRelocations(const ObjectFile *Obj) { 2207 // For the moment, this option is for ELF only 2208 if (!Obj->isELF()) 2209 return; 2210 2211 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 2212 if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) { 2213 return Sec.getType() == ELF::SHT_DYNAMIC; 2214 })) { 2215 reportError(Obj->getFileName(), "not a dynamic object"); 2216 return; 2217 } 2218 2219 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 2220 if (DynRelSec.empty()) 2221 return; 2222 2223 outs() << "\nDYNAMIC RELOCATION RECORDS\n"; 2224 const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 2225 const uint32_t TypePadding = 24; 2226 outs() << left_justify("OFFSET", OffsetPadding) << ' ' 2227 << left_justify("TYPE", TypePadding) << " VALUE\n"; 2228 2229 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2230 for (const SectionRef &Section : DynRelSec) 2231 for (const RelocationRef &Reloc : Section.relocations()) { 2232 uint64_t Address = Reloc.getOffset(); 2233 SmallString<32> RelocName; 2234 SmallString<32> ValueStr; 2235 Reloc.getTypeName(RelocName); 2236 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2237 reportError(std::move(E), Obj->getFileName()); 2238 outs() << format(Fmt.data(), Address) << ' ' 2239 << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n'; 2240 } 2241 } 2242 2243 // Returns true if we need to show LMA column when dumping section headers. We 2244 // show it only when the platform is ELF and either we have at least one section 2245 // whose VMA and LMA are different and/or when --show-lma flag is used. 2246 static bool shouldDisplayLMA(const ObjectFile &Obj) { 2247 if (!Obj.isELF()) 2248 return false; 2249 for (const SectionRef &S : ToolSectionFilter(Obj)) 2250 if (S.getAddress() != getELFSectionLMA(S)) 2251 return true; 2252 return ShowLMA; 2253 } 2254 2255 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { 2256 // Default column width for names is 13 even if no names are that long. 2257 size_t MaxWidth = 13; 2258 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 2259 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2260 MaxWidth = std::max(MaxWidth, Name.size()); 2261 } 2262 return MaxWidth; 2263 } 2264 2265 void objdump::printSectionHeaders(ObjectFile &Obj) { 2266 if (Obj.isELF() && Obj.sections().empty()) 2267 createFakeELFSections(Obj); 2268 2269 size_t NameWidth = getMaxSectionNameWidth(Obj); 2270 size_t AddressWidth = 2 * Obj.getBytesInAddress(); 2271 bool HasLMAColumn = shouldDisplayLMA(Obj); 2272 outs() << "\nSections:\n"; 2273 if (HasLMAColumn) 2274 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2275 << left_justify("VMA", AddressWidth) << " " 2276 << left_justify("LMA", AddressWidth) << " Type\n"; 2277 else 2278 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2279 << left_justify("VMA", AddressWidth) << " Type\n"; 2280 2281 uint64_t Idx; 2282 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { 2283 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2284 uint64_t VMA = Section.getAddress(); 2285 if (shouldAdjustVA(Section)) 2286 VMA += AdjustVMA; 2287 2288 uint64_t Size = Section.getSize(); 2289 2290 std::string Type = Section.isText() ? "TEXT" : ""; 2291 if (Section.isData()) 2292 Type += Type.empty() ? "DATA" : ", DATA"; 2293 if (Section.isBSS()) 2294 Type += Type.empty() ? "BSS" : ", BSS"; 2295 if (Section.isDebugSection()) 2296 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 2297 2298 if (HasLMAColumn) 2299 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2300 Name.str().c_str(), Size) 2301 << format_hex_no_prefix(VMA, AddressWidth) << " " 2302 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2303 << " " << Type << "\n"; 2304 else 2305 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2306 Name.str().c_str(), Size) 2307 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2308 } 2309 } 2310 2311 void objdump::printSectionContents(const ObjectFile *Obj) { 2312 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 2313 2314 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2315 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2316 uint64_t BaseAddr = Section.getAddress(); 2317 uint64_t Size = Section.getSize(); 2318 if (!Size) 2319 continue; 2320 2321 outs() << "Contents of section "; 2322 StringRef SegmentName = getSegmentName(MachO, Section); 2323 if (!SegmentName.empty()) 2324 outs() << SegmentName << ","; 2325 outs() << Name << ":\n"; 2326 if (Section.isBSS()) { 2327 outs() << format("<skipping contents of bss section at [%04" PRIx64 2328 ", %04" PRIx64 ")>\n", 2329 BaseAddr, BaseAddr + Size); 2330 continue; 2331 } 2332 2333 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2334 2335 // Dump out the content as hex and printable ascii characters. 2336 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2337 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2338 // Dump line of hex. 2339 for (std::size_t I = 0; I < 16; ++I) { 2340 if (I != 0 && I % 4 == 0) 2341 outs() << ' '; 2342 if (Addr + I < End) 2343 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2344 << hexdigit(Contents[Addr + I] & 0xF, true); 2345 else 2346 outs() << " "; 2347 } 2348 // Print ascii. 2349 outs() << " "; 2350 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2351 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2352 outs() << Contents[Addr + I]; 2353 else 2354 outs() << "."; 2355 } 2356 outs() << "\n"; 2357 } 2358 } 2359 } 2360 2361 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName, 2362 StringRef ArchitectureName, bool DumpDynamic) { 2363 if (O.isCOFF() && !DumpDynamic) { 2364 outs() << "\nSYMBOL TABLE:\n"; 2365 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 2366 return; 2367 } 2368 2369 const StringRef FileName = O.getFileName(); 2370 2371 if (!DumpDynamic) { 2372 outs() << "\nSYMBOL TABLE:\n"; 2373 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) 2374 printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName, 2375 DumpDynamic); 2376 return; 2377 } 2378 2379 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 2380 if (!O.isELF()) { 2381 reportWarning( 2382 "this operation is not currently supported for this file format", 2383 FileName); 2384 return; 2385 } 2386 2387 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); 2388 auto Symbols = ELF->getDynamicSymbolIterators(); 2389 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 2390 ELF->readDynsymVersions(); 2391 if (!SymbolVersionsOrErr) { 2392 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 2393 SymbolVersionsOrErr = std::vector<VersionEntry>(); 2394 (void)!SymbolVersionsOrErr; 2395 } 2396 for (auto &Sym : Symbols) 2397 printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 2398 ArchitectureName, DumpDynamic); 2399 } 2400 2401 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol, 2402 ArrayRef<VersionEntry> SymbolVersions, 2403 StringRef FileName, StringRef ArchiveName, 2404 StringRef ArchitectureName, bool DumpDynamic) { 2405 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); 2406 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 2407 ArchitectureName); 2408 if ((Address < StartAddress) || (Address > StopAddress)) 2409 return; 2410 SymbolRef::Type Type = 2411 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 2412 uint32_t Flags = 2413 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 2414 2415 // Don't ask a Mach-O STAB symbol for its section unless you know that 2416 // STAB symbol's section field refers to a valid section index. Otherwise 2417 // the symbol may error trying to load a section that does not exist. 2418 bool IsSTAB = false; 2419 if (MachO) { 2420 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2421 uint8_t NType = 2422 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 2423 : MachO->getSymbolTableEntry(SymDRI).n_type); 2424 if (NType & MachO::N_STAB) 2425 IsSTAB = true; 2426 } 2427 section_iterator Section = IsSTAB 2428 ? O.section_end() 2429 : unwrapOrError(Symbol.getSection(), FileName, 2430 ArchiveName, ArchitectureName); 2431 2432 StringRef Name; 2433 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { 2434 if (Expected<StringRef> NameOrErr = Section->getName()) 2435 Name = *NameOrErr; 2436 else 2437 consumeError(NameOrErr.takeError()); 2438 2439 } else { 2440 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2441 ArchitectureName); 2442 } 2443 2444 bool Global = Flags & SymbolRef::SF_Global; 2445 bool Weak = Flags & SymbolRef::SF_Weak; 2446 bool Absolute = Flags & SymbolRef::SF_Absolute; 2447 bool Common = Flags & SymbolRef::SF_Common; 2448 bool Hidden = Flags & SymbolRef::SF_Hidden; 2449 2450 char GlobLoc = ' '; 2451 if ((Section != O.section_end() || Absolute) && !Weak) 2452 GlobLoc = Global ? 'g' : 'l'; 2453 char IFunc = ' '; 2454 if (O.isELF()) { 2455 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2456 IFunc = 'i'; 2457 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2458 GlobLoc = 'u'; 2459 } 2460 2461 char Debug = ' '; 2462 if (DumpDynamic) 2463 Debug = 'D'; 2464 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2465 Debug = 'd'; 2466 2467 char FileFunc = ' '; 2468 if (Type == SymbolRef::ST_File) 2469 FileFunc = 'f'; 2470 else if (Type == SymbolRef::ST_Function) 2471 FileFunc = 'F'; 2472 else if (Type == SymbolRef::ST_Data) 2473 FileFunc = 'O'; 2474 2475 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2476 2477 outs() << format(Fmt, Address) << " " 2478 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2479 << (Weak ? 'w' : ' ') // Weak? 2480 << ' ' // Constructor. Not supported yet. 2481 << ' ' // Warning. Not supported yet. 2482 << IFunc // Indirect reference to another symbol. 2483 << Debug // Debugging (d) or dynamic (D) symbol. 2484 << FileFunc // Name of function (F), file (f) or object (O). 2485 << ' '; 2486 if (Absolute) { 2487 outs() << "*ABS*"; 2488 } else if (Common) { 2489 outs() << "*COM*"; 2490 } else if (Section == O.section_end()) { 2491 if (O.isXCOFF()) { 2492 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( 2493 Symbol.getRawDataRefImpl()); 2494 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2495 outs() << "*DEBUG*"; 2496 else 2497 outs() << "*UND*"; 2498 } else 2499 outs() << "*UND*"; 2500 } else { 2501 StringRef SegmentName = getSegmentName(MachO, *Section); 2502 if (!SegmentName.empty()) 2503 outs() << SegmentName << ","; 2504 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2505 outs() << SectionName; 2506 if (O.isXCOFF()) { 2507 std::optional<SymbolRef> SymRef = 2508 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); 2509 if (SymRef) { 2510 2511 Expected<StringRef> NameOrErr = SymRef->getName(); 2512 2513 if (NameOrErr) { 2514 outs() << " (csect:"; 2515 std::string SymName(NameOrErr.get()); 2516 2517 if (Demangle) 2518 SymName = demangle(SymName); 2519 2520 if (SymbolDescription) 2521 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), 2522 SymName); 2523 2524 outs() << ' ' << SymName; 2525 outs() << ") "; 2526 } else 2527 reportWarning(toString(NameOrErr.takeError()), FileName); 2528 } 2529 } 2530 } 2531 2532 if (Common) 2533 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2534 else if (O.isXCOFF()) 2535 outs() << '\t' 2536 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( 2537 Symbol.getRawDataRefImpl())); 2538 else if (O.isELF()) 2539 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2540 2541 if (O.isELF()) { 2542 if (!SymbolVersions.empty()) { 2543 const VersionEntry &Ver = 2544 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2545 std::string Str; 2546 if (!Ver.Name.empty()) 2547 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2548 outs() << ' ' << left_justify(Str, 12); 2549 } 2550 2551 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2552 switch (Other) { 2553 case ELF::STV_DEFAULT: 2554 break; 2555 case ELF::STV_INTERNAL: 2556 outs() << " .internal"; 2557 break; 2558 case ELF::STV_HIDDEN: 2559 outs() << " .hidden"; 2560 break; 2561 case ELF::STV_PROTECTED: 2562 outs() << " .protected"; 2563 break; 2564 default: 2565 outs() << format(" 0x%02x", Other); 2566 break; 2567 } 2568 } else if (Hidden) { 2569 outs() << " .hidden"; 2570 } 2571 2572 std::string SymName(Name); 2573 if (Demangle) 2574 SymName = demangle(SymName); 2575 2576 if (O.isXCOFF() && SymbolDescription) 2577 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2578 2579 outs() << ' ' << SymName << '\n'; 2580 } 2581 2582 static void printUnwindInfo(const ObjectFile *O) { 2583 outs() << "Unwind info:\n\n"; 2584 2585 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2586 printCOFFUnwindInfo(Coff); 2587 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2588 printMachOUnwindInfo(MachO); 2589 else 2590 // TODO: Extract DWARF dump tool to objdump. 2591 WithColor::error(errs(), ToolName) 2592 << "This operation is only currently supported " 2593 "for COFF and MachO object files.\n"; 2594 } 2595 2596 /// Dump the raw contents of the __clangast section so the output can be piped 2597 /// into llvm-bcanalyzer. 2598 static void printRawClangAST(const ObjectFile *Obj) { 2599 if (outs().is_displayed()) { 2600 WithColor::error(errs(), ToolName) 2601 << "The -raw-clang-ast option will dump the raw binary contents of " 2602 "the clang ast section.\n" 2603 "Please redirect the output to a file or another program such as " 2604 "llvm-bcanalyzer.\n"; 2605 return; 2606 } 2607 2608 StringRef ClangASTSectionName("__clangast"); 2609 if (Obj->isCOFF()) { 2610 ClangASTSectionName = "clangast"; 2611 } 2612 2613 std::optional<object::SectionRef> ClangASTSection; 2614 for (auto Sec : ToolSectionFilter(*Obj)) { 2615 StringRef Name; 2616 if (Expected<StringRef> NameOrErr = Sec.getName()) 2617 Name = *NameOrErr; 2618 else 2619 consumeError(NameOrErr.takeError()); 2620 2621 if (Name == ClangASTSectionName) { 2622 ClangASTSection = Sec; 2623 break; 2624 } 2625 } 2626 if (!ClangASTSection) 2627 return; 2628 2629 StringRef ClangASTContents = 2630 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); 2631 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2632 } 2633 2634 static void printFaultMaps(const ObjectFile *Obj) { 2635 StringRef FaultMapSectionName; 2636 2637 if (Obj->isELF()) { 2638 FaultMapSectionName = ".llvm_faultmaps"; 2639 } else if (Obj->isMachO()) { 2640 FaultMapSectionName = "__llvm_faultmaps"; 2641 } else { 2642 WithColor::error(errs(), ToolName) 2643 << "This operation is only currently supported " 2644 "for ELF and Mach-O executable files.\n"; 2645 return; 2646 } 2647 2648 std::optional<object::SectionRef> FaultMapSection; 2649 2650 for (auto Sec : ToolSectionFilter(*Obj)) { 2651 StringRef Name; 2652 if (Expected<StringRef> NameOrErr = Sec.getName()) 2653 Name = *NameOrErr; 2654 else 2655 consumeError(NameOrErr.takeError()); 2656 2657 if (Name == FaultMapSectionName) { 2658 FaultMapSection = Sec; 2659 break; 2660 } 2661 } 2662 2663 outs() << "FaultMap table:\n"; 2664 2665 if (!FaultMapSection) { 2666 outs() << "<not found>\n"; 2667 return; 2668 } 2669 2670 StringRef FaultMapContents = 2671 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); 2672 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2673 FaultMapContents.bytes_end()); 2674 2675 outs() << FMP; 2676 } 2677 2678 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2679 if (O->isELF()) { 2680 printELFFileHeader(O); 2681 printELFDynamicSection(O); 2682 printELFSymbolVersionInfo(O); 2683 return; 2684 } 2685 if (O->isCOFF()) 2686 return printCOFFFileHeader(cast<object::COFFObjectFile>(*O)); 2687 if (O->isWasm()) 2688 return printWasmFileHeader(O); 2689 if (O->isMachO()) { 2690 printMachOFileHeader(O); 2691 if (!OnlyFirst) 2692 printMachOLoadCommands(O); 2693 return; 2694 } 2695 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2696 } 2697 2698 static void printFileHeaders(const ObjectFile *O) { 2699 if (!O->isELF() && !O->isCOFF()) 2700 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2701 2702 Triple::ArchType AT = O->getArch(); 2703 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2704 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2705 2706 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2707 outs() << "start address: " 2708 << "0x" << format(Fmt.data(), Address) << "\n"; 2709 } 2710 2711 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2712 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2713 if (!ModeOrErr) { 2714 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2715 consumeError(ModeOrErr.takeError()); 2716 return; 2717 } 2718 sys::fs::perms Mode = ModeOrErr.get(); 2719 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2720 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2721 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2722 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2723 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2724 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2725 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2726 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2727 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2728 2729 outs() << " "; 2730 2731 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2732 unwrapOrError(C.getGID(), Filename), 2733 unwrapOrError(C.getRawSize(), Filename)); 2734 2735 StringRef RawLastModified = C.getRawLastModified(); 2736 unsigned Seconds; 2737 if (RawLastModified.getAsInteger(10, Seconds)) 2738 outs() << "(date: \"" << RawLastModified 2739 << "\" contains non-decimal chars) "; 2740 else { 2741 // Since ctime(3) returns a 26 character string of the form: 2742 // "Sun Sep 16 01:03:52 1973\n\0" 2743 // just print 24 characters. 2744 time_t t = Seconds; 2745 outs() << format("%.24s ", ctime(&t)); 2746 } 2747 2748 StringRef Name = ""; 2749 Expected<StringRef> NameOrErr = C.getName(); 2750 if (!NameOrErr) { 2751 consumeError(NameOrErr.takeError()); 2752 Name = unwrapOrError(C.getRawName(), Filename); 2753 } else { 2754 Name = NameOrErr.get(); 2755 } 2756 outs() << Name << "\n"; 2757 } 2758 2759 // For ELF only now. 2760 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2761 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2762 if (Elf->getEType() != ELF::ET_REL) 2763 return true; 2764 } 2765 return false; 2766 } 2767 2768 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2769 uint64_t Start, uint64_t Stop) { 2770 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2771 return; 2772 2773 for (const SectionRef &Section : Obj->sections()) 2774 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2775 uint64_t BaseAddr = Section.getAddress(); 2776 uint64_t Size = Section.getSize(); 2777 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2778 return; 2779 } 2780 2781 if (!HasStartAddressFlag) 2782 reportWarning("no section has address less than 0x" + 2783 Twine::utohexstr(Stop) + " specified by --stop-address", 2784 Obj->getFileName()); 2785 else if (!HasStopAddressFlag) 2786 reportWarning("no section has address greater than or equal to 0x" + 2787 Twine::utohexstr(Start) + " specified by --start-address", 2788 Obj->getFileName()); 2789 else 2790 reportWarning("no section overlaps the range [0x" + 2791 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2792 ") specified by --start-address/--stop-address", 2793 Obj->getFileName()); 2794 } 2795 2796 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2797 const Archive::Child *C = nullptr) { 2798 // Avoid other output when using a raw option. 2799 if (!RawClangAST) { 2800 outs() << '\n'; 2801 if (A) 2802 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2803 else 2804 outs() << O->getFileName(); 2805 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2806 } 2807 2808 if (HasStartAddressFlag || HasStopAddressFlag) 2809 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2810 2811 // Note: the order here matches GNU objdump for compatability. 2812 StringRef ArchiveName = A ? A->getFileName() : ""; 2813 if (ArchiveHeaders && !MachOOpt && C) 2814 printArchiveChild(ArchiveName, *C); 2815 if (FileHeaders) 2816 printFileHeaders(O); 2817 if (PrivateHeaders || FirstPrivateHeader) 2818 printPrivateFileHeaders(O, FirstPrivateHeader); 2819 if (SectionHeaders) 2820 printSectionHeaders(*O); 2821 if (SymbolTable) 2822 printSymbolTable(*O, ArchiveName); 2823 if (DynamicSymbolTable) 2824 printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"", 2825 /*DumpDynamic=*/true); 2826 if (DwarfDumpType != DIDT_Null) { 2827 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2828 // Dump the complete DWARF structure. 2829 DIDumpOptions DumpOpts; 2830 DumpOpts.DumpType = DwarfDumpType; 2831 DICtx->dump(outs(), DumpOpts); 2832 } 2833 if (Relocations && !Disassemble) 2834 printRelocations(O); 2835 if (DynamicRelocations) 2836 printDynamicRelocations(O); 2837 if (SectionContents) 2838 printSectionContents(O); 2839 if (Disassemble) 2840 disassembleObject(O, Relocations); 2841 if (UnwindInfo) 2842 printUnwindInfo(O); 2843 2844 // Mach-O specific options: 2845 if (ExportsTrie) 2846 printExportsTrie(O); 2847 if (Rebase) 2848 printRebaseTable(O); 2849 if (Bind) 2850 printBindTable(O); 2851 if (LazyBind) 2852 printLazyBindTable(O); 2853 if (WeakBind) 2854 printWeakBindTable(O); 2855 2856 // Other special sections: 2857 if (RawClangAST) 2858 printRawClangAST(O); 2859 if (FaultMapSection) 2860 printFaultMaps(O); 2861 if (Offloading) 2862 dumpOffloadBinary(*O); 2863 } 2864 2865 static void dumpObject(const COFFImportFile *I, const Archive *A, 2866 const Archive::Child *C = nullptr) { 2867 StringRef ArchiveName = A ? A->getFileName() : ""; 2868 2869 // Avoid other output when using a raw option. 2870 if (!RawClangAST) 2871 outs() << '\n' 2872 << ArchiveName << "(" << I->getFileName() << ")" 2873 << ":\tfile format COFF-import-file" 2874 << "\n\n"; 2875 2876 if (ArchiveHeaders && !MachOOpt && C) 2877 printArchiveChild(ArchiveName, *C); 2878 if (SymbolTable) 2879 printCOFFSymbolTable(*I); 2880 } 2881 2882 /// Dump each object file in \a a; 2883 static void dumpArchive(const Archive *A) { 2884 Error Err = Error::success(); 2885 unsigned I = -1; 2886 for (auto &C : A->children(Err)) { 2887 ++I; 2888 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2889 if (!ChildOrErr) { 2890 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2891 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2892 continue; 2893 } 2894 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2895 dumpObject(O, A, &C); 2896 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2897 dumpObject(I, A, &C); 2898 else 2899 reportError(errorCodeToError(object_error::invalid_file_type), 2900 A->getFileName()); 2901 } 2902 if (Err) 2903 reportError(std::move(Err), A->getFileName()); 2904 } 2905 2906 /// Open file and figure out how to dump it. 2907 static void dumpInput(StringRef file) { 2908 // If we are using the Mach-O specific object file parser, then let it parse 2909 // the file and process the command line options. So the -arch flags can 2910 // be used to select specific slices, etc. 2911 if (MachOOpt) { 2912 parseInputMachO(file); 2913 return; 2914 } 2915 2916 // Attempt to open the binary. 2917 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2918 Binary &Binary = *OBinary.getBinary(); 2919 2920 if (Archive *A = dyn_cast<Archive>(&Binary)) 2921 dumpArchive(A); 2922 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2923 dumpObject(O); 2924 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2925 parseInputMachO(UB); 2926 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) 2927 dumpOffloadSections(*OB); 2928 else 2929 reportError(errorCodeToError(object_error::invalid_file_type), file); 2930 } 2931 2932 template <typename T> 2933 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 2934 T &Value) { 2935 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 2936 StringRef V(A->getValue()); 2937 if (!llvm::to_integer(V, Value, 0)) { 2938 reportCmdLineError(A->getSpelling() + 2939 ": expected a non-negative integer, but got '" + V + 2940 "'"); 2941 } 2942 } 2943 } 2944 2945 static object::BuildID parseBuildIDArg(const opt::Arg *A) { 2946 StringRef V(A->getValue()); 2947 object::BuildID BID = parseBuildID(V); 2948 if (BID.empty()) 2949 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + 2950 V + "'"); 2951 return BID; 2952 } 2953 2954 void objdump::invalidArgValue(const opt::Arg *A) { 2955 reportCmdLineError("'" + StringRef(A->getValue()) + 2956 "' is not a valid value for '" + A->getSpelling() + "'"); 2957 } 2958 2959 static std::vector<std::string> 2960 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 2961 std::vector<std::string> Values; 2962 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 2963 llvm::SmallVector<StringRef, 2> SplitValues; 2964 llvm::SplitString(Value, SplitValues, ","); 2965 for (StringRef SplitValue : SplitValues) 2966 Values.push_back(SplitValue.str()); 2967 } 2968 return Values; 2969 } 2970 2971 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 2972 MachOOpt = true; 2973 FullLeadingAddr = true; 2974 PrintImmHex = true; 2975 2976 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 2977 LinkOptHints = InputArgs.hasArg(OTOOL_C); 2978 if (InputArgs.hasArg(OTOOL_d)) 2979 FilterSections.push_back("__DATA,__data"); 2980 DylibId = InputArgs.hasArg(OTOOL_D); 2981 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 2982 DataInCode = InputArgs.hasArg(OTOOL_G); 2983 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 2984 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 2985 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 2986 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 2987 DylibsUsed = InputArgs.hasArg(OTOOL_L); 2988 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 2989 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 2990 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 2991 InfoPlist = InputArgs.hasArg(OTOOL_P); 2992 Relocations = InputArgs.hasArg(OTOOL_r); 2993 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 2994 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 2995 FilterSections.push_back(Filter); 2996 } 2997 if (InputArgs.hasArg(OTOOL_t)) 2998 FilterSections.push_back("__TEXT,__text"); 2999 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 3000 InputArgs.hasArg(OTOOL_o); 3001 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 3002 if (InputArgs.hasArg(OTOOL_x)) 3003 FilterSections.push_back(",__text"); 3004 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 3005 3006 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); 3007 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); 3008 3009 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 3010 if (InputFilenames.empty()) 3011 reportCmdLineError("no input file"); 3012 3013 for (const Arg *A : InputArgs) { 3014 const Option &O = A->getOption(); 3015 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 3016 reportCmdLineWarning(O.getPrefixedName() + 3017 " is obsolete and not implemented"); 3018 } 3019 } 3020 } 3021 3022 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 3023 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 3024 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 3025 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 3026 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 3027 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 3028 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 3029 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 3030 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 3031 DisassembleSymbols = 3032 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 3033 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 3034 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 3035 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 3036 .Case("frames", DIDT_DebugFrame) 3037 .Default(DIDT_Null); 3038 if (DwarfDumpType == DIDT_Null) 3039 invalidArgValue(A); 3040 } 3041 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 3042 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 3043 Offloading = InputArgs.hasArg(OBJDUMP_offloading); 3044 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 3045 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 3046 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 3047 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 3048 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 3049 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 3050 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 3051 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 3052 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 3053 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 3054 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 3055 PrintImmHex = 3056 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); 3057 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 3058 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 3059 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 3060 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); 3061 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 3062 PrintSource = InputArgs.hasArg(OBJDUMP_source); 3063 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 3064 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 3065 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 3066 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 3067 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 3068 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 3069 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 3070 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 3071 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 3072 Wide = InputArgs.hasArg(OBJDUMP_wide); 3073 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 3074 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 3075 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 3076 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 3077 .Case("ascii", DVASCII) 3078 .Case("unicode", DVUnicode) 3079 .Default(DVInvalid); 3080 if (DbgVariables == DVInvalid) 3081 invalidArgValue(A); 3082 } 3083 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 3084 3085 parseMachOOptions(InputArgs); 3086 3087 // Parse -M (--disassembler-options) and deprecated 3088 // --x86-asm-syntax={att,intel}. 3089 // 3090 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 3091 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 3092 // called too late. For now we have to use the internal cl::opt option. 3093 const char *AsmSyntax = nullptr; 3094 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 3095 OBJDUMP_x86_asm_syntax_att, 3096 OBJDUMP_x86_asm_syntax_intel)) { 3097 switch (A->getOption().getID()) { 3098 case OBJDUMP_x86_asm_syntax_att: 3099 AsmSyntax = "--x86-asm-syntax=att"; 3100 continue; 3101 case OBJDUMP_x86_asm_syntax_intel: 3102 AsmSyntax = "--x86-asm-syntax=intel"; 3103 continue; 3104 } 3105 3106 SmallVector<StringRef, 2> Values; 3107 llvm::SplitString(A->getValue(), Values, ","); 3108 for (StringRef V : Values) { 3109 if (V == "att") 3110 AsmSyntax = "--x86-asm-syntax=att"; 3111 else if (V == "intel") 3112 AsmSyntax = "--x86-asm-syntax=intel"; 3113 else 3114 DisassemblerOptions.push_back(V.str()); 3115 } 3116 } 3117 if (AsmSyntax) { 3118 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 3119 llvm::cl::ParseCommandLineOptions(2, Argv); 3120 } 3121 3122 // Look up any provided build IDs, then append them to the input filenames. 3123 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { 3124 object::BuildID BuildID = parseBuildIDArg(A); 3125 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 3126 if (!Path) { 3127 reportCmdLineError(A->getSpelling() + ": could not find build ID '" + 3128 A->getValue() + "'"); 3129 } 3130 InputFilenames.push_back(std::move(*Path)); 3131 } 3132 3133 // objdump defaults to a.out if no filenames specified. 3134 if (InputFilenames.empty()) 3135 InputFilenames.push_back("a.out"); 3136 } 3137 3138 int main(int argc, char **argv) { 3139 using namespace llvm; 3140 InitLLVM X(argc, argv); 3141 3142 ToolName = argv[0]; 3143 std::unique_ptr<CommonOptTable> T; 3144 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 3145 3146 StringRef Stem = sys::path::stem(ToolName); 3147 auto Is = [=](StringRef Tool) { 3148 // We need to recognize the following filenames: 3149 // 3150 // llvm-objdump -> objdump 3151 // llvm-otool-10.exe -> otool 3152 // powerpc64-unknown-freebsd13-objdump -> objdump 3153 auto I = Stem.rfind_insensitive(Tool); 3154 return I != StringRef::npos && 3155 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 3156 }; 3157 if (Is("otool")) { 3158 T = std::make_unique<OtoolOptTable>(); 3159 Unknown = OTOOL_UNKNOWN; 3160 HelpFlag = OTOOL_help; 3161 HelpHiddenFlag = OTOOL_help_hidden; 3162 VersionFlag = OTOOL_version; 3163 } else { 3164 T = std::make_unique<ObjdumpOptTable>(); 3165 Unknown = OBJDUMP_UNKNOWN; 3166 HelpFlag = OBJDUMP_help; 3167 HelpHiddenFlag = OBJDUMP_help_hidden; 3168 VersionFlag = OBJDUMP_version; 3169 } 3170 3171 BumpPtrAllocator A; 3172 StringSaver Saver(A); 3173 opt::InputArgList InputArgs = 3174 T->parseArgs(argc, argv, Unknown, Saver, 3175 [&](StringRef Msg) { reportCmdLineError(Msg); }); 3176 3177 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 3178 T->printHelp(ToolName); 3179 return 0; 3180 } 3181 if (InputArgs.hasArg(HelpHiddenFlag)) { 3182 T->printHelp(ToolName, /*ShowHidden=*/true); 3183 return 0; 3184 } 3185 3186 // Initialize targets and assembly printers/parsers. 3187 InitializeAllTargetInfos(); 3188 InitializeAllTargetMCs(); 3189 InitializeAllDisassemblers(); 3190 3191 if (InputArgs.hasArg(VersionFlag)) { 3192 cl::PrintVersionMessage(); 3193 if (!Is("otool")) { 3194 outs() << '\n'; 3195 TargetRegistry::printRegisteredTargetsForVersion(outs()); 3196 } 3197 return 0; 3198 } 3199 3200 // Initialize debuginfod. 3201 const bool ShouldUseDebuginfodByDefault = 3202 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); 3203 std::vector<std::string> DebugFileDirectories = 3204 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); 3205 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, 3206 ShouldUseDebuginfodByDefault)) { 3207 HTTPClient::initialize(); 3208 BIDFetcher = 3209 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); 3210 } else { 3211 BIDFetcher = 3212 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); 3213 } 3214 3215 if (Is("otool")) 3216 parseOtoolOptions(InputArgs); 3217 else 3218 parseObjdumpOptions(InputArgs); 3219 3220 if (StartAddress >= StopAddress) 3221 reportCmdLineError("start address should be less than stop address"); 3222 3223 // Removes trailing separators from prefix. 3224 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 3225 Prefix.pop_back(); 3226 3227 if (AllHeaders) 3228 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 3229 SectionHeaders = SymbolTable = true; 3230 3231 if (DisassembleAll || PrintSource || PrintLines || 3232 !DisassembleSymbols.empty()) 3233 Disassemble = true; 3234 3235 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 3236 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 3237 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 3238 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && 3239 !(MachOOpt && 3240 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || 3241 DylibsUsed || ExportsTrie || FirstPrivateHeader || 3242 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || 3243 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || 3244 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { 3245 T->printHelp(ToolName); 3246 return 2; 3247 } 3248 3249 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 3250 3251 llvm::for_each(InputFilenames, dumpInput); 3252 3253 warnOnNoMatchForSections(); 3254 3255 return EXIT_SUCCESS; 3256 } 3257