xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 740bc366d44ccd41161739bc1d4b447cd49aba65)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/MC/MCTargetOptions.h"
41 #include "llvm/Object/Archive.h"
42 #include "llvm/Object/COFF.h"
43 #include "llvm/Object/COFFImportFile.h"
44 #include "llvm/Object/ELFObjectFile.h"
45 #include "llvm/Object/MachO.h"
46 #include "llvm/Object/MachOUniversal.h"
47 #include "llvm/Object/ObjectFile.h"
48 #include "llvm/Object/Wasm.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/Errc.h"
53 #include "llvm/Support/FileSystem.h"
54 #include "llvm/Support/Format.h"
55 #include "llvm/Support/FormatVariadic.h"
56 #include "llvm/Support/GraphWriter.h"
57 #include "llvm/Support/Host.h"
58 #include "llvm/Support/InitLLVM.h"
59 #include "llvm/Support/MemoryBuffer.h"
60 #include "llvm/Support/SourceMgr.h"
61 #include "llvm/Support/StringSaver.h"
62 #include "llvm/Support/TargetRegistry.h"
63 #include "llvm/Support/TargetSelect.h"
64 #include "llvm/Support/WithColor.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include <algorithm>
67 #include <cctype>
68 #include <cstring>
69 #include <system_error>
70 #include <unordered_map>
71 #include <utility>
72 
73 using namespace llvm::object;
74 
75 namespace llvm {
76 
77 cl::OptionCategory ObjdumpCat("llvm-objdump Options");
78 
79 // MachO specific
80 extern cl::OptionCategory MachOCat;
81 extern cl::opt<bool> Bind;
82 extern cl::opt<bool> DataInCode;
83 extern cl::opt<bool> DylibsUsed;
84 extern cl::opt<bool> DylibId;
85 extern cl::opt<bool> ExportsTrie;
86 extern cl::opt<bool> FirstPrivateHeader;
87 extern cl::opt<bool> IndirectSymbols;
88 extern cl::opt<bool> InfoPlist;
89 extern cl::opt<bool> LazyBind;
90 extern cl::opt<bool> LinkOptHints;
91 extern cl::opt<bool> ObjcMetaData;
92 extern cl::opt<bool> Rebase;
93 extern cl::opt<bool> UniversalHeaders;
94 extern cl::opt<bool> WeakBind;
95 
96 static cl::opt<uint64_t> AdjustVMA(
97     "adjust-vma",
98     cl::desc("Increase the displayed address by the specified offset"),
99     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
100 
101 static cl::opt<bool>
102     AllHeaders("all-headers",
103                cl::desc("Display all available header information"),
104                cl::cat(ObjdumpCat));
105 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
106                                  cl::NotHidden, cl::Grouping,
107                                  cl::aliasopt(AllHeaders));
108 
109 static cl::opt<std::string>
110     ArchName("arch-name",
111              cl::desc("Target arch to disassemble for, "
112                       "see -version for available targets"),
113              cl::cat(ObjdumpCat));
114 
115 cl::opt<bool> ArchiveHeaders("archive-headers",
116                              cl::desc("Display archive header information"),
117                              cl::cat(ObjdumpCat));
118 static cl::alias ArchiveHeadersShort("a",
119                                      cl::desc("Alias for --archive-headers"),
120                                      cl::NotHidden, cl::Grouping,
121                                      cl::aliasopt(ArchiveHeaders));
122 
123 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
124                        cl::init(false), cl::cat(ObjdumpCat));
125 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
126                                cl::NotHidden, cl::Grouping,
127                                cl::aliasopt(Demangle));
128 
129 cl::opt<bool> Disassemble(
130     "disassemble",
131     cl::desc("Display assembler mnemonics for the machine instructions"),
132     cl::cat(ObjdumpCat));
133 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
134                                   cl::NotHidden, cl::Grouping,
135                                   cl::aliasopt(Disassemble));
136 
137 cl::opt<bool> DisassembleAll(
138     "disassemble-all",
139     cl::desc("Display assembler mnemonics for the machine instructions"),
140     cl::cat(ObjdumpCat));
141 static cl::alias DisassembleAllShort("D",
142                                      cl::desc("Alias for --disassemble-all"),
143                                      cl::NotHidden, cl::Grouping,
144                                      cl::aliasopt(DisassembleAll));
145 
146 static cl::list<std::string>
147     DisassembleFunctions("disassemble-functions", cl::CommaSeparated,
148                          cl::desc("List of functions to disassemble. "
149                                   "Accept demangled names when --demangle is "
150                                   "specified, otherwise accept mangled names"),
151                          cl::cat(ObjdumpCat));
152 
153 static cl::opt<bool> DisassembleZeroes(
154     "disassemble-zeroes",
155     cl::desc("Do not skip blocks of zeroes when disassembling"),
156     cl::cat(ObjdumpCat));
157 static cl::alias
158     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
159                            cl::NotHidden, cl::Grouping,
160                            cl::aliasopt(DisassembleZeroes));
161 
162 static cl::list<std::string>
163     DisassemblerOptions("disassembler-options",
164                         cl::desc("Pass target specific disassembler options"),
165                         cl::value_desc("options"), cl::CommaSeparated,
166                         cl::cat(ObjdumpCat));
167 static cl::alias
168     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
169                              cl::NotHidden, cl::Grouping, cl::Prefix,
170                              cl::CommaSeparated,
171                              cl::aliasopt(DisassemblerOptions));
172 
173 cl::opt<DIDumpType> DwarfDumpType(
174     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
175     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
176     cl::cat(ObjdumpCat));
177 
178 static cl::opt<bool> DynamicRelocations(
179     "dynamic-reloc",
180     cl::desc("Display the dynamic relocation entries in the file"),
181     cl::cat(ObjdumpCat));
182 static cl::alias DynamicRelocationShort("R",
183                                         cl::desc("Alias for --dynamic-reloc"),
184                                         cl::NotHidden, cl::Grouping,
185                                         cl::aliasopt(DynamicRelocations));
186 
187 static cl::opt<bool>
188     FaultMapSection("fault-map-section",
189                     cl::desc("Display contents of faultmap section"),
190                     cl::cat(ObjdumpCat));
191 
192 static cl::opt<bool>
193     FileHeaders("file-headers",
194                 cl::desc("Display the contents of the overall file header"),
195                 cl::cat(ObjdumpCat));
196 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
197                                   cl::NotHidden, cl::Grouping,
198                                   cl::aliasopt(FileHeaders));
199 
200 cl::opt<bool> SectionContents("full-contents",
201                               cl::desc("Display the content of each section"),
202                               cl::cat(ObjdumpCat));
203 static cl::alias SectionContentsShort("s",
204                                       cl::desc("Alias for --full-contents"),
205                                       cl::NotHidden, cl::Grouping,
206                                       cl::aliasopt(SectionContents));
207 
208 static cl::list<std::string> InputFilenames(cl::Positional,
209                                             cl::desc("<input object files>"),
210                                             cl::ZeroOrMore,
211                                             cl::cat(ObjdumpCat));
212 
213 static cl::opt<bool>
214     PrintLines("line-numbers",
215                cl::desc("Display source line numbers with "
216                         "disassembly. Implies disassemble object"),
217                cl::cat(ObjdumpCat));
218 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
219                                  cl::NotHidden, cl::Grouping,
220                                  cl::aliasopt(PrintLines));
221 
222 static cl::opt<bool> MachOOpt("macho",
223                               cl::desc("Use MachO specific object file parser"),
224                               cl::cat(ObjdumpCat));
225 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
226                         cl::Grouping, cl::aliasopt(MachOOpt));
227 
228 cl::opt<std::string>
229     MCPU("mcpu",
230          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
231          cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
232 
233 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
234                              cl::desc("Target specific attributes"),
235                              cl::value_desc("a1,+a2,-a3,..."),
236                              cl::cat(ObjdumpCat));
237 
238 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
239                             cl::desc("When disassembling "
240                                      "instructions, do not print "
241                                      "the instruction bytes."),
242                             cl::cat(ObjdumpCat));
243 cl::opt<bool> NoLeadingAddr("no-leading-addr",
244                             cl::desc("Print no leading address"),
245                             cl::cat(ObjdumpCat));
246 
247 static cl::opt<bool> RawClangAST(
248     "raw-clang-ast",
249     cl::desc("Dump the raw binary contents of the clang AST section"),
250     cl::cat(ObjdumpCat));
251 
252 cl::opt<bool>
253     Relocations("reloc", cl::desc("Display the relocation entries in the file"),
254                 cl::cat(ObjdumpCat));
255 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
256                                   cl::NotHidden, cl::Grouping,
257                                   cl::aliasopt(Relocations));
258 
259 cl::opt<bool> PrintImmHex("print-imm-hex",
260                           cl::desc("Use hex format for immediate values"),
261                           cl::cat(ObjdumpCat));
262 
263 cl::opt<bool> PrivateHeaders("private-headers",
264                              cl::desc("Display format specific file headers"),
265                              cl::cat(ObjdumpCat));
266 static cl::alias PrivateHeadersShort("p",
267                                      cl::desc("Alias for --private-headers"),
268                                      cl::NotHidden, cl::Grouping,
269                                      cl::aliasopt(PrivateHeaders));
270 
271 cl::list<std::string>
272     FilterSections("section",
273                    cl::desc("Operate on the specified sections only. "
274                             "With -macho dump segment,section"),
275                    cl::cat(ObjdumpCat));
276 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
277                                  cl::NotHidden, cl::Grouping, cl::Prefix,
278                                  cl::aliasopt(FilterSections));
279 
280 cl::opt<bool> SectionHeaders("section-headers",
281                              cl::desc("Display summaries of the "
282                                       "headers for each section."),
283                              cl::cat(ObjdumpCat));
284 static cl::alias SectionHeadersShort("headers",
285                                      cl::desc("Alias for --section-headers"),
286                                      cl::NotHidden,
287                                      cl::aliasopt(SectionHeaders));
288 static cl::alias SectionHeadersShorter("h",
289                                        cl::desc("Alias for --section-headers"),
290                                        cl::NotHidden, cl::Grouping,
291                                        cl::aliasopt(SectionHeaders));
292 
293 static cl::opt<bool>
294     ShowLMA("show-lma",
295             cl::desc("Display LMA column when dumping ELF section headers"),
296             cl::cat(ObjdumpCat));
297 
298 static cl::opt<bool> PrintSource(
299     "source",
300     cl::desc(
301         "Display source inlined with disassembly. Implies disassemble object"),
302     cl::cat(ObjdumpCat));
303 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
304                                   cl::NotHidden, cl::Grouping,
305                                   cl::aliasopt(PrintSource));
306 
307 static cl::opt<uint64_t>
308     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
309                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
310 static cl::opt<uint64_t> StopAddress("stop-address",
311                                      cl::desc("Stop disassembly at address"),
312                                      cl::value_desc("address"),
313                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
314 
315 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"),
316                           cl::cat(ObjdumpCat));
317 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
318                                   cl::NotHidden, cl::Grouping,
319                                   cl::aliasopt(SymbolTable));
320 
321 cl::opt<std::string> TripleName("triple",
322                                 cl::desc("Target triple to disassemble for, "
323                                          "see -version for available targets"),
324                                 cl::cat(ObjdumpCat));
325 
326 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"),
327                          cl::cat(ObjdumpCat));
328 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
329                                  cl::NotHidden, cl::Grouping,
330                                  cl::aliasopt(UnwindInfo));
331 
332 static cl::opt<bool>
333     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
334          cl::cat(ObjdumpCat));
335 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
336 
337 static cl::extrahelp
338     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
339 
340 static StringSet<> DisasmFuncsSet;
341 StringSet<> FoundSectionSet;
342 static StringRef ToolName;
343 
344 namespace {
345 struct FilterResult {
346   // True if the section should not be skipped.
347   bool Keep;
348 
349   // True if the index counter should be incremented, even if the section should
350   // be skipped. For example, sections may be skipped if they are not included
351   // in the --section flag, but we still want those to count toward the section
352   // count.
353   bool IncrementIndex;
354 };
355 } // namespace
356 
357 static FilterResult checkSectionFilter(object::SectionRef S) {
358   if (FilterSections.empty())
359     return {/*Keep=*/true, /*IncrementIndex=*/true};
360 
361   Expected<StringRef> SecNameOrErr = S.getName();
362   if (!SecNameOrErr) {
363     consumeError(SecNameOrErr.takeError());
364     return {/*Keep=*/false, /*IncrementIndex=*/false};
365   }
366   StringRef SecName = *SecNameOrErr;
367 
368   // StringSet does not allow empty key so avoid adding sections with
369   // no name (such as the section with index 0) here.
370   if (!SecName.empty())
371     FoundSectionSet.insert(SecName);
372 
373   // Only show the section if it's in the FilterSections list, but always
374   // increment so the indexing is stable.
375   return {/*Keep=*/is_contained(FilterSections, SecName),
376           /*IncrementIndex=*/true};
377 }
378 
379 SectionFilter ToolSectionFilter(object::ObjectFile const &O, uint64_t *Idx) {
380   // Start at UINT64_MAX so that the first index returned after an increment is
381   // zero (after the unsigned wrap).
382   if (Idx)
383     *Idx = UINT64_MAX;
384   return SectionFilter(
385       [Idx](object::SectionRef S) {
386         FilterResult Result = checkSectionFilter(S);
387         if (Idx != nullptr && Result.IncrementIndex)
388           *Idx += 1;
389         return Result.Keep;
390       },
391       O);
392 }
393 
394 std::string getFileNameForError(const object::Archive::Child &C,
395                                 unsigned Index) {
396   Expected<StringRef> NameOrErr = C.getName();
397   if (NameOrErr)
398     return std::string(NameOrErr.get());
399   // If we have an error getting the name then we print the index of the archive
400   // member. Since we are already in an error state, we just ignore this error.
401   consumeError(NameOrErr.takeError());
402   return "<file index: " + std::to_string(Index) + ">";
403 }
404 
405 void reportWarning(Twine Message, StringRef File) {
406   // Output order between errs() and outs() matters especially for archive
407   // files where the output is per member object.
408   outs().flush();
409   WithColor::warning(errs(), ToolName)
410       << "'" << File << "': " << Message << "\n";
411   errs().flush();
412 }
413 
414 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) {
415   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
416   exit(1);
417 }
418 
419 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName,
420                                          StringRef ArchiveName,
421                                          StringRef ArchitectureName) {
422   assert(E);
423   WithColor::error(errs(), ToolName);
424   if (ArchiveName != "")
425     errs() << ArchiveName << "(" << FileName << ")";
426   else
427     errs() << "'" << FileName << "'";
428   if (!ArchitectureName.empty())
429     errs() << " (for architecture " << ArchitectureName << ")";
430   std::string Buf;
431   raw_string_ostream OS(Buf);
432   logAllUnhandledErrors(std::move(E), OS);
433   OS.flush();
434   errs() << ": " << Buf;
435   exit(1);
436 }
437 
438 static void reportCmdLineWarning(Twine Message) {
439   WithColor::warning(errs(), ToolName) << Message << "\n";
440 }
441 
442 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) {
443   WithColor::error(errs(), ToolName) << Message << "\n";
444   exit(1);
445 }
446 
447 static void warnOnNoMatchForSections() {
448   SetVector<StringRef> MissingSections;
449   for (StringRef S : FilterSections) {
450     if (FoundSectionSet.count(S))
451       return;
452     // User may specify a unnamed section. Don't warn for it.
453     if (!S.empty())
454       MissingSections.insert(S);
455   }
456 
457   // Warn only if no section in FilterSections is matched.
458   for (StringRef S : MissingSections)
459     reportCmdLineWarning("section '" + S +
460                          "' mentioned in a -j/--section option, but not "
461                          "found in any input file");
462 }
463 
464 static const Target *getTarget(const ObjectFile *Obj) {
465   // Figure out the target triple.
466   Triple TheTriple("unknown-unknown-unknown");
467   if (TripleName.empty()) {
468     TheTriple = Obj->makeTriple();
469   } else {
470     TheTriple.setTriple(Triple::normalize(TripleName));
471     auto Arch = Obj->getArch();
472     if (Arch == Triple::arm || Arch == Triple::armeb)
473       Obj->setARMSubArch(TheTriple);
474   }
475 
476   // Get the target specific parser.
477   std::string Error;
478   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
479                                                          Error);
480   if (!TheTarget)
481     reportError(Obj->getFileName(), "can't find target: " + Error);
482 
483   // Update the triple name and return the found target.
484   TripleName = TheTriple.getTriple();
485   return TheTarget;
486 }
487 
488 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
489   return A.getOffset() < B.getOffset();
490 }
491 
492 static Error getRelocationValueString(const RelocationRef &Rel,
493                                       SmallVectorImpl<char> &Result) {
494   const ObjectFile *Obj = Rel.getObject();
495   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
496     return getELFRelocationValueString(ELF, Rel, Result);
497   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
498     return getCOFFRelocationValueString(COFF, Rel, Result);
499   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
500     return getWasmRelocationValueString(Wasm, Rel, Result);
501   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
502     return getMachORelocationValueString(MachO, Rel, Result);
503   llvm_unreachable("unknown object file format");
504 }
505 
506 /// Indicates whether this relocation should hidden when listing
507 /// relocations, usually because it is the trailing part of a multipart
508 /// relocation that will be printed as part of the leading relocation.
509 static bool getHidden(RelocationRef RelRef) {
510   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
511   if (!MachO)
512     return false;
513 
514   unsigned Arch = MachO->getArch();
515   DataRefImpl Rel = RelRef.getRawDataRefImpl();
516   uint64_t Type = MachO->getRelocationType(Rel);
517 
518   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
519   // is always hidden.
520   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
521     return Type == MachO::GENERIC_RELOC_PAIR;
522 
523   if (Arch == Triple::x86_64) {
524     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
525     // an X86_64_RELOC_SUBTRACTOR.
526     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
527       DataRefImpl RelPrev = Rel;
528       RelPrev.d.a--;
529       uint64_t PrevType = MachO->getRelocationType(RelPrev);
530       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
531         return true;
532     }
533   }
534 
535   return false;
536 }
537 
538 namespace {
539 class SourcePrinter {
540 protected:
541   DILineInfo OldLineInfo;
542   const ObjectFile *Obj = nullptr;
543   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
544   // File name to file contents of source.
545   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
546   // Mark the line endings of the cached source.
547   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
548   // Keep track of missing sources.
549   StringSet<> MissingSources;
550   // Only emit 'no debug info' warning once.
551   bool WarnedNoDebugInfo;
552 
553 private:
554   bool cacheSource(const DILineInfo& LineInfoFile);
555 
556 public:
557   SourcePrinter() = default;
558   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch)
559       : Obj(Obj), WarnedNoDebugInfo(false) {
560     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
561     SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None;
562     SymbolizerOpts.Demangle = false;
563     SymbolizerOpts.DefaultArch = std::string(DefaultArch);
564     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
565   }
566   virtual ~SourcePrinter() = default;
567   virtual void printSourceLine(raw_ostream &OS,
568                                object::SectionedAddress Address,
569                                StringRef ObjectFilename,
570                                StringRef Delimiter = "; ");
571 };
572 
573 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
574   std::unique_ptr<MemoryBuffer> Buffer;
575   if (LineInfo.Source) {
576     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
577   } else {
578     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
579     if (!BufferOrError) {
580       if (MissingSources.insert(LineInfo.FileName).second)
581         reportWarning("failed to find source " + LineInfo.FileName,
582                       Obj->getFileName());
583       return false;
584     }
585     Buffer = std::move(*BufferOrError);
586   }
587   // Chomp the file to get lines
588   const char *BufferStart = Buffer->getBufferStart(),
589              *BufferEnd = Buffer->getBufferEnd();
590   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
591   const char *Start = BufferStart;
592   for (const char *I = BufferStart; I != BufferEnd; ++I)
593     if (*I == '\n') {
594       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
595       Start = I + 1;
596     }
597   if (Start < BufferEnd)
598     Lines.emplace_back(Start, BufferEnd - Start);
599   SourceCache[LineInfo.FileName] = std::move(Buffer);
600   return true;
601 }
602 
603 void SourcePrinter::printSourceLine(raw_ostream &OS,
604                                     object::SectionedAddress Address,
605                                     StringRef ObjectFilename,
606                                     StringRef Delimiter) {
607   if (!Symbolizer)
608     return;
609 
610   DILineInfo LineInfo = DILineInfo();
611   auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
612   std::string ErrorMessage;
613   if (!ExpectedLineInfo)
614     ErrorMessage = toString(ExpectedLineInfo.takeError());
615   else
616     LineInfo = *ExpectedLineInfo;
617 
618   if (LineInfo.FileName == DILineInfo::BadString) {
619     if (!WarnedNoDebugInfo) {
620       std::string Warning =
621           "failed to parse debug information for " + ObjectFilename.str();
622       if (!ErrorMessage.empty())
623         Warning += ": " + ErrorMessage;
624       reportWarning(Warning, ObjectFilename);
625       WarnedNoDebugInfo = true;
626     }
627     return;
628   }
629 
630   if (LineInfo.Line == 0 || ((OldLineInfo.Line == LineInfo.Line) &&
631                              (OldLineInfo.FileName == LineInfo.FileName)))
632     return;
633 
634   if (PrintLines)
635     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
636   if (PrintSource) {
637     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
638       if (!cacheSource(LineInfo))
639         return;
640     auto LineBuffer = LineCache.find(LineInfo.FileName);
641     if (LineBuffer != LineCache.end()) {
642       if (LineInfo.Line > LineBuffer->second.size()) {
643         reportWarning(
644             formatv(
645                 "debug info line number {0} exceeds the number of lines in {1}",
646                 LineInfo.Line, LineInfo.FileName),
647             ObjectFilename);
648         return;
649       }
650       // Vector begins at 0, line numbers are non-zero
651       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
652     }
653   }
654   OldLineInfo = LineInfo;
655 }
656 
657 static bool isAArch64Elf(const ObjectFile *Obj) {
658   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
659   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
660 }
661 
662 static bool isArmElf(const ObjectFile *Obj) {
663   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
664   return Elf && Elf->getEMachine() == ELF::EM_ARM;
665 }
666 
667 static bool hasMappingSymbols(const ObjectFile *Obj) {
668   return isArmElf(Obj) || isAArch64Elf(Obj);
669 }
670 
671 static void printRelocation(StringRef FileName, const RelocationRef &Rel,
672                             uint64_t Address, bool Is64Bits) {
673   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
674   SmallString<16> Name;
675   SmallString<32> Val;
676   Rel.getTypeName(Name);
677   if (Error E = getRelocationValueString(Rel, Val))
678     reportError(std::move(E), FileName);
679   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
680 }
681 
682 class PrettyPrinter {
683 public:
684   virtual ~PrettyPrinter() = default;
685   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
686                          ArrayRef<uint8_t> Bytes,
687                          object::SectionedAddress Address, raw_ostream &OS,
688                          StringRef Annot, MCSubtargetInfo const &STI,
689                          SourcePrinter *SP, StringRef ObjectFilename,
690                          std::vector<RelocationRef> *Rels = nullptr) {
691     if (SP && (PrintSource || PrintLines))
692       SP->printSourceLine(OS, Address, ObjectFilename);
693 
694     size_t Start = OS.tell();
695     if (!NoLeadingAddr)
696       OS << format("%8" PRIx64 ":", Address.Address);
697     if (!NoShowRawInsn) {
698       OS << ' ';
699       dumpBytes(Bytes, OS);
700     }
701 
702     // The output of printInst starts with a tab. Print some spaces so that
703     // the tab has 1 column and advances to the target tab stop.
704     unsigned TabStop = NoShowRawInsn ? 16 : 40;
705     unsigned Column = OS.tell() - Start;
706     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
707 
708     if (MI)
709       IP.printInst(MI, Address.Address, "", STI, OS);
710     else
711       OS << "\t<unknown>";
712   }
713 };
714 PrettyPrinter PrettyPrinterInst;
715 
716 class HexagonPrettyPrinter : public PrettyPrinter {
717 public:
718   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
719                  raw_ostream &OS) {
720     uint32_t opcode =
721       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
722     if (!NoLeadingAddr)
723       OS << format("%8" PRIx64 ":", Address);
724     if (!NoShowRawInsn) {
725       OS << "\t";
726       dumpBytes(Bytes.slice(0, 4), OS);
727       OS << format("\t%08" PRIx32, opcode);
728     }
729   }
730   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
731                  object::SectionedAddress Address, raw_ostream &OS,
732                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
733                  StringRef ObjectFilename,
734                  std::vector<RelocationRef> *Rels) override {
735     if (SP && (PrintSource || PrintLines))
736       SP->printSourceLine(OS, Address, ObjectFilename, "");
737     if (!MI) {
738       printLead(Bytes, Address.Address, OS);
739       OS << " <unknown>";
740       return;
741     }
742     std::string Buffer;
743     {
744       raw_string_ostream TempStream(Buffer);
745       IP.printInst(MI, Address.Address, "", STI, TempStream);
746     }
747     StringRef Contents(Buffer);
748     // Split off bundle attributes
749     auto PacketBundle = Contents.rsplit('\n');
750     // Split off first instruction from the rest
751     auto HeadTail = PacketBundle.first.split('\n');
752     auto Preamble = " { ";
753     auto Separator = "";
754 
755     // Hexagon's packets require relocations to be inline rather than
756     // clustered at the end of the packet.
757     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
758     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
759     auto PrintReloc = [&]() -> void {
760       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
761         if (RelCur->getOffset() == Address.Address) {
762           printRelocation(ObjectFilename, *RelCur, Address.Address, false);
763           return;
764         }
765         ++RelCur;
766       }
767     };
768 
769     while (!HeadTail.first.empty()) {
770       OS << Separator;
771       Separator = "\n";
772       if (SP && (PrintSource || PrintLines))
773         SP->printSourceLine(OS, Address, ObjectFilename, "");
774       printLead(Bytes, Address.Address, OS);
775       OS << Preamble;
776       Preamble = "   ";
777       StringRef Inst;
778       auto Duplex = HeadTail.first.split('\v');
779       if (!Duplex.second.empty()) {
780         OS << Duplex.first;
781         OS << "; ";
782         Inst = Duplex.second;
783       }
784       else
785         Inst = HeadTail.first;
786       OS << Inst;
787       HeadTail = HeadTail.second.split('\n');
788       if (HeadTail.first.empty())
789         OS << " } " << PacketBundle.second;
790       PrintReloc();
791       Bytes = Bytes.slice(4);
792       Address.Address += 4;
793     }
794   }
795 };
796 HexagonPrettyPrinter HexagonPrettyPrinterInst;
797 
798 class AMDGCNPrettyPrinter : public PrettyPrinter {
799 public:
800   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
801                  object::SectionedAddress Address, raw_ostream &OS,
802                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
803                  StringRef ObjectFilename,
804                  std::vector<RelocationRef> *Rels) override {
805     if (SP && (PrintSource || PrintLines))
806       SP->printSourceLine(OS, Address, ObjectFilename);
807 
808     if (MI) {
809       SmallString<40> InstStr;
810       raw_svector_ostream IS(InstStr);
811 
812       IP.printInst(MI, Address.Address, "", STI, IS);
813 
814       OS << left_justify(IS.str(), 60);
815     } else {
816       // an unrecognized encoding - this is probably data so represent it
817       // using the .long directive, or .byte directive if fewer than 4 bytes
818       // remaining
819       if (Bytes.size() >= 4) {
820         OS << format("\t.long 0x%08" PRIx32 " ",
821                      support::endian::read32<support::little>(Bytes.data()));
822         OS.indent(42);
823       } else {
824           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
825           for (unsigned int i = 1; i < Bytes.size(); i++)
826             OS << format(", 0x%02" PRIx8, Bytes[i]);
827           OS.indent(55 - (6 * Bytes.size()));
828       }
829     }
830 
831     OS << format("// %012" PRIX64 ":", Address.Address);
832     if (Bytes.size() >= 4) {
833       // D should be casted to uint32_t here as it is passed by format to
834       // snprintf as vararg.
835       for (uint32_t D : makeArrayRef(
836                reinterpret_cast<const support::little32_t *>(Bytes.data()),
837                Bytes.size() / 4))
838         OS << format(" %08" PRIX32, D);
839     } else {
840       for (unsigned char B : Bytes)
841         OS << format(" %02" PRIX8, B);
842     }
843 
844     if (!Annot.empty())
845       OS << " // " << Annot;
846   }
847 };
848 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
849 
850 class BPFPrettyPrinter : public PrettyPrinter {
851 public:
852   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
853                  object::SectionedAddress Address, raw_ostream &OS,
854                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
855                  StringRef ObjectFilename,
856                  std::vector<RelocationRef> *Rels) override {
857     if (SP && (PrintSource || PrintLines))
858       SP->printSourceLine(OS, Address, ObjectFilename);
859     if (!NoLeadingAddr)
860       OS << format("%8" PRId64 ":", Address.Address / 8);
861     if (!NoShowRawInsn) {
862       OS << "\t";
863       dumpBytes(Bytes, OS);
864     }
865     if (MI)
866       IP.printInst(MI, Address.Address, "", STI, OS);
867     else
868       OS << "\t<unknown>";
869   }
870 };
871 BPFPrettyPrinter BPFPrettyPrinterInst;
872 
873 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
874   switch(Triple.getArch()) {
875   default:
876     return PrettyPrinterInst;
877   case Triple::hexagon:
878     return HexagonPrettyPrinterInst;
879   case Triple::amdgcn:
880     return AMDGCNPrettyPrinterInst;
881   case Triple::bpfel:
882   case Triple::bpfeb:
883     return BPFPrettyPrinterInst;
884   }
885 }
886 }
887 
888 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
889   assert(Obj->isELF());
890   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
891     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
892   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
893     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
894   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
895     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
896   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
897     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
898   llvm_unreachable("Unsupported binary format");
899 }
900 
901 template <class ELFT> static void
902 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
903                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
904   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
905     uint8_t SymbolType = Symbol.getELFType();
906     if (SymbolType == ELF::STT_SECTION)
907       continue;
908 
909     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
910     // ELFSymbolRef::getAddress() returns size instead of value for common
911     // symbols which is not desirable for disassembly output. Overriding.
912     if (SymbolType == ELF::STT_COMMON)
913       Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
914 
915     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
916     if (Name.empty())
917       continue;
918 
919     section_iterator SecI =
920         unwrapOrError(Symbol.getSection(), Obj->getFileName());
921     if (SecI == Obj->section_end())
922       continue;
923 
924     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
925   }
926 }
927 
928 static void
929 addDynamicElfSymbols(const ObjectFile *Obj,
930                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
931   assert(Obj->isELF());
932   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
933     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
934   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
935     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
936   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
937     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
938   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
939     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
940   else
941     llvm_unreachable("Unsupported binary format");
942 }
943 
944 static void addPltEntries(const ObjectFile *Obj,
945                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
946                           StringSaver &Saver) {
947   Optional<SectionRef> Plt = None;
948   for (const SectionRef &Section : Obj->sections()) {
949     Expected<StringRef> SecNameOrErr = Section.getName();
950     if (!SecNameOrErr) {
951       consumeError(SecNameOrErr.takeError());
952       continue;
953     }
954     if (*SecNameOrErr == ".plt")
955       Plt = Section;
956   }
957   if (!Plt)
958     return;
959   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
960     for (auto PltEntry : ElfObj->getPltAddresses()) {
961       SymbolRef Symbol(PltEntry.first, ElfObj);
962       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
963 
964       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
965       if (!Name.empty())
966         AllSymbols[*Plt].emplace_back(
967             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
968     }
969   }
970 }
971 
972 // Normally the disassembly output will skip blocks of zeroes. This function
973 // returns the number of zero bytes that can be skipped when dumping the
974 // disassembly of the instructions in Buf.
975 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
976   // Find the number of leading zeroes.
977   size_t N = 0;
978   while (N < Buf.size() && !Buf[N])
979     ++N;
980 
981   // We may want to skip blocks of zero bytes, but unless we see
982   // at least 8 of them in a row.
983   if (N < 8)
984     return 0;
985 
986   // We skip zeroes in multiples of 4 because do not want to truncate an
987   // instruction if it starts with a zero byte.
988   return N & ~0x3;
989 }
990 
991 // Returns a map from sections to their relocations.
992 static std::map<SectionRef, std::vector<RelocationRef>>
993 getRelocsMap(object::ObjectFile const &Obj) {
994   std::map<SectionRef, std::vector<RelocationRef>> Ret;
995   uint64_t I = (uint64_t)-1;
996   for (SectionRef Sec : Obj.sections()) {
997     ++I;
998     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
999     if (!RelocatedOrErr)
1000       reportError(Obj.getFileName(),
1001                   "section (" + Twine(I) +
1002                       "): failed to get a relocated section: " +
1003                       toString(RelocatedOrErr.takeError()));
1004 
1005     section_iterator Relocated = *RelocatedOrErr;
1006     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1007       continue;
1008     std::vector<RelocationRef> &V = Ret[*Relocated];
1009     for (const RelocationRef &R : Sec.relocations())
1010       V.push_back(R);
1011     // Sort relocations by address.
1012     llvm::stable_sort(V, isRelocAddressLess);
1013   }
1014   return Ret;
1015 }
1016 
1017 // Used for --adjust-vma to check if address should be adjusted by the
1018 // specified value for a given section.
1019 // For ELF we do not adjust non-allocatable sections like debug ones,
1020 // because they are not loadable.
1021 // TODO: implement for other file formats.
1022 static bool shouldAdjustVA(const SectionRef &Section) {
1023   const ObjectFile *Obj = Section.getObject();
1024   if (isa<object::ELFObjectFileBase>(Obj))
1025     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1026   return false;
1027 }
1028 
1029 
1030 typedef std::pair<uint64_t, char> MappingSymbolPair;
1031 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1032                                  uint64_t Address) {
1033   auto It =
1034       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1035         return Val.first <= Address;
1036       });
1037   // Return zero for any address before the first mapping symbol; this means
1038   // we should use the default disassembly mode, depending on the target.
1039   if (It == MappingSymbols.begin())
1040     return '\x00';
1041   return (It - 1)->second;
1042 }
1043 
1044 static uint64_t
1045 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1046                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
1047                ArrayRef<MappingSymbolPair> MappingSymbols) {
1048   support::endianness Endian =
1049       Obj->isLittleEndian() ? support::little : support::big;
1050   while (Index < End) {
1051     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1052     outs() << "\t";
1053     if (Index + 4 <= End) {
1054       dumpBytes(Bytes.slice(Index, 4), outs());
1055       outs() << "\t.word\t"
1056              << format_hex(
1057                     support::endian::read32(Bytes.data() + Index, Endian), 10);
1058       Index += 4;
1059     } else if (Index + 2 <= End) {
1060       dumpBytes(Bytes.slice(Index, 2), outs());
1061       outs() << "\t\t.short\t"
1062              << format_hex(
1063                     support::endian::read16(Bytes.data() + Index, Endian), 6);
1064       Index += 2;
1065     } else {
1066       dumpBytes(Bytes.slice(Index, 1), outs());
1067       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1068       ++Index;
1069     }
1070     outs() << "\n";
1071     if (getMappingSymbolKind(MappingSymbols, Index) != 'd')
1072       break;
1073   }
1074   return Index;
1075 }
1076 
1077 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1078                         ArrayRef<uint8_t> Bytes) {
1079   // print out data up to 8 bytes at a time in hex and ascii
1080   uint8_t AsciiData[9] = {'\0'};
1081   uint8_t Byte;
1082   int NumBytes = 0;
1083 
1084   for (; Index < End; ++Index) {
1085     if (NumBytes == 0)
1086       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1087     Byte = Bytes.slice(Index)[0];
1088     outs() << format(" %02x", Byte);
1089     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1090 
1091     uint8_t IndentOffset = 0;
1092     NumBytes++;
1093     if (Index == End - 1 || NumBytes > 8) {
1094       // Indent the space for less than 8 bytes data.
1095       // 2 spaces for byte and one for space between bytes
1096       IndentOffset = 3 * (8 - NumBytes);
1097       for (int Excess = NumBytes; Excess < 8; Excess++)
1098         AsciiData[Excess] = '\0';
1099       NumBytes = 8;
1100     }
1101     if (NumBytes == 8) {
1102       AsciiData[8] = '\0';
1103       outs() << std::string(IndentOffset, ' ') << "         ";
1104       outs() << reinterpret_cast<char *>(AsciiData);
1105       outs() << '\n';
1106       NumBytes = 0;
1107     }
1108   }
1109 }
1110 
1111 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1112                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1113                               MCDisassembler *SecondaryDisAsm,
1114                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1115                               const MCSubtargetInfo *PrimarySTI,
1116                               const MCSubtargetInfo *SecondarySTI,
1117                               PrettyPrinter &PIP,
1118                               SourcePrinter &SP, bool InlineRelocs) {
1119   const MCSubtargetInfo *STI = PrimarySTI;
1120   MCDisassembler *DisAsm = PrimaryDisAsm;
1121   bool PrimaryIsThumb = false;
1122   if (isArmElf(Obj))
1123     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1124 
1125   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1126   if (InlineRelocs)
1127     RelocMap = getRelocsMap(*Obj);
1128   bool Is64Bits = Obj->getBytesInAddress() > 4;
1129 
1130   // Create a mapping from virtual address to symbol name.  This is used to
1131   // pretty print the symbols while disassembling.
1132   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1133   SectionSymbolsTy AbsoluteSymbols;
1134   const StringRef FileName = Obj->getFileName();
1135   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1136   for (const SymbolRef &Symbol : Obj->symbols()) {
1137     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1138 
1139     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1140     if (Name.empty())
1141       continue;
1142 
1143     uint8_t SymbolType = ELF::STT_NOTYPE;
1144     if (Obj->isELF()) {
1145       SymbolType = getElfSymbolType(Obj, Symbol);
1146       if (SymbolType == ELF::STT_SECTION)
1147         continue;
1148     }
1149 
1150     // Don't ask a Mach-O STAB symbol for its section unless you know that
1151     // STAB symbol's section field refers to a valid section index. Otherwise
1152     // the symbol may error trying to load a section that does not exist.
1153     if (MachO) {
1154       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1155       uint8_t NType = (MachO->is64Bit() ?
1156                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1157                        MachO->getSymbolTableEntry(SymDRI).n_type);
1158       if (NType & MachO::N_STAB)
1159         continue;
1160     }
1161 
1162     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1163     if (SecI != Obj->section_end())
1164       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1165     else
1166       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1167   }
1168   if (AllSymbols.empty() && Obj->isELF())
1169     addDynamicElfSymbols(Obj, AllSymbols);
1170 
1171   BumpPtrAllocator A;
1172   StringSaver Saver(A);
1173   addPltEntries(Obj, AllSymbols, Saver);
1174 
1175   // Create a mapping from virtual address to section.
1176   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1177   for (SectionRef Sec : Obj->sections())
1178     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1179   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1180 
1181   // Linked executables (.exe and .dll files) typically don't include a real
1182   // symbol table but they might contain an export table.
1183   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1184     for (const auto &ExportEntry : COFFObj->export_directories()) {
1185       StringRef Name;
1186       if (std::error_code EC = ExportEntry.getSymbolName(Name))
1187         reportError(errorCodeToError(EC), Obj->getFileName());
1188       if (Name.empty())
1189         continue;
1190 
1191       uint32_t RVA;
1192       if (std::error_code EC = ExportEntry.getExportRVA(RVA))
1193         reportError(errorCodeToError(EC), Obj->getFileName());
1194 
1195       uint64_t VA = COFFObj->getImageBase() + RVA;
1196       auto Sec = partition_point(
1197           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1198             return O.first <= VA;
1199           });
1200       if (Sec != SectionAddresses.begin()) {
1201         --Sec;
1202         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1203       } else
1204         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1205     }
1206   }
1207 
1208   // Sort all the symbols, this allows us to use a simple binary search to find
1209   // a symbol near an address.
1210   StringSet<> FoundDisasmFuncsSet;
1211   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1212     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1213   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1214 
1215   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1216     if (FilterSections.empty() && !DisassembleAll &&
1217         (!Section.isText() || Section.isVirtual()))
1218       continue;
1219 
1220     uint64_t SectionAddr = Section.getAddress();
1221     uint64_t SectSize = Section.getSize();
1222     if (!SectSize)
1223       continue;
1224 
1225     // Get the list of all the symbols in this section.
1226     SectionSymbolsTy &Symbols = AllSymbols[Section];
1227     std::vector<MappingSymbolPair> MappingSymbols;
1228     if (hasMappingSymbols(Obj)) {
1229       for (const auto &Symb : Symbols) {
1230         uint64_t Address = Symb.Addr;
1231         StringRef Name = Symb.Name;
1232         if (Name.startswith("$d"))
1233           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1234         if (Name.startswith("$x"))
1235           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1236         if (Name.startswith("$a"))
1237           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1238         if (Name.startswith("$t"))
1239           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1240       }
1241     }
1242 
1243     llvm::sort(MappingSymbols);
1244 
1245     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1246       // AMDGPU disassembler uses symbolizer for printing labels
1247       std::unique_ptr<MCRelocationInfo> RelInfo(
1248         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1249       if (RelInfo) {
1250         std::unique_ptr<MCSymbolizer> Symbolizer(
1251           TheTarget->createMCSymbolizer(
1252             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1253         DisAsm->setSymbolizer(std::move(Symbolizer));
1254       }
1255     }
1256 
1257     StringRef SegmentName = "";
1258     if (MachO) {
1259       DataRefImpl DR = Section.getRawDataRefImpl();
1260       SegmentName = MachO->getSectionFinalSegmentName(DR);
1261     }
1262 
1263     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1264     // If the section has no symbol at the start, just insert a dummy one.
1265     if (Symbols.empty() || Symbols[0].Addr != 0) {
1266       Symbols.insert(
1267           Symbols.begin(),
1268            SymbolInfoTy(SectionAddr, SectionName,
1269                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1270     }
1271 
1272     SmallString<40> Comments;
1273     raw_svector_ostream CommentStream(Comments);
1274 
1275     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1276         unwrapOrError(Section.getContents(), Obj->getFileName()));
1277 
1278     uint64_t VMAAdjustment = 0;
1279     if (shouldAdjustVA(Section))
1280       VMAAdjustment = AdjustVMA;
1281 
1282     uint64_t Size;
1283     uint64_t Index;
1284     bool PrintedSection = false;
1285     std::vector<RelocationRef> Rels = RelocMap[Section];
1286     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1287     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1288     // Disassemble symbol by symbol.
1289     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1290       std::string SymbolName = Symbols[SI].Name.str();
1291       if (Demangle)
1292         SymbolName = demangle(SymbolName);
1293 
1294       // Skip if --disassemble-functions is not empty and the symbol is not in
1295       // the list.
1296       if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName))
1297         continue;
1298 
1299       uint64_t Start = Symbols[SI].Addr;
1300       if (Start < SectionAddr || StopAddress <= Start)
1301         continue;
1302       else
1303         FoundDisasmFuncsSet.insert(SymbolName);
1304 
1305       // The end is the section end, the beginning of the next symbol, or
1306       // --stop-address.
1307       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1308       if (SI + 1 < SE)
1309         End = std::min(End, Symbols[SI + 1].Addr);
1310       if (Start >= End || End <= StartAddress)
1311         continue;
1312       Start -= SectionAddr;
1313       End -= SectionAddr;
1314 
1315       if (!PrintedSection) {
1316         PrintedSection = true;
1317         outs() << "\nDisassembly of section ";
1318         if (!SegmentName.empty())
1319           outs() << SegmentName << ",";
1320         outs() << SectionName << ":\n";
1321       }
1322 
1323       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1324         if (Symbols[SI].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1325           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1326           Start += 256;
1327         }
1328         if (SI == SE - 1 ||
1329             Symbols[SI + 1].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1330           // cut trailing zeroes at the end of kernel
1331           // cut up to 256 bytes
1332           const uint64_t EndAlign = 256;
1333           const auto Limit = End - (std::min)(EndAlign, End - Start);
1334           while (End > Limit &&
1335             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1336             End -= 4;
1337         }
1338       }
1339 
1340       outs() << '\n';
1341       if (!NoLeadingAddr)
1342         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1343                          SectionAddr + Start + VMAAdjustment);
1344 
1345       outs() << SymbolName << ":\n";
1346 
1347       // Don't print raw contents of a virtual section. A virtual section
1348       // doesn't have any contents in the file.
1349       if (Section.isVirtual()) {
1350         outs() << "...\n";
1351         continue;
1352       }
1353 
1354       // Some targets (like WebAssembly) have a special prelude at the start
1355       // of each symbol.
1356       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1357                             SectionAddr + Start, CommentStream);
1358       Start += Size;
1359 
1360       Index = Start;
1361       if (SectionAddr < StartAddress)
1362         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1363 
1364       // If there is a data/common symbol inside an ELF text section and we are
1365       // only disassembling text (applicable all architectures), we are in a
1366       // situation where we must print the data and not disassemble it.
1367       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1368         uint8_t SymTy = Symbols[SI].Type;
1369         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1370           dumpELFData(SectionAddr, Index, End, Bytes);
1371           Index = End;
1372         }
1373       }
1374 
1375       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1376                              Symbols[SI].Type != ELF::STT_OBJECT &&
1377                              !DisassembleAll;
1378       while (Index < End) {
1379         // ARM and AArch64 ELF binaries can interleave data and text in the
1380         // same section. We rely on the markers introduced to understand what
1381         // we need to dump. If the data marker is within a function, it is
1382         // denoted as a word/short etc.
1383         if (CheckARMELFData &&
1384             getMappingSymbolKind(MappingSymbols, Index) == 'd') {
1385           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1386                                  MappingSymbols);
1387           continue;
1388         }
1389 
1390         // When -z or --disassemble-zeroes are given we always dissasemble
1391         // them. Otherwise we might want to skip zero bytes we see.
1392         if (!DisassembleZeroes) {
1393           uint64_t MaxOffset = End - Index;
1394           // For -reloc: print zero blocks patched by relocations, so that
1395           // relocations can be shown in the dump.
1396           if (RelCur != RelEnd)
1397             MaxOffset = RelCur->getOffset() - Index;
1398 
1399           if (size_t N =
1400                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1401             outs() << "\t\t..." << '\n';
1402             Index += N;
1403             continue;
1404           }
1405         }
1406 
1407         if (SecondarySTI) {
1408           if (getMappingSymbolKind(MappingSymbols, Index) == 'a') {
1409             STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1410             DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1411           } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') {
1412             STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1413             DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1414           }
1415         }
1416 
1417         // Disassemble a real instruction or a data when disassemble all is
1418         // provided
1419         MCInst Inst;
1420         bool Disassembled = DisAsm->getInstruction(
1421             Inst, Size, Bytes.slice(Index), SectionAddr + Index, CommentStream);
1422         if (Size == 0)
1423           Size = 1;
1424 
1425         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1426                       Bytes.slice(Index, Size),
1427                       {SectionAddr + Index + VMAAdjustment, Section.getIndex()},
1428                       outs(), "", *STI, &SP, Obj->getFileName(), &Rels);
1429         outs() << CommentStream.str();
1430         Comments.clear();
1431 
1432         // If disassembly has failed, continue with the next instruction, to
1433         // avoid analysing invalid/incomplete instruction information.
1434         if (!Disassembled) {
1435           outs() << "\n";
1436           Index += Size;
1437           continue;
1438         }
1439 
1440         // Try to resolve the target of a call, tail call, etc. to a specific
1441         // symbol.
1442         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1443                     MIA->isConditionalBranch(Inst))) {
1444           uint64_t Target;
1445           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1446             // In a relocatable object, the target's section must reside in
1447             // the same section as the call instruction or it is accessed
1448             // through a relocation.
1449             //
1450             // In a non-relocatable object, the target may be in any section.
1451             //
1452             // N.B. We don't walk the relocations in the relocatable case yet.
1453             auto *TargetSectionSymbols = &Symbols;
1454             if (!Obj->isRelocatableObject()) {
1455               auto It = partition_point(
1456                   SectionAddresses,
1457                   [=](const std::pair<uint64_t, SectionRef> &O) {
1458                     return O.first <= Target;
1459                   });
1460               if (It != SectionAddresses.begin()) {
1461                 --It;
1462                 TargetSectionSymbols = &AllSymbols[It->second];
1463               } else {
1464                 TargetSectionSymbols = &AbsoluteSymbols;
1465               }
1466             }
1467 
1468             // Find the last symbol in the section whose offset is less than
1469             // or equal to the target. If there isn't a section that contains
1470             // the target, find the nearest preceding absolute symbol.
1471             auto TargetSym = partition_point(
1472                 *TargetSectionSymbols,
1473                 [=](const SymbolInfoTy &O) {
1474                   return O.Addr <= Target;
1475                 });
1476             if (TargetSym == TargetSectionSymbols->begin()) {
1477               TargetSectionSymbols = &AbsoluteSymbols;
1478               TargetSym = partition_point(
1479                   AbsoluteSymbols,
1480                   [=](const SymbolInfoTy &O) {
1481                     return O.Addr <= Target;
1482                   });
1483             }
1484             if (TargetSym != TargetSectionSymbols->begin()) {
1485               --TargetSym;
1486               uint64_t TargetAddress = TargetSym->Addr;
1487               StringRef TargetName = TargetSym->Name;
1488               outs() << " <" << TargetName;
1489               uint64_t Disp = Target - TargetAddress;
1490               if (Disp)
1491                 outs() << "+0x" << Twine::utohexstr(Disp);
1492               outs() << '>';
1493             }
1494           }
1495         }
1496         outs() << "\n";
1497 
1498         // Hexagon does this in pretty printer
1499         if (Obj->getArch() != Triple::hexagon) {
1500           // Print relocation for instruction.
1501           while (RelCur != RelEnd) {
1502             uint64_t Offset = RelCur->getOffset();
1503             // If this relocation is hidden, skip it.
1504             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1505               ++RelCur;
1506               continue;
1507             }
1508 
1509             // Stop when RelCur's offset is past the current instruction.
1510             if (Offset >= Index + Size)
1511               break;
1512 
1513             // When --adjust-vma is used, update the address printed.
1514             if (RelCur->getSymbol() != Obj->symbol_end()) {
1515               Expected<section_iterator> SymSI =
1516                   RelCur->getSymbol()->getSection();
1517               if (SymSI && *SymSI != Obj->section_end() &&
1518                   shouldAdjustVA(**SymSI))
1519                 Offset += AdjustVMA;
1520             }
1521 
1522             printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset,
1523                             Is64Bits);
1524             ++RelCur;
1525           }
1526         }
1527 
1528         Index += Size;
1529       }
1530     }
1531   }
1532   StringSet<> MissingDisasmFuncsSet =
1533       set_difference(DisasmFuncsSet, FoundDisasmFuncsSet);
1534   for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys())
1535     reportWarning("failed to disassemble missing function " + MissingDisasmFunc,
1536                   FileName);
1537 }
1538 
1539 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1540   const Target *TheTarget = getTarget(Obj);
1541 
1542   // Package up features to be passed to target/subtarget
1543   SubtargetFeatures Features = Obj->getFeatures();
1544   if (!MAttrs.empty())
1545     for (unsigned I = 0; I != MAttrs.size(); ++I)
1546       Features.AddFeature(MAttrs[I]);
1547 
1548   std::unique_ptr<const MCRegisterInfo> MRI(
1549       TheTarget->createMCRegInfo(TripleName));
1550   if (!MRI)
1551     reportError(Obj->getFileName(),
1552                 "no register info for target " + TripleName);
1553 
1554   // Set up disassembler.
1555   MCTargetOptions MCOptions;
1556   std::unique_ptr<const MCAsmInfo> AsmInfo(
1557       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1558   if (!AsmInfo)
1559     reportError(Obj->getFileName(),
1560                 "no assembly info for target " + TripleName);
1561   std::unique_ptr<const MCSubtargetInfo> STI(
1562       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1563   if (!STI)
1564     reportError(Obj->getFileName(),
1565                 "no subtarget info for target " + TripleName);
1566   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1567   if (!MII)
1568     reportError(Obj->getFileName(),
1569                 "no instruction info for target " + TripleName);
1570   MCObjectFileInfo MOFI;
1571   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1572   // FIXME: for now initialize MCObjectFileInfo with default values
1573   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1574 
1575   std::unique_ptr<MCDisassembler> DisAsm(
1576       TheTarget->createMCDisassembler(*STI, Ctx));
1577   if (!DisAsm)
1578     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1579 
1580   // If we have an ARM object file, we need a second disassembler, because
1581   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1582   // We use mapping symbols to switch between the two assemblers, where
1583   // appropriate.
1584   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1585   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1586   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1587     if (STI->checkFeatures("+thumb-mode"))
1588       Features.AddFeature("-thumb-mode");
1589     else
1590       Features.AddFeature("+thumb-mode");
1591     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1592                                                         Features.getString()));
1593     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1594   }
1595 
1596   std::unique_ptr<const MCInstrAnalysis> MIA(
1597       TheTarget->createMCInstrAnalysis(MII.get()));
1598 
1599   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1600   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1601       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1602   if (!IP)
1603     reportError(Obj->getFileName(),
1604                 "no instruction printer for target " + TripleName);
1605   IP->setPrintImmHex(PrintImmHex);
1606 
1607   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1608   SourcePrinter SP(Obj, TheTarget->getName());
1609 
1610   for (StringRef Opt : DisassemblerOptions)
1611     if (!IP->applyTargetSpecificCLOption(Opt))
1612       reportError(Obj->getFileName(),
1613                   "Unrecognized disassembler option: " + Opt);
1614 
1615   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1616                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1617                     SP, InlineRelocs);
1618 }
1619 
1620 void printRelocations(const ObjectFile *Obj) {
1621   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1622                                                  "%08" PRIx64;
1623   // Regular objdump doesn't print relocations in non-relocatable object
1624   // files.
1625   if (!Obj->isRelocatableObject())
1626     return;
1627 
1628   // Build a mapping from relocation target to a vector of relocation
1629   // sections. Usually, there is an only one relocation section for
1630   // each relocated section.
1631   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1632   uint64_t Ndx;
1633   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1634     if (Section.relocation_begin() == Section.relocation_end())
1635       continue;
1636     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1637     if (!SecOrErr)
1638       reportError(Obj->getFileName(),
1639                   "section (" + Twine(Ndx) +
1640                       "): unable to get a relocation target: " +
1641                       toString(SecOrErr.takeError()));
1642     SecToRelSec[**SecOrErr].push_back(Section);
1643   }
1644 
1645   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1646     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1647     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1648     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1649     uint32_t TypePadding = 24;
1650     outs() << left_justify("OFFSET", OffsetPadding) << " "
1651            << left_justify("TYPE", TypePadding) << " "
1652            << "VALUE\n";
1653 
1654     for (SectionRef Section : P.second) {
1655       for (const RelocationRef &Reloc : Section.relocations()) {
1656         uint64_t Address = Reloc.getOffset();
1657         SmallString<32> RelocName;
1658         SmallString<32> ValueStr;
1659         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1660           continue;
1661         Reloc.getTypeName(RelocName);
1662         if (Error E = getRelocationValueString(Reloc, ValueStr))
1663           reportError(std::move(E), Obj->getFileName());
1664 
1665         outs() << format(Fmt.data(), Address) << " "
1666                << left_justify(RelocName, TypePadding) << " " << ValueStr
1667                << "\n";
1668       }
1669     }
1670     outs() << "\n";
1671   }
1672 }
1673 
1674 void printDynamicRelocations(const ObjectFile *Obj) {
1675   // For the moment, this option is for ELF only
1676   if (!Obj->isELF())
1677     return;
1678 
1679   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1680   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1681     reportError(Obj->getFileName(), "not a dynamic object");
1682     return;
1683   }
1684 
1685   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1686   if (DynRelSec.empty())
1687     return;
1688 
1689   outs() << "DYNAMIC RELOCATION RECORDS\n";
1690   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1691   for (const SectionRef &Section : DynRelSec)
1692     for (const RelocationRef &Reloc : Section.relocations()) {
1693       uint64_t Address = Reloc.getOffset();
1694       SmallString<32> RelocName;
1695       SmallString<32> ValueStr;
1696       Reloc.getTypeName(RelocName);
1697       if (Error E = getRelocationValueString(Reloc, ValueStr))
1698         reportError(std::move(E), Obj->getFileName());
1699       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1700              << ValueStr << "\n";
1701     }
1702 }
1703 
1704 // Returns true if we need to show LMA column when dumping section headers. We
1705 // show it only when the platform is ELF and either we have at least one section
1706 // whose VMA and LMA are different and/or when --show-lma flag is used.
1707 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1708   if (!Obj->isELF())
1709     return false;
1710   for (const SectionRef &S : ToolSectionFilter(*Obj))
1711     if (S.getAddress() != getELFSectionLMA(S))
1712       return true;
1713   return ShowLMA;
1714 }
1715 
1716 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1717   // Default column width for names is 13 even if no names are that long.
1718   size_t MaxWidth = 13;
1719   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1720     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1721     MaxWidth = std::max(MaxWidth, Name.size());
1722   }
1723   return MaxWidth;
1724 }
1725 
1726 void printSectionHeaders(const ObjectFile *Obj) {
1727   size_t NameWidth = getMaxSectionNameWidth(Obj);
1728   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1729   bool HasLMAColumn = shouldDisplayLMA(Obj);
1730   if (HasLMAColumn)
1731     outs() << "Sections:\n"
1732               "Idx "
1733            << left_justify("Name", NameWidth) << " Size     "
1734            << left_justify("VMA", AddressWidth) << " "
1735            << left_justify("LMA", AddressWidth) << " Type\n";
1736   else
1737     outs() << "Sections:\n"
1738               "Idx "
1739            << left_justify("Name", NameWidth) << " Size     "
1740            << left_justify("VMA", AddressWidth) << " Type\n";
1741 
1742   uint64_t Idx;
1743   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1744     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1745     uint64_t VMA = Section.getAddress();
1746     if (shouldAdjustVA(Section))
1747       VMA += AdjustVMA;
1748 
1749     uint64_t Size = Section.getSize();
1750 
1751     std::string Type = Section.isText() ? "TEXT" : "";
1752     if (Section.isData())
1753       Type += Type.empty() ? "DATA" : " DATA";
1754     if (Section.isBSS())
1755       Type += Type.empty() ? "BSS" : " BSS";
1756 
1757     if (HasLMAColumn)
1758       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1759                        Name.str().c_str(), Size)
1760              << format_hex_no_prefix(VMA, AddressWidth) << " "
1761              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1762              << " " << Type << "\n";
1763     else
1764       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1765                        Name.str().c_str(), Size)
1766              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1767   }
1768   outs() << "\n";
1769 }
1770 
1771 void printSectionContents(const ObjectFile *Obj) {
1772   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1773     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1774     uint64_t BaseAddr = Section.getAddress();
1775     uint64_t Size = Section.getSize();
1776     if (!Size)
1777       continue;
1778 
1779     outs() << "Contents of section " << Name << ":\n";
1780     if (Section.isBSS()) {
1781       outs() << format("<skipping contents of bss section at [%04" PRIx64
1782                        ", %04" PRIx64 ")>\n",
1783                        BaseAddr, BaseAddr + Size);
1784       continue;
1785     }
1786 
1787     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1788 
1789     // Dump out the content as hex and printable ascii characters.
1790     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1791       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1792       // Dump line of hex.
1793       for (std::size_t I = 0; I < 16; ++I) {
1794         if (I != 0 && I % 4 == 0)
1795           outs() << ' ';
1796         if (Addr + I < End)
1797           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1798                  << hexdigit(Contents[Addr + I] & 0xF, true);
1799         else
1800           outs() << "  ";
1801       }
1802       // Print ascii.
1803       outs() << "  ";
1804       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1805         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1806           outs() << Contents[Addr + I];
1807         else
1808           outs() << ".";
1809       }
1810       outs() << "\n";
1811     }
1812   }
1813 }
1814 
1815 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1816                       StringRef ArchitectureName) {
1817   outs() << "SYMBOL TABLE:\n";
1818 
1819   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1820     printCOFFSymbolTable(Coff);
1821     return;
1822   }
1823 
1824   const StringRef FileName = O->getFileName();
1825   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1826   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1827     const SymbolRef &Symbol = *I;
1828     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1829                                      ArchitectureName);
1830     if ((Address < StartAddress) || (Address > StopAddress))
1831       continue;
1832     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName,
1833                                          ArchiveName, ArchitectureName);
1834     uint32_t Flags = Symbol.getFlags();
1835 
1836     // Don't ask a Mach-O STAB symbol for its section unless you know that
1837     // STAB symbol's section field refers to a valid section index. Otherwise
1838     // the symbol may error trying to load a section that does not exist.
1839     bool isSTAB = false;
1840     if (MachO) {
1841       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1842       uint8_t NType = (MachO->is64Bit() ?
1843                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1844                        MachO->getSymbolTableEntry(SymDRI).n_type);
1845       if (NType & MachO::N_STAB)
1846         isSTAB = true;
1847     }
1848     section_iterator Section = isSTAB ? O->section_end() :
1849                                unwrapOrError(Symbol.getSection(), FileName,
1850                                              ArchiveName, ArchitectureName);
1851 
1852     StringRef Name;
1853     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1854       if (Expected<StringRef> NameOrErr = Section->getName())
1855         Name = *NameOrErr;
1856       else
1857         consumeError(NameOrErr.takeError());
1858 
1859     } else {
1860       Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
1861                            ArchitectureName);
1862     }
1863 
1864     bool Global = Flags & SymbolRef::SF_Global;
1865     bool Weak = Flags & SymbolRef::SF_Weak;
1866     bool Absolute = Flags & SymbolRef::SF_Absolute;
1867     bool Common = Flags & SymbolRef::SF_Common;
1868     bool Hidden = Flags & SymbolRef::SF_Hidden;
1869 
1870     char GlobLoc = ' ';
1871     if (Type != SymbolRef::ST_Unknown)
1872       GlobLoc = Global ? 'g' : 'l';
1873     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1874                  ? 'd' : ' ';
1875     char FileFunc = ' ';
1876     if (Type == SymbolRef::ST_File)
1877       FileFunc = 'f';
1878     else if (Type == SymbolRef::ST_Function)
1879       FileFunc = 'F';
1880     else if (Type == SymbolRef::ST_Data)
1881       FileFunc = 'O';
1882 
1883     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1884                                                    "%08" PRIx64;
1885 
1886     outs() << format(Fmt, Address) << " "
1887            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1888            << (Weak ? 'w' : ' ') // Weak?
1889            << ' ' // Constructor. Not supported yet.
1890            << ' ' // Warning. Not supported yet.
1891            << ' ' // Indirect reference to another symbol.
1892            << Debug // Debugging (d) or dynamic (D) symbol.
1893            << FileFunc // Name of function (F), file (f) or object (O).
1894            << ' ';
1895     if (Absolute) {
1896       outs() << "*ABS*";
1897     } else if (Common) {
1898       outs() << "*COM*";
1899     } else if (Section == O->section_end()) {
1900       outs() << "*UND*";
1901     } else {
1902       if (const MachOObjectFile *MachO =
1903           dyn_cast<const MachOObjectFile>(O)) {
1904         DataRefImpl DR = Section->getRawDataRefImpl();
1905         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1906         outs() << SegmentName << ",";
1907       }
1908       StringRef SectionName =
1909           unwrapOrError(Section->getName(), O->getFileName());
1910       outs() << SectionName;
1911     }
1912 
1913     if (Common || isa<ELFObjectFileBase>(O)) {
1914       uint64_t Val =
1915           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1916       outs() << format("\t%08" PRIx64, Val);
1917     }
1918 
1919     if (isa<ELFObjectFileBase>(O)) {
1920       uint8_t Other = ELFSymbolRef(Symbol).getOther();
1921       switch (Other) {
1922       case ELF::STV_DEFAULT:
1923         break;
1924       case ELF::STV_INTERNAL:
1925         outs() << " .internal";
1926         break;
1927       case ELF::STV_HIDDEN:
1928         outs() << " .hidden";
1929         break;
1930       case ELF::STV_PROTECTED:
1931         outs() << " .protected";
1932         break;
1933       default:
1934         outs() << format(" 0x%02x", Other);
1935         break;
1936       }
1937     } else if (Hidden) {
1938       outs() << " .hidden";
1939     }
1940 
1941     if (Demangle)
1942       outs() << ' ' << demangle(std::string(Name)) << '\n';
1943     else
1944       outs() << ' ' << Name << '\n';
1945   }
1946 }
1947 
1948 static void printUnwindInfo(const ObjectFile *O) {
1949   outs() << "Unwind info:\n\n";
1950 
1951   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1952     printCOFFUnwindInfo(Coff);
1953   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1954     printMachOUnwindInfo(MachO);
1955   else
1956     // TODO: Extract DWARF dump tool to objdump.
1957     WithColor::error(errs(), ToolName)
1958         << "This operation is only currently supported "
1959            "for COFF and MachO object files.\n";
1960 }
1961 
1962 /// Dump the raw contents of the __clangast section so the output can be piped
1963 /// into llvm-bcanalyzer.
1964 void printRawClangAST(const ObjectFile *Obj) {
1965   if (outs().is_displayed()) {
1966     WithColor::error(errs(), ToolName)
1967         << "The -raw-clang-ast option will dump the raw binary contents of "
1968            "the clang ast section.\n"
1969            "Please redirect the output to a file or another program such as "
1970            "llvm-bcanalyzer.\n";
1971     return;
1972   }
1973 
1974   StringRef ClangASTSectionName("__clangast");
1975   if (isa<COFFObjectFile>(Obj)) {
1976     ClangASTSectionName = "clangast";
1977   }
1978 
1979   Optional<object::SectionRef> ClangASTSection;
1980   for (auto Sec : ToolSectionFilter(*Obj)) {
1981     StringRef Name;
1982     if (Expected<StringRef> NameOrErr = Sec.getName())
1983       Name = *NameOrErr;
1984     else
1985       consumeError(NameOrErr.takeError());
1986 
1987     if (Name == ClangASTSectionName) {
1988       ClangASTSection = Sec;
1989       break;
1990     }
1991   }
1992   if (!ClangASTSection)
1993     return;
1994 
1995   StringRef ClangASTContents = unwrapOrError(
1996       ClangASTSection.getValue().getContents(), Obj->getFileName());
1997   outs().write(ClangASTContents.data(), ClangASTContents.size());
1998 }
1999 
2000 static void printFaultMaps(const ObjectFile *Obj) {
2001   StringRef FaultMapSectionName;
2002 
2003   if (isa<ELFObjectFileBase>(Obj)) {
2004     FaultMapSectionName = ".llvm_faultmaps";
2005   } else if (isa<MachOObjectFile>(Obj)) {
2006     FaultMapSectionName = "__llvm_faultmaps";
2007   } else {
2008     WithColor::error(errs(), ToolName)
2009         << "This operation is only currently supported "
2010            "for ELF and Mach-O executable files.\n";
2011     return;
2012   }
2013 
2014   Optional<object::SectionRef> FaultMapSection;
2015 
2016   for (auto Sec : ToolSectionFilter(*Obj)) {
2017     StringRef Name;
2018     if (Expected<StringRef> NameOrErr = Sec.getName())
2019       Name = *NameOrErr;
2020     else
2021       consumeError(NameOrErr.takeError());
2022 
2023     if (Name == FaultMapSectionName) {
2024       FaultMapSection = Sec;
2025       break;
2026     }
2027   }
2028 
2029   outs() << "FaultMap table:\n";
2030 
2031   if (!FaultMapSection.hasValue()) {
2032     outs() << "<not found>\n";
2033     return;
2034   }
2035 
2036   StringRef FaultMapContents =
2037       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2038   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2039                      FaultMapContents.bytes_end());
2040 
2041   outs() << FMP;
2042 }
2043 
2044 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2045   if (O->isELF()) {
2046     printELFFileHeader(O);
2047     printELFDynamicSection(O);
2048     printELFSymbolVersionInfo(O);
2049     return;
2050   }
2051   if (O->isCOFF())
2052     return printCOFFFileHeader(O);
2053   if (O->isWasm())
2054     return printWasmFileHeader(O);
2055   if (O->isMachO()) {
2056     printMachOFileHeader(O);
2057     if (!OnlyFirst)
2058       printMachOLoadCommands(O);
2059     return;
2060   }
2061   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2062 }
2063 
2064 static void printFileHeaders(const ObjectFile *O) {
2065   if (!O->isELF() && !O->isCOFF())
2066     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2067 
2068   Triple::ArchType AT = O->getArch();
2069   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2070   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2071 
2072   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2073   outs() << "start address: "
2074          << "0x" << format(Fmt.data(), Address) << "\n\n";
2075 }
2076 
2077 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2078   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2079   if (!ModeOrErr) {
2080     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2081     consumeError(ModeOrErr.takeError());
2082     return;
2083   }
2084   sys::fs::perms Mode = ModeOrErr.get();
2085   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2086   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2087   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2088   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2089   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2090   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2091   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2092   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2093   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2094 
2095   outs() << " ";
2096 
2097   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2098                    unwrapOrError(C.getGID(), Filename),
2099                    unwrapOrError(C.getRawSize(), Filename));
2100 
2101   StringRef RawLastModified = C.getRawLastModified();
2102   unsigned Seconds;
2103   if (RawLastModified.getAsInteger(10, Seconds))
2104     outs() << "(date: \"" << RawLastModified
2105            << "\" contains non-decimal chars) ";
2106   else {
2107     // Since ctime(3) returns a 26 character string of the form:
2108     // "Sun Sep 16 01:03:52 1973\n\0"
2109     // just print 24 characters.
2110     time_t t = Seconds;
2111     outs() << format("%.24s ", ctime(&t));
2112   }
2113 
2114   StringRef Name = "";
2115   Expected<StringRef> NameOrErr = C.getName();
2116   if (!NameOrErr) {
2117     consumeError(NameOrErr.takeError());
2118     Name = unwrapOrError(C.getRawName(), Filename);
2119   } else {
2120     Name = NameOrErr.get();
2121   }
2122   outs() << Name << "\n";
2123 }
2124 
2125 // For ELF only now.
2126 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2127   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2128     if (Elf->getEType() != ELF::ET_REL)
2129       return true;
2130   }
2131   return false;
2132 }
2133 
2134 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2135                                             uint64_t Start, uint64_t Stop) {
2136   if (!shouldWarnForInvalidStartStopAddress(Obj))
2137     return;
2138 
2139   for (const SectionRef &Section : Obj->sections())
2140     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2141       uint64_t BaseAddr = Section.getAddress();
2142       uint64_t Size = Section.getSize();
2143       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2144         return;
2145     }
2146 
2147   if (StartAddress.getNumOccurrences() == 0)
2148     reportWarning("no section has address less than 0x" +
2149                       Twine::utohexstr(Stop) + " specified by --stop-address",
2150                   Obj->getFileName());
2151   else if (StopAddress.getNumOccurrences() == 0)
2152     reportWarning("no section has address greater than or equal to 0x" +
2153                       Twine::utohexstr(Start) + " specified by --start-address",
2154                   Obj->getFileName());
2155   else
2156     reportWarning("no section overlaps the range [0x" +
2157                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2158                       ") specified by --start-address/--stop-address",
2159                   Obj->getFileName());
2160 }
2161 
2162 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2163                        const Archive::Child *C = nullptr) {
2164   // Avoid other output when using a raw option.
2165   if (!RawClangAST) {
2166     outs() << '\n';
2167     if (A)
2168       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2169     else
2170       outs() << O->getFileName();
2171     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
2172   }
2173 
2174   if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
2175     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2176 
2177   // Note: the order here matches GNU objdump for compatability.
2178   StringRef ArchiveName = A ? A->getFileName() : "";
2179   if (ArchiveHeaders && !MachOOpt && C)
2180     printArchiveChild(ArchiveName, *C);
2181   if (FileHeaders)
2182     printFileHeaders(O);
2183   if (PrivateHeaders || FirstPrivateHeader)
2184     printPrivateFileHeaders(O, FirstPrivateHeader);
2185   if (SectionHeaders)
2186     printSectionHeaders(O);
2187   if (SymbolTable)
2188     printSymbolTable(O, ArchiveName);
2189   if (DwarfDumpType != DIDT_Null) {
2190     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2191     // Dump the complete DWARF structure.
2192     DIDumpOptions DumpOpts;
2193     DumpOpts.DumpType = DwarfDumpType;
2194     DICtx->dump(outs(), DumpOpts);
2195   }
2196   if (Relocations && !Disassemble)
2197     printRelocations(O);
2198   if (DynamicRelocations)
2199     printDynamicRelocations(O);
2200   if (SectionContents)
2201     printSectionContents(O);
2202   if (Disassemble)
2203     disassembleObject(O, Relocations);
2204   if (UnwindInfo)
2205     printUnwindInfo(O);
2206 
2207   // Mach-O specific options:
2208   if (ExportsTrie)
2209     printExportsTrie(O);
2210   if (Rebase)
2211     printRebaseTable(O);
2212   if (Bind)
2213     printBindTable(O);
2214   if (LazyBind)
2215     printLazyBindTable(O);
2216   if (WeakBind)
2217     printWeakBindTable(O);
2218 
2219   // Other special sections:
2220   if (RawClangAST)
2221     printRawClangAST(O);
2222   if (FaultMapSection)
2223     printFaultMaps(O);
2224 }
2225 
2226 static void dumpObject(const COFFImportFile *I, const Archive *A,
2227                        const Archive::Child *C = nullptr) {
2228   StringRef ArchiveName = A ? A->getFileName() : "";
2229 
2230   // Avoid other output when using a raw option.
2231   if (!RawClangAST)
2232     outs() << '\n'
2233            << ArchiveName << "(" << I->getFileName() << ")"
2234            << ":\tfile format COFF-import-file"
2235            << "\n\n";
2236 
2237   if (ArchiveHeaders && !MachOOpt && C)
2238     printArchiveChild(ArchiveName, *C);
2239   if (SymbolTable)
2240     printCOFFSymbolTable(I);
2241 }
2242 
2243 /// Dump each object file in \a a;
2244 static void dumpArchive(const Archive *A) {
2245   Error Err = Error::success();
2246   unsigned I = -1;
2247   for (auto &C : A->children(Err)) {
2248     ++I;
2249     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2250     if (!ChildOrErr) {
2251       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2252         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2253       continue;
2254     }
2255     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2256       dumpObject(O, A, &C);
2257     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2258       dumpObject(I, A, &C);
2259     else
2260       reportError(errorCodeToError(object_error::invalid_file_type),
2261                   A->getFileName());
2262   }
2263   if (Err)
2264     reportError(std::move(Err), A->getFileName());
2265 }
2266 
2267 /// Open file and figure out how to dump it.
2268 static void dumpInput(StringRef file) {
2269   // If we are using the Mach-O specific object file parser, then let it parse
2270   // the file and process the command line options.  So the -arch flags can
2271   // be used to select specific slices, etc.
2272   if (MachOOpt) {
2273     parseInputMachO(file);
2274     return;
2275   }
2276 
2277   // Attempt to open the binary.
2278   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2279   Binary &Binary = *OBinary.getBinary();
2280 
2281   if (Archive *A = dyn_cast<Archive>(&Binary))
2282     dumpArchive(A);
2283   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2284     dumpObject(O);
2285   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2286     parseInputMachO(UB);
2287   else
2288     reportError(errorCodeToError(object_error::invalid_file_type), file);
2289 }
2290 } // namespace llvm
2291 
2292 int main(int argc, char **argv) {
2293   using namespace llvm;
2294   InitLLVM X(argc, argv);
2295   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2296   cl::HideUnrelatedOptions(OptionFilters);
2297 
2298   // Initialize targets and assembly printers/parsers.
2299   InitializeAllTargetInfos();
2300   InitializeAllTargetMCs();
2301   InitializeAllDisassemblers();
2302 
2303   // Register the target printer for --version.
2304   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2305 
2306   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2307 
2308   if (StartAddress >= StopAddress)
2309     reportCmdLineError("start address should be less than stop address");
2310 
2311   ToolName = argv[0];
2312 
2313   // Defaults to a.out if no filenames specified.
2314   if (InputFilenames.empty())
2315     InputFilenames.push_back("a.out");
2316 
2317   if (AllHeaders)
2318     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2319         SectionHeaders = SymbolTable = true;
2320 
2321   if (DisassembleAll || PrintSource || PrintLines ||
2322       (!DisassembleFunctions.empty()))
2323     Disassemble = true;
2324 
2325   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2326       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2327       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2328       !UnwindInfo && !FaultMapSection &&
2329       !(MachOOpt &&
2330         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2331          FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2332          LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2333          WeakBind || !FilterSections.empty()))) {
2334     cl::PrintHelpMessage();
2335     return 2;
2336   }
2337 
2338   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2339                         DisassembleFunctions.end());
2340 
2341   llvm::for_each(InputFilenames, dumpInput);
2342 
2343   warnOnNoMatchForSections();
2344 
2345   return EXIT_SUCCESS;
2346 }
2347