xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 7aeb1536a1a1c1b9ffd6180a8d3824c7a1d7b2cf)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Debuginfod/BuildIDFetcher.h"
38 #include "llvm/Debuginfod/Debuginfod.h"
39 #include "llvm/Debuginfod/HTTPClient.h"
40 #include "llvm/Demangle/Demangle.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/MCContext.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
45 #include "llvm/MC/MCInst.h"
46 #include "llvm/MC/MCInstPrinter.h"
47 #include "llvm/MC/MCInstrAnalysis.h"
48 #include "llvm/MC/MCInstrInfo.h"
49 #include "llvm/MC/MCObjectFileInfo.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/MC/MCSubtargetInfo.h"
52 #include "llvm/MC/MCTargetOptions.h"
53 #include "llvm/MC/TargetRegistry.h"
54 #include "llvm/Object/Archive.h"
55 #include "llvm/Object/BuildID.h"
56 #include "llvm/Object/COFF.h"
57 #include "llvm/Object/COFFImportFile.h"
58 #include "llvm/Object/ELFObjectFile.h"
59 #include "llvm/Object/ELFTypes.h"
60 #include "llvm/Object/FaultMapParser.h"
61 #include "llvm/Object/MachO.h"
62 #include "llvm/Object/MachOUniversal.h"
63 #include "llvm/Object/ObjectFile.h"
64 #include "llvm/Object/OffloadBinary.h"
65 #include "llvm/Object/Wasm.h"
66 #include "llvm/Option/Arg.h"
67 #include "llvm/Option/ArgList.h"
68 #include "llvm/Option/Option.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/Errc.h"
72 #include "llvm/Support/FileSystem.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormatVariadic.h"
75 #include "llvm/Support/GraphWriter.h"
76 #include "llvm/Support/InitLLVM.h"
77 #include "llvm/Support/MemoryBuffer.h"
78 #include "llvm/Support/SourceMgr.h"
79 #include "llvm/Support/StringSaver.h"
80 #include "llvm/Support/TargetSelect.h"
81 #include "llvm/Support/WithColor.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/TargetParser/Host.h"
84 #include "llvm/TargetParser/Triple.h"
85 #include <algorithm>
86 #include <cctype>
87 #include <cstring>
88 #include <optional>
89 #include <system_error>
90 #include <unordered_map>
91 #include <utility>
92 
93 using namespace llvm;
94 using namespace llvm::object;
95 using namespace llvm::objdump;
96 using namespace llvm::opt;
97 
98 namespace {
99 
100 class CommonOptTable : public opt::GenericOptTable {
101 public:
102   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
103                  const char *Description)
104       : opt::GenericOptTable(OptionInfos), Usage(Usage),
105         Description(Description) {
106     setGroupedShortOptions(true);
107   }
108 
109   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
110     Argv0 = sys::path::filename(Argv0);
111     opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
112                                     Description, ShowHidden, ShowHidden);
113     // TODO Replace this with OptTable API once it adds extrahelp support.
114     outs() << "\nPass @FILE as argument to read options from FILE.\n";
115   }
116 
117 private:
118   const char *Usage;
119   const char *Description;
120 };
121 
122 // ObjdumpOptID is in ObjdumpOptID.h
123 namespace objdump_opt {
124 #define PREFIX(NAME, VALUE)                                                    \
125   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
126   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
127                                                 std::size(NAME##_init) - 1);
128 #include "ObjdumpOpts.inc"
129 #undef PREFIX
130 
131 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
132 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
133                HELPTEXT, METAVAR, VALUES)                                      \
134   {PREFIX,          NAME,         HELPTEXT,                                    \
135    METAVAR,         OBJDUMP_##ID, opt::Option::KIND##Class,                    \
136    PARAM,           FLAGS,        OBJDUMP_##GROUP,                             \
137    OBJDUMP_##ALIAS, ALIASARGS,    VALUES},
138 #include "ObjdumpOpts.inc"
139 #undef OPTION
140 };
141 } // namespace objdump_opt
142 
143 class ObjdumpOptTable : public CommonOptTable {
144 public:
145   ObjdumpOptTable()
146       : CommonOptTable(objdump_opt::ObjdumpInfoTable,
147                        " [options] <input object files>",
148                        "llvm object file dumper") {}
149 };
150 
151 enum OtoolOptID {
152   OTOOL_INVALID = 0, // This is not an option ID.
153 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
154                HELPTEXT, METAVAR, VALUES)                                      \
155   OTOOL_##ID,
156 #include "OtoolOpts.inc"
157 #undef OPTION
158 };
159 
160 namespace otool {
161 #define PREFIX(NAME, VALUE)                                                    \
162   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
163   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
164                                                 std::size(NAME##_init) - 1);
165 #include "OtoolOpts.inc"
166 #undef PREFIX
167 
168 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
169 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
170                HELPTEXT, METAVAR, VALUES)                                      \
171   {PREFIX,        NAME,       HELPTEXT,                                        \
172    METAVAR,       OTOOL_##ID, opt::Option::KIND##Class,                        \
173    PARAM,         FLAGS,      OTOOL_##GROUP,                                   \
174    OTOOL_##ALIAS, ALIASARGS,  VALUES},
175 #include "OtoolOpts.inc"
176 #undef OPTION
177 };
178 } // namespace otool
179 
180 class OtoolOptTable : public CommonOptTable {
181 public:
182   OtoolOptTable()
183       : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
184                        "Mach-O object file displaying tool") {}
185 };
186 
187 } // namespace
188 
189 #define DEBUG_TYPE "objdump"
190 
191 static uint64_t AdjustVMA;
192 static bool AllHeaders;
193 static std::string ArchName;
194 bool objdump::ArchiveHeaders;
195 bool objdump::Demangle;
196 bool objdump::Disassemble;
197 bool objdump::DisassembleAll;
198 bool objdump::SymbolDescription;
199 static std::vector<std::string> DisassembleSymbols;
200 static bool DisassembleZeroes;
201 static std::vector<std::string> DisassemblerOptions;
202 DIDumpType objdump::DwarfDumpType;
203 static bool DynamicRelocations;
204 static bool FaultMapSection;
205 static bool FileHeaders;
206 bool objdump::SectionContents;
207 static std::vector<std::string> InputFilenames;
208 bool objdump::PrintLines;
209 static bool MachOOpt;
210 std::string objdump::MCPU;
211 std::vector<std::string> objdump::MAttrs;
212 bool objdump::ShowRawInsn;
213 bool objdump::LeadingAddr;
214 static bool Offloading;
215 static bool RawClangAST;
216 bool objdump::Relocations;
217 bool objdump::PrintImmHex;
218 bool objdump::PrivateHeaders;
219 std::vector<std::string> objdump::FilterSections;
220 bool objdump::SectionHeaders;
221 static bool ShowAllSymbols;
222 static bool ShowLMA;
223 bool objdump::PrintSource;
224 
225 static uint64_t StartAddress;
226 static bool HasStartAddressFlag;
227 static uint64_t StopAddress = UINT64_MAX;
228 static bool HasStopAddressFlag;
229 
230 bool objdump::SymbolTable;
231 static bool SymbolizeOperands;
232 static bool DynamicSymbolTable;
233 std::string objdump::TripleName;
234 bool objdump::UnwindInfo;
235 static bool Wide;
236 std::string objdump::Prefix;
237 uint32_t objdump::PrefixStrip;
238 
239 DebugVarsFormat objdump::DbgVariables = DVDisabled;
240 
241 int objdump::DbgIndent = 52;
242 
243 static StringSet<> DisasmSymbolSet;
244 StringSet<> objdump::FoundSectionSet;
245 static StringRef ToolName;
246 
247 std::unique_ptr<BuildIDFetcher> BIDFetcher;
248 ExitOnError ExitOnErr;
249 
250 namespace {
251 struct FilterResult {
252   // True if the section should not be skipped.
253   bool Keep;
254 
255   // True if the index counter should be incremented, even if the section should
256   // be skipped. For example, sections may be skipped if they are not included
257   // in the --section flag, but we still want those to count toward the section
258   // count.
259   bool IncrementIndex;
260 };
261 } // namespace
262 
263 static FilterResult checkSectionFilter(object::SectionRef S) {
264   if (FilterSections.empty())
265     return {/*Keep=*/true, /*IncrementIndex=*/true};
266 
267   Expected<StringRef> SecNameOrErr = S.getName();
268   if (!SecNameOrErr) {
269     consumeError(SecNameOrErr.takeError());
270     return {/*Keep=*/false, /*IncrementIndex=*/false};
271   }
272   StringRef SecName = *SecNameOrErr;
273 
274   // StringSet does not allow empty key so avoid adding sections with
275   // no name (such as the section with index 0) here.
276   if (!SecName.empty())
277     FoundSectionSet.insert(SecName);
278 
279   // Only show the section if it's in the FilterSections list, but always
280   // increment so the indexing is stable.
281   return {/*Keep=*/is_contained(FilterSections, SecName),
282           /*IncrementIndex=*/true};
283 }
284 
285 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
286                                          uint64_t *Idx) {
287   // Start at UINT64_MAX so that the first index returned after an increment is
288   // zero (after the unsigned wrap).
289   if (Idx)
290     *Idx = UINT64_MAX;
291   return SectionFilter(
292       [Idx](object::SectionRef S) {
293         FilterResult Result = checkSectionFilter(S);
294         if (Idx != nullptr && Result.IncrementIndex)
295           *Idx += 1;
296         return Result.Keep;
297       },
298       O);
299 }
300 
301 std::string objdump::getFileNameForError(const object::Archive::Child &C,
302                                          unsigned Index) {
303   Expected<StringRef> NameOrErr = C.getName();
304   if (NameOrErr)
305     return std::string(NameOrErr.get());
306   // If we have an error getting the name then we print the index of the archive
307   // member. Since we are already in an error state, we just ignore this error.
308   consumeError(NameOrErr.takeError());
309   return "<file index: " + std::to_string(Index) + ">";
310 }
311 
312 void objdump::reportWarning(const Twine &Message, StringRef File) {
313   // Output order between errs() and outs() matters especially for archive
314   // files where the output is per member object.
315   outs().flush();
316   WithColor::warning(errs(), ToolName)
317       << "'" << File << "': " << Message << "\n";
318 }
319 
320 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
321   outs().flush();
322   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
323   exit(1);
324 }
325 
326 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
327                                        StringRef ArchiveName,
328                                        StringRef ArchitectureName) {
329   assert(E);
330   outs().flush();
331   WithColor::error(errs(), ToolName);
332   if (ArchiveName != "")
333     errs() << ArchiveName << "(" << FileName << ")";
334   else
335     errs() << "'" << FileName << "'";
336   if (!ArchitectureName.empty())
337     errs() << " (for architecture " << ArchitectureName << ")";
338   errs() << ": ";
339   logAllUnhandledErrors(std::move(E), errs());
340   exit(1);
341 }
342 
343 static void reportCmdLineWarning(const Twine &Message) {
344   WithColor::warning(errs(), ToolName) << Message << "\n";
345 }
346 
347 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
348   WithColor::error(errs(), ToolName) << Message << "\n";
349   exit(1);
350 }
351 
352 static void warnOnNoMatchForSections() {
353   SetVector<StringRef> MissingSections;
354   for (StringRef S : FilterSections) {
355     if (FoundSectionSet.count(S))
356       return;
357     // User may specify a unnamed section. Don't warn for it.
358     if (!S.empty())
359       MissingSections.insert(S);
360   }
361 
362   // Warn only if no section in FilterSections is matched.
363   for (StringRef S : MissingSections)
364     reportCmdLineWarning("section '" + S +
365                          "' mentioned in a -j/--section option, but not "
366                          "found in any input file");
367 }
368 
369 static const Target *getTarget(const ObjectFile *Obj) {
370   // Figure out the target triple.
371   Triple TheTriple("unknown-unknown-unknown");
372   if (TripleName.empty()) {
373     TheTriple = Obj->makeTriple();
374   } else {
375     TheTriple.setTriple(Triple::normalize(TripleName));
376     auto Arch = Obj->getArch();
377     if (Arch == Triple::arm || Arch == Triple::armeb)
378       Obj->setARMSubArch(TheTriple);
379   }
380 
381   // Get the target specific parser.
382   std::string Error;
383   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
384                                                          Error);
385   if (!TheTarget)
386     reportError(Obj->getFileName(), "can't find target: " + Error);
387 
388   // Update the triple name and return the found target.
389   TripleName = TheTriple.getTriple();
390   return TheTarget;
391 }
392 
393 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
394   return A.getOffset() < B.getOffset();
395 }
396 
397 static Error getRelocationValueString(const RelocationRef &Rel,
398                                       SmallVectorImpl<char> &Result) {
399   const ObjectFile *Obj = Rel.getObject();
400   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
401     return getELFRelocationValueString(ELF, Rel, Result);
402   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
403     return getCOFFRelocationValueString(COFF, Rel, Result);
404   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
405     return getWasmRelocationValueString(Wasm, Rel, Result);
406   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
407     return getMachORelocationValueString(MachO, Rel, Result);
408   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
409     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
410   llvm_unreachable("unknown object file format");
411 }
412 
413 /// Indicates whether this relocation should hidden when listing
414 /// relocations, usually because it is the trailing part of a multipart
415 /// relocation that will be printed as part of the leading relocation.
416 static bool getHidden(RelocationRef RelRef) {
417   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
418   if (!MachO)
419     return false;
420 
421   unsigned Arch = MachO->getArch();
422   DataRefImpl Rel = RelRef.getRawDataRefImpl();
423   uint64_t Type = MachO->getRelocationType(Rel);
424 
425   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
426   // is always hidden.
427   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
428     return Type == MachO::GENERIC_RELOC_PAIR;
429 
430   if (Arch == Triple::x86_64) {
431     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
432     // an X86_64_RELOC_SUBTRACTOR.
433     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
434       DataRefImpl RelPrev = Rel;
435       RelPrev.d.a--;
436       uint64_t PrevType = MachO->getRelocationType(RelPrev);
437       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
438         return true;
439     }
440   }
441 
442   return false;
443 }
444 
445 namespace {
446 
447 /// Get the column at which we want to start printing the instruction
448 /// disassembly, taking into account anything which appears to the left of it.
449 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
450   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
451 }
452 
453 static bool isAArch64Elf(const ObjectFile &Obj) {
454   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
455   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
456 }
457 
458 static bool isArmElf(const ObjectFile &Obj) {
459   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
460   return Elf && Elf->getEMachine() == ELF::EM_ARM;
461 }
462 
463 static bool isCSKYElf(const ObjectFile &Obj) {
464   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
465   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
466 }
467 
468 static bool hasMappingSymbols(const ObjectFile &Obj) {
469   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
470 }
471 
472 static bool isMappingSymbol(const SymbolInfoTy &Sym) {
473   return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") ||
474          Sym.Name.startswith("$a") || Sym.Name.startswith("$t");
475 }
476 
477 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
478                             const RelocationRef &Rel, uint64_t Address,
479                             bool Is64Bits) {
480   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
481   SmallString<16> Name;
482   SmallString<32> Val;
483   Rel.getTypeName(Name);
484   if (Error E = getRelocationValueString(Rel, Val))
485     reportError(std::move(E), FileName);
486   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
487   if (LeadingAddr)
488     OS << format(Fmt.data(), Address);
489   OS << Name << "\t" << Val;
490 }
491 
492 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
493                                    raw_ostream &OS) {
494   // The output of printInst starts with a tab. Print some spaces so that
495   // the tab has 1 column and advances to the target tab stop.
496   unsigned TabStop = getInstStartColumn(STI);
497   unsigned Column = OS.tell() - Start;
498   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
499 }
500 
501 class PrettyPrinter {
502 public:
503   virtual ~PrettyPrinter() = default;
504   virtual void
505   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
506             object::SectionedAddress Address, formatted_raw_ostream &OS,
507             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
508             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
509             LiveVariablePrinter &LVP) {
510     if (SP && (PrintSource || PrintLines))
511       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
512     LVP.printBetweenInsts(OS, false);
513 
514     size_t Start = OS.tell();
515     if (LeadingAddr)
516       OS << format("%8" PRIx64 ":", Address.Address);
517     if (ShowRawInsn) {
518       OS << ' ';
519       dumpBytes(Bytes, OS);
520     }
521 
522     AlignToInstStartColumn(Start, STI, OS);
523 
524     if (MI) {
525       // See MCInstPrinter::printInst. On targets where a PC relative immediate
526       // is relative to the next instruction and the length of a MCInst is
527       // difficult to measure (x86), this is the address of the next
528       // instruction.
529       uint64_t Addr =
530           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
531       IP.printInst(MI, Addr, "", STI, OS);
532     } else
533       OS << "\t<unknown>";
534   }
535 };
536 PrettyPrinter PrettyPrinterInst;
537 
538 class HexagonPrettyPrinter : public PrettyPrinter {
539 public:
540   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
541                  formatted_raw_ostream &OS) {
542     uint32_t opcode =
543       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
544     if (LeadingAddr)
545       OS << format("%8" PRIx64 ":", Address);
546     if (ShowRawInsn) {
547       OS << "\t";
548       dumpBytes(Bytes.slice(0, 4), OS);
549       OS << format("\t%08" PRIx32, opcode);
550     }
551   }
552   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
553                  object::SectionedAddress Address, formatted_raw_ostream &OS,
554                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
555                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
556                  LiveVariablePrinter &LVP) override {
557     if (SP && (PrintSource || PrintLines))
558       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
559     if (!MI) {
560       printLead(Bytes, Address.Address, OS);
561       OS << " <unknown>";
562       return;
563     }
564     std::string Buffer;
565     {
566       raw_string_ostream TempStream(Buffer);
567       IP.printInst(MI, Address.Address, "", STI, TempStream);
568     }
569     StringRef Contents(Buffer);
570     // Split off bundle attributes
571     auto PacketBundle = Contents.rsplit('\n');
572     // Split off first instruction from the rest
573     auto HeadTail = PacketBundle.first.split('\n');
574     auto Preamble = " { ";
575     auto Separator = "";
576 
577     // Hexagon's packets require relocations to be inline rather than
578     // clustered at the end of the packet.
579     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
580     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
581     auto PrintReloc = [&]() -> void {
582       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
583         if (RelCur->getOffset() == Address.Address) {
584           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
585           return;
586         }
587         ++RelCur;
588       }
589     };
590 
591     while (!HeadTail.first.empty()) {
592       OS << Separator;
593       Separator = "\n";
594       if (SP && (PrintSource || PrintLines))
595         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
596       printLead(Bytes, Address.Address, OS);
597       OS << Preamble;
598       Preamble = "   ";
599       StringRef Inst;
600       auto Duplex = HeadTail.first.split('\v');
601       if (!Duplex.second.empty()) {
602         OS << Duplex.first;
603         OS << "; ";
604         Inst = Duplex.second;
605       }
606       else
607         Inst = HeadTail.first;
608       OS << Inst;
609       HeadTail = HeadTail.second.split('\n');
610       if (HeadTail.first.empty())
611         OS << " } " << PacketBundle.second;
612       PrintReloc();
613       Bytes = Bytes.slice(4);
614       Address.Address += 4;
615     }
616   }
617 };
618 HexagonPrettyPrinter HexagonPrettyPrinterInst;
619 
620 class AMDGCNPrettyPrinter : public PrettyPrinter {
621 public:
622   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
623                  object::SectionedAddress Address, formatted_raw_ostream &OS,
624                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
625                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
626                  LiveVariablePrinter &LVP) override {
627     if (SP && (PrintSource || PrintLines))
628       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
629 
630     if (MI) {
631       SmallString<40> InstStr;
632       raw_svector_ostream IS(InstStr);
633 
634       IP.printInst(MI, Address.Address, "", STI, IS);
635 
636       OS << left_justify(IS.str(), 60);
637     } else {
638       // an unrecognized encoding - this is probably data so represent it
639       // using the .long directive, or .byte directive if fewer than 4 bytes
640       // remaining
641       if (Bytes.size() >= 4) {
642         OS << format("\t.long 0x%08" PRIx32 " ",
643                      support::endian::read32<support::little>(Bytes.data()));
644         OS.indent(42);
645       } else {
646           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
647           for (unsigned int i = 1; i < Bytes.size(); i++)
648             OS << format(", 0x%02" PRIx8, Bytes[i]);
649           OS.indent(55 - (6 * Bytes.size()));
650       }
651     }
652 
653     OS << format("// %012" PRIX64 ":", Address.Address);
654     if (Bytes.size() >= 4) {
655       // D should be casted to uint32_t here as it is passed by format to
656       // snprintf as vararg.
657       for (uint32_t D :
658            ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
659                     Bytes.size() / 4))
660           OS << format(" %08" PRIX32, D);
661     } else {
662       for (unsigned char B : Bytes)
663         OS << format(" %02" PRIX8, B);
664     }
665 
666     if (!Annot.empty())
667       OS << " // " << Annot;
668   }
669 };
670 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
671 
672 class BPFPrettyPrinter : public PrettyPrinter {
673 public:
674   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
675                  object::SectionedAddress Address, formatted_raw_ostream &OS,
676                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
677                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
678                  LiveVariablePrinter &LVP) override {
679     if (SP && (PrintSource || PrintLines))
680       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
681     if (LeadingAddr)
682       OS << format("%8" PRId64 ":", Address.Address / 8);
683     if (ShowRawInsn) {
684       OS << "\t";
685       dumpBytes(Bytes, OS);
686     }
687     if (MI)
688       IP.printInst(MI, Address.Address, "", STI, OS);
689     else
690       OS << "\t<unknown>";
691   }
692 };
693 BPFPrettyPrinter BPFPrettyPrinterInst;
694 
695 class ARMPrettyPrinter : public PrettyPrinter {
696 public:
697   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
698                  object::SectionedAddress Address, formatted_raw_ostream &OS,
699                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
700                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
701                  LiveVariablePrinter &LVP) override {
702     if (SP && (PrintSource || PrintLines))
703       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
704     LVP.printBetweenInsts(OS, false);
705 
706     size_t Start = OS.tell();
707     if (LeadingAddr)
708       OS << format("%8" PRIx64 ":", Address.Address);
709     if (ShowRawInsn) {
710       size_t Pos = 0, End = Bytes.size();
711       if (STI.checkFeatures("+thumb-mode")) {
712         for (; Pos + 2 <= End; Pos += 2)
713           OS << ' '
714              << format_hex_no_prefix(
715                     llvm::support::endian::read<uint16_t>(
716                         Bytes.data() + Pos, InstructionEndianness),
717                     4);
718       } else {
719         for (; Pos + 4 <= End; Pos += 4)
720           OS << ' '
721              << format_hex_no_prefix(
722                     llvm::support::endian::read<uint32_t>(
723                         Bytes.data() + Pos, InstructionEndianness),
724                     8);
725       }
726       if (Pos < End) {
727         OS << ' ';
728         dumpBytes(Bytes.slice(Pos), OS);
729       }
730     }
731 
732     AlignToInstStartColumn(Start, STI, OS);
733 
734     if (MI) {
735       IP.printInst(MI, Address.Address, "", STI, OS);
736     } else
737       OS << "\t<unknown>";
738   }
739 
740   void setInstructionEndianness(llvm::support::endianness Endianness) {
741     InstructionEndianness = Endianness;
742   }
743 
744 private:
745   llvm::support::endianness InstructionEndianness = llvm::support::little;
746 };
747 ARMPrettyPrinter ARMPrettyPrinterInst;
748 
749 class AArch64PrettyPrinter : public PrettyPrinter {
750 public:
751   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
752                  object::SectionedAddress Address, formatted_raw_ostream &OS,
753                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
754                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
755                  LiveVariablePrinter &LVP) override {
756     if (SP && (PrintSource || PrintLines))
757       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
758     LVP.printBetweenInsts(OS, false);
759 
760     size_t Start = OS.tell();
761     if (LeadingAddr)
762       OS << format("%8" PRIx64 ":", Address.Address);
763     if (ShowRawInsn) {
764       size_t Pos = 0, End = Bytes.size();
765       for (; Pos + 4 <= End; Pos += 4)
766         OS << ' '
767            << format_hex_no_prefix(
768                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
769                                                         llvm::support::little),
770                   8);
771       if (Pos < End) {
772         OS << ' ';
773         dumpBytes(Bytes.slice(Pos), OS);
774       }
775     }
776 
777     AlignToInstStartColumn(Start, STI, OS);
778 
779     if (MI) {
780       IP.printInst(MI, Address.Address, "", STI, OS);
781     } else
782       OS << "\t<unknown>";
783   }
784 };
785 AArch64PrettyPrinter AArch64PrettyPrinterInst;
786 
787 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
788   switch(Triple.getArch()) {
789   default:
790     return PrettyPrinterInst;
791   case Triple::hexagon:
792     return HexagonPrettyPrinterInst;
793   case Triple::amdgcn:
794     return AMDGCNPrettyPrinterInst;
795   case Triple::bpfel:
796   case Triple::bpfeb:
797     return BPFPrettyPrinterInst;
798   case Triple::arm:
799   case Triple::armeb:
800   case Triple::thumb:
801   case Triple::thumbeb:
802     return ARMPrettyPrinterInst;
803   case Triple::aarch64:
804   case Triple::aarch64_be:
805   case Triple::aarch64_32:
806     return AArch64PrettyPrinterInst;
807   }
808 }
809 }
810 
811 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
812   assert(Obj.isELF());
813   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
814     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
815                          Obj.getFileName())
816         ->getType();
817   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
818     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
819                          Obj.getFileName())
820         ->getType();
821   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
822     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
823                          Obj.getFileName())
824         ->getType();
825   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
826     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
827                          Obj.getFileName())
828         ->getType();
829   llvm_unreachable("Unsupported binary format");
830 }
831 
832 template <class ELFT>
833 static void
834 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
835                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
836   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
837     uint8_t SymbolType = Symbol.getELFType();
838     if (SymbolType == ELF::STT_SECTION)
839       continue;
840 
841     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
842     // ELFSymbolRef::getAddress() returns size instead of value for common
843     // symbols which is not desirable for disassembly output. Overriding.
844     if (SymbolType == ELF::STT_COMMON)
845       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
846                               Obj.getFileName())
847                     ->st_value;
848 
849     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
850     if (Name.empty())
851       continue;
852 
853     section_iterator SecI =
854         unwrapOrError(Symbol.getSection(), Obj.getFileName());
855     if (SecI == Obj.section_end())
856       continue;
857 
858     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
859   }
860 }
861 
862 static void
863 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
864                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
865   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
866     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
867   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
868     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
869   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
870     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
871   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
872     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
873   else
874     llvm_unreachable("Unsupported binary format");
875 }
876 
877 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
878   for (auto SecI : Obj.sections()) {
879     const WasmSection &Section = Obj.getWasmSection(SecI);
880     if (Section.Type == wasm::WASM_SEC_CODE)
881       return SecI;
882   }
883   return std::nullopt;
884 }
885 
886 static void
887 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
888                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
889   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
890   if (!Section)
891     return;
892   SectionSymbolsTy &Symbols = AllSymbols[*Section];
893 
894   std::set<uint64_t> SymbolAddresses;
895   for (const auto &Sym : Symbols)
896     SymbolAddresses.insert(Sym.Addr);
897 
898   for (const wasm::WasmFunction &Function : Obj.functions()) {
899     uint64_t Address = Function.CodeSectionOffset;
900     // Only add fallback symbols for functions not already present in the symbol
901     // table.
902     if (SymbolAddresses.count(Address))
903       continue;
904     // This function has no symbol, so it should have no SymbolName.
905     assert(Function.SymbolName.empty());
906     // We use DebugName for the name, though it may be empty if there is no
907     // "name" custom section, or that section is missing a name for this
908     // function.
909     StringRef Name = Function.DebugName;
910     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
911   }
912 }
913 
914 static void addPltEntries(const ObjectFile &Obj,
915                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
916                           StringSaver &Saver) {
917   auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
918   if (!ElfObj)
919     return;
920   std::optional<SectionRef> Plt;
921   for (const SectionRef &Section : Obj.sections()) {
922     Expected<StringRef> SecNameOrErr = Section.getName();
923     if (!SecNameOrErr) {
924       consumeError(SecNameOrErr.takeError());
925       continue;
926     }
927     if (*SecNameOrErr == ".plt")
928       Plt = Section;
929   }
930   if (!Plt)
931     return;
932   for (auto PltEntry : ElfObj->getPltAddresses()) {
933     if (PltEntry.first) {
934       SymbolRef Symbol(*PltEntry.first, ElfObj);
935       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
936       if (Expected<StringRef> NameOrErr = Symbol.getName()) {
937         if (!NameOrErr->empty())
938           AllSymbols[*Plt].emplace_back(
939               PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
940               SymbolType);
941         continue;
942       } else {
943         // The warning has been reported in disassembleObject().
944         consumeError(NameOrErr.takeError());
945       }
946     }
947     reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
948                       " references an invalid symbol",
949                   Obj.getFileName());
950   }
951 }
952 
953 // Normally the disassembly output will skip blocks of zeroes. This function
954 // returns the number of zero bytes that can be skipped when dumping the
955 // disassembly of the instructions in Buf.
956 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
957   // Find the number of leading zeroes.
958   size_t N = 0;
959   while (N < Buf.size() && !Buf[N])
960     ++N;
961 
962   // We may want to skip blocks of zero bytes, but unless we see
963   // at least 8 of them in a row.
964   if (N < 8)
965     return 0;
966 
967   // We skip zeroes in multiples of 4 because do not want to truncate an
968   // instruction if it starts with a zero byte.
969   return N & ~0x3;
970 }
971 
972 // Returns a map from sections to their relocations.
973 static std::map<SectionRef, std::vector<RelocationRef>>
974 getRelocsMap(object::ObjectFile const &Obj) {
975   std::map<SectionRef, std::vector<RelocationRef>> Ret;
976   uint64_t I = (uint64_t)-1;
977   for (SectionRef Sec : Obj.sections()) {
978     ++I;
979     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
980     if (!RelocatedOrErr)
981       reportError(Obj.getFileName(),
982                   "section (" + Twine(I) +
983                       "): failed to get a relocated section: " +
984                       toString(RelocatedOrErr.takeError()));
985 
986     section_iterator Relocated = *RelocatedOrErr;
987     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
988       continue;
989     std::vector<RelocationRef> &V = Ret[*Relocated];
990     append_range(V, Sec.relocations());
991     // Sort relocations by address.
992     llvm::stable_sort(V, isRelocAddressLess);
993   }
994   return Ret;
995 }
996 
997 // Used for --adjust-vma to check if address should be adjusted by the
998 // specified value for a given section.
999 // For ELF we do not adjust non-allocatable sections like debug ones,
1000 // because they are not loadable.
1001 // TODO: implement for other file formats.
1002 static bool shouldAdjustVA(const SectionRef &Section) {
1003   const ObjectFile *Obj = Section.getObject();
1004   if (Obj->isELF())
1005     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1006   return false;
1007 }
1008 
1009 
1010 typedef std::pair<uint64_t, char> MappingSymbolPair;
1011 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1012                                  uint64_t Address) {
1013   auto It =
1014       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1015         return Val.first <= Address;
1016       });
1017   // Return zero for any address before the first mapping symbol; this means
1018   // we should use the default disassembly mode, depending on the target.
1019   if (It == MappingSymbols.begin())
1020     return '\x00';
1021   return (It - 1)->second;
1022 }
1023 
1024 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1025                                uint64_t End, const ObjectFile &Obj,
1026                                ArrayRef<uint8_t> Bytes,
1027                                ArrayRef<MappingSymbolPair> MappingSymbols,
1028                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1029   support::endianness Endian =
1030       Obj.isLittleEndian() ? support::little : support::big;
1031   size_t Start = OS.tell();
1032   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1033   if (Index + 4 <= End) {
1034     dumpBytes(Bytes.slice(Index, 4), OS);
1035     AlignToInstStartColumn(Start, STI, OS);
1036     OS << "\t.word\t"
1037            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1038                          10);
1039     return 4;
1040   }
1041   if (Index + 2 <= End) {
1042     dumpBytes(Bytes.slice(Index, 2), OS);
1043     AlignToInstStartColumn(Start, STI, OS);
1044     OS << "\t.short\t"
1045        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1046     return 2;
1047   }
1048   dumpBytes(Bytes.slice(Index, 1), OS);
1049   AlignToInstStartColumn(Start, STI, OS);
1050   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1051   return 1;
1052 }
1053 
1054 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1055                         ArrayRef<uint8_t> Bytes) {
1056   // print out data up to 8 bytes at a time in hex and ascii
1057   uint8_t AsciiData[9] = {'\0'};
1058   uint8_t Byte;
1059   int NumBytes = 0;
1060 
1061   for (; Index < End; ++Index) {
1062     if (NumBytes == 0)
1063       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1064     Byte = Bytes.slice(Index)[0];
1065     outs() << format(" %02x", Byte);
1066     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1067 
1068     uint8_t IndentOffset = 0;
1069     NumBytes++;
1070     if (Index == End - 1 || NumBytes > 8) {
1071       // Indent the space for less than 8 bytes data.
1072       // 2 spaces for byte and one for space between bytes
1073       IndentOffset = 3 * (8 - NumBytes);
1074       for (int Excess = NumBytes; Excess < 8; Excess++)
1075         AsciiData[Excess] = '\0';
1076       NumBytes = 8;
1077     }
1078     if (NumBytes == 8) {
1079       AsciiData[8] = '\0';
1080       outs() << std::string(IndentOffset, ' ') << "         ";
1081       outs() << reinterpret_cast<char *>(AsciiData);
1082       outs() << '\n';
1083       NumBytes = 0;
1084     }
1085   }
1086 }
1087 
1088 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1089                                        const SymbolRef &Symbol) {
1090   const StringRef FileName = Obj.getFileName();
1091   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1092   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1093 
1094   if (Obj.isXCOFF() && SymbolDescription) {
1095     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1096     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1097 
1098     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1099     std::optional<XCOFF::StorageMappingClass> Smc =
1100         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1101     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1102                         isLabel(XCOFFObj, Symbol));
1103   } else if (Obj.isXCOFF()) {
1104     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1105     return SymbolInfoTy(Addr, Name, SymType, true);
1106   } else
1107     return SymbolInfoTy(Addr, Name,
1108                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1109                                     : (uint8_t)ELF::STT_NOTYPE);
1110 }
1111 
1112 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1113                                           const uint64_t Addr, StringRef &Name,
1114                                           uint8_t Type) {
1115   if (Obj.isXCOFF() && SymbolDescription)
1116     return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false);
1117   else
1118     return SymbolInfoTy(Addr, Name, Type);
1119 }
1120 
1121 static void
1122 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1123                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1124                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1125   if (AddrToBBAddrMap.empty())
1126     return;
1127   Labels.clear();
1128   uint64_t StartAddress = SectionAddr + Start;
1129   uint64_t EndAddress = SectionAddr + End;
1130   auto Iter = AddrToBBAddrMap.find(StartAddress);
1131   if (Iter == AddrToBBAddrMap.end())
1132     return;
1133   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1134     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1135     if (BBAddress >= EndAddress)
1136       continue;
1137     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1138   }
1139 }
1140 
1141 static void collectLocalBranchTargets(
1142     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1143     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1144     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1145   // So far only supports PowerPC and X86.
1146   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1147     return;
1148 
1149   Labels.clear();
1150   unsigned LabelCount = 0;
1151   Start += SectionAddr;
1152   End += SectionAddr;
1153   uint64_t Index = Start;
1154   while (Index < End) {
1155     // Disassemble a real instruction and record function-local branch labels.
1156     MCInst Inst;
1157     uint64_t Size;
1158     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1159     bool Disassembled =
1160         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1161     if (Size == 0)
1162       Size = std::min<uint64_t>(ThisBytes.size(),
1163                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1164 
1165     if (Disassembled && MIA) {
1166       uint64_t Target;
1167       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1168       // On PowerPC, if the address of a branch is the same as the target, it
1169       // means that it's a function call. Do not mark the label for this case.
1170       if (TargetKnown && (Target >= Start && Target < End) &&
1171           !Labels.count(Target) &&
1172           !(STI->getTargetTriple().isPPC() && Target == Index))
1173         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1174     }
1175     Index += Size;
1176   }
1177 }
1178 
1179 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1180 // This is currently only used on AMDGPU, and assumes the format of the
1181 // void * argument passed to AMDGPU's createMCSymbolizer.
1182 static void addSymbolizer(
1183     MCContext &Ctx, const Target *Target, StringRef TripleName,
1184     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1185     SectionSymbolsTy &Symbols,
1186     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1187 
1188   std::unique_ptr<MCRelocationInfo> RelInfo(
1189       Target->createMCRelocationInfo(TripleName, Ctx));
1190   if (!RelInfo)
1191     return;
1192   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1193       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1194   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1195   DisAsm->setSymbolizer(std::move(Symbolizer));
1196 
1197   if (!SymbolizeOperands)
1198     return;
1199 
1200   // Synthesize labels referenced by branch instructions by
1201   // disassembling, discarding the output, and collecting the referenced
1202   // addresses from the symbolizer.
1203   for (size_t Index = 0; Index != Bytes.size();) {
1204     MCInst Inst;
1205     uint64_t Size;
1206     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1207     const uint64_t ThisAddr = SectionAddr + Index;
1208     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1209     if (Size == 0)
1210       Size = std::min<uint64_t>(ThisBytes.size(),
1211                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1212     Index += Size;
1213   }
1214   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1215   // Copy and sort to remove duplicates.
1216   std::vector<uint64_t> LabelAddrs;
1217   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1218                     LabelAddrsRef.end());
1219   llvm::sort(LabelAddrs);
1220   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1221                     LabelAddrs.begin());
1222   // Add the labels.
1223   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1224     auto Name = std::make_unique<std::string>();
1225     *Name = (Twine("L") + Twine(LabelNum)).str();
1226     SynthesizedLabelNames.push_back(std::move(Name));
1227     Symbols.push_back(SymbolInfoTy(
1228         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1229   }
1230   llvm::stable_sort(Symbols);
1231   // Recreate the symbolizer with the new symbols list.
1232   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1233   Symbolizer.reset(Target->createMCSymbolizer(
1234       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1235   DisAsm->setSymbolizer(std::move(Symbolizer));
1236 }
1237 
1238 static StringRef getSegmentName(const MachOObjectFile *MachO,
1239                                 const SectionRef &Section) {
1240   if (MachO) {
1241     DataRefImpl DR = Section.getRawDataRefImpl();
1242     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1243     return SegmentName;
1244   }
1245   return "";
1246 }
1247 
1248 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1249                                     const MCAsmInfo &MAI,
1250                                     const MCSubtargetInfo &STI,
1251                                     StringRef Comments,
1252                                     LiveVariablePrinter &LVP) {
1253   do {
1254     if (!Comments.empty()) {
1255       // Emit a line of comments.
1256       StringRef Comment;
1257       std::tie(Comment, Comments) = Comments.split('\n');
1258       // MAI.getCommentColumn() assumes that instructions are printed at the
1259       // position of 8, while getInstStartColumn() returns the actual position.
1260       unsigned CommentColumn =
1261           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1262       FOS.PadToColumn(CommentColumn);
1263       FOS << MAI.getCommentString() << ' ' << Comment;
1264     }
1265     LVP.printAfterInst(FOS);
1266     FOS << '\n';
1267   } while (!Comments.empty());
1268   FOS.flush();
1269 }
1270 
1271 static void createFakeELFSections(ObjectFile &Obj) {
1272   assert(Obj.isELF());
1273   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1274     Elf32LEObj->createFakeSections();
1275   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1276     Elf64LEObj->createFakeSections();
1277   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1278     Elf32BEObj->createFakeSections();
1279   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1280     Elf64BEObj->createFakeSections();
1281   else
1282     llvm_unreachable("Unsupported binary format");
1283 }
1284 
1285 // Tries to fetch a more complete version of the given object file using its
1286 // Build ID. Returns std::nullopt if nothing was found.
1287 static std::optional<OwningBinary<Binary>>
1288 fetchBinaryByBuildID(const ObjectFile &Obj) {
1289   object::BuildIDRef BuildID = getBuildID(&Obj);
1290   if (BuildID.empty())
1291     return std::nullopt;
1292   std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1293   if (!Path)
1294     return std::nullopt;
1295   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1296   if (!DebugBinary) {
1297     reportWarning(toString(DebugBinary.takeError()), *Path);
1298     return std::nullopt;
1299   }
1300   return std::move(*DebugBinary);
1301 }
1302 
1303 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1304                               const ObjectFile &DbgObj, MCContext &Ctx,
1305                               MCDisassembler *PrimaryDisAsm,
1306                               MCDisassembler *SecondaryDisAsm,
1307                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1308                               const MCSubtargetInfo *PrimarySTI,
1309                               const MCSubtargetInfo *SecondarySTI,
1310                               PrettyPrinter &PIP, SourcePrinter &SP,
1311                               bool InlineRelocs) {
1312   const MCSubtargetInfo *STI = PrimarySTI;
1313   MCDisassembler *DisAsm = PrimaryDisAsm;
1314   bool PrimaryIsThumb = false;
1315   if (isArmElf(Obj))
1316     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1317 
1318   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1319   if (InlineRelocs)
1320     RelocMap = getRelocsMap(Obj);
1321   bool Is64Bits = Obj.getBytesInAddress() > 4;
1322 
1323   // Create a mapping from virtual address to symbol name.  This is used to
1324   // pretty print the symbols while disassembling.
1325   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1326   SectionSymbolsTy AbsoluteSymbols;
1327   const StringRef FileName = Obj.getFileName();
1328   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1329   for (const SymbolRef &Symbol : Obj.symbols()) {
1330     Expected<StringRef> NameOrErr = Symbol.getName();
1331     if (!NameOrErr) {
1332       reportWarning(toString(NameOrErr.takeError()), FileName);
1333       continue;
1334     }
1335     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1336       continue;
1337 
1338     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1339       continue;
1340 
1341     if (MachO) {
1342       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1343       // symbols that support MachO header introspection. They do not bind to
1344       // code locations and are irrelevant for disassembly.
1345       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1346         continue;
1347       // Don't ask a Mach-O STAB symbol for its section unless you know that
1348       // STAB symbol's section field refers to a valid section index. Otherwise
1349       // the symbol may error trying to load a section that does not exist.
1350       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1351       uint8_t NType = (MachO->is64Bit() ?
1352                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1353                        MachO->getSymbolTableEntry(SymDRI).n_type);
1354       if (NType & MachO::N_STAB)
1355         continue;
1356     }
1357 
1358     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1359     if (SecI != Obj.section_end())
1360       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1361     else
1362       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1363   }
1364 
1365   if (AllSymbols.empty() && Obj.isELF())
1366     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1367 
1368   if (Obj.isWasm())
1369     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1370 
1371   if (Obj.isELF() && Obj.sections().empty())
1372     createFakeELFSections(Obj);
1373 
1374   BumpPtrAllocator A;
1375   StringSaver Saver(A);
1376   addPltEntries(Obj, AllSymbols, Saver);
1377 
1378   // Create a mapping from virtual address to section. An empty section can
1379   // cause more than one section at the same address. Sort such sections to be
1380   // before same-addressed non-empty sections so that symbol lookups prefer the
1381   // non-empty section.
1382   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1383   for (SectionRef Sec : Obj.sections())
1384     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1385   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1386     if (LHS.first != RHS.first)
1387       return LHS.first < RHS.first;
1388     return LHS.second.getSize() < RHS.second.getSize();
1389   });
1390 
1391   // Linked executables (.exe and .dll files) typically don't include a real
1392   // symbol table but they might contain an export table.
1393   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1394     for (const auto &ExportEntry : COFFObj->export_directories()) {
1395       StringRef Name;
1396       if (Error E = ExportEntry.getSymbolName(Name))
1397         reportError(std::move(E), Obj.getFileName());
1398       if (Name.empty())
1399         continue;
1400 
1401       uint32_t RVA;
1402       if (Error E = ExportEntry.getExportRVA(RVA))
1403         reportError(std::move(E), Obj.getFileName());
1404 
1405       uint64_t VA = COFFObj->getImageBase() + RVA;
1406       auto Sec = partition_point(
1407           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1408             return O.first <= VA;
1409           });
1410       if (Sec != SectionAddresses.begin()) {
1411         --Sec;
1412         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1413       } else
1414         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1415     }
1416   }
1417 
1418   // Sort all the symbols, this allows us to use a simple binary search to find
1419   // Multiple symbols can have the same address. Use a stable sort to stabilize
1420   // the output.
1421   StringSet<> FoundDisasmSymbolSet;
1422   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1423     llvm::stable_sort(SecSyms.second);
1424   llvm::stable_sort(AbsoluteSymbols);
1425 
1426   std::unique_ptr<DWARFContext> DICtx;
1427   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1428 
1429   if (DbgVariables != DVDisabled) {
1430     DICtx = DWARFContext::create(DbgObj);
1431     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1432       LVP.addCompileUnit(CU->getUnitDIE(false));
1433   }
1434 
1435   LLVM_DEBUG(LVP.dump());
1436 
1437   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1438   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1439                                std::nullopt) {
1440     AddrToBBAddrMap.clear();
1441     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1442       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1443       if (!BBAddrMapsOrErr) {
1444         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1445         return;
1446       }
1447       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1448         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1449                                 std::move(FunctionBBAddrMap));
1450     }
1451   };
1452 
1453   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1454   // single mapping, since they don't have any conflicts.
1455   if (SymbolizeOperands && !Obj.isRelocatableObject())
1456     ReadBBAddrMap();
1457 
1458   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1459     if (FilterSections.empty() && !DisassembleAll &&
1460         (!Section.isText() || Section.isVirtual()))
1461       continue;
1462 
1463     uint64_t SectionAddr = Section.getAddress();
1464     uint64_t SectSize = Section.getSize();
1465     if (!SectSize)
1466       continue;
1467 
1468     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1469     // corresponding to this section, if present.
1470     if (SymbolizeOperands && Obj.isRelocatableObject())
1471       ReadBBAddrMap(Section.getIndex());
1472 
1473     // Get the list of all the symbols in this section.
1474     SectionSymbolsTy &Symbols = AllSymbols[Section];
1475     std::vector<MappingSymbolPair> MappingSymbols;
1476     if (hasMappingSymbols(Obj)) {
1477       for (const auto &Symb : Symbols) {
1478         uint64_t Address = Symb.Addr;
1479         StringRef Name = Symb.Name;
1480         if (Name.startswith("$d"))
1481           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1482         if (Name.startswith("$x"))
1483           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1484         if (Name.startswith("$a"))
1485           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1486         if (Name.startswith("$t"))
1487           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1488       }
1489     }
1490 
1491     llvm::sort(MappingSymbols);
1492 
1493     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1494         unwrapOrError(Section.getContents(), Obj.getFileName()));
1495 
1496     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1497     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1498       // AMDGPU disassembler uses symbolizer for printing labels
1499       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1500                     Symbols, SynthesizedLabelNames);
1501     }
1502 
1503     StringRef SegmentName = getSegmentName(MachO, Section);
1504     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1505     // If the section has no symbol at the start, just insert a dummy one.
1506     if (Symbols.empty() || Symbols[0].Addr != 0) {
1507       Symbols.insert(Symbols.begin(),
1508                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1509                                            Section.isText() ? ELF::STT_FUNC
1510                                                             : ELF::STT_OBJECT));
1511     }
1512 
1513     SmallString<40> Comments;
1514     raw_svector_ostream CommentStream(Comments);
1515 
1516     uint64_t VMAAdjustment = 0;
1517     if (shouldAdjustVA(Section))
1518       VMAAdjustment = AdjustVMA;
1519 
1520     // In executable and shared objects, r_offset holds a virtual address.
1521     // Subtract SectionAddr from the r_offset field of a relocation to get
1522     // the section offset.
1523     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1524     uint64_t Size;
1525     uint64_t Index;
1526     bool PrintedSection = false;
1527     std::vector<RelocationRef> Rels = RelocMap[Section];
1528     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1529     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1530 
1531     // Loop over each chunk of code between two points where at least
1532     // one symbol is defined.
1533     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1534       // Advance SI past all the symbols starting at the same address,
1535       // and make an ArrayRef of them.
1536       unsigned FirstSI = SI;
1537       uint64_t Start = Symbols[SI].Addr;
1538       ArrayRef<SymbolInfoTy> SymbolsHere;
1539       while (SI != SE && Symbols[SI].Addr == Start)
1540         ++SI;
1541       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1542 
1543       // Get the demangled names of all those symbols. We end up with a vector
1544       // of StringRef that holds the names we're going to use, and a vector of
1545       // std::string that stores the new strings returned by demangle(), if
1546       // any. If we don't call demangle() then that vector can stay empty.
1547       std::vector<StringRef> SymNamesHere;
1548       std::vector<std::string> DemangledSymNamesHere;
1549       if (Demangle) {
1550         // Fetch the demangled names and store them locally.
1551         for (const SymbolInfoTy &Symbol : SymbolsHere)
1552           DemangledSymNamesHere.push_back(demangle(Symbol.Name.str()));
1553         // Now we've finished modifying that vector, it's safe to make
1554         // a vector of StringRefs pointing into it.
1555         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1556                             DemangledSymNamesHere.end());
1557       } else {
1558         for (const SymbolInfoTy &Symbol : SymbolsHere)
1559           SymNamesHere.push_back(Symbol.Name);
1560       }
1561 
1562       // Distinguish ELF data from code symbols, which will be used later on to
1563       // decide whether to 'disassemble' this chunk as a data declaration via
1564       // dumpELFData(), or whether to treat it as code.
1565       //
1566       // If data _and_ code symbols are defined at the same address, the code
1567       // takes priority, on the grounds that disassembling code is our main
1568       // purpose here, and it would be a worse failure to _not_ interpret
1569       // something that _was_ meaningful as code than vice versa.
1570       //
1571       // Any ELF symbol type that is not clearly data will be regarded as code.
1572       // In particular, one of the uses of STT_NOTYPE is for branch targets
1573       // inside functions, for which STT_FUNC would be inaccurate.
1574       //
1575       // So here, we spot whether there's any non-data symbol present at all,
1576       // and only set the DisassembleAsData flag if there isn't. Also, we use
1577       // this distinction to inform the decision of which symbol to print at
1578       // the head of the section, so that if we're printing code, we print a
1579       // code-related symbol name to go with it.
1580       bool DisassembleAsData = false;
1581       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1582       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1583         DisassembleAsData = true; // unless we find a code symbol below
1584 
1585         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1586           uint8_t SymTy = SymbolsHere[i].Type;
1587           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1588             DisassembleAsData = false;
1589             DisplaySymIndex = i;
1590           }
1591         }
1592       }
1593 
1594       // Decide which symbol(s) from this collection we're going to print.
1595       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1596       // If the user has given the --disassemble-symbols option, then we must
1597       // display every symbol in that set, and no others.
1598       if (!DisasmSymbolSet.empty()) {
1599         bool FoundAny = false;
1600         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1601           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1602             SymsToPrint[i] = true;
1603             FoundAny = true;
1604           }
1605         }
1606 
1607         // And if none of the symbols here is one that the user asked for, skip
1608         // disassembling this entire chunk of code.
1609         if (!FoundAny)
1610           continue;
1611       } else {
1612         // Otherwise, print whichever symbol at this location is last in the
1613         // Symbols array, because that array is pre-sorted in a way intended to
1614         // correlate with priority of which symbol to display.
1615         SymsToPrint[DisplaySymIndex] = true;
1616       }
1617 
1618       // Now that we know we're disassembling this section, override the choice
1619       // of which symbols to display by printing _all_ of them at this address
1620       // if the user asked for all symbols.
1621       //
1622       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1623       // only the chunk of code headed by 'foo', but also show any other
1624       // symbols defined at that address, such as aliases for 'foo', or the ARM
1625       // mapping symbol preceding its code.
1626       if (ShowAllSymbols) {
1627         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1628           SymsToPrint[i] = true;
1629       }
1630 
1631       if (Start < SectionAddr || StopAddress <= Start)
1632         continue;
1633 
1634       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1635         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1636 
1637       // The end is the section end, the beginning of the next symbol, or
1638       // --stop-address.
1639       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1640       if (SI < SE)
1641         End = std::min(End, Symbols[SI].Addr);
1642       if (Start >= End || End <= StartAddress)
1643         continue;
1644       Start -= SectionAddr;
1645       End -= SectionAddr;
1646 
1647       if (!PrintedSection) {
1648         PrintedSection = true;
1649         outs() << "\nDisassembly of section ";
1650         if (!SegmentName.empty())
1651           outs() << SegmentName << ",";
1652         outs() << SectionName << ":\n";
1653       }
1654 
1655       outs() << '\n';
1656 
1657       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1658         if (!SymsToPrint[i])
1659           continue;
1660 
1661         const SymbolInfoTy &Symbol = SymbolsHere[i];
1662         const StringRef SymbolName = SymNamesHere[i];
1663 
1664         if (LeadingAddr)
1665           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1666                            SectionAddr + Start + VMAAdjustment);
1667         if (Obj.isXCOFF() && SymbolDescription) {
1668           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1669         } else
1670           outs() << '<' << SymbolName << ">:\n";
1671       }
1672 
1673       // Don't print raw contents of a virtual section. A virtual section
1674       // doesn't have any contents in the file.
1675       if (Section.isVirtual()) {
1676         outs() << "...\n";
1677         continue;
1678       }
1679 
1680       // See if any of the symbols defined at this location triggers target-
1681       // specific disassembly behavior, e.g. of special descriptors or function
1682       // prelude information.
1683       //
1684       // We stop this loop at the first symbol that triggers some kind of
1685       // interesting behavior (if any), on the assumption that if two symbols
1686       // defined at the same address trigger two conflicting symbol handlers,
1687       // the object file is probably confused anyway, and it would make even
1688       // less sense to present the output of _both_ handlers, because that
1689       // would describe the same data twice.
1690       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1691         SymbolInfoTy Symbol = SymbolsHere[SHI];
1692 
1693         auto Status =
1694             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1695                                   SectionAddr + Start, CommentStream);
1696 
1697         if (!Status) {
1698           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1699           // any interesting handling for this symbol. Try the other symbols
1700           // defined at this address.
1701           continue;
1702         }
1703 
1704         if (*Status == MCDisassembler::Fail) {
1705           // If onSymbolStart returns Fail, that means it identified some kind
1706           // of special data at this address, but wasn't able to disassemble it
1707           // meaningfully. So we fall back to disassembling the failed region
1708           // as bytes, assuming that the target detected the failure before
1709           // printing anything.
1710           //
1711           // Return values Success or SoftFail (i.e no 'real' failure) are
1712           // expected to mean that the target has emitted its own output.
1713           //
1714           // Either way, 'Size' will have been set to the amount of data
1715           // covered by whatever prologue the target identified. So we advance
1716           // our own position to beyond that. Sometimes that will be the entire
1717           // distance to the next symbol, and sometimes it will be just a
1718           // prologue and we should start disassembling instructions from where
1719           // it left off.
1720           outs() << "// Error in decoding " << SymNamesHere[SHI]
1721                  << " : Decoding failed region as bytes.\n";
1722           for (uint64_t I = 0; I < Size; ++I) {
1723             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1724                    << "\n";
1725           }
1726         }
1727         Start += Size;
1728         break;
1729       }
1730 
1731       Index = Start;
1732       if (SectionAddr < StartAddress)
1733         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1734 
1735       if (DisassembleAsData) {
1736         dumpELFData(SectionAddr, Index, End, Bytes);
1737         Index = End;
1738         continue;
1739       }
1740 
1741       bool DumpARMELFData = false;
1742       formatted_raw_ostream FOS(outs());
1743 
1744       std::unordered_map<uint64_t, std::string> AllLabels;
1745       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1746       if (SymbolizeOperands) {
1747         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1748                                   SectionAddr, Index, End, AllLabels);
1749         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1750                                BBAddrMapLabels);
1751       }
1752 
1753       while (Index < End) {
1754         // ARM and AArch64 ELF binaries can interleave data and text in the
1755         // same section. We rely on the markers introduced to understand what
1756         // we need to dump. If the data marker is within a function, it is
1757         // denoted as a word/short etc.
1758         if (!MappingSymbols.empty()) {
1759           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1760           DumpARMELFData = Kind == 'd';
1761           if (SecondarySTI) {
1762             if (Kind == 'a') {
1763               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1764               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1765             } else if (Kind == 't') {
1766               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1767               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1768             }
1769           }
1770         }
1771 
1772         if (DumpARMELFData) {
1773           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1774                                 MappingSymbols, *STI, FOS);
1775         } else {
1776           // When -z or --disassemble-zeroes are given we always dissasemble
1777           // them. Otherwise we might want to skip zero bytes we see.
1778           if (!DisassembleZeroes) {
1779             uint64_t MaxOffset = End - Index;
1780             // For --reloc: print zero blocks patched by relocations, so that
1781             // relocations can be shown in the dump.
1782             if (RelCur != RelEnd)
1783               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1784                                    MaxOffset);
1785 
1786             if (size_t N =
1787                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1788               FOS << "\t\t..." << '\n';
1789               Index += N;
1790               continue;
1791             }
1792           }
1793 
1794           // Print local label if there's any.
1795           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1796           if (Iter1 != BBAddrMapLabels.end()) {
1797             for (StringRef Label : Iter1->second)
1798               FOS << "<" << Label << ">:\n";
1799           } else {
1800             auto Iter2 = AllLabels.find(SectionAddr + Index);
1801             if (Iter2 != AllLabels.end())
1802               FOS << "<" << Iter2->second << ">:\n";
1803           }
1804 
1805           // Disassemble a real instruction or a data when disassemble all is
1806           // provided
1807           MCInst Inst;
1808           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1809           uint64_t ThisAddr = SectionAddr + Index;
1810           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1811                                                      ThisAddr, CommentStream);
1812           if (Size == 0)
1813             Size = std::min<uint64_t>(
1814                 ThisBytes.size(),
1815                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1816 
1817           LVP.update({Index, Section.getIndex()},
1818                      {Index + Size, Section.getIndex()}, Index + Size != End);
1819 
1820           IP->setCommentStream(CommentStream);
1821 
1822           PIP.printInst(
1823               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1824               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1825               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1826 
1827           IP->setCommentStream(llvm::nulls());
1828 
1829           // If disassembly has failed, avoid analysing invalid/incomplete
1830           // instruction information. Otherwise, try to resolve the target
1831           // address (jump target or memory operand address) and print it on the
1832           // right of the instruction.
1833           if (Disassembled && MIA) {
1834             // Branch targets are printed just after the instructions.
1835             llvm::raw_ostream *TargetOS = &FOS;
1836             uint64_t Target;
1837             bool PrintTarget =
1838                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1839             if (!PrintTarget)
1840               if (std::optional<uint64_t> MaybeTarget =
1841                       MIA->evaluateMemoryOperandAddress(
1842                           Inst, STI, SectionAddr + Index, Size)) {
1843                 Target = *MaybeTarget;
1844                 PrintTarget = true;
1845                 // Do not print real address when symbolizing.
1846                 if (!SymbolizeOperands) {
1847                   // Memory operand addresses are printed as comments.
1848                   TargetOS = &CommentStream;
1849                   *TargetOS << "0x" << Twine::utohexstr(Target);
1850                 }
1851               }
1852             if (PrintTarget) {
1853               // In a relocatable object, the target's section must reside in
1854               // the same section as the call instruction or it is accessed
1855               // through a relocation.
1856               //
1857               // In a non-relocatable object, the target may be in any section.
1858               // In that case, locate the section(s) containing the target
1859               // address and find the symbol in one of those, if possible.
1860               //
1861               // N.B. We don't walk the relocations in the relocatable case yet.
1862               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1863               if (!Obj.isRelocatableObject()) {
1864                 auto It = llvm::partition_point(
1865                     SectionAddresses,
1866                     [=](const std::pair<uint64_t, SectionRef> &O) {
1867                       return O.first <= Target;
1868                     });
1869                 uint64_t TargetSecAddr = 0;
1870                 while (It != SectionAddresses.begin()) {
1871                   --It;
1872                   if (TargetSecAddr == 0)
1873                     TargetSecAddr = It->first;
1874                   if (It->first != TargetSecAddr)
1875                     break;
1876                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1877                 }
1878               } else {
1879                 TargetSectionSymbols.push_back(&Symbols);
1880               }
1881               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1882 
1883               // Find the last symbol in the first candidate section whose
1884               // offset is less than or equal to the target. If there are no
1885               // such symbols, try in the next section and so on, before finally
1886               // using the nearest preceding absolute symbol (if any), if there
1887               // are no other valid symbols.
1888               const SymbolInfoTy *TargetSym = nullptr;
1889               for (const SectionSymbolsTy *TargetSymbols :
1890                    TargetSectionSymbols) {
1891                 auto It = llvm::partition_point(
1892                     *TargetSymbols,
1893                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1894                 while (It != TargetSymbols->begin()) {
1895                   --It;
1896                   // Skip mapping symbols to avoid possible ambiguity as they
1897                   // do not allow uniquely identifying the target address.
1898                   if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) {
1899                     TargetSym = &*It;
1900                     break;
1901                   }
1902                 }
1903                 if (TargetSym)
1904                   break;
1905               }
1906 
1907               // Print the labels corresponding to the target if there's any.
1908               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1909               bool LabelAvailable = AllLabels.count(Target);
1910               if (TargetSym != nullptr) {
1911                 uint64_t TargetAddress = TargetSym->Addr;
1912                 uint64_t Disp = Target - TargetAddress;
1913                 std::string TargetName = TargetSym->Name.str();
1914                 if (Demangle)
1915                   TargetName = demangle(TargetName);
1916 
1917                 *TargetOS << " <";
1918                 if (!Disp) {
1919                   // Always Print the binary symbol precisely corresponding to
1920                   // the target address.
1921                   *TargetOS << TargetName;
1922                 } else if (BBAddrMapLabelAvailable) {
1923                   *TargetOS << BBAddrMapLabels[Target].front();
1924                 } else if (LabelAvailable) {
1925                   *TargetOS << AllLabels[Target];
1926                 } else {
1927                   // Always Print the binary symbol plus an offset if there's no
1928                   // local label corresponding to the target address.
1929                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1930                 }
1931                 *TargetOS << ">";
1932               } else if (BBAddrMapLabelAvailable) {
1933                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1934               } else if (LabelAvailable) {
1935                 *TargetOS << " <" << AllLabels[Target] << ">";
1936               }
1937               // By convention, each record in the comment stream should be
1938               // terminated.
1939               if (TargetOS == &CommentStream)
1940                 *TargetOS << "\n";
1941             }
1942           }
1943         }
1944 
1945         assert(Ctx.getAsmInfo());
1946         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1947                                 CommentStream.str(), LVP);
1948         Comments.clear();
1949 
1950         // Hexagon does this in pretty printer
1951         if (Obj.getArch() != Triple::hexagon) {
1952           // Print relocation for instruction and data.
1953           while (RelCur != RelEnd) {
1954             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1955             // If this relocation is hidden, skip it.
1956             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1957               ++RelCur;
1958               continue;
1959             }
1960 
1961             // Stop when RelCur's offset is past the disassembled
1962             // instruction/data. Note that it's possible the disassembled data
1963             // is not the complete data: we might see the relocation printed in
1964             // the middle of the data, but this matches the binutils objdump
1965             // output.
1966             if (Offset >= Index + Size)
1967               break;
1968 
1969             // When --adjust-vma is used, update the address printed.
1970             if (RelCur->getSymbol() != Obj.symbol_end()) {
1971               Expected<section_iterator> SymSI =
1972                   RelCur->getSymbol()->getSection();
1973               if (SymSI && *SymSI != Obj.section_end() &&
1974                   shouldAdjustVA(**SymSI))
1975                 Offset += AdjustVMA;
1976             }
1977 
1978             printRelocation(FOS, Obj.getFileName(), *RelCur,
1979                             SectionAddr + Offset, Is64Bits);
1980             LVP.printAfterOtherLine(FOS, true);
1981             ++RelCur;
1982           }
1983         }
1984 
1985         Index += Size;
1986       }
1987     }
1988   }
1989   StringSet<> MissingDisasmSymbolSet =
1990       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1991   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1992     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1993 }
1994 
1995 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
1996   // If information useful for showing the disassembly is missing, try to find a
1997   // more complete binary and disassemble that instead.
1998   OwningBinary<Binary> FetchedBinary;
1999   if (Obj->symbols().empty()) {
2000     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2001             fetchBinaryByBuildID(*Obj)) {
2002       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2003         if (!O->symbols().empty() ||
2004             (!O->sections().empty() && Obj->sections().empty())) {
2005           FetchedBinary = std::move(*FetchedBinaryOpt);
2006           Obj = O;
2007         }
2008       }
2009     }
2010   }
2011 
2012   const Target *TheTarget = getTarget(Obj);
2013 
2014   // Package up features to be passed to target/subtarget
2015   Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2016   if (!FeaturesValue)
2017     reportError(FeaturesValue.takeError(), Obj->getFileName());
2018   SubtargetFeatures Features = *FeaturesValue;
2019   if (!MAttrs.empty()) {
2020     for (unsigned I = 0; I != MAttrs.size(); ++I)
2021       Features.AddFeature(MAttrs[I]);
2022   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2023     Features.AddFeature("+all");
2024   }
2025 
2026   std::unique_ptr<const MCRegisterInfo> MRI(
2027       TheTarget->createMCRegInfo(TripleName));
2028   if (!MRI)
2029     reportError(Obj->getFileName(),
2030                 "no register info for target " + TripleName);
2031 
2032   // Set up disassembler.
2033   MCTargetOptions MCOptions;
2034   std::unique_ptr<const MCAsmInfo> AsmInfo(
2035       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2036   if (!AsmInfo)
2037     reportError(Obj->getFileName(),
2038                 "no assembly info for target " + TripleName);
2039 
2040   if (MCPU.empty())
2041     MCPU = Obj->tryGetCPUName().value_or("").str();
2042 
2043   if (isArmElf(*Obj)) {
2044     // When disassembling big-endian Arm ELF, the instruction endianness is
2045     // determined in a complex way. In relocatable objects, AAELF32 mandates
2046     // that instruction endianness matches the ELF file endianness; in
2047     // executable images, that's true unless the file header has the EF_ARM_BE8
2048     // flag, in which case instructions are little-endian regardless of data
2049     // endianness.
2050     //
2051     // We must set the big-endian-instructions SubtargetFeature to make the
2052     // disassembler read the instructions the right way round, and also tell
2053     // our own prettyprinter to retrieve the encodings the same way to print in
2054     // hex.
2055     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2056 
2057     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2058                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2059       Features.AddFeature("+big-endian-instructions");
2060       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2061     } else {
2062       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2063     }
2064   }
2065 
2066   std::unique_ptr<const MCSubtargetInfo> STI(
2067       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2068   if (!STI)
2069     reportError(Obj->getFileName(),
2070                 "no subtarget info for target " + TripleName);
2071   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2072   if (!MII)
2073     reportError(Obj->getFileName(),
2074                 "no instruction info for target " + TripleName);
2075   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
2076   // FIXME: for now initialize MCObjectFileInfo with default values
2077   std::unique_ptr<MCObjectFileInfo> MOFI(
2078       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
2079   Ctx.setObjectFileInfo(MOFI.get());
2080 
2081   std::unique_ptr<MCDisassembler> DisAsm(
2082       TheTarget->createMCDisassembler(*STI, Ctx));
2083   if (!DisAsm)
2084     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2085 
2086   // If we have an ARM object file, we need a second disassembler, because
2087   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2088   // We use mapping symbols to switch between the two assemblers, where
2089   // appropriate.
2090   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2091   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2092   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
2093     if (STI->checkFeatures("+thumb-mode"))
2094       Features.AddFeature("-thumb-mode");
2095     else
2096       Features.AddFeature("+thumb-mode");
2097     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2098                                                         Features.getString()));
2099     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2100   }
2101 
2102   std::unique_ptr<const MCInstrAnalysis> MIA(
2103       TheTarget->createMCInstrAnalysis(MII.get()));
2104 
2105   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2106   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2107       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2108   if (!IP)
2109     reportError(Obj->getFileName(),
2110                 "no instruction printer for target " + TripleName);
2111   IP->setPrintImmHex(PrintImmHex);
2112   IP->setPrintBranchImmAsAddress(true);
2113   IP->setSymbolizeOperands(SymbolizeOperands);
2114   IP->setMCInstrAnalysis(MIA.get());
2115 
2116   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2117 
2118   const ObjectFile *DbgObj = Obj;
2119   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2120     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2121             fetchBinaryByBuildID(*Obj)) {
2122       if (auto *FetchedObj =
2123               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2124         if (FetchedObj->hasDebugInfo()) {
2125           FetchedBinary = std::move(*DebugBinaryOpt);
2126           DbgObj = FetchedObj;
2127         }
2128       }
2129     }
2130   }
2131 
2132   std::unique_ptr<object::Binary> DSYMBinary;
2133   std::unique_ptr<MemoryBuffer> DSYMBuf;
2134   if (!DbgObj->hasDebugInfo()) {
2135     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2136       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2137                                            DSYMBinary, DSYMBuf);
2138       if (!DbgObj)
2139         return;
2140     }
2141   }
2142 
2143   SourcePrinter SP(DbgObj, TheTarget->getName());
2144 
2145   for (StringRef Opt : DisassemblerOptions)
2146     if (!IP->applyTargetSpecificCLOption(Opt))
2147       reportError(Obj->getFileName(),
2148                   "Unrecognized disassembler option: " + Opt);
2149 
2150   disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(),
2151                     SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(),
2152                     SecondarySTI.get(), PIP, SP, InlineRelocs);
2153 }
2154 
2155 void objdump::printRelocations(const ObjectFile *Obj) {
2156   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2157                                                  "%08" PRIx64;
2158 
2159   // Build a mapping from relocation target to a vector of relocation
2160   // sections. Usually, there is an only one relocation section for
2161   // each relocated section.
2162   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2163   uint64_t Ndx;
2164   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2165     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2166       continue;
2167     if (Section.relocation_begin() == Section.relocation_end())
2168       continue;
2169     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2170     if (!SecOrErr)
2171       reportError(Obj->getFileName(),
2172                   "section (" + Twine(Ndx) +
2173                       "): unable to get a relocation target: " +
2174                       toString(SecOrErr.takeError()));
2175     SecToRelSec[**SecOrErr].push_back(Section);
2176   }
2177 
2178   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2179     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2180     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2181     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2182     uint32_t TypePadding = 24;
2183     outs() << left_justify("OFFSET", OffsetPadding) << " "
2184            << left_justify("TYPE", TypePadding) << " "
2185            << "VALUE\n";
2186 
2187     for (SectionRef Section : P.second) {
2188       for (const RelocationRef &Reloc : Section.relocations()) {
2189         uint64_t Address = Reloc.getOffset();
2190         SmallString<32> RelocName;
2191         SmallString<32> ValueStr;
2192         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2193           continue;
2194         Reloc.getTypeName(RelocName);
2195         if (Error E = getRelocationValueString(Reloc, ValueStr))
2196           reportError(std::move(E), Obj->getFileName());
2197 
2198         outs() << format(Fmt.data(), Address) << " "
2199                << left_justify(RelocName, TypePadding) << " " << ValueStr
2200                << "\n";
2201       }
2202     }
2203   }
2204 }
2205 
2206 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2207   // For the moment, this option is for ELF only
2208   if (!Obj->isELF())
2209     return;
2210 
2211   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2212   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
2213         return Sec.getType() == ELF::SHT_DYNAMIC;
2214       })) {
2215     reportError(Obj->getFileName(), "not a dynamic object");
2216     return;
2217   }
2218 
2219   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2220   if (DynRelSec.empty())
2221     return;
2222 
2223   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
2224   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2225   const uint32_t TypePadding = 24;
2226   outs() << left_justify("OFFSET", OffsetPadding) << ' '
2227          << left_justify("TYPE", TypePadding) << " VALUE\n";
2228 
2229   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2230   for (const SectionRef &Section : DynRelSec)
2231     for (const RelocationRef &Reloc : Section.relocations()) {
2232       uint64_t Address = Reloc.getOffset();
2233       SmallString<32> RelocName;
2234       SmallString<32> ValueStr;
2235       Reloc.getTypeName(RelocName);
2236       if (Error E = getRelocationValueString(Reloc, ValueStr))
2237         reportError(std::move(E), Obj->getFileName());
2238       outs() << format(Fmt.data(), Address) << ' '
2239              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2240     }
2241 }
2242 
2243 // Returns true if we need to show LMA column when dumping section headers. We
2244 // show it only when the platform is ELF and either we have at least one section
2245 // whose VMA and LMA are different and/or when --show-lma flag is used.
2246 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2247   if (!Obj.isELF())
2248     return false;
2249   for (const SectionRef &S : ToolSectionFilter(Obj))
2250     if (S.getAddress() != getELFSectionLMA(S))
2251       return true;
2252   return ShowLMA;
2253 }
2254 
2255 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2256   // Default column width for names is 13 even if no names are that long.
2257   size_t MaxWidth = 13;
2258   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2259     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2260     MaxWidth = std::max(MaxWidth, Name.size());
2261   }
2262   return MaxWidth;
2263 }
2264 
2265 void objdump::printSectionHeaders(ObjectFile &Obj) {
2266   if (Obj.isELF() && Obj.sections().empty())
2267     createFakeELFSections(Obj);
2268 
2269   size_t NameWidth = getMaxSectionNameWidth(Obj);
2270   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2271   bool HasLMAColumn = shouldDisplayLMA(Obj);
2272   outs() << "\nSections:\n";
2273   if (HasLMAColumn)
2274     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2275            << left_justify("VMA", AddressWidth) << " "
2276            << left_justify("LMA", AddressWidth) << " Type\n";
2277   else
2278     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2279            << left_justify("VMA", AddressWidth) << " Type\n";
2280 
2281   uint64_t Idx;
2282   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2283     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2284     uint64_t VMA = Section.getAddress();
2285     if (shouldAdjustVA(Section))
2286       VMA += AdjustVMA;
2287 
2288     uint64_t Size = Section.getSize();
2289 
2290     std::string Type = Section.isText() ? "TEXT" : "";
2291     if (Section.isData())
2292       Type += Type.empty() ? "DATA" : ", DATA";
2293     if (Section.isBSS())
2294       Type += Type.empty() ? "BSS" : ", BSS";
2295     if (Section.isDebugSection())
2296       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2297 
2298     if (HasLMAColumn)
2299       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2300                        Name.str().c_str(), Size)
2301              << format_hex_no_prefix(VMA, AddressWidth) << " "
2302              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2303              << " " << Type << "\n";
2304     else
2305       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2306                        Name.str().c_str(), Size)
2307              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2308   }
2309 }
2310 
2311 void objdump::printSectionContents(const ObjectFile *Obj) {
2312   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2313 
2314   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2315     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2316     uint64_t BaseAddr = Section.getAddress();
2317     uint64_t Size = Section.getSize();
2318     if (!Size)
2319       continue;
2320 
2321     outs() << "Contents of section ";
2322     StringRef SegmentName = getSegmentName(MachO, Section);
2323     if (!SegmentName.empty())
2324       outs() << SegmentName << ",";
2325     outs() << Name << ":\n";
2326     if (Section.isBSS()) {
2327       outs() << format("<skipping contents of bss section at [%04" PRIx64
2328                        ", %04" PRIx64 ")>\n",
2329                        BaseAddr, BaseAddr + Size);
2330       continue;
2331     }
2332 
2333     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2334 
2335     // Dump out the content as hex and printable ascii characters.
2336     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2337       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2338       // Dump line of hex.
2339       for (std::size_t I = 0; I < 16; ++I) {
2340         if (I != 0 && I % 4 == 0)
2341           outs() << ' ';
2342         if (Addr + I < End)
2343           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2344                  << hexdigit(Contents[Addr + I] & 0xF, true);
2345         else
2346           outs() << "  ";
2347       }
2348       // Print ascii.
2349       outs() << "  ";
2350       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2351         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2352           outs() << Contents[Addr + I];
2353         else
2354           outs() << ".";
2355       }
2356       outs() << "\n";
2357     }
2358   }
2359 }
2360 
2361 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2362                                StringRef ArchitectureName, bool DumpDynamic) {
2363   if (O.isCOFF() && !DumpDynamic) {
2364     outs() << "\nSYMBOL TABLE:\n";
2365     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2366     return;
2367   }
2368 
2369   const StringRef FileName = O.getFileName();
2370 
2371   if (!DumpDynamic) {
2372     outs() << "\nSYMBOL TABLE:\n";
2373     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2374       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2375                   DumpDynamic);
2376     return;
2377   }
2378 
2379   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2380   if (!O.isELF()) {
2381     reportWarning(
2382         "this operation is not currently supported for this file format",
2383         FileName);
2384     return;
2385   }
2386 
2387   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2388   auto Symbols = ELF->getDynamicSymbolIterators();
2389   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2390       ELF->readDynsymVersions();
2391   if (!SymbolVersionsOrErr) {
2392     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2393     SymbolVersionsOrErr = std::vector<VersionEntry>();
2394     (void)!SymbolVersionsOrErr;
2395   }
2396   for (auto &Sym : Symbols)
2397     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2398                 ArchitectureName, DumpDynamic);
2399 }
2400 
2401 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2402                           ArrayRef<VersionEntry> SymbolVersions,
2403                           StringRef FileName, StringRef ArchiveName,
2404                           StringRef ArchitectureName, bool DumpDynamic) {
2405   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2406   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2407                                    ArchitectureName);
2408   if ((Address < StartAddress) || (Address > StopAddress))
2409     return;
2410   SymbolRef::Type Type =
2411       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2412   uint32_t Flags =
2413       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2414 
2415   // Don't ask a Mach-O STAB symbol for its section unless you know that
2416   // STAB symbol's section field refers to a valid section index. Otherwise
2417   // the symbol may error trying to load a section that does not exist.
2418   bool IsSTAB = false;
2419   if (MachO) {
2420     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2421     uint8_t NType =
2422         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2423                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2424     if (NType & MachO::N_STAB)
2425       IsSTAB = true;
2426   }
2427   section_iterator Section = IsSTAB
2428                                  ? O.section_end()
2429                                  : unwrapOrError(Symbol.getSection(), FileName,
2430                                                  ArchiveName, ArchitectureName);
2431 
2432   StringRef Name;
2433   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2434     if (Expected<StringRef> NameOrErr = Section->getName())
2435       Name = *NameOrErr;
2436     else
2437       consumeError(NameOrErr.takeError());
2438 
2439   } else {
2440     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2441                          ArchitectureName);
2442   }
2443 
2444   bool Global = Flags & SymbolRef::SF_Global;
2445   bool Weak = Flags & SymbolRef::SF_Weak;
2446   bool Absolute = Flags & SymbolRef::SF_Absolute;
2447   bool Common = Flags & SymbolRef::SF_Common;
2448   bool Hidden = Flags & SymbolRef::SF_Hidden;
2449 
2450   char GlobLoc = ' ';
2451   if ((Section != O.section_end() || Absolute) && !Weak)
2452     GlobLoc = Global ? 'g' : 'l';
2453   char IFunc = ' ';
2454   if (O.isELF()) {
2455     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2456       IFunc = 'i';
2457     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2458       GlobLoc = 'u';
2459   }
2460 
2461   char Debug = ' ';
2462   if (DumpDynamic)
2463     Debug = 'D';
2464   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2465     Debug = 'd';
2466 
2467   char FileFunc = ' ';
2468   if (Type == SymbolRef::ST_File)
2469     FileFunc = 'f';
2470   else if (Type == SymbolRef::ST_Function)
2471     FileFunc = 'F';
2472   else if (Type == SymbolRef::ST_Data)
2473     FileFunc = 'O';
2474 
2475   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2476 
2477   outs() << format(Fmt, Address) << " "
2478          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2479          << (Weak ? 'w' : ' ') // Weak?
2480          << ' '                // Constructor. Not supported yet.
2481          << ' '                // Warning. Not supported yet.
2482          << IFunc              // Indirect reference to another symbol.
2483          << Debug              // Debugging (d) or dynamic (D) symbol.
2484          << FileFunc           // Name of function (F), file (f) or object (O).
2485          << ' ';
2486   if (Absolute) {
2487     outs() << "*ABS*";
2488   } else if (Common) {
2489     outs() << "*COM*";
2490   } else if (Section == O.section_end()) {
2491     if (O.isXCOFF()) {
2492       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2493           Symbol.getRawDataRefImpl());
2494       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2495         outs() << "*DEBUG*";
2496       else
2497         outs() << "*UND*";
2498     } else
2499       outs() << "*UND*";
2500   } else {
2501     StringRef SegmentName = getSegmentName(MachO, *Section);
2502     if (!SegmentName.empty())
2503       outs() << SegmentName << ",";
2504     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2505     outs() << SectionName;
2506     if (O.isXCOFF()) {
2507       std::optional<SymbolRef> SymRef =
2508           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2509       if (SymRef) {
2510 
2511         Expected<StringRef> NameOrErr = SymRef->getName();
2512 
2513         if (NameOrErr) {
2514           outs() << " (csect:";
2515           std::string SymName(NameOrErr.get());
2516 
2517           if (Demangle)
2518             SymName = demangle(SymName);
2519 
2520           if (SymbolDescription)
2521             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2522                                                 SymName);
2523 
2524           outs() << ' ' << SymName;
2525           outs() << ") ";
2526         } else
2527           reportWarning(toString(NameOrErr.takeError()), FileName);
2528       }
2529     }
2530   }
2531 
2532   if (Common)
2533     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2534   else if (O.isXCOFF())
2535     outs() << '\t'
2536            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2537                               Symbol.getRawDataRefImpl()));
2538   else if (O.isELF())
2539     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2540 
2541   if (O.isELF()) {
2542     if (!SymbolVersions.empty()) {
2543       const VersionEntry &Ver =
2544           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2545       std::string Str;
2546       if (!Ver.Name.empty())
2547         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2548       outs() << ' ' << left_justify(Str, 12);
2549     }
2550 
2551     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2552     switch (Other) {
2553     case ELF::STV_DEFAULT:
2554       break;
2555     case ELF::STV_INTERNAL:
2556       outs() << " .internal";
2557       break;
2558     case ELF::STV_HIDDEN:
2559       outs() << " .hidden";
2560       break;
2561     case ELF::STV_PROTECTED:
2562       outs() << " .protected";
2563       break;
2564     default:
2565       outs() << format(" 0x%02x", Other);
2566       break;
2567     }
2568   } else if (Hidden) {
2569     outs() << " .hidden";
2570   }
2571 
2572   std::string SymName(Name);
2573   if (Demangle)
2574     SymName = demangle(SymName);
2575 
2576   if (O.isXCOFF() && SymbolDescription)
2577     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2578 
2579   outs() << ' ' << SymName << '\n';
2580 }
2581 
2582 static void printUnwindInfo(const ObjectFile *O) {
2583   outs() << "Unwind info:\n\n";
2584 
2585   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2586     printCOFFUnwindInfo(Coff);
2587   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2588     printMachOUnwindInfo(MachO);
2589   else
2590     // TODO: Extract DWARF dump tool to objdump.
2591     WithColor::error(errs(), ToolName)
2592         << "This operation is only currently supported "
2593            "for COFF and MachO object files.\n";
2594 }
2595 
2596 /// Dump the raw contents of the __clangast section so the output can be piped
2597 /// into llvm-bcanalyzer.
2598 static void printRawClangAST(const ObjectFile *Obj) {
2599   if (outs().is_displayed()) {
2600     WithColor::error(errs(), ToolName)
2601         << "The -raw-clang-ast option will dump the raw binary contents of "
2602            "the clang ast section.\n"
2603            "Please redirect the output to a file or another program such as "
2604            "llvm-bcanalyzer.\n";
2605     return;
2606   }
2607 
2608   StringRef ClangASTSectionName("__clangast");
2609   if (Obj->isCOFF()) {
2610     ClangASTSectionName = "clangast";
2611   }
2612 
2613   std::optional<object::SectionRef> ClangASTSection;
2614   for (auto Sec : ToolSectionFilter(*Obj)) {
2615     StringRef Name;
2616     if (Expected<StringRef> NameOrErr = Sec.getName())
2617       Name = *NameOrErr;
2618     else
2619       consumeError(NameOrErr.takeError());
2620 
2621     if (Name == ClangASTSectionName) {
2622       ClangASTSection = Sec;
2623       break;
2624     }
2625   }
2626   if (!ClangASTSection)
2627     return;
2628 
2629   StringRef ClangASTContents =
2630       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2631   outs().write(ClangASTContents.data(), ClangASTContents.size());
2632 }
2633 
2634 static void printFaultMaps(const ObjectFile *Obj) {
2635   StringRef FaultMapSectionName;
2636 
2637   if (Obj->isELF()) {
2638     FaultMapSectionName = ".llvm_faultmaps";
2639   } else if (Obj->isMachO()) {
2640     FaultMapSectionName = "__llvm_faultmaps";
2641   } else {
2642     WithColor::error(errs(), ToolName)
2643         << "This operation is only currently supported "
2644            "for ELF and Mach-O executable files.\n";
2645     return;
2646   }
2647 
2648   std::optional<object::SectionRef> FaultMapSection;
2649 
2650   for (auto Sec : ToolSectionFilter(*Obj)) {
2651     StringRef Name;
2652     if (Expected<StringRef> NameOrErr = Sec.getName())
2653       Name = *NameOrErr;
2654     else
2655       consumeError(NameOrErr.takeError());
2656 
2657     if (Name == FaultMapSectionName) {
2658       FaultMapSection = Sec;
2659       break;
2660     }
2661   }
2662 
2663   outs() << "FaultMap table:\n";
2664 
2665   if (!FaultMapSection) {
2666     outs() << "<not found>\n";
2667     return;
2668   }
2669 
2670   StringRef FaultMapContents =
2671       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2672   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2673                      FaultMapContents.bytes_end());
2674 
2675   outs() << FMP;
2676 }
2677 
2678 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2679   if (O->isELF()) {
2680     printELFFileHeader(O);
2681     printELFDynamicSection(O);
2682     printELFSymbolVersionInfo(O);
2683     return;
2684   }
2685   if (O->isCOFF())
2686     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2687   if (O->isWasm())
2688     return printWasmFileHeader(O);
2689   if (O->isMachO()) {
2690     printMachOFileHeader(O);
2691     if (!OnlyFirst)
2692       printMachOLoadCommands(O);
2693     return;
2694   }
2695   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2696 }
2697 
2698 static void printFileHeaders(const ObjectFile *O) {
2699   if (!O->isELF() && !O->isCOFF())
2700     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2701 
2702   Triple::ArchType AT = O->getArch();
2703   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2704   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2705 
2706   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2707   outs() << "start address: "
2708          << "0x" << format(Fmt.data(), Address) << "\n";
2709 }
2710 
2711 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2712   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2713   if (!ModeOrErr) {
2714     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2715     consumeError(ModeOrErr.takeError());
2716     return;
2717   }
2718   sys::fs::perms Mode = ModeOrErr.get();
2719   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2720   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2721   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2722   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2723   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2724   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2725   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2726   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2727   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2728 
2729   outs() << " ";
2730 
2731   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2732                    unwrapOrError(C.getGID(), Filename),
2733                    unwrapOrError(C.getRawSize(), Filename));
2734 
2735   StringRef RawLastModified = C.getRawLastModified();
2736   unsigned Seconds;
2737   if (RawLastModified.getAsInteger(10, Seconds))
2738     outs() << "(date: \"" << RawLastModified
2739            << "\" contains non-decimal chars) ";
2740   else {
2741     // Since ctime(3) returns a 26 character string of the form:
2742     // "Sun Sep 16 01:03:52 1973\n\0"
2743     // just print 24 characters.
2744     time_t t = Seconds;
2745     outs() << format("%.24s ", ctime(&t));
2746   }
2747 
2748   StringRef Name = "";
2749   Expected<StringRef> NameOrErr = C.getName();
2750   if (!NameOrErr) {
2751     consumeError(NameOrErr.takeError());
2752     Name = unwrapOrError(C.getRawName(), Filename);
2753   } else {
2754     Name = NameOrErr.get();
2755   }
2756   outs() << Name << "\n";
2757 }
2758 
2759 // For ELF only now.
2760 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2761   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2762     if (Elf->getEType() != ELF::ET_REL)
2763       return true;
2764   }
2765   return false;
2766 }
2767 
2768 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2769                                             uint64_t Start, uint64_t Stop) {
2770   if (!shouldWarnForInvalidStartStopAddress(Obj))
2771     return;
2772 
2773   for (const SectionRef &Section : Obj->sections())
2774     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2775       uint64_t BaseAddr = Section.getAddress();
2776       uint64_t Size = Section.getSize();
2777       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2778         return;
2779     }
2780 
2781   if (!HasStartAddressFlag)
2782     reportWarning("no section has address less than 0x" +
2783                       Twine::utohexstr(Stop) + " specified by --stop-address",
2784                   Obj->getFileName());
2785   else if (!HasStopAddressFlag)
2786     reportWarning("no section has address greater than or equal to 0x" +
2787                       Twine::utohexstr(Start) + " specified by --start-address",
2788                   Obj->getFileName());
2789   else
2790     reportWarning("no section overlaps the range [0x" +
2791                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2792                       ") specified by --start-address/--stop-address",
2793                   Obj->getFileName());
2794 }
2795 
2796 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2797                        const Archive::Child *C = nullptr) {
2798   // Avoid other output when using a raw option.
2799   if (!RawClangAST) {
2800     outs() << '\n';
2801     if (A)
2802       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2803     else
2804       outs() << O->getFileName();
2805     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2806   }
2807 
2808   if (HasStartAddressFlag || HasStopAddressFlag)
2809     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2810 
2811   // Note: the order here matches GNU objdump for compatability.
2812   StringRef ArchiveName = A ? A->getFileName() : "";
2813   if (ArchiveHeaders && !MachOOpt && C)
2814     printArchiveChild(ArchiveName, *C);
2815   if (FileHeaders)
2816     printFileHeaders(O);
2817   if (PrivateHeaders || FirstPrivateHeader)
2818     printPrivateFileHeaders(O, FirstPrivateHeader);
2819   if (SectionHeaders)
2820     printSectionHeaders(*O);
2821   if (SymbolTable)
2822     printSymbolTable(*O, ArchiveName);
2823   if (DynamicSymbolTable)
2824     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2825                      /*DumpDynamic=*/true);
2826   if (DwarfDumpType != DIDT_Null) {
2827     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2828     // Dump the complete DWARF structure.
2829     DIDumpOptions DumpOpts;
2830     DumpOpts.DumpType = DwarfDumpType;
2831     DICtx->dump(outs(), DumpOpts);
2832   }
2833   if (Relocations && !Disassemble)
2834     printRelocations(O);
2835   if (DynamicRelocations)
2836     printDynamicRelocations(O);
2837   if (SectionContents)
2838     printSectionContents(O);
2839   if (Disassemble)
2840     disassembleObject(O, Relocations);
2841   if (UnwindInfo)
2842     printUnwindInfo(O);
2843 
2844   // Mach-O specific options:
2845   if (ExportsTrie)
2846     printExportsTrie(O);
2847   if (Rebase)
2848     printRebaseTable(O);
2849   if (Bind)
2850     printBindTable(O);
2851   if (LazyBind)
2852     printLazyBindTable(O);
2853   if (WeakBind)
2854     printWeakBindTable(O);
2855 
2856   // Other special sections:
2857   if (RawClangAST)
2858     printRawClangAST(O);
2859   if (FaultMapSection)
2860     printFaultMaps(O);
2861   if (Offloading)
2862     dumpOffloadBinary(*O);
2863 }
2864 
2865 static void dumpObject(const COFFImportFile *I, const Archive *A,
2866                        const Archive::Child *C = nullptr) {
2867   StringRef ArchiveName = A ? A->getFileName() : "";
2868 
2869   // Avoid other output when using a raw option.
2870   if (!RawClangAST)
2871     outs() << '\n'
2872            << ArchiveName << "(" << I->getFileName() << ")"
2873            << ":\tfile format COFF-import-file"
2874            << "\n\n";
2875 
2876   if (ArchiveHeaders && !MachOOpt && C)
2877     printArchiveChild(ArchiveName, *C);
2878   if (SymbolTable)
2879     printCOFFSymbolTable(*I);
2880 }
2881 
2882 /// Dump each object file in \a a;
2883 static void dumpArchive(const Archive *A) {
2884   Error Err = Error::success();
2885   unsigned I = -1;
2886   for (auto &C : A->children(Err)) {
2887     ++I;
2888     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2889     if (!ChildOrErr) {
2890       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2891         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2892       continue;
2893     }
2894     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2895       dumpObject(O, A, &C);
2896     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2897       dumpObject(I, A, &C);
2898     else
2899       reportError(errorCodeToError(object_error::invalid_file_type),
2900                   A->getFileName());
2901   }
2902   if (Err)
2903     reportError(std::move(Err), A->getFileName());
2904 }
2905 
2906 /// Open file and figure out how to dump it.
2907 static void dumpInput(StringRef file) {
2908   // If we are using the Mach-O specific object file parser, then let it parse
2909   // the file and process the command line options.  So the -arch flags can
2910   // be used to select specific slices, etc.
2911   if (MachOOpt) {
2912     parseInputMachO(file);
2913     return;
2914   }
2915 
2916   // Attempt to open the binary.
2917   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2918   Binary &Binary = *OBinary.getBinary();
2919 
2920   if (Archive *A = dyn_cast<Archive>(&Binary))
2921     dumpArchive(A);
2922   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2923     dumpObject(O);
2924   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2925     parseInputMachO(UB);
2926   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2927     dumpOffloadSections(*OB);
2928   else
2929     reportError(errorCodeToError(object_error::invalid_file_type), file);
2930 }
2931 
2932 template <typename T>
2933 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2934                         T &Value) {
2935   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2936     StringRef V(A->getValue());
2937     if (!llvm::to_integer(V, Value, 0)) {
2938       reportCmdLineError(A->getSpelling() +
2939                          ": expected a non-negative integer, but got '" + V +
2940                          "'");
2941     }
2942   }
2943 }
2944 
2945 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
2946   StringRef V(A->getValue());
2947   object::BuildID BID = parseBuildID(V);
2948   if (BID.empty())
2949     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
2950                        V + "'");
2951   return BID;
2952 }
2953 
2954 void objdump::invalidArgValue(const opt::Arg *A) {
2955   reportCmdLineError("'" + StringRef(A->getValue()) +
2956                      "' is not a valid value for '" + A->getSpelling() + "'");
2957 }
2958 
2959 static std::vector<std::string>
2960 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2961   std::vector<std::string> Values;
2962   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2963     llvm::SmallVector<StringRef, 2> SplitValues;
2964     llvm::SplitString(Value, SplitValues, ",");
2965     for (StringRef SplitValue : SplitValues)
2966       Values.push_back(SplitValue.str());
2967   }
2968   return Values;
2969 }
2970 
2971 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2972   MachOOpt = true;
2973   FullLeadingAddr = true;
2974   PrintImmHex = true;
2975 
2976   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2977   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2978   if (InputArgs.hasArg(OTOOL_d))
2979     FilterSections.push_back("__DATA,__data");
2980   DylibId = InputArgs.hasArg(OTOOL_D);
2981   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2982   DataInCode = InputArgs.hasArg(OTOOL_G);
2983   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2984   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2985   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2986   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2987   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2988   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2989   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2990   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2991   InfoPlist = InputArgs.hasArg(OTOOL_P);
2992   Relocations = InputArgs.hasArg(OTOOL_r);
2993   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2994     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2995     FilterSections.push_back(Filter);
2996   }
2997   if (InputArgs.hasArg(OTOOL_t))
2998     FilterSections.push_back("__TEXT,__text");
2999   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3000             InputArgs.hasArg(OTOOL_o);
3001   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3002   if (InputArgs.hasArg(OTOOL_x))
3003     FilterSections.push_back(",__text");
3004   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3005 
3006   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3007   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3008 
3009   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3010   if (InputFilenames.empty())
3011     reportCmdLineError("no input file");
3012 
3013   for (const Arg *A : InputArgs) {
3014     const Option &O = A->getOption();
3015     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3016       reportCmdLineWarning(O.getPrefixedName() +
3017                            " is obsolete and not implemented");
3018     }
3019   }
3020 }
3021 
3022 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3023   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3024   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3025   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3026   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3027   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3028   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3029   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3030   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3031   DisassembleSymbols =
3032       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3033   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3034   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3035     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3036                         .Case("frames", DIDT_DebugFrame)
3037                         .Default(DIDT_Null);
3038     if (DwarfDumpType == DIDT_Null)
3039       invalidArgValue(A);
3040   }
3041   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3042   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3043   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3044   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3045   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3046   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3047   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3048   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3049   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3050   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3051   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3052   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3053   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3054   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3055   PrintImmHex =
3056       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3057   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3058   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3059   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3060   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3061   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3062   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3063   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3064   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3065   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3066   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3067   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3068   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3069   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3070   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3071   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3072   Wide = InputArgs.hasArg(OBJDUMP_wide);
3073   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3074   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3075   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3076     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3077                        .Case("ascii", DVASCII)
3078                        .Case("unicode", DVUnicode)
3079                        .Default(DVInvalid);
3080     if (DbgVariables == DVInvalid)
3081       invalidArgValue(A);
3082   }
3083   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3084 
3085   parseMachOOptions(InputArgs);
3086 
3087   // Parse -M (--disassembler-options) and deprecated
3088   // --x86-asm-syntax={att,intel}.
3089   //
3090   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3091   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3092   // called too late. For now we have to use the internal cl::opt option.
3093   const char *AsmSyntax = nullptr;
3094   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3095                                           OBJDUMP_x86_asm_syntax_att,
3096                                           OBJDUMP_x86_asm_syntax_intel)) {
3097     switch (A->getOption().getID()) {
3098     case OBJDUMP_x86_asm_syntax_att:
3099       AsmSyntax = "--x86-asm-syntax=att";
3100       continue;
3101     case OBJDUMP_x86_asm_syntax_intel:
3102       AsmSyntax = "--x86-asm-syntax=intel";
3103       continue;
3104     }
3105 
3106     SmallVector<StringRef, 2> Values;
3107     llvm::SplitString(A->getValue(), Values, ",");
3108     for (StringRef V : Values) {
3109       if (V == "att")
3110         AsmSyntax = "--x86-asm-syntax=att";
3111       else if (V == "intel")
3112         AsmSyntax = "--x86-asm-syntax=intel";
3113       else
3114         DisassemblerOptions.push_back(V.str());
3115     }
3116   }
3117   if (AsmSyntax) {
3118     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3119     llvm::cl::ParseCommandLineOptions(2, Argv);
3120   }
3121 
3122   // Look up any provided build IDs, then append them to the input filenames.
3123   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3124     object::BuildID BuildID = parseBuildIDArg(A);
3125     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3126     if (!Path) {
3127       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3128                          A->getValue() + "'");
3129     }
3130     InputFilenames.push_back(std::move(*Path));
3131   }
3132 
3133   // objdump defaults to a.out if no filenames specified.
3134   if (InputFilenames.empty())
3135     InputFilenames.push_back("a.out");
3136 }
3137 
3138 int main(int argc, char **argv) {
3139   using namespace llvm;
3140   InitLLVM X(argc, argv);
3141 
3142   ToolName = argv[0];
3143   std::unique_ptr<CommonOptTable> T;
3144   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3145 
3146   StringRef Stem = sys::path::stem(ToolName);
3147   auto Is = [=](StringRef Tool) {
3148     // We need to recognize the following filenames:
3149     //
3150     // llvm-objdump -> objdump
3151     // llvm-otool-10.exe -> otool
3152     // powerpc64-unknown-freebsd13-objdump -> objdump
3153     auto I = Stem.rfind_insensitive(Tool);
3154     return I != StringRef::npos &&
3155            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3156   };
3157   if (Is("otool")) {
3158     T = std::make_unique<OtoolOptTable>();
3159     Unknown = OTOOL_UNKNOWN;
3160     HelpFlag = OTOOL_help;
3161     HelpHiddenFlag = OTOOL_help_hidden;
3162     VersionFlag = OTOOL_version;
3163   } else {
3164     T = std::make_unique<ObjdumpOptTable>();
3165     Unknown = OBJDUMP_UNKNOWN;
3166     HelpFlag = OBJDUMP_help;
3167     HelpHiddenFlag = OBJDUMP_help_hidden;
3168     VersionFlag = OBJDUMP_version;
3169   }
3170 
3171   BumpPtrAllocator A;
3172   StringSaver Saver(A);
3173   opt::InputArgList InputArgs =
3174       T->parseArgs(argc, argv, Unknown, Saver,
3175                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3176 
3177   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3178     T->printHelp(ToolName);
3179     return 0;
3180   }
3181   if (InputArgs.hasArg(HelpHiddenFlag)) {
3182     T->printHelp(ToolName, /*ShowHidden=*/true);
3183     return 0;
3184   }
3185 
3186   // Initialize targets and assembly printers/parsers.
3187   InitializeAllTargetInfos();
3188   InitializeAllTargetMCs();
3189   InitializeAllDisassemblers();
3190 
3191   if (InputArgs.hasArg(VersionFlag)) {
3192     cl::PrintVersionMessage();
3193     if (!Is("otool")) {
3194       outs() << '\n';
3195       TargetRegistry::printRegisteredTargetsForVersion(outs());
3196     }
3197     return 0;
3198   }
3199 
3200   // Initialize debuginfod.
3201   const bool ShouldUseDebuginfodByDefault =
3202       InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3203   std::vector<std::string> DebugFileDirectories =
3204       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3205   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3206                         ShouldUseDebuginfodByDefault)) {
3207     HTTPClient::initialize();
3208     BIDFetcher =
3209         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3210   } else {
3211     BIDFetcher =
3212         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3213   }
3214 
3215   if (Is("otool"))
3216     parseOtoolOptions(InputArgs);
3217   else
3218     parseObjdumpOptions(InputArgs);
3219 
3220   if (StartAddress >= StopAddress)
3221     reportCmdLineError("start address should be less than stop address");
3222 
3223   // Removes trailing separators from prefix.
3224   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3225     Prefix.pop_back();
3226 
3227   if (AllHeaders)
3228     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3229         SectionHeaders = SymbolTable = true;
3230 
3231   if (DisassembleAll || PrintSource || PrintLines ||
3232       !DisassembleSymbols.empty())
3233     Disassemble = true;
3234 
3235   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3236       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3237       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3238       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3239       !(MachOOpt &&
3240         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3241          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3242          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3243          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3244          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3245     T->printHelp(ToolName);
3246     return 2;
3247   }
3248 
3249   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3250 
3251   llvm::for_each(InputFilenames, dumpInput);
3252 
3253   warnOnNoMatchForSections();
3254 
3255   return EXIT_SUCCESS;
3256 }
3257