xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 6da3d8b19c32c76bb503b1a71fc167a0487ef200)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "SourcePrinter.h"
24 #include "WasmDump.h"
25 #include "XCOFFDump.h"
26 #include "llvm/ADT/IndexedMap.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Triple.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Demangle/Demangle.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
41 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
42 #include "llvm/MC/MCInst.h"
43 #include "llvm/MC/MCInstPrinter.h"
44 #include "llvm/MC/MCInstrAnalysis.h"
45 #include "llvm/MC/MCInstrInfo.h"
46 #include "llvm/MC/MCObjectFileInfo.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/MC/MCSubtargetInfo.h"
49 #include "llvm/MC/MCTargetOptions.h"
50 #include "llvm/Object/Archive.h"
51 #include "llvm/Object/COFF.h"
52 #include "llvm/Object/COFFImportFile.h"
53 #include "llvm/Object/ELFObjectFile.h"
54 #include "llvm/Object/FaultMapParser.h"
55 #include "llvm/Object/MachO.h"
56 #include "llvm/Object/MachOUniversal.h"
57 #include "llvm/Object/ObjectFile.h"
58 #include "llvm/Object/Wasm.h"
59 #include "llvm/Option/Arg.h"
60 #include "llvm/Option/ArgList.h"
61 #include "llvm/Option/Option.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/Errc.h"
65 #include "llvm/Support/FileSystem.h"
66 #include "llvm/Support/Format.h"
67 #include "llvm/Support/FormatVariadic.h"
68 #include "llvm/Support/GraphWriter.h"
69 #include "llvm/Support/Host.h"
70 #include "llvm/Support/InitLLVM.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/SourceMgr.h"
73 #include "llvm/Support/StringSaver.h"
74 #include "llvm/Support/TargetRegistry.h"
75 #include "llvm/Support/TargetSelect.h"
76 #include "llvm/Support/WithColor.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <algorithm>
79 #include <cctype>
80 #include <cstring>
81 #include <system_error>
82 #include <unordered_map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::object;
87 using namespace llvm::objdump;
88 using namespace llvm::opt;
89 
90 namespace {
91 
92 class CommonOptTable : public opt::OptTable {
93 public:
94   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
95                  const char *Description)
96       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
97     setGroupedShortOptions(true);
98   }
99 
100   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
101     Argv0 = sys::path::filename(Argv0);
102     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
103                              ShowHidden, ShowHidden);
104     // TODO Replace this with OptTable API once it adds extrahelp support.
105     outs() << "\nPass @FILE as argument to read options from FILE.\n";
106   }
107 
108 private:
109   const char *Usage;
110   const char *Description;
111 };
112 
113 // ObjdumpOptID is in ObjdumpOptID.h
114 
115 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
116 #include "ObjdumpOpts.inc"
117 #undef PREFIX
118 
119 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
120 #define OBJDUMP_nullptr nullptr
121 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
122                HELPTEXT, METAVAR, VALUES)                                      \
123   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
124    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
125    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
126    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
127 #include "ObjdumpOpts.inc"
128 #undef OPTION
129 #undef OBJDUMP_nullptr
130 };
131 
132 class ObjdumpOptTable : public CommonOptTable {
133 public:
134   ObjdumpOptTable()
135       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
136                        "llvm object file dumper") {}
137 };
138 
139 enum OtoolOptID {
140   OTOOL_INVALID = 0, // This is not an option ID.
141 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
142                HELPTEXT, METAVAR, VALUES)                                      \
143   OTOOL_##ID,
144 #include "OtoolOpts.inc"
145 #undef OPTION
146 };
147 
148 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
149 #include "OtoolOpts.inc"
150 #undef PREFIX
151 
152 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
153 #define OTOOL_nullptr nullptr
154 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
155                HELPTEXT, METAVAR, VALUES)                                      \
156   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
157    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
158    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
159    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
160 #include "OtoolOpts.inc"
161 #undef OPTION
162 #undef OTOOL_nullptr
163 };
164 
165 class OtoolOptTable : public CommonOptTable {
166 public:
167   OtoolOptTable()
168       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
169                        "Mach-O object file displaying tool") {}
170 };
171 
172 } // namespace
173 
174 #define DEBUG_TYPE "objdump"
175 
176 static uint64_t AdjustVMA;
177 static bool AllHeaders;
178 static std::string ArchName;
179 bool objdump::ArchiveHeaders;
180 bool objdump::Demangle;
181 bool objdump::Disassemble;
182 bool objdump::DisassembleAll;
183 bool objdump::SymbolDescription;
184 static std::vector<std::string> DisassembleSymbols;
185 static bool DisassembleZeroes;
186 static std::vector<std::string> DisassemblerOptions;
187 DIDumpType objdump::DwarfDumpType;
188 static bool DynamicRelocations;
189 static bool FaultMapSection;
190 static bool FileHeaders;
191 bool objdump::SectionContents;
192 static std::vector<std::string> InputFilenames;
193 bool objdump::PrintLines;
194 static bool MachOOpt;
195 std::string objdump::MCPU;
196 std::vector<std::string> objdump::MAttrs;
197 bool objdump::ShowRawInsn;
198 bool objdump::LeadingAddr;
199 static bool RawClangAST;
200 bool objdump::Relocations;
201 bool objdump::PrintImmHex;
202 bool objdump::PrivateHeaders;
203 std::vector<std::string> objdump::FilterSections;
204 bool objdump::SectionHeaders;
205 static bool ShowLMA;
206 bool objdump::PrintSource;
207 
208 static uint64_t StartAddress;
209 static bool HasStartAddressFlag;
210 static uint64_t StopAddress = UINT64_MAX;
211 static bool HasStopAddressFlag;
212 
213 bool objdump::SymbolTable;
214 static bool SymbolizeOperands;
215 static bool DynamicSymbolTable;
216 std::string objdump::TripleName;
217 bool objdump::UnwindInfo;
218 static bool Wide;
219 std::string objdump::Prefix;
220 uint32_t objdump::PrefixStrip;
221 
222 DebugVarsFormat objdump::DbgVariables = DVDisabled;
223 
224 int objdump::DbgIndent = 52;
225 
226 static StringSet<> DisasmSymbolSet;
227 StringSet<> objdump::FoundSectionSet;
228 static StringRef ToolName;
229 
230 namespace {
231 struct FilterResult {
232   // True if the section should not be skipped.
233   bool Keep;
234 
235   // True if the index counter should be incremented, even if the section should
236   // be skipped. For example, sections may be skipped if they are not included
237   // in the --section flag, but we still want those to count toward the section
238   // count.
239   bool IncrementIndex;
240 };
241 } // namespace
242 
243 static FilterResult checkSectionFilter(object::SectionRef S) {
244   if (FilterSections.empty())
245     return {/*Keep=*/true, /*IncrementIndex=*/true};
246 
247   Expected<StringRef> SecNameOrErr = S.getName();
248   if (!SecNameOrErr) {
249     consumeError(SecNameOrErr.takeError());
250     return {/*Keep=*/false, /*IncrementIndex=*/false};
251   }
252   StringRef SecName = *SecNameOrErr;
253 
254   // StringSet does not allow empty key so avoid adding sections with
255   // no name (such as the section with index 0) here.
256   if (!SecName.empty())
257     FoundSectionSet.insert(SecName);
258 
259   // Only show the section if it's in the FilterSections list, but always
260   // increment so the indexing is stable.
261   return {/*Keep=*/is_contained(FilterSections, SecName),
262           /*IncrementIndex=*/true};
263 }
264 
265 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
266                                          uint64_t *Idx) {
267   // Start at UINT64_MAX so that the first index returned after an increment is
268   // zero (after the unsigned wrap).
269   if (Idx)
270     *Idx = UINT64_MAX;
271   return SectionFilter(
272       [Idx](object::SectionRef S) {
273         FilterResult Result = checkSectionFilter(S);
274         if (Idx != nullptr && Result.IncrementIndex)
275           *Idx += 1;
276         return Result.Keep;
277       },
278       O);
279 }
280 
281 std::string objdump::getFileNameForError(const object::Archive::Child &C,
282                                          unsigned Index) {
283   Expected<StringRef> NameOrErr = C.getName();
284   if (NameOrErr)
285     return std::string(NameOrErr.get());
286   // If we have an error getting the name then we print the index of the archive
287   // member. Since we are already in an error state, we just ignore this error.
288   consumeError(NameOrErr.takeError());
289   return "<file index: " + std::to_string(Index) + ">";
290 }
291 
292 void objdump::reportWarning(const Twine &Message, StringRef File) {
293   // Output order between errs() and outs() matters especially for archive
294   // files where the output is per member object.
295   outs().flush();
296   WithColor::warning(errs(), ToolName)
297       << "'" << File << "': " << Message << "\n";
298 }
299 
300 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
301   outs().flush();
302   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
303   exit(1);
304 }
305 
306 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
307                                        StringRef ArchiveName,
308                                        StringRef ArchitectureName) {
309   assert(E);
310   outs().flush();
311   WithColor::error(errs(), ToolName);
312   if (ArchiveName != "")
313     errs() << ArchiveName << "(" << FileName << ")";
314   else
315     errs() << "'" << FileName << "'";
316   if (!ArchitectureName.empty())
317     errs() << " (for architecture " << ArchitectureName << ")";
318   errs() << ": ";
319   logAllUnhandledErrors(std::move(E), errs());
320   exit(1);
321 }
322 
323 static void reportCmdLineWarning(const Twine &Message) {
324   WithColor::warning(errs(), ToolName) << Message << "\n";
325 }
326 
327 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
328   WithColor::error(errs(), ToolName) << Message << "\n";
329   exit(1);
330 }
331 
332 static void warnOnNoMatchForSections() {
333   SetVector<StringRef> MissingSections;
334   for (StringRef S : FilterSections) {
335     if (FoundSectionSet.count(S))
336       return;
337     // User may specify a unnamed section. Don't warn for it.
338     if (!S.empty())
339       MissingSections.insert(S);
340   }
341 
342   // Warn only if no section in FilterSections is matched.
343   for (StringRef S : MissingSections)
344     reportCmdLineWarning("section '" + S +
345                          "' mentioned in a -j/--section option, but not "
346                          "found in any input file");
347 }
348 
349 static const Target *getTarget(const ObjectFile *Obj) {
350   // Figure out the target triple.
351   Triple TheTriple("unknown-unknown-unknown");
352   if (TripleName.empty()) {
353     TheTriple = Obj->makeTriple();
354   } else {
355     TheTriple.setTriple(Triple::normalize(TripleName));
356     auto Arch = Obj->getArch();
357     if (Arch == Triple::arm || Arch == Triple::armeb)
358       Obj->setARMSubArch(TheTriple);
359   }
360 
361   // Get the target specific parser.
362   std::string Error;
363   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
364                                                          Error);
365   if (!TheTarget)
366     reportError(Obj->getFileName(), "can't find target: " + Error);
367 
368   // Update the triple name and return the found target.
369   TripleName = TheTriple.getTriple();
370   return TheTarget;
371 }
372 
373 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
374   return A.getOffset() < B.getOffset();
375 }
376 
377 static Error getRelocationValueString(const RelocationRef &Rel,
378                                       SmallVectorImpl<char> &Result) {
379   const ObjectFile *Obj = Rel.getObject();
380   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
381     return getELFRelocationValueString(ELF, Rel, Result);
382   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
383     return getCOFFRelocationValueString(COFF, Rel, Result);
384   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
385     return getWasmRelocationValueString(Wasm, Rel, Result);
386   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
387     return getMachORelocationValueString(MachO, Rel, Result);
388   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
389     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
390   llvm_unreachable("unknown object file format");
391 }
392 
393 /// Indicates whether this relocation should hidden when listing
394 /// relocations, usually because it is the trailing part of a multipart
395 /// relocation that will be printed as part of the leading relocation.
396 static bool getHidden(RelocationRef RelRef) {
397   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
398   if (!MachO)
399     return false;
400 
401   unsigned Arch = MachO->getArch();
402   DataRefImpl Rel = RelRef.getRawDataRefImpl();
403   uint64_t Type = MachO->getRelocationType(Rel);
404 
405   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
406   // is always hidden.
407   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
408     return Type == MachO::GENERIC_RELOC_PAIR;
409 
410   if (Arch == Triple::x86_64) {
411     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
412     // an X86_64_RELOC_SUBTRACTOR.
413     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
414       DataRefImpl RelPrev = Rel;
415       RelPrev.d.a--;
416       uint64_t PrevType = MachO->getRelocationType(RelPrev);
417       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
418         return true;
419     }
420   }
421 
422   return false;
423 }
424 
425 namespace {
426 
427 /// Get the column at which we want to start printing the instruction
428 /// disassembly, taking into account anything which appears to the left of it.
429 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
430   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
431 }
432 
433 static bool isAArch64Elf(const ObjectFile *Obj) {
434   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
435   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
436 }
437 
438 static bool isArmElf(const ObjectFile *Obj) {
439   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
440   return Elf && Elf->getEMachine() == ELF::EM_ARM;
441 }
442 
443 static bool hasMappingSymbols(const ObjectFile *Obj) {
444   return isArmElf(Obj) || isAArch64Elf(Obj);
445 }
446 
447 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
448                             const RelocationRef &Rel, uint64_t Address,
449                             bool Is64Bits) {
450   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
451   SmallString<16> Name;
452   SmallString<32> Val;
453   Rel.getTypeName(Name);
454   if (Error E = getRelocationValueString(Rel, Val))
455     reportError(std::move(E), FileName);
456   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
457 }
458 
459 class PrettyPrinter {
460 public:
461   virtual ~PrettyPrinter() = default;
462   virtual void
463   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
464             object::SectionedAddress Address, formatted_raw_ostream &OS,
465             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
466             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
467             LiveVariablePrinter &LVP) {
468     if (SP && (PrintSource || PrintLines))
469       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
470     LVP.printBetweenInsts(OS, false);
471 
472     size_t Start = OS.tell();
473     if (LeadingAddr)
474       OS << format("%8" PRIx64 ":", Address.Address);
475     if (ShowRawInsn) {
476       OS << ' ';
477       dumpBytes(Bytes, OS);
478     }
479 
480     // The output of printInst starts with a tab. Print some spaces so that
481     // the tab has 1 column and advances to the target tab stop.
482     unsigned TabStop = getInstStartColumn(STI);
483     unsigned Column = OS.tell() - Start;
484     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
485 
486     if (MI) {
487       // See MCInstPrinter::printInst. On targets where a PC relative immediate
488       // is relative to the next instruction and the length of a MCInst is
489       // difficult to measure (x86), this is the address of the next
490       // instruction.
491       uint64_t Addr =
492           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
493       IP.printInst(MI, Addr, "", STI, OS);
494     } else
495       OS << "\t<unknown>";
496   }
497 };
498 PrettyPrinter PrettyPrinterInst;
499 
500 class HexagonPrettyPrinter : public PrettyPrinter {
501 public:
502   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
503                  formatted_raw_ostream &OS) {
504     uint32_t opcode =
505       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
506     if (LeadingAddr)
507       OS << format("%8" PRIx64 ":", Address);
508     if (ShowRawInsn) {
509       OS << "\t";
510       dumpBytes(Bytes.slice(0, 4), OS);
511       OS << format("\t%08" PRIx32, opcode);
512     }
513   }
514   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
515                  object::SectionedAddress Address, formatted_raw_ostream &OS,
516                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
517                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
518                  LiveVariablePrinter &LVP) override {
519     if (SP && (PrintSource || PrintLines))
520       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
521     if (!MI) {
522       printLead(Bytes, Address.Address, OS);
523       OS << " <unknown>";
524       return;
525     }
526     std::string Buffer;
527     {
528       raw_string_ostream TempStream(Buffer);
529       IP.printInst(MI, Address.Address, "", STI, TempStream);
530     }
531     StringRef Contents(Buffer);
532     // Split off bundle attributes
533     auto PacketBundle = Contents.rsplit('\n');
534     // Split off first instruction from the rest
535     auto HeadTail = PacketBundle.first.split('\n');
536     auto Preamble = " { ";
537     auto Separator = "";
538 
539     // Hexagon's packets require relocations to be inline rather than
540     // clustered at the end of the packet.
541     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
542     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
543     auto PrintReloc = [&]() -> void {
544       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
545         if (RelCur->getOffset() == Address.Address) {
546           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
547           return;
548         }
549         ++RelCur;
550       }
551     };
552 
553     while (!HeadTail.first.empty()) {
554       OS << Separator;
555       Separator = "\n";
556       if (SP && (PrintSource || PrintLines))
557         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
558       printLead(Bytes, Address.Address, OS);
559       OS << Preamble;
560       Preamble = "   ";
561       StringRef Inst;
562       auto Duplex = HeadTail.first.split('\v');
563       if (!Duplex.second.empty()) {
564         OS << Duplex.first;
565         OS << "; ";
566         Inst = Duplex.second;
567       }
568       else
569         Inst = HeadTail.first;
570       OS << Inst;
571       HeadTail = HeadTail.second.split('\n');
572       if (HeadTail.first.empty())
573         OS << " } " << PacketBundle.second;
574       PrintReloc();
575       Bytes = Bytes.slice(4);
576       Address.Address += 4;
577     }
578   }
579 };
580 HexagonPrettyPrinter HexagonPrettyPrinterInst;
581 
582 class AMDGCNPrettyPrinter : public PrettyPrinter {
583 public:
584   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
585                  object::SectionedAddress Address, formatted_raw_ostream &OS,
586                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
587                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
588                  LiveVariablePrinter &LVP) override {
589     if (SP && (PrintSource || PrintLines))
590       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
591 
592     if (MI) {
593       SmallString<40> InstStr;
594       raw_svector_ostream IS(InstStr);
595 
596       IP.printInst(MI, Address.Address, "", STI, IS);
597 
598       OS << left_justify(IS.str(), 60);
599     } else {
600       // an unrecognized encoding - this is probably data so represent it
601       // using the .long directive, or .byte directive if fewer than 4 bytes
602       // remaining
603       if (Bytes.size() >= 4) {
604         OS << format("\t.long 0x%08" PRIx32 " ",
605                      support::endian::read32<support::little>(Bytes.data()));
606         OS.indent(42);
607       } else {
608           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
609           for (unsigned int i = 1; i < Bytes.size(); i++)
610             OS << format(", 0x%02" PRIx8, Bytes[i]);
611           OS.indent(55 - (6 * Bytes.size()));
612       }
613     }
614 
615     OS << format("// %012" PRIX64 ":", Address.Address);
616     if (Bytes.size() >= 4) {
617       // D should be casted to uint32_t here as it is passed by format to
618       // snprintf as vararg.
619       for (uint32_t D : makeArrayRef(
620                reinterpret_cast<const support::little32_t *>(Bytes.data()),
621                Bytes.size() / 4))
622         OS << format(" %08" PRIX32, D);
623     } else {
624       for (unsigned char B : Bytes)
625         OS << format(" %02" PRIX8, B);
626     }
627 
628     if (!Annot.empty())
629       OS << " // " << Annot;
630   }
631 };
632 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
633 
634 class BPFPrettyPrinter : public PrettyPrinter {
635 public:
636   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
637                  object::SectionedAddress Address, formatted_raw_ostream &OS,
638                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
639                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
640                  LiveVariablePrinter &LVP) override {
641     if (SP && (PrintSource || PrintLines))
642       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
643     if (LeadingAddr)
644       OS << format("%8" PRId64 ":", Address.Address / 8);
645     if (ShowRawInsn) {
646       OS << "\t";
647       dumpBytes(Bytes, OS);
648     }
649     if (MI)
650       IP.printInst(MI, Address.Address, "", STI, OS);
651     else
652       OS << "\t<unknown>";
653   }
654 };
655 BPFPrettyPrinter BPFPrettyPrinterInst;
656 
657 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
658   switch(Triple.getArch()) {
659   default:
660     return PrettyPrinterInst;
661   case Triple::hexagon:
662     return HexagonPrettyPrinterInst;
663   case Triple::amdgcn:
664     return AMDGCNPrettyPrinterInst;
665   case Triple::bpfel:
666   case Triple::bpfeb:
667     return BPFPrettyPrinterInst;
668   }
669 }
670 }
671 
672 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
673   assert(Obj->isELF());
674   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
675     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
676                          Obj->getFileName())
677         ->getType();
678   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
679     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
680                          Obj->getFileName())
681         ->getType();
682   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
683     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
684                          Obj->getFileName())
685         ->getType();
686   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
687     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
688                          Obj->getFileName())
689         ->getType();
690   llvm_unreachable("Unsupported binary format");
691 }
692 
693 template <class ELFT> static void
694 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
695                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
696   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
697     uint8_t SymbolType = Symbol.getELFType();
698     if (SymbolType == ELF::STT_SECTION)
699       continue;
700 
701     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
702     // ELFSymbolRef::getAddress() returns size instead of value for common
703     // symbols which is not desirable for disassembly output. Overriding.
704     if (SymbolType == ELF::STT_COMMON)
705       Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
706                               Obj->getFileName())
707                     ->st_value;
708 
709     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
710     if (Name.empty())
711       continue;
712 
713     section_iterator SecI =
714         unwrapOrError(Symbol.getSection(), Obj->getFileName());
715     if (SecI == Obj->section_end())
716       continue;
717 
718     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
719   }
720 }
721 
722 static void
723 addDynamicElfSymbols(const ObjectFile *Obj,
724                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
725   assert(Obj->isELF());
726   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
727     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
728   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
729     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
730   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
731     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
732   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
733     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
734   else
735     llvm_unreachable("Unsupported binary format");
736 }
737 
738 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile *Obj) {
739   for (auto SecI : Obj->sections()) {
740     const WasmSection &Section = Obj->getWasmSection(SecI);
741     if (Section.Type == wasm::WASM_SEC_CODE)
742       return SecI;
743   }
744   return None;
745 }
746 
747 static void
748 addMissingWasmCodeSymbols(const WasmObjectFile *Obj,
749                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
750   Optional<SectionRef> Section = getWasmCodeSection(Obj);
751   if (!Section)
752     return;
753   SectionSymbolsTy &Symbols = AllSymbols[*Section];
754 
755   std::set<uint64_t> SymbolAddresses;
756   for (const auto &Sym : Symbols)
757     SymbolAddresses.insert(Sym.Addr);
758 
759   for (const wasm::WasmFunction &Function : Obj->functions()) {
760     uint64_t Address = Function.CodeSectionOffset;
761     // Only add fallback symbols for functions not already present in the symbol
762     // table.
763     if (SymbolAddresses.count(Address))
764       continue;
765     // This function has no symbol, so it should have no SymbolName.
766     assert(Function.SymbolName.empty());
767     // We use DebugName for the name, though it may be empty if there is no
768     // "name" custom section, or that section is missing a name for this
769     // function.
770     StringRef Name = Function.DebugName;
771     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
772   }
773 }
774 
775 static void addPltEntries(const ObjectFile *Obj,
776                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
777                           StringSaver &Saver) {
778   Optional<SectionRef> Plt = None;
779   for (const SectionRef &Section : Obj->sections()) {
780     Expected<StringRef> SecNameOrErr = Section.getName();
781     if (!SecNameOrErr) {
782       consumeError(SecNameOrErr.takeError());
783       continue;
784     }
785     if (*SecNameOrErr == ".plt")
786       Plt = Section;
787   }
788   if (!Plt)
789     return;
790   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
791     for (auto PltEntry : ElfObj->getPltAddresses()) {
792       if (PltEntry.first) {
793         SymbolRef Symbol(*PltEntry.first, ElfObj);
794         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
795         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
796           if (!NameOrErr->empty())
797             AllSymbols[*Plt].emplace_back(
798                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
799                 SymbolType);
800           continue;
801         } else {
802           // The warning has been reported in disassembleObject().
803           consumeError(NameOrErr.takeError());
804         }
805       }
806       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
807                         " references an invalid symbol",
808                     Obj->getFileName());
809     }
810   }
811 }
812 
813 // Normally the disassembly output will skip blocks of zeroes. This function
814 // returns the number of zero bytes that can be skipped when dumping the
815 // disassembly of the instructions in Buf.
816 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
817   // Find the number of leading zeroes.
818   size_t N = 0;
819   while (N < Buf.size() && !Buf[N])
820     ++N;
821 
822   // We may want to skip blocks of zero bytes, but unless we see
823   // at least 8 of them in a row.
824   if (N < 8)
825     return 0;
826 
827   // We skip zeroes in multiples of 4 because do not want to truncate an
828   // instruction if it starts with a zero byte.
829   return N & ~0x3;
830 }
831 
832 // Returns a map from sections to their relocations.
833 static std::map<SectionRef, std::vector<RelocationRef>>
834 getRelocsMap(object::ObjectFile const &Obj) {
835   std::map<SectionRef, std::vector<RelocationRef>> Ret;
836   uint64_t I = (uint64_t)-1;
837   for (SectionRef Sec : Obj.sections()) {
838     ++I;
839     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
840     if (!RelocatedOrErr)
841       reportError(Obj.getFileName(),
842                   "section (" + Twine(I) +
843                       "): failed to get a relocated section: " +
844                       toString(RelocatedOrErr.takeError()));
845 
846     section_iterator Relocated = *RelocatedOrErr;
847     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
848       continue;
849     std::vector<RelocationRef> &V = Ret[*Relocated];
850     append_range(V, Sec.relocations());
851     // Sort relocations by address.
852     llvm::stable_sort(V, isRelocAddressLess);
853   }
854   return Ret;
855 }
856 
857 // Used for --adjust-vma to check if address should be adjusted by the
858 // specified value for a given section.
859 // For ELF we do not adjust non-allocatable sections like debug ones,
860 // because they are not loadable.
861 // TODO: implement for other file formats.
862 static bool shouldAdjustVA(const SectionRef &Section) {
863   const ObjectFile *Obj = Section.getObject();
864   if (Obj->isELF())
865     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
866   return false;
867 }
868 
869 
870 typedef std::pair<uint64_t, char> MappingSymbolPair;
871 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
872                                  uint64_t Address) {
873   auto It =
874       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
875         return Val.first <= Address;
876       });
877   // Return zero for any address before the first mapping symbol; this means
878   // we should use the default disassembly mode, depending on the target.
879   if (It == MappingSymbols.begin())
880     return '\x00';
881   return (It - 1)->second;
882 }
883 
884 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
885                                uint64_t End, const ObjectFile *Obj,
886                                ArrayRef<uint8_t> Bytes,
887                                ArrayRef<MappingSymbolPair> MappingSymbols,
888                                raw_ostream &OS) {
889   support::endianness Endian =
890       Obj->isLittleEndian() ? support::little : support::big;
891   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
892   if (Index + 4 <= End) {
893     dumpBytes(Bytes.slice(Index, 4), OS);
894     OS << "\t.word\t"
895            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
896                          10);
897     return 4;
898   }
899   if (Index + 2 <= End) {
900     dumpBytes(Bytes.slice(Index, 2), OS);
901     OS << "\t\t.short\t"
902            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
903                          6);
904     return 2;
905   }
906   dumpBytes(Bytes.slice(Index, 1), OS);
907   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
908   return 1;
909 }
910 
911 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
912                         ArrayRef<uint8_t> Bytes) {
913   // print out data up to 8 bytes at a time in hex and ascii
914   uint8_t AsciiData[9] = {'\0'};
915   uint8_t Byte;
916   int NumBytes = 0;
917 
918   for (; Index < End; ++Index) {
919     if (NumBytes == 0)
920       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
921     Byte = Bytes.slice(Index)[0];
922     outs() << format(" %02x", Byte);
923     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
924 
925     uint8_t IndentOffset = 0;
926     NumBytes++;
927     if (Index == End - 1 || NumBytes > 8) {
928       // Indent the space for less than 8 bytes data.
929       // 2 spaces for byte and one for space between bytes
930       IndentOffset = 3 * (8 - NumBytes);
931       for (int Excess = NumBytes; Excess < 8; Excess++)
932         AsciiData[Excess] = '\0';
933       NumBytes = 8;
934     }
935     if (NumBytes == 8) {
936       AsciiData[8] = '\0';
937       outs() << std::string(IndentOffset, ' ') << "         ";
938       outs() << reinterpret_cast<char *>(AsciiData);
939       outs() << '\n';
940       NumBytes = 0;
941     }
942   }
943 }
944 
945 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
946                                        const SymbolRef &Symbol) {
947   const StringRef FileName = Obj->getFileName();
948   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
949   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
950 
951   if (Obj->isXCOFF() && SymbolDescription) {
952     const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
953     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
954 
955     const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
956     Optional<XCOFF::StorageMappingClass> Smc =
957         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
958     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
959                         isLabel(XCOFFObj, Symbol));
960   } else
961     return SymbolInfoTy(Addr, Name,
962                         Obj->isELF() ? getElfSymbolType(Obj, Symbol)
963                                      : (uint8_t)ELF::STT_NOTYPE);
964 }
965 
966 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
967                                           const uint64_t Addr, StringRef &Name,
968                                           uint8_t Type) {
969   if (Obj->isXCOFF() && SymbolDescription)
970     return SymbolInfoTy(Addr, Name, None, None, false);
971   else
972     return SymbolInfoTy(Addr, Name, Type);
973 }
974 
975 static void
976 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
977                           MCDisassembler *DisAsm, MCInstPrinter *IP,
978                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
979                           uint64_t Start, uint64_t End,
980                           std::unordered_map<uint64_t, std::string> &Labels) {
981   // So far only supports X86.
982   if (!STI->getTargetTriple().isX86())
983     return;
984 
985   Labels.clear();
986   unsigned LabelCount = 0;
987   Start += SectionAddr;
988   End += SectionAddr;
989   uint64_t Index = Start;
990   while (Index < End) {
991     // Disassemble a real instruction and record function-local branch labels.
992     MCInst Inst;
993     uint64_t Size;
994     bool Disassembled = DisAsm->getInstruction(
995         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
996     if (Size == 0)
997       Size = 1;
998 
999     if (Disassembled && MIA) {
1000       uint64_t Target;
1001       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1002       if (TargetKnown && (Target >= Start && Target < End) &&
1003           !Labels.count(Target))
1004         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1005     }
1006 
1007     Index += Size;
1008   }
1009 }
1010 
1011 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1012 // This is currently only used on AMDGPU, and assumes the format of the
1013 // void * argument passed to AMDGPU's createMCSymbolizer.
1014 static void addSymbolizer(
1015     MCContext &Ctx, const Target *Target, StringRef TripleName,
1016     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1017     SectionSymbolsTy &Symbols,
1018     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1019 
1020   std::unique_ptr<MCRelocationInfo> RelInfo(
1021       Target->createMCRelocationInfo(TripleName, Ctx));
1022   if (!RelInfo)
1023     return;
1024   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1025       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1026   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1027   DisAsm->setSymbolizer(std::move(Symbolizer));
1028 
1029   if (!SymbolizeOperands)
1030     return;
1031 
1032   // Synthesize labels referenced by branch instructions by
1033   // disassembling, discarding the output, and collecting the referenced
1034   // addresses from the symbolizer.
1035   for (size_t Index = 0; Index != Bytes.size();) {
1036     MCInst Inst;
1037     uint64_t Size;
1038     DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index,
1039                            nulls());
1040     if (Size == 0)
1041       Size = 1;
1042     Index += Size;
1043   }
1044   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1045   // Copy and sort to remove duplicates.
1046   std::vector<uint64_t> LabelAddrs;
1047   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1048                     LabelAddrsRef.end());
1049   llvm::sort(LabelAddrs);
1050   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1051                     LabelAddrs.begin());
1052   // Add the labels.
1053   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1054     auto Name = std::make_unique<std::string>();
1055     *Name = (Twine("L") + Twine(LabelNum)).str();
1056     SynthesizedLabelNames.push_back(std::move(Name));
1057     Symbols.push_back(SymbolInfoTy(
1058         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1059   }
1060   llvm::stable_sort(Symbols);
1061   // Recreate the symbolizer with the new symbols list.
1062   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1063   Symbolizer.reset(Target->createMCSymbolizer(
1064       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1065   DisAsm->setSymbolizer(std::move(Symbolizer));
1066 }
1067 
1068 static StringRef getSegmentName(const MachOObjectFile *MachO,
1069                                 const SectionRef &Section) {
1070   if (MachO) {
1071     DataRefImpl DR = Section.getRawDataRefImpl();
1072     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1073     return SegmentName;
1074   }
1075   return "";
1076 }
1077 
1078 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1079                                     const MCAsmInfo &MAI,
1080                                     const MCSubtargetInfo &STI,
1081                                     StringRef Comments,
1082                                     LiveVariablePrinter &LVP) {
1083   do {
1084     if (!Comments.empty()) {
1085       // Emit a line of comments.
1086       StringRef Comment;
1087       std::tie(Comment, Comments) = Comments.split('\n');
1088       // MAI.getCommentColumn() assumes that instructions are printed at the
1089       // position of 8, while getInstStartColumn() returns the actual position.
1090       unsigned CommentColumn =
1091           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1092       FOS.PadToColumn(CommentColumn);
1093       FOS << MAI.getCommentString() << ' ' << Comment;
1094     }
1095     LVP.printAfterInst(FOS);
1096     FOS << '\n';
1097   } while (!Comments.empty());
1098   FOS.flush();
1099 }
1100 
1101 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1102                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1103                               MCDisassembler *SecondaryDisAsm,
1104                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1105                               const MCSubtargetInfo *PrimarySTI,
1106                               const MCSubtargetInfo *SecondarySTI,
1107                               PrettyPrinter &PIP,
1108                               SourcePrinter &SP, bool InlineRelocs) {
1109   const MCSubtargetInfo *STI = PrimarySTI;
1110   MCDisassembler *DisAsm = PrimaryDisAsm;
1111   bool PrimaryIsThumb = false;
1112   if (isArmElf(Obj))
1113     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1114 
1115   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1116   if (InlineRelocs)
1117     RelocMap = getRelocsMap(*Obj);
1118   bool Is64Bits = Obj->getBytesInAddress() > 4;
1119 
1120   // Create a mapping from virtual address to symbol name.  This is used to
1121   // pretty print the symbols while disassembling.
1122   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1123   SectionSymbolsTy AbsoluteSymbols;
1124   const StringRef FileName = Obj->getFileName();
1125   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1126   for (const SymbolRef &Symbol : Obj->symbols()) {
1127     Expected<StringRef> NameOrErr = Symbol.getName();
1128     if (!NameOrErr) {
1129       reportWarning(toString(NameOrErr.takeError()), FileName);
1130       continue;
1131     }
1132     if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1133       continue;
1134 
1135     if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1136       continue;
1137 
1138     if (MachO) {
1139       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1140       // symbols that support MachO header introspection. They do not bind to
1141       // code locations and are irrelevant for disassembly.
1142       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1143         continue;
1144       // Don't ask a Mach-O STAB symbol for its section unless you know that
1145       // STAB symbol's section field refers to a valid section index. Otherwise
1146       // the symbol may error trying to load a section that does not exist.
1147       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1148       uint8_t NType = (MachO->is64Bit() ?
1149                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1150                        MachO->getSymbolTableEntry(SymDRI).n_type);
1151       if (NType & MachO::N_STAB)
1152         continue;
1153     }
1154 
1155     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1156     if (SecI != Obj->section_end())
1157       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1158     else
1159       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1160   }
1161 
1162   if (AllSymbols.empty() && Obj->isELF())
1163     addDynamicElfSymbols(Obj, AllSymbols);
1164 
1165   if (Obj->isWasm())
1166     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1167 
1168   BumpPtrAllocator A;
1169   StringSaver Saver(A);
1170   addPltEntries(Obj, AllSymbols, Saver);
1171 
1172   // Create a mapping from virtual address to section. An empty section can
1173   // cause more than one section at the same address. Sort such sections to be
1174   // before same-addressed non-empty sections so that symbol lookups prefer the
1175   // non-empty section.
1176   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1177   for (SectionRef Sec : Obj->sections())
1178     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1179   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1180     if (LHS.first != RHS.first)
1181       return LHS.first < RHS.first;
1182     return LHS.second.getSize() < RHS.second.getSize();
1183   });
1184 
1185   // Linked executables (.exe and .dll files) typically don't include a real
1186   // symbol table but they might contain an export table.
1187   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1188     for (const auto &ExportEntry : COFFObj->export_directories()) {
1189       StringRef Name;
1190       if (Error E = ExportEntry.getSymbolName(Name))
1191         reportError(std::move(E), Obj->getFileName());
1192       if (Name.empty())
1193         continue;
1194 
1195       uint32_t RVA;
1196       if (Error E = ExportEntry.getExportRVA(RVA))
1197         reportError(std::move(E), Obj->getFileName());
1198 
1199       uint64_t VA = COFFObj->getImageBase() + RVA;
1200       auto Sec = partition_point(
1201           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1202             return O.first <= VA;
1203           });
1204       if (Sec != SectionAddresses.begin()) {
1205         --Sec;
1206         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1207       } else
1208         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1209     }
1210   }
1211 
1212   // Sort all the symbols, this allows us to use a simple binary search to find
1213   // Multiple symbols can have the same address. Use a stable sort to stabilize
1214   // the output.
1215   StringSet<> FoundDisasmSymbolSet;
1216   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1217     llvm::stable_sort(SecSyms.second);
1218   llvm::stable_sort(AbsoluteSymbols);
1219 
1220   std::unique_ptr<DWARFContext> DICtx;
1221   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1222 
1223   if (DbgVariables != DVDisabled) {
1224     DICtx = DWARFContext::create(*Obj);
1225     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1226       LVP.addCompileUnit(CU->getUnitDIE(false));
1227   }
1228 
1229   LLVM_DEBUG(LVP.dump());
1230 
1231   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1232     if (FilterSections.empty() && !DisassembleAll &&
1233         (!Section.isText() || Section.isVirtual()))
1234       continue;
1235 
1236     uint64_t SectionAddr = Section.getAddress();
1237     uint64_t SectSize = Section.getSize();
1238     if (!SectSize)
1239       continue;
1240 
1241     // Get the list of all the symbols in this section.
1242     SectionSymbolsTy &Symbols = AllSymbols[Section];
1243     std::vector<MappingSymbolPair> MappingSymbols;
1244     if (hasMappingSymbols(Obj)) {
1245       for (const auto &Symb : Symbols) {
1246         uint64_t Address = Symb.Addr;
1247         StringRef Name = Symb.Name;
1248         if (Name.startswith("$d"))
1249           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1250         if (Name.startswith("$x"))
1251           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1252         if (Name.startswith("$a"))
1253           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1254         if (Name.startswith("$t"))
1255           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1256       }
1257     }
1258 
1259     llvm::sort(MappingSymbols);
1260 
1261     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1262         unwrapOrError(Section.getContents(), Obj->getFileName()));
1263 
1264     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1265     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1266       // AMDGPU disassembler uses symbolizer for printing labels
1267       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1268                     Symbols, SynthesizedLabelNames);
1269     }
1270 
1271     StringRef SegmentName = getSegmentName(MachO, Section);
1272     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1273     // If the section has no symbol at the start, just insert a dummy one.
1274     if (Symbols.empty() || Symbols[0].Addr != 0) {
1275       Symbols.insert(Symbols.begin(),
1276                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1277                                            Section.isText() ? ELF::STT_FUNC
1278                                                             : ELF::STT_OBJECT));
1279     }
1280 
1281     SmallString<40> Comments;
1282     raw_svector_ostream CommentStream(Comments);
1283 
1284     uint64_t VMAAdjustment = 0;
1285     if (shouldAdjustVA(Section))
1286       VMAAdjustment = AdjustVMA;
1287 
1288     uint64_t Size;
1289     uint64_t Index;
1290     bool PrintedSection = false;
1291     std::vector<RelocationRef> Rels = RelocMap[Section];
1292     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1293     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1294     // Disassemble symbol by symbol.
1295     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1296       std::string SymbolName = Symbols[SI].Name.str();
1297       if (Demangle)
1298         SymbolName = demangle(SymbolName);
1299 
1300       // Skip if --disassemble-symbols is not empty and the symbol is not in
1301       // the list.
1302       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1303         continue;
1304 
1305       uint64_t Start = Symbols[SI].Addr;
1306       if (Start < SectionAddr || StopAddress <= Start)
1307         continue;
1308       else
1309         FoundDisasmSymbolSet.insert(SymbolName);
1310 
1311       // The end is the section end, the beginning of the next symbol, or
1312       // --stop-address.
1313       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1314       if (SI + 1 < SE)
1315         End = std::min(End, Symbols[SI + 1].Addr);
1316       if (Start >= End || End <= StartAddress)
1317         continue;
1318       Start -= SectionAddr;
1319       End -= SectionAddr;
1320 
1321       if (!PrintedSection) {
1322         PrintedSection = true;
1323         outs() << "\nDisassembly of section ";
1324         if (!SegmentName.empty())
1325           outs() << SegmentName << ",";
1326         outs() << SectionName << ":\n";
1327       }
1328 
1329       outs() << '\n';
1330       if (LeadingAddr)
1331         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1332                          SectionAddr + Start + VMAAdjustment);
1333       if (Obj->isXCOFF() && SymbolDescription) {
1334         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1335       } else
1336         outs() << '<' << SymbolName << ">:\n";
1337 
1338       // Don't print raw contents of a virtual section. A virtual section
1339       // doesn't have any contents in the file.
1340       if (Section.isVirtual()) {
1341         outs() << "...\n";
1342         continue;
1343       }
1344 
1345       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1346                                           Bytes.slice(Start, End - Start),
1347                                           SectionAddr + Start, CommentStream);
1348       // To have round trippable disassembly, we fall back to decoding the
1349       // remaining bytes as instructions.
1350       //
1351       // If there is a failure, we disassemble the failed region as bytes before
1352       // falling back. The target is expected to print nothing in this case.
1353       //
1354       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1355       // Size bytes before falling back.
1356       // So if the entire symbol is 'eaten' by the target:
1357       //   Start += Size  // Now Start = End and we will never decode as
1358       //                  // instructions
1359       //
1360       // Right now, most targets return None i.e ignore to treat a symbol
1361       // separately. But WebAssembly decodes preludes for some symbols.
1362       //
1363       if (Status.hasValue()) {
1364         if (Status.getValue() == MCDisassembler::Fail) {
1365           outs() << "// Error in decoding " << SymbolName
1366                  << " : Decoding failed region as bytes.\n";
1367           for (uint64_t I = 0; I < Size; ++I) {
1368             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1369                    << "\n";
1370           }
1371         }
1372       } else {
1373         Size = 0;
1374       }
1375 
1376       Start += Size;
1377 
1378       Index = Start;
1379       if (SectionAddr < StartAddress)
1380         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1381 
1382       // If there is a data/common symbol inside an ELF text section and we are
1383       // only disassembling text (applicable all architectures), we are in a
1384       // situation where we must print the data and not disassemble it.
1385       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1386         uint8_t SymTy = Symbols[SI].Type;
1387         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1388           dumpELFData(SectionAddr, Index, End, Bytes);
1389           Index = End;
1390         }
1391       }
1392 
1393       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1394                              Symbols[SI].Type != ELF::STT_OBJECT &&
1395                              !DisassembleAll;
1396       bool DumpARMELFData = false;
1397       formatted_raw_ostream FOS(outs());
1398 
1399       std::unordered_map<uint64_t, std::string> AllLabels;
1400       if (SymbolizeOperands)
1401         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1402                                   SectionAddr, Index, End, AllLabels);
1403 
1404       while (Index < End) {
1405         // ARM and AArch64 ELF binaries can interleave data and text in the
1406         // same section. We rely on the markers introduced to understand what
1407         // we need to dump. If the data marker is within a function, it is
1408         // denoted as a word/short etc.
1409         if (CheckARMELFData) {
1410           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1411           DumpARMELFData = Kind == 'd';
1412           if (SecondarySTI) {
1413             if (Kind == 'a') {
1414               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1415               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1416             } else if (Kind == 't') {
1417               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1418               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1419             }
1420           }
1421         }
1422 
1423         if (DumpARMELFData) {
1424           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1425                                 MappingSymbols, FOS);
1426         } else {
1427           // When -z or --disassemble-zeroes are given we always dissasemble
1428           // them. Otherwise we might want to skip zero bytes we see.
1429           if (!DisassembleZeroes) {
1430             uint64_t MaxOffset = End - Index;
1431             // For --reloc: print zero blocks patched by relocations, so that
1432             // relocations can be shown in the dump.
1433             if (RelCur != RelEnd)
1434               MaxOffset = RelCur->getOffset() - Index;
1435 
1436             if (size_t N =
1437                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1438               FOS << "\t\t..." << '\n';
1439               Index += N;
1440               continue;
1441             }
1442           }
1443 
1444           // Print local label if there's any.
1445           auto Iter = AllLabels.find(SectionAddr + Index);
1446           if (Iter != AllLabels.end())
1447             FOS << "<" << Iter->second << ">:\n";
1448 
1449           // Disassemble a real instruction or a data when disassemble all is
1450           // provided
1451           MCInst Inst;
1452           bool Disassembled =
1453               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1454                                      SectionAddr + Index, CommentStream);
1455           if (Size == 0)
1456             Size = 1;
1457 
1458           LVP.update({Index, Section.getIndex()},
1459                      {Index + Size, Section.getIndex()}, Index + Size != End);
1460 
1461           IP->setCommentStream(CommentStream);
1462 
1463           PIP.printInst(
1464               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1465               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1466               "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
1467 
1468           IP->setCommentStream(llvm::nulls());
1469 
1470           // If disassembly has failed, avoid analysing invalid/incomplete
1471           // instruction information. Otherwise, try to resolve the target
1472           // address (jump target or memory operand address) and print it on the
1473           // right of the instruction.
1474           if (Disassembled && MIA) {
1475             // Branch targets are printed just after the instructions.
1476             llvm::raw_ostream *TargetOS = &FOS;
1477             uint64_t Target;
1478             bool PrintTarget =
1479                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1480             if (!PrintTarget)
1481               if (Optional<uint64_t> MaybeTarget =
1482                       MIA->evaluateMemoryOperandAddress(
1483                           Inst, SectionAddr + Index, Size)) {
1484                 Target = *MaybeTarget;
1485                 PrintTarget = true;
1486                 // Do not print real address when symbolizing.
1487                 if (!SymbolizeOperands) {
1488                   // Memory operand addresses are printed as comments.
1489                   TargetOS = &CommentStream;
1490                   *TargetOS << "0x" << Twine::utohexstr(Target);
1491                 }
1492               }
1493             if (PrintTarget) {
1494               // In a relocatable object, the target's section must reside in
1495               // the same section as the call instruction or it is accessed
1496               // through a relocation.
1497               //
1498               // In a non-relocatable object, the target may be in any section.
1499               // In that case, locate the section(s) containing the target
1500               // address and find the symbol in one of those, if possible.
1501               //
1502               // N.B. We don't walk the relocations in the relocatable case yet.
1503               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1504               if (!Obj->isRelocatableObject()) {
1505                 auto It = llvm::partition_point(
1506                     SectionAddresses,
1507                     [=](const std::pair<uint64_t, SectionRef> &O) {
1508                       return O.first <= Target;
1509                     });
1510                 uint64_t TargetSecAddr = 0;
1511                 while (It != SectionAddresses.begin()) {
1512                   --It;
1513                   if (TargetSecAddr == 0)
1514                     TargetSecAddr = It->first;
1515                   if (It->first != TargetSecAddr)
1516                     break;
1517                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1518                 }
1519               } else {
1520                 TargetSectionSymbols.push_back(&Symbols);
1521               }
1522               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1523 
1524               // Find the last symbol in the first candidate section whose
1525               // offset is less than or equal to the target. If there are no
1526               // such symbols, try in the next section and so on, before finally
1527               // using the nearest preceding absolute symbol (if any), if there
1528               // are no other valid symbols.
1529               const SymbolInfoTy *TargetSym = nullptr;
1530               for (const SectionSymbolsTy *TargetSymbols :
1531                    TargetSectionSymbols) {
1532                 auto It = llvm::partition_point(
1533                     *TargetSymbols,
1534                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1535                 if (It != TargetSymbols->begin()) {
1536                   TargetSym = &*(It - 1);
1537                   break;
1538                 }
1539               }
1540 
1541               // Print the labels corresponding to the target if there's any.
1542               bool LabelAvailable = AllLabels.count(Target);
1543               if (TargetSym != nullptr) {
1544                 uint64_t TargetAddress = TargetSym->Addr;
1545                 uint64_t Disp = Target - TargetAddress;
1546                 std::string TargetName = TargetSym->Name.str();
1547                 if (Demangle)
1548                   TargetName = demangle(TargetName);
1549 
1550                 *TargetOS << " <";
1551                 if (!Disp) {
1552                   // Always Print the binary symbol precisely corresponding to
1553                   // the target address.
1554                   *TargetOS << TargetName;
1555                 } else if (!LabelAvailable) {
1556                   // Always Print the binary symbol plus an offset if there's no
1557                   // local label corresponding to the target address.
1558                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1559                 } else {
1560                   *TargetOS << AllLabels[Target];
1561                 }
1562                 *TargetOS << ">";
1563               } else if (LabelAvailable) {
1564                 *TargetOS << " <" << AllLabels[Target] << ">";
1565               }
1566               // By convention, each record in the comment stream should be
1567               // terminated.
1568               if (TargetOS == &CommentStream)
1569                 *TargetOS << "\n";
1570             }
1571           }
1572         }
1573 
1574         assert(Ctx.getAsmInfo());
1575         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1576                                 CommentStream.str(), LVP);
1577         Comments.clear();
1578 
1579         // Hexagon does this in pretty printer
1580         if (Obj->getArch() != Triple::hexagon) {
1581           // Print relocation for instruction and data.
1582           while (RelCur != RelEnd) {
1583             uint64_t Offset = RelCur->getOffset();
1584             // If this relocation is hidden, skip it.
1585             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1586               ++RelCur;
1587               continue;
1588             }
1589 
1590             // Stop when RelCur's offset is past the disassembled
1591             // instruction/data. Note that it's possible the disassembled data
1592             // is not the complete data: we might see the relocation printed in
1593             // the middle of the data, but this matches the binutils objdump
1594             // output.
1595             if (Offset >= Index + Size)
1596               break;
1597 
1598             // When --adjust-vma is used, update the address printed.
1599             if (RelCur->getSymbol() != Obj->symbol_end()) {
1600               Expected<section_iterator> SymSI =
1601                   RelCur->getSymbol()->getSection();
1602               if (SymSI && *SymSI != Obj->section_end() &&
1603                   shouldAdjustVA(**SymSI))
1604                 Offset += AdjustVMA;
1605             }
1606 
1607             printRelocation(FOS, Obj->getFileName(), *RelCur,
1608                             SectionAddr + Offset, Is64Bits);
1609             LVP.printAfterOtherLine(FOS, true);
1610             ++RelCur;
1611           }
1612         }
1613 
1614         Index += Size;
1615       }
1616     }
1617   }
1618   StringSet<> MissingDisasmSymbolSet =
1619       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1620   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1621     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1622 }
1623 
1624 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1625   const Target *TheTarget = getTarget(Obj);
1626 
1627   // Package up features to be passed to target/subtarget
1628   SubtargetFeatures Features = Obj->getFeatures();
1629   if (!MAttrs.empty())
1630     for (unsigned I = 0; I != MAttrs.size(); ++I)
1631       Features.AddFeature(MAttrs[I]);
1632 
1633   std::unique_ptr<const MCRegisterInfo> MRI(
1634       TheTarget->createMCRegInfo(TripleName));
1635   if (!MRI)
1636     reportError(Obj->getFileName(),
1637                 "no register info for target " + TripleName);
1638 
1639   // Set up disassembler.
1640   MCTargetOptions MCOptions;
1641   std::unique_ptr<const MCAsmInfo> AsmInfo(
1642       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1643   if (!AsmInfo)
1644     reportError(Obj->getFileName(),
1645                 "no assembly info for target " + TripleName);
1646 
1647   if (MCPU.empty())
1648     MCPU = Obj->tryGetCPUName().getValueOr("").str();
1649 
1650   std::unique_ptr<const MCSubtargetInfo> STI(
1651       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1652   if (!STI)
1653     reportError(Obj->getFileName(),
1654                 "no subtarget info for target " + TripleName);
1655   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1656   if (!MII)
1657     reportError(Obj->getFileName(),
1658                 "no instruction info for target " + TripleName);
1659   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
1660   // FIXME: for now initialize MCObjectFileInfo with default values
1661   std::unique_ptr<MCObjectFileInfo> MOFI(
1662       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
1663   Ctx.setObjectFileInfo(MOFI.get());
1664 
1665   std::unique_ptr<MCDisassembler> DisAsm(
1666       TheTarget->createMCDisassembler(*STI, Ctx));
1667   if (!DisAsm)
1668     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1669 
1670   // If we have an ARM object file, we need a second disassembler, because
1671   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1672   // We use mapping symbols to switch between the two assemblers, where
1673   // appropriate.
1674   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1675   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1676   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1677     if (STI->checkFeatures("+thumb-mode"))
1678       Features.AddFeature("-thumb-mode");
1679     else
1680       Features.AddFeature("+thumb-mode");
1681     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1682                                                         Features.getString()));
1683     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1684   }
1685 
1686   std::unique_ptr<const MCInstrAnalysis> MIA(
1687       TheTarget->createMCInstrAnalysis(MII.get()));
1688 
1689   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1690   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1691       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1692   if (!IP)
1693     reportError(Obj->getFileName(),
1694                 "no instruction printer for target " + TripleName);
1695   IP->setPrintImmHex(PrintImmHex);
1696   IP->setPrintBranchImmAsAddress(true);
1697   IP->setSymbolizeOperands(SymbolizeOperands);
1698   IP->setMCInstrAnalysis(MIA.get());
1699 
1700   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1701   SourcePrinter SP(Obj, TheTarget->getName());
1702 
1703   for (StringRef Opt : DisassemblerOptions)
1704     if (!IP->applyTargetSpecificCLOption(Opt))
1705       reportError(Obj->getFileName(),
1706                   "Unrecognized disassembler option: " + Opt);
1707 
1708   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1709                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1710                     SP, InlineRelocs);
1711 }
1712 
1713 void objdump::printRelocations(const ObjectFile *Obj) {
1714   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1715                                                  "%08" PRIx64;
1716   // Regular objdump doesn't print relocations in non-relocatable object
1717   // files.
1718   if (!Obj->isRelocatableObject())
1719     return;
1720 
1721   // Build a mapping from relocation target to a vector of relocation
1722   // sections. Usually, there is an only one relocation section for
1723   // each relocated section.
1724   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1725   uint64_t Ndx;
1726   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1727     if (Section.relocation_begin() == Section.relocation_end())
1728       continue;
1729     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1730     if (!SecOrErr)
1731       reportError(Obj->getFileName(),
1732                   "section (" + Twine(Ndx) +
1733                       "): unable to get a relocation target: " +
1734                       toString(SecOrErr.takeError()));
1735     SecToRelSec[**SecOrErr].push_back(Section);
1736   }
1737 
1738   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1739     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1740     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
1741     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1742     uint32_t TypePadding = 24;
1743     outs() << left_justify("OFFSET", OffsetPadding) << " "
1744            << left_justify("TYPE", TypePadding) << " "
1745            << "VALUE\n";
1746 
1747     for (SectionRef Section : P.second) {
1748       for (const RelocationRef &Reloc : Section.relocations()) {
1749         uint64_t Address = Reloc.getOffset();
1750         SmallString<32> RelocName;
1751         SmallString<32> ValueStr;
1752         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1753           continue;
1754         Reloc.getTypeName(RelocName);
1755         if (Error E = getRelocationValueString(Reloc, ValueStr))
1756           reportError(std::move(E), Obj->getFileName());
1757 
1758         outs() << format(Fmt.data(), Address) << " "
1759                << left_justify(RelocName, TypePadding) << " " << ValueStr
1760                << "\n";
1761       }
1762     }
1763   }
1764 }
1765 
1766 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
1767   // For the moment, this option is for ELF only
1768   if (!Obj->isELF())
1769     return;
1770 
1771   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1772   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1773     reportError(Obj->getFileName(), "not a dynamic object");
1774     return;
1775   }
1776 
1777   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1778   if (DynRelSec.empty())
1779     return;
1780 
1781   outs() << "DYNAMIC RELOCATION RECORDS\n";
1782   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1783   for (const SectionRef &Section : DynRelSec)
1784     for (const RelocationRef &Reloc : Section.relocations()) {
1785       uint64_t Address = Reloc.getOffset();
1786       SmallString<32> RelocName;
1787       SmallString<32> ValueStr;
1788       Reloc.getTypeName(RelocName);
1789       if (Error E = getRelocationValueString(Reloc, ValueStr))
1790         reportError(std::move(E), Obj->getFileName());
1791       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1792              << ValueStr << "\n";
1793     }
1794 }
1795 
1796 // Returns true if we need to show LMA column when dumping section headers. We
1797 // show it only when the platform is ELF and either we have at least one section
1798 // whose VMA and LMA are different and/or when --show-lma flag is used.
1799 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1800   if (!Obj->isELF())
1801     return false;
1802   for (const SectionRef &S : ToolSectionFilter(*Obj))
1803     if (S.getAddress() != getELFSectionLMA(S))
1804       return true;
1805   return ShowLMA;
1806 }
1807 
1808 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1809   // Default column width for names is 13 even if no names are that long.
1810   size_t MaxWidth = 13;
1811   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1812     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1813     MaxWidth = std::max(MaxWidth, Name.size());
1814   }
1815   return MaxWidth;
1816 }
1817 
1818 void objdump::printSectionHeaders(const ObjectFile *Obj) {
1819   size_t NameWidth = getMaxSectionNameWidth(Obj);
1820   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1821   bool HasLMAColumn = shouldDisplayLMA(Obj);
1822   outs() << "\nSections:\n";
1823   if (HasLMAColumn)
1824     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1825            << left_justify("VMA", AddressWidth) << " "
1826            << left_justify("LMA", AddressWidth) << " Type\n";
1827   else
1828     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1829            << left_justify("VMA", AddressWidth) << " Type\n";
1830 
1831   uint64_t Idx;
1832   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1833     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1834     uint64_t VMA = Section.getAddress();
1835     if (shouldAdjustVA(Section))
1836       VMA += AdjustVMA;
1837 
1838     uint64_t Size = Section.getSize();
1839 
1840     std::string Type = Section.isText() ? "TEXT" : "";
1841     if (Section.isData())
1842       Type += Type.empty() ? "DATA" : ", DATA";
1843     if (Section.isBSS())
1844       Type += Type.empty() ? "BSS" : ", BSS";
1845     if (Section.isDebugSection())
1846       Type += Type.empty() ? "DEBUG" : ", DEBUG";
1847 
1848     if (HasLMAColumn)
1849       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1850                        Name.str().c_str(), Size)
1851              << format_hex_no_prefix(VMA, AddressWidth) << " "
1852              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1853              << " " << Type << "\n";
1854     else
1855       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1856                        Name.str().c_str(), Size)
1857              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1858   }
1859 }
1860 
1861 void objdump::printSectionContents(const ObjectFile *Obj) {
1862   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1863 
1864   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1865     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1866     uint64_t BaseAddr = Section.getAddress();
1867     uint64_t Size = Section.getSize();
1868     if (!Size)
1869       continue;
1870 
1871     outs() << "Contents of section ";
1872     StringRef SegmentName = getSegmentName(MachO, Section);
1873     if (!SegmentName.empty())
1874       outs() << SegmentName << ",";
1875     outs() << Name << ":\n";
1876     if (Section.isBSS()) {
1877       outs() << format("<skipping contents of bss section at [%04" PRIx64
1878                        ", %04" PRIx64 ")>\n",
1879                        BaseAddr, BaseAddr + Size);
1880       continue;
1881     }
1882 
1883     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1884 
1885     // Dump out the content as hex and printable ascii characters.
1886     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1887       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1888       // Dump line of hex.
1889       for (std::size_t I = 0; I < 16; ++I) {
1890         if (I != 0 && I % 4 == 0)
1891           outs() << ' ';
1892         if (Addr + I < End)
1893           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1894                  << hexdigit(Contents[Addr + I] & 0xF, true);
1895         else
1896           outs() << "  ";
1897       }
1898       // Print ascii.
1899       outs() << "  ";
1900       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1901         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1902           outs() << Contents[Addr + I];
1903         else
1904           outs() << ".";
1905       }
1906       outs() << "\n";
1907     }
1908   }
1909 }
1910 
1911 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1912                                StringRef ArchitectureName, bool DumpDynamic) {
1913   if (O->isCOFF() && !DumpDynamic) {
1914     outs() << "\nSYMBOL TABLE:\n";
1915     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
1916     return;
1917   }
1918 
1919   const StringRef FileName = O->getFileName();
1920 
1921   if (!DumpDynamic) {
1922     outs() << "\nSYMBOL TABLE:\n";
1923     for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
1924       printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
1925     return;
1926   }
1927 
1928   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
1929   if (!O->isELF()) {
1930     reportWarning(
1931         "this operation is not currently supported for this file format",
1932         FileName);
1933     return;
1934   }
1935 
1936   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
1937   for (auto I = ELF->getDynamicSymbolIterators().begin();
1938        I != ELF->getDynamicSymbolIterators().end(); ++I)
1939     printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
1940 }
1941 
1942 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
1943                           StringRef FileName, StringRef ArchiveName,
1944                           StringRef ArchitectureName, bool DumpDynamic) {
1945   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1946   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1947                                    ArchitectureName);
1948   if ((Address < StartAddress) || (Address > StopAddress))
1949     return;
1950   SymbolRef::Type Type =
1951       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
1952   uint32_t Flags =
1953       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
1954 
1955   // Don't ask a Mach-O STAB symbol for its section unless you know that
1956   // STAB symbol's section field refers to a valid section index. Otherwise
1957   // the symbol may error trying to load a section that does not exist.
1958   bool IsSTAB = false;
1959   if (MachO) {
1960     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1961     uint8_t NType =
1962         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
1963                           : MachO->getSymbolTableEntry(SymDRI).n_type);
1964     if (NType & MachO::N_STAB)
1965       IsSTAB = true;
1966   }
1967   section_iterator Section = IsSTAB
1968                                  ? O->section_end()
1969                                  : unwrapOrError(Symbol.getSection(), FileName,
1970                                                  ArchiveName, ArchitectureName);
1971 
1972   StringRef Name;
1973   if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1974     if (Expected<StringRef> NameOrErr = Section->getName())
1975       Name = *NameOrErr;
1976     else
1977       consumeError(NameOrErr.takeError());
1978 
1979   } else {
1980     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
1981                          ArchitectureName);
1982   }
1983 
1984   bool Global = Flags & SymbolRef::SF_Global;
1985   bool Weak = Flags & SymbolRef::SF_Weak;
1986   bool Absolute = Flags & SymbolRef::SF_Absolute;
1987   bool Common = Flags & SymbolRef::SF_Common;
1988   bool Hidden = Flags & SymbolRef::SF_Hidden;
1989 
1990   char GlobLoc = ' ';
1991   if ((Section != O->section_end() || Absolute) && !Weak)
1992     GlobLoc = Global ? 'g' : 'l';
1993   char IFunc = ' ';
1994   if (O->isELF()) {
1995     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
1996       IFunc = 'i';
1997     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
1998       GlobLoc = 'u';
1999   }
2000 
2001   char Debug = ' ';
2002   if (DumpDynamic)
2003     Debug = 'D';
2004   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2005     Debug = 'd';
2006 
2007   char FileFunc = ' ';
2008   if (Type == SymbolRef::ST_File)
2009     FileFunc = 'f';
2010   else if (Type == SymbolRef::ST_Function)
2011     FileFunc = 'F';
2012   else if (Type == SymbolRef::ST_Data)
2013     FileFunc = 'O';
2014 
2015   const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2016 
2017   outs() << format(Fmt, Address) << " "
2018          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2019          << (Weak ? 'w' : ' ') // Weak?
2020          << ' '                // Constructor. Not supported yet.
2021          << ' '                // Warning. Not supported yet.
2022          << IFunc              // Indirect reference to another symbol.
2023          << Debug              // Debugging (d) or dynamic (D) symbol.
2024          << FileFunc           // Name of function (F), file (f) or object (O).
2025          << ' ';
2026   if (Absolute) {
2027     outs() << "*ABS*";
2028   } else if (Common) {
2029     outs() << "*COM*";
2030   } else if (Section == O->section_end()) {
2031     outs() << "*UND*";
2032   } else {
2033     StringRef SegmentName = getSegmentName(MachO, *Section);
2034     if (!SegmentName.empty())
2035       outs() << SegmentName << ",";
2036     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2037     outs() << SectionName;
2038   }
2039 
2040   if (Common || O->isELF()) {
2041     uint64_t Val =
2042         Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2043     outs() << '\t' << format(Fmt, Val);
2044   }
2045 
2046   if (O->isELF()) {
2047     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2048     switch (Other) {
2049     case ELF::STV_DEFAULT:
2050       break;
2051     case ELF::STV_INTERNAL:
2052       outs() << " .internal";
2053       break;
2054     case ELF::STV_HIDDEN:
2055       outs() << " .hidden";
2056       break;
2057     case ELF::STV_PROTECTED:
2058       outs() << " .protected";
2059       break;
2060     default:
2061       outs() << format(" 0x%02x", Other);
2062       break;
2063     }
2064   } else if (Hidden) {
2065     outs() << " .hidden";
2066   }
2067 
2068   if (Demangle)
2069     outs() << ' ' << demangle(std::string(Name)) << '\n';
2070   else
2071     outs() << ' ' << Name << '\n';
2072 }
2073 
2074 static void printUnwindInfo(const ObjectFile *O) {
2075   outs() << "Unwind info:\n\n";
2076 
2077   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2078     printCOFFUnwindInfo(Coff);
2079   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2080     printMachOUnwindInfo(MachO);
2081   else
2082     // TODO: Extract DWARF dump tool to objdump.
2083     WithColor::error(errs(), ToolName)
2084         << "This operation is only currently supported "
2085            "for COFF and MachO object files.\n";
2086 }
2087 
2088 /// Dump the raw contents of the __clangast section so the output can be piped
2089 /// into llvm-bcanalyzer.
2090 static void printRawClangAST(const ObjectFile *Obj) {
2091   if (outs().is_displayed()) {
2092     WithColor::error(errs(), ToolName)
2093         << "The -raw-clang-ast option will dump the raw binary contents of "
2094            "the clang ast section.\n"
2095            "Please redirect the output to a file or another program such as "
2096            "llvm-bcanalyzer.\n";
2097     return;
2098   }
2099 
2100   StringRef ClangASTSectionName("__clangast");
2101   if (Obj->isCOFF()) {
2102     ClangASTSectionName = "clangast";
2103   }
2104 
2105   Optional<object::SectionRef> ClangASTSection;
2106   for (auto Sec : ToolSectionFilter(*Obj)) {
2107     StringRef Name;
2108     if (Expected<StringRef> NameOrErr = Sec.getName())
2109       Name = *NameOrErr;
2110     else
2111       consumeError(NameOrErr.takeError());
2112 
2113     if (Name == ClangASTSectionName) {
2114       ClangASTSection = Sec;
2115       break;
2116     }
2117   }
2118   if (!ClangASTSection)
2119     return;
2120 
2121   StringRef ClangASTContents = unwrapOrError(
2122       ClangASTSection.getValue().getContents(), Obj->getFileName());
2123   outs().write(ClangASTContents.data(), ClangASTContents.size());
2124 }
2125 
2126 static void printFaultMaps(const ObjectFile *Obj) {
2127   StringRef FaultMapSectionName;
2128 
2129   if (Obj->isELF()) {
2130     FaultMapSectionName = ".llvm_faultmaps";
2131   } else if (Obj->isMachO()) {
2132     FaultMapSectionName = "__llvm_faultmaps";
2133   } else {
2134     WithColor::error(errs(), ToolName)
2135         << "This operation is only currently supported "
2136            "for ELF and Mach-O executable files.\n";
2137     return;
2138   }
2139 
2140   Optional<object::SectionRef> FaultMapSection;
2141 
2142   for (auto Sec : ToolSectionFilter(*Obj)) {
2143     StringRef Name;
2144     if (Expected<StringRef> NameOrErr = Sec.getName())
2145       Name = *NameOrErr;
2146     else
2147       consumeError(NameOrErr.takeError());
2148 
2149     if (Name == FaultMapSectionName) {
2150       FaultMapSection = Sec;
2151       break;
2152     }
2153   }
2154 
2155   outs() << "FaultMap table:\n";
2156 
2157   if (!FaultMapSection.hasValue()) {
2158     outs() << "<not found>\n";
2159     return;
2160   }
2161 
2162   StringRef FaultMapContents =
2163       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2164   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2165                      FaultMapContents.bytes_end());
2166 
2167   outs() << FMP;
2168 }
2169 
2170 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2171   if (O->isELF()) {
2172     printELFFileHeader(O);
2173     printELFDynamicSection(O);
2174     printELFSymbolVersionInfo(O);
2175     return;
2176   }
2177   if (O->isCOFF())
2178     return printCOFFFileHeader(O);
2179   if (O->isWasm())
2180     return printWasmFileHeader(O);
2181   if (O->isMachO()) {
2182     printMachOFileHeader(O);
2183     if (!OnlyFirst)
2184       printMachOLoadCommands(O);
2185     return;
2186   }
2187   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2188 }
2189 
2190 static void printFileHeaders(const ObjectFile *O) {
2191   if (!O->isELF() && !O->isCOFF())
2192     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2193 
2194   Triple::ArchType AT = O->getArch();
2195   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2196   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2197 
2198   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2199   outs() << "start address: "
2200          << "0x" << format(Fmt.data(), Address) << "\n";
2201 }
2202 
2203 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2204   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2205   if (!ModeOrErr) {
2206     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2207     consumeError(ModeOrErr.takeError());
2208     return;
2209   }
2210   sys::fs::perms Mode = ModeOrErr.get();
2211   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2212   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2213   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2214   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2215   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2216   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2217   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2218   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2219   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2220 
2221   outs() << " ";
2222 
2223   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2224                    unwrapOrError(C.getGID(), Filename),
2225                    unwrapOrError(C.getRawSize(), Filename));
2226 
2227   StringRef RawLastModified = C.getRawLastModified();
2228   unsigned Seconds;
2229   if (RawLastModified.getAsInteger(10, Seconds))
2230     outs() << "(date: \"" << RawLastModified
2231            << "\" contains non-decimal chars) ";
2232   else {
2233     // Since ctime(3) returns a 26 character string of the form:
2234     // "Sun Sep 16 01:03:52 1973\n\0"
2235     // just print 24 characters.
2236     time_t t = Seconds;
2237     outs() << format("%.24s ", ctime(&t));
2238   }
2239 
2240   StringRef Name = "";
2241   Expected<StringRef> NameOrErr = C.getName();
2242   if (!NameOrErr) {
2243     consumeError(NameOrErr.takeError());
2244     Name = unwrapOrError(C.getRawName(), Filename);
2245   } else {
2246     Name = NameOrErr.get();
2247   }
2248   outs() << Name << "\n";
2249 }
2250 
2251 // For ELF only now.
2252 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2253   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2254     if (Elf->getEType() != ELF::ET_REL)
2255       return true;
2256   }
2257   return false;
2258 }
2259 
2260 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2261                                             uint64_t Start, uint64_t Stop) {
2262   if (!shouldWarnForInvalidStartStopAddress(Obj))
2263     return;
2264 
2265   for (const SectionRef &Section : Obj->sections())
2266     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2267       uint64_t BaseAddr = Section.getAddress();
2268       uint64_t Size = Section.getSize();
2269       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2270         return;
2271     }
2272 
2273   if (!HasStartAddressFlag)
2274     reportWarning("no section has address less than 0x" +
2275                       Twine::utohexstr(Stop) + " specified by --stop-address",
2276                   Obj->getFileName());
2277   else if (!HasStopAddressFlag)
2278     reportWarning("no section has address greater than or equal to 0x" +
2279                       Twine::utohexstr(Start) + " specified by --start-address",
2280                   Obj->getFileName());
2281   else
2282     reportWarning("no section overlaps the range [0x" +
2283                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2284                       ") specified by --start-address/--stop-address",
2285                   Obj->getFileName());
2286 }
2287 
2288 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2289                        const Archive::Child *C = nullptr) {
2290   // Avoid other output when using a raw option.
2291   if (!RawClangAST) {
2292     outs() << '\n';
2293     if (A)
2294       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2295     else
2296       outs() << O->getFileName();
2297     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2298   }
2299 
2300   if (HasStartAddressFlag || HasStopAddressFlag)
2301     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2302 
2303   // Note: the order here matches GNU objdump for compatability.
2304   StringRef ArchiveName = A ? A->getFileName() : "";
2305   if (ArchiveHeaders && !MachOOpt && C)
2306     printArchiveChild(ArchiveName, *C);
2307   if (FileHeaders)
2308     printFileHeaders(O);
2309   if (PrivateHeaders || FirstPrivateHeader)
2310     printPrivateFileHeaders(O, FirstPrivateHeader);
2311   if (SectionHeaders)
2312     printSectionHeaders(O);
2313   if (SymbolTable)
2314     printSymbolTable(O, ArchiveName);
2315   if (DynamicSymbolTable)
2316     printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2317                      /*DumpDynamic=*/true);
2318   if (DwarfDumpType != DIDT_Null) {
2319     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2320     // Dump the complete DWARF structure.
2321     DIDumpOptions DumpOpts;
2322     DumpOpts.DumpType = DwarfDumpType;
2323     DICtx->dump(outs(), DumpOpts);
2324   }
2325   if (Relocations && !Disassemble)
2326     printRelocations(O);
2327   if (DynamicRelocations)
2328     printDynamicRelocations(O);
2329   if (SectionContents)
2330     printSectionContents(O);
2331   if (Disassemble)
2332     disassembleObject(O, Relocations);
2333   if (UnwindInfo)
2334     printUnwindInfo(O);
2335 
2336   // Mach-O specific options:
2337   if (ExportsTrie)
2338     printExportsTrie(O);
2339   if (Rebase)
2340     printRebaseTable(O);
2341   if (Bind)
2342     printBindTable(O);
2343   if (LazyBind)
2344     printLazyBindTable(O);
2345   if (WeakBind)
2346     printWeakBindTable(O);
2347 
2348   // Other special sections:
2349   if (RawClangAST)
2350     printRawClangAST(O);
2351   if (FaultMapSection)
2352     printFaultMaps(O);
2353 }
2354 
2355 static void dumpObject(const COFFImportFile *I, const Archive *A,
2356                        const Archive::Child *C = nullptr) {
2357   StringRef ArchiveName = A ? A->getFileName() : "";
2358 
2359   // Avoid other output when using a raw option.
2360   if (!RawClangAST)
2361     outs() << '\n'
2362            << ArchiveName << "(" << I->getFileName() << ")"
2363            << ":\tfile format COFF-import-file"
2364            << "\n\n";
2365 
2366   if (ArchiveHeaders && !MachOOpt && C)
2367     printArchiveChild(ArchiveName, *C);
2368   if (SymbolTable)
2369     printCOFFSymbolTable(I);
2370 }
2371 
2372 /// Dump each object file in \a a;
2373 static void dumpArchive(const Archive *A) {
2374   Error Err = Error::success();
2375   unsigned I = -1;
2376   for (auto &C : A->children(Err)) {
2377     ++I;
2378     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2379     if (!ChildOrErr) {
2380       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2381         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2382       continue;
2383     }
2384     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2385       dumpObject(O, A, &C);
2386     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2387       dumpObject(I, A, &C);
2388     else
2389       reportError(errorCodeToError(object_error::invalid_file_type),
2390                   A->getFileName());
2391   }
2392   if (Err)
2393     reportError(std::move(Err), A->getFileName());
2394 }
2395 
2396 /// Open file and figure out how to dump it.
2397 static void dumpInput(StringRef file) {
2398   // If we are using the Mach-O specific object file parser, then let it parse
2399   // the file and process the command line options.  So the -arch flags can
2400   // be used to select specific slices, etc.
2401   if (MachOOpt) {
2402     parseInputMachO(file);
2403     return;
2404   }
2405 
2406   // Attempt to open the binary.
2407   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2408   Binary &Binary = *OBinary.getBinary();
2409 
2410   if (Archive *A = dyn_cast<Archive>(&Binary))
2411     dumpArchive(A);
2412   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2413     dumpObject(O);
2414   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2415     parseInputMachO(UB);
2416   else
2417     reportError(errorCodeToError(object_error::invalid_file_type), file);
2418 }
2419 
2420 template <typename T>
2421 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2422                         T &Value) {
2423   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2424     StringRef V(A->getValue());
2425     if (!llvm::to_integer(V, Value, 0)) {
2426       reportCmdLineError(A->getSpelling() +
2427                          ": expected a non-negative integer, but got '" + V +
2428                          "'");
2429     }
2430   }
2431 }
2432 
2433 static std::vector<std::string>
2434 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2435   std::vector<std::string> Values;
2436   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2437     llvm::SmallVector<StringRef, 2> SplitValues;
2438     llvm::SplitString(Value, SplitValues, ",");
2439     for (StringRef SplitValue : SplitValues)
2440       Values.push_back(SplitValue.str());
2441   }
2442   return Values;
2443 }
2444 
2445 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2446   MachOOpt = true;
2447   FullLeadingAddr = true;
2448   PrintImmHex = true;
2449 
2450   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2451   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2452   if (InputArgs.hasArg(OTOOL_d))
2453     FilterSections.push_back("__DATA,__data");
2454   DylibId = InputArgs.hasArg(OTOOL_D);
2455   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2456   DataInCode = InputArgs.hasArg(OTOOL_G);
2457   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2458   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2459   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2460   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2461   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2462   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2463   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2464   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2465   InfoPlist = InputArgs.hasArg(OTOOL_P);
2466   Relocations = InputArgs.hasArg(OTOOL_r);
2467   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2468     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2469     FilterSections.push_back(Filter);
2470   }
2471   if (InputArgs.hasArg(OTOOL_t))
2472     FilterSections.push_back("__TEXT,__text");
2473   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2474             InputArgs.hasArg(OTOOL_o);
2475   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2476   if (InputArgs.hasArg(OTOOL_x))
2477     FilterSections.push_back(",__text");
2478   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2479 
2480   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2481   if (InputFilenames.empty())
2482     reportCmdLineError("no input file");
2483 
2484   for (const Arg *A : InputArgs) {
2485     const Option &O = A->getOption();
2486     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2487       reportCmdLineWarning(O.getPrefixedName() +
2488                            " is obsolete and not implemented");
2489     }
2490   }
2491 }
2492 
2493 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2494   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2495   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2496   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2497   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2498   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2499   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2500   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2501   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2502   DisassembleSymbols =
2503       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2504   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2505   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2506     DwarfDumpType =
2507         StringSwitch<DIDumpType>(A->getValue()).Case("frames", DIDT_DebugFrame);
2508   }
2509   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2510   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2511   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2512   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2513   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2514   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2515   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2516   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2517   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2518   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2519   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2520   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2521   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2522   PrintImmHex =
2523       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2524   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2525   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2526   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2527   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2528   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2529   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2530   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2531   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2532   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2533   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2534   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2535   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2536   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2537   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2538   Wide = InputArgs.hasArg(OBJDUMP_wide);
2539   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2540   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2541   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2542     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2543                        .Case("ascii", DVASCII)
2544                        .Case("unicode", DVUnicode);
2545   }
2546   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2547 
2548   parseMachOOptions(InputArgs);
2549 
2550   // Parse -M (--disassembler-options) and deprecated
2551   // --x86-asm-syntax={att,intel}.
2552   //
2553   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2554   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2555   // called too late. For now we have to use the internal cl::opt option.
2556   const char *AsmSyntax = nullptr;
2557   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2558                                           OBJDUMP_x86_asm_syntax_att,
2559                                           OBJDUMP_x86_asm_syntax_intel)) {
2560     switch (A->getOption().getID()) {
2561     case OBJDUMP_x86_asm_syntax_att:
2562       AsmSyntax = "--x86-asm-syntax=att";
2563       continue;
2564     case OBJDUMP_x86_asm_syntax_intel:
2565       AsmSyntax = "--x86-asm-syntax=intel";
2566       continue;
2567     }
2568 
2569     SmallVector<StringRef, 2> Values;
2570     llvm::SplitString(A->getValue(), Values, ",");
2571     for (StringRef V : Values) {
2572       if (V == "att")
2573         AsmSyntax = "--x86-asm-syntax=att";
2574       else if (V == "intel")
2575         AsmSyntax = "--x86-asm-syntax=intel";
2576       else
2577         DisassemblerOptions.push_back(V.str());
2578     }
2579   }
2580   if (AsmSyntax) {
2581     const char *Argv[] = {"llvm-objdump", AsmSyntax};
2582     llvm::cl::ParseCommandLineOptions(2, Argv);
2583   }
2584 
2585   // objdump defaults to a.out if no filenames specified.
2586   if (InputFilenames.empty())
2587     InputFilenames.push_back("a.out");
2588 }
2589 
2590 int main(int argc, char **argv) {
2591   using namespace llvm;
2592   InitLLVM X(argc, argv);
2593 
2594   ToolName = argv[0];
2595   std::unique_ptr<CommonOptTable> T;
2596   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2597 
2598   StringRef Stem = sys::path::stem(ToolName);
2599   auto Is = [=](StringRef Tool) {
2600     // We need to recognize the following filenames:
2601     //
2602     // llvm-objdump -> objdump
2603     // llvm-otool-10.exe -> otool
2604     // powerpc64-unknown-freebsd13-objdump -> objdump
2605     auto I = Stem.rfind_insensitive(Tool);
2606     return I != StringRef::npos &&
2607            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
2608   };
2609   if (Is("otool")) {
2610     T = std::make_unique<OtoolOptTable>();
2611     Unknown = OTOOL_UNKNOWN;
2612     HelpFlag = OTOOL_help;
2613     HelpHiddenFlag = OTOOL_help_hidden;
2614     VersionFlag = OTOOL_version;
2615   } else {
2616     T = std::make_unique<ObjdumpOptTable>();
2617     Unknown = OBJDUMP_UNKNOWN;
2618     HelpFlag = OBJDUMP_help;
2619     HelpHiddenFlag = OBJDUMP_help_hidden;
2620     VersionFlag = OBJDUMP_version;
2621   }
2622 
2623   BumpPtrAllocator A;
2624   StringSaver Saver(A);
2625   opt::InputArgList InputArgs =
2626       T->parseArgs(argc, argv, Unknown, Saver,
2627                    [&](StringRef Msg) { reportCmdLineError(Msg); });
2628 
2629   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
2630     T->printHelp(ToolName);
2631     return 0;
2632   }
2633   if (InputArgs.hasArg(HelpHiddenFlag)) {
2634     T->printHelp(ToolName, /*show_hidden=*/true);
2635     return 0;
2636   }
2637 
2638   // Initialize targets and assembly printers/parsers.
2639   InitializeAllTargetInfos();
2640   InitializeAllTargetMCs();
2641   InitializeAllDisassemblers();
2642 
2643   if (InputArgs.hasArg(VersionFlag)) {
2644     cl::PrintVersionMessage();
2645     if (!Is("otool")) {
2646       outs() << '\n';
2647       TargetRegistry::printRegisteredTargetsForVersion(outs());
2648     }
2649     return 0;
2650   }
2651 
2652   if (Is("otool"))
2653     parseOtoolOptions(InputArgs);
2654   else
2655     parseObjdumpOptions(InputArgs);
2656 
2657   if (StartAddress >= StopAddress)
2658     reportCmdLineError("start address should be less than stop address");
2659 
2660   // Removes trailing separators from prefix.
2661   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2662     Prefix.pop_back();
2663 
2664   if (AllHeaders)
2665     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2666         SectionHeaders = SymbolTable = true;
2667 
2668   if (DisassembleAll || PrintSource || PrintLines ||
2669       !DisassembleSymbols.empty())
2670     Disassemble = true;
2671 
2672   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2673       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2674       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2675       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
2676       !(MachOOpt &&
2677         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2678          FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist ||
2679          LazyBind || LinkOptHints || ObjcMetaData || Rebase || Rpaths ||
2680          UniversalHeaders || WeakBind || !FilterSections.empty()))) {
2681     T->printHelp(ToolName);
2682     return 2;
2683   }
2684 
2685   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2686 
2687   llvm::for_each(InputFilenames, dumpInput);
2688 
2689   warnOnNoMatchForSections();
2690 
2691   return EXIT_SUCCESS;
2692 }
2693