xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 69b312cde428056186928a3c1b6ad84e45de0353)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringSet.h"
34 #include "llvm/ADT/Triple.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
37 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
38 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
39 #include "llvm/Demangle/Demangle.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
43 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
44 #include "llvm/MC/MCInst.h"
45 #include "llvm/MC/MCInstPrinter.h"
46 #include "llvm/MC/MCInstrAnalysis.h"
47 #include "llvm/MC/MCInstrInfo.h"
48 #include "llvm/MC/MCObjectFileInfo.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/MC/MCSubtargetInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/COFF.h"
55 #include "llvm/Object/COFFImportFile.h"
56 #include "llvm/Object/ELFObjectFile.h"
57 #include "llvm/Object/ELFTypes.h"
58 #include "llvm/Object/FaultMapParser.h"
59 #include "llvm/Object/MachO.h"
60 #include "llvm/Object/MachOUniversal.h"
61 #include "llvm/Object/ObjectFile.h"
62 #include "llvm/Object/OffloadBinary.h"
63 #include "llvm/Object/Wasm.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/Option.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Errc.h"
70 #include "llvm/Support/FileSystem.h"
71 #include "llvm/Support/Format.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/GraphWriter.h"
74 #include "llvm/Support/Host.h"
75 #include "llvm/Support/InitLLVM.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <algorithm>
83 #include <cctype>
84 #include <cstring>
85 #include <system_error>
86 #include <unordered_map>
87 #include <utility>
88 
89 using namespace llvm;
90 using namespace llvm::object;
91 using namespace llvm::objdump;
92 using namespace llvm::opt;
93 
94 namespace {
95 
96 class CommonOptTable : public opt::OptTable {
97 public:
98   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
99                  const char *Description)
100       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
101     setGroupedShortOptions(true);
102   }
103 
104   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
105     Argv0 = sys::path::filename(Argv0);
106     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
107                              ShowHidden, ShowHidden);
108     // TODO Replace this with OptTable API once it adds extrahelp support.
109     outs() << "\nPass @FILE as argument to read options from FILE.\n";
110   }
111 
112 private:
113   const char *Usage;
114   const char *Description;
115 };
116 
117 // ObjdumpOptID is in ObjdumpOptID.h
118 
119 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
120 #include "ObjdumpOpts.inc"
121 #undef PREFIX
122 
123 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
124 #define OBJDUMP_nullptr nullptr
125 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
126                HELPTEXT, METAVAR, VALUES)                                      \
127   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
128    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
129    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
130    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
131 #include "ObjdumpOpts.inc"
132 #undef OPTION
133 #undef OBJDUMP_nullptr
134 };
135 
136 class ObjdumpOptTable : public CommonOptTable {
137 public:
138   ObjdumpOptTable()
139       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
140                        "llvm object file dumper") {}
141 };
142 
143 enum OtoolOptID {
144   OTOOL_INVALID = 0, // This is not an option ID.
145 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
146                HELPTEXT, METAVAR, VALUES)                                      \
147   OTOOL_##ID,
148 #include "OtoolOpts.inc"
149 #undef OPTION
150 };
151 
152 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
153 #include "OtoolOpts.inc"
154 #undef PREFIX
155 
156 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
157 #define OTOOL_nullptr nullptr
158 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
159                HELPTEXT, METAVAR, VALUES)                                      \
160   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
161    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
162    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
163    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
164 #include "OtoolOpts.inc"
165 #undef OPTION
166 #undef OTOOL_nullptr
167 };
168 
169 class OtoolOptTable : public CommonOptTable {
170 public:
171   OtoolOptTable()
172       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
173                        "Mach-O object file displaying tool") {}
174 };
175 
176 } // namespace
177 
178 #define DEBUG_TYPE "objdump"
179 
180 static uint64_t AdjustVMA;
181 static bool AllHeaders;
182 static std::string ArchName;
183 bool objdump::ArchiveHeaders;
184 bool objdump::Demangle;
185 bool objdump::Disassemble;
186 bool objdump::DisassembleAll;
187 bool objdump::SymbolDescription;
188 static std::vector<std::string> DisassembleSymbols;
189 static bool DisassembleZeroes;
190 static std::vector<std::string> DisassemblerOptions;
191 DIDumpType objdump::DwarfDumpType;
192 static bool DynamicRelocations;
193 static bool FaultMapSection;
194 static bool FileHeaders;
195 bool objdump::SectionContents;
196 static std::vector<std::string> InputFilenames;
197 bool objdump::PrintLines;
198 static bool MachOOpt;
199 std::string objdump::MCPU;
200 std::vector<std::string> objdump::MAttrs;
201 bool objdump::ShowRawInsn;
202 bool objdump::LeadingAddr;
203 static bool Offloading;
204 static bool RawClangAST;
205 bool objdump::Relocations;
206 bool objdump::PrintImmHex;
207 bool objdump::PrivateHeaders;
208 std::vector<std::string> objdump::FilterSections;
209 bool objdump::SectionHeaders;
210 static bool ShowLMA;
211 bool objdump::PrintSource;
212 
213 static uint64_t StartAddress;
214 static bool HasStartAddressFlag;
215 static uint64_t StopAddress = UINT64_MAX;
216 static bool HasStopAddressFlag;
217 
218 bool objdump::SymbolTable;
219 static bool SymbolizeOperands;
220 static bool DynamicSymbolTable;
221 std::string objdump::TripleName;
222 bool objdump::UnwindInfo;
223 static bool Wide;
224 std::string objdump::Prefix;
225 uint32_t objdump::PrefixStrip;
226 
227 DebugVarsFormat objdump::DbgVariables = DVDisabled;
228 
229 int objdump::DbgIndent = 52;
230 
231 static StringSet<> DisasmSymbolSet;
232 StringSet<> objdump::FoundSectionSet;
233 static StringRef ToolName;
234 
235 namespace {
236 struct FilterResult {
237   // True if the section should not be skipped.
238   bool Keep;
239 
240   // True if the index counter should be incremented, even if the section should
241   // be skipped. For example, sections may be skipped if they are not included
242   // in the --section flag, but we still want those to count toward the section
243   // count.
244   bool IncrementIndex;
245 };
246 } // namespace
247 
248 static FilterResult checkSectionFilter(object::SectionRef S) {
249   if (FilterSections.empty())
250     return {/*Keep=*/true, /*IncrementIndex=*/true};
251 
252   Expected<StringRef> SecNameOrErr = S.getName();
253   if (!SecNameOrErr) {
254     consumeError(SecNameOrErr.takeError());
255     return {/*Keep=*/false, /*IncrementIndex=*/false};
256   }
257   StringRef SecName = *SecNameOrErr;
258 
259   // StringSet does not allow empty key so avoid adding sections with
260   // no name (such as the section with index 0) here.
261   if (!SecName.empty())
262     FoundSectionSet.insert(SecName);
263 
264   // Only show the section if it's in the FilterSections list, but always
265   // increment so the indexing is stable.
266   return {/*Keep=*/is_contained(FilterSections, SecName),
267           /*IncrementIndex=*/true};
268 }
269 
270 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
271                                          uint64_t *Idx) {
272   // Start at UINT64_MAX so that the first index returned after an increment is
273   // zero (after the unsigned wrap).
274   if (Idx)
275     *Idx = UINT64_MAX;
276   return SectionFilter(
277       [Idx](object::SectionRef S) {
278         FilterResult Result = checkSectionFilter(S);
279         if (Idx != nullptr && Result.IncrementIndex)
280           *Idx += 1;
281         return Result.Keep;
282       },
283       O);
284 }
285 
286 std::string objdump::getFileNameForError(const object::Archive::Child &C,
287                                          unsigned Index) {
288   Expected<StringRef> NameOrErr = C.getName();
289   if (NameOrErr)
290     return std::string(NameOrErr.get());
291   // If we have an error getting the name then we print the index of the archive
292   // member. Since we are already in an error state, we just ignore this error.
293   consumeError(NameOrErr.takeError());
294   return "<file index: " + std::to_string(Index) + ">";
295 }
296 
297 void objdump::reportWarning(const Twine &Message, StringRef File) {
298   // Output order between errs() and outs() matters especially for archive
299   // files where the output is per member object.
300   outs().flush();
301   WithColor::warning(errs(), ToolName)
302       << "'" << File << "': " << Message << "\n";
303 }
304 
305 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
306   outs().flush();
307   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
308   exit(1);
309 }
310 
311 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
312                                        StringRef ArchiveName,
313                                        StringRef ArchitectureName) {
314   assert(E);
315   outs().flush();
316   WithColor::error(errs(), ToolName);
317   if (ArchiveName != "")
318     errs() << ArchiveName << "(" << FileName << ")";
319   else
320     errs() << "'" << FileName << "'";
321   if (!ArchitectureName.empty())
322     errs() << " (for architecture " << ArchitectureName << ")";
323   errs() << ": ";
324   logAllUnhandledErrors(std::move(E), errs());
325   exit(1);
326 }
327 
328 static void reportCmdLineWarning(const Twine &Message) {
329   WithColor::warning(errs(), ToolName) << Message << "\n";
330 }
331 
332 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
333   WithColor::error(errs(), ToolName) << Message << "\n";
334   exit(1);
335 }
336 
337 static void warnOnNoMatchForSections() {
338   SetVector<StringRef> MissingSections;
339   for (StringRef S : FilterSections) {
340     if (FoundSectionSet.count(S))
341       return;
342     // User may specify a unnamed section. Don't warn for it.
343     if (!S.empty())
344       MissingSections.insert(S);
345   }
346 
347   // Warn only if no section in FilterSections is matched.
348   for (StringRef S : MissingSections)
349     reportCmdLineWarning("section '" + S +
350                          "' mentioned in a -j/--section option, but not "
351                          "found in any input file");
352 }
353 
354 static const Target *getTarget(const ObjectFile *Obj) {
355   // Figure out the target triple.
356   Triple TheTriple("unknown-unknown-unknown");
357   if (TripleName.empty()) {
358     TheTriple = Obj->makeTriple();
359   } else {
360     TheTriple.setTriple(Triple::normalize(TripleName));
361     auto Arch = Obj->getArch();
362     if (Arch == Triple::arm || Arch == Triple::armeb)
363       Obj->setARMSubArch(TheTriple);
364   }
365 
366   // Get the target specific parser.
367   std::string Error;
368   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
369                                                          Error);
370   if (!TheTarget)
371     reportError(Obj->getFileName(), "can't find target: " + Error);
372 
373   // Update the triple name and return the found target.
374   TripleName = TheTriple.getTriple();
375   return TheTarget;
376 }
377 
378 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
379   return A.getOffset() < B.getOffset();
380 }
381 
382 static Error getRelocationValueString(const RelocationRef &Rel,
383                                       SmallVectorImpl<char> &Result) {
384   const ObjectFile *Obj = Rel.getObject();
385   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
386     return getELFRelocationValueString(ELF, Rel, Result);
387   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
388     return getCOFFRelocationValueString(COFF, Rel, Result);
389   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
390     return getWasmRelocationValueString(Wasm, Rel, Result);
391   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
392     return getMachORelocationValueString(MachO, Rel, Result);
393   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
394     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
395   llvm_unreachable("unknown object file format");
396 }
397 
398 /// Indicates whether this relocation should hidden when listing
399 /// relocations, usually because it is the trailing part of a multipart
400 /// relocation that will be printed as part of the leading relocation.
401 static bool getHidden(RelocationRef RelRef) {
402   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
403   if (!MachO)
404     return false;
405 
406   unsigned Arch = MachO->getArch();
407   DataRefImpl Rel = RelRef.getRawDataRefImpl();
408   uint64_t Type = MachO->getRelocationType(Rel);
409 
410   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
411   // is always hidden.
412   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
413     return Type == MachO::GENERIC_RELOC_PAIR;
414 
415   if (Arch == Triple::x86_64) {
416     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
417     // an X86_64_RELOC_SUBTRACTOR.
418     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
419       DataRefImpl RelPrev = Rel;
420       RelPrev.d.a--;
421       uint64_t PrevType = MachO->getRelocationType(RelPrev);
422       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
423         return true;
424     }
425   }
426 
427   return false;
428 }
429 
430 namespace {
431 
432 /// Get the column at which we want to start printing the instruction
433 /// disassembly, taking into account anything which appears to the left of it.
434 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
435   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
436 }
437 
438 static bool isAArch64Elf(const ObjectFile &Obj) {
439   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
440   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
441 }
442 
443 static bool isArmElf(const ObjectFile &Obj) {
444   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
445   return Elf && Elf->getEMachine() == ELF::EM_ARM;
446 }
447 
448 static bool isCSKYElf(const ObjectFile &Obj) {
449   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
450   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
451 }
452 
453 static bool hasMappingSymbols(const ObjectFile &Obj) {
454   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
455 }
456 
457 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
458                             const RelocationRef &Rel, uint64_t Address,
459                             bool Is64Bits) {
460   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
461   SmallString<16> Name;
462   SmallString<32> Val;
463   Rel.getTypeName(Name);
464   if (Error E = getRelocationValueString(Rel, Val))
465     reportError(std::move(E), FileName);
466   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
467 }
468 
469 class PrettyPrinter {
470 public:
471   virtual ~PrettyPrinter() = default;
472   virtual void
473   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
474             object::SectionedAddress Address, formatted_raw_ostream &OS,
475             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
476             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
477             LiveVariablePrinter &LVP) {
478     if (SP && (PrintSource || PrintLines))
479       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
480     LVP.printBetweenInsts(OS, false);
481 
482     size_t Start = OS.tell();
483     if (LeadingAddr)
484       OS << format("%8" PRIx64 ":", Address.Address);
485     if (ShowRawInsn) {
486       OS << ' ';
487       dumpBytes(Bytes, OS);
488     }
489 
490     // The output of printInst starts with a tab. Print some spaces so that
491     // the tab has 1 column and advances to the target tab stop.
492     unsigned TabStop = getInstStartColumn(STI);
493     unsigned Column = OS.tell() - Start;
494     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
495 
496     if (MI) {
497       // See MCInstPrinter::printInst. On targets where a PC relative immediate
498       // is relative to the next instruction and the length of a MCInst is
499       // difficult to measure (x86), this is the address of the next
500       // instruction.
501       uint64_t Addr =
502           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
503       IP.printInst(MI, Addr, "", STI, OS);
504     } else
505       OS << "\t<unknown>";
506   }
507 };
508 PrettyPrinter PrettyPrinterInst;
509 
510 class HexagonPrettyPrinter : public PrettyPrinter {
511 public:
512   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
513                  formatted_raw_ostream &OS) {
514     uint32_t opcode =
515       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
516     if (LeadingAddr)
517       OS << format("%8" PRIx64 ":", Address);
518     if (ShowRawInsn) {
519       OS << "\t";
520       dumpBytes(Bytes.slice(0, 4), OS);
521       OS << format("\t%08" PRIx32, opcode);
522     }
523   }
524   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
525                  object::SectionedAddress Address, formatted_raw_ostream &OS,
526                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
527                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
528                  LiveVariablePrinter &LVP) override {
529     if (SP && (PrintSource || PrintLines))
530       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
531     if (!MI) {
532       printLead(Bytes, Address.Address, OS);
533       OS << " <unknown>";
534       return;
535     }
536     std::string Buffer;
537     {
538       raw_string_ostream TempStream(Buffer);
539       IP.printInst(MI, Address.Address, "", STI, TempStream);
540     }
541     StringRef Contents(Buffer);
542     // Split off bundle attributes
543     auto PacketBundle = Contents.rsplit('\n');
544     // Split off first instruction from the rest
545     auto HeadTail = PacketBundle.first.split('\n');
546     auto Preamble = " { ";
547     auto Separator = "";
548 
549     // Hexagon's packets require relocations to be inline rather than
550     // clustered at the end of the packet.
551     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
552     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
553     auto PrintReloc = [&]() -> void {
554       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
555         if (RelCur->getOffset() == Address.Address) {
556           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
557           return;
558         }
559         ++RelCur;
560       }
561     };
562 
563     while (!HeadTail.first.empty()) {
564       OS << Separator;
565       Separator = "\n";
566       if (SP && (PrintSource || PrintLines))
567         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
568       printLead(Bytes, Address.Address, OS);
569       OS << Preamble;
570       Preamble = "   ";
571       StringRef Inst;
572       auto Duplex = HeadTail.first.split('\v');
573       if (!Duplex.second.empty()) {
574         OS << Duplex.first;
575         OS << "; ";
576         Inst = Duplex.second;
577       }
578       else
579         Inst = HeadTail.first;
580       OS << Inst;
581       HeadTail = HeadTail.second.split('\n');
582       if (HeadTail.first.empty())
583         OS << " } " << PacketBundle.second;
584       PrintReloc();
585       Bytes = Bytes.slice(4);
586       Address.Address += 4;
587     }
588   }
589 };
590 HexagonPrettyPrinter HexagonPrettyPrinterInst;
591 
592 class AMDGCNPrettyPrinter : public PrettyPrinter {
593 public:
594   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
595                  object::SectionedAddress Address, formatted_raw_ostream &OS,
596                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
597                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
598                  LiveVariablePrinter &LVP) override {
599     if (SP && (PrintSource || PrintLines))
600       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
601 
602     if (MI) {
603       SmallString<40> InstStr;
604       raw_svector_ostream IS(InstStr);
605 
606       IP.printInst(MI, Address.Address, "", STI, IS);
607 
608       OS << left_justify(IS.str(), 60);
609     } else {
610       // an unrecognized encoding - this is probably data so represent it
611       // using the .long directive, or .byte directive if fewer than 4 bytes
612       // remaining
613       if (Bytes.size() >= 4) {
614         OS << format("\t.long 0x%08" PRIx32 " ",
615                      support::endian::read32<support::little>(Bytes.data()));
616         OS.indent(42);
617       } else {
618           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
619           for (unsigned int i = 1; i < Bytes.size(); i++)
620             OS << format(", 0x%02" PRIx8, Bytes[i]);
621           OS.indent(55 - (6 * Bytes.size()));
622       }
623     }
624 
625     OS << format("// %012" PRIX64 ":", Address.Address);
626     if (Bytes.size() >= 4) {
627       // D should be casted to uint32_t here as it is passed by format to
628       // snprintf as vararg.
629       for (uint32_t D : makeArrayRef(
630                reinterpret_cast<const support::little32_t *>(Bytes.data()),
631                Bytes.size() / 4))
632         OS << format(" %08" PRIX32, D);
633     } else {
634       for (unsigned char B : Bytes)
635         OS << format(" %02" PRIX8, B);
636     }
637 
638     if (!Annot.empty())
639       OS << " // " << Annot;
640   }
641 };
642 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
643 
644 class BPFPrettyPrinter : public PrettyPrinter {
645 public:
646   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
647                  object::SectionedAddress Address, formatted_raw_ostream &OS,
648                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
649                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
650                  LiveVariablePrinter &LVP) override {
651     if (SP && (PrintSource || PrintLines))
652       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
653     if (LeadingAddr)
654       OS << format("%8" PRId64 ":", Address.Address / 8);
655     if (ShowRawInsn) {
656       OS << "\t";
657       dumpBytes(Bytes, OS);
658     }
659     if (MI)
660       IP.printInst(MI, Address.Address, "", STI, OS);
661     else
662       OS << "\t<unknown>";
663   }
664 };
665 BPFPrettyPrinter BPFPrettyPrinterInst;
666 
667 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
668   switch(Triple.getArch()) {
669   default:
670     return PrettyPrinterInst;
671   case Triple::hexagon:
672     return HexagonPrettyPrinterInst;
673   case Triple::amdgcn:
674     return AMDGCNPrettyPrinterInst;
675   case Triple::bpfel:
676   case Triple::bpfeb:
677     return BPFPrettyPrinterInst;
678   }
679 }
680 }
681 
682 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
683   assert(Obj.isELF());
684   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
685     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
686                          Obj.getFileName())
687         ->getType();
688   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
689     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
690                          Obj.getFileName())
691         ->getType();
692   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
693     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
694                          Obj.getFileName())
695         ->getType();
696   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
697     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
698                          Obj.getFileName())
699         ->getType();
700   llvm_unreachable("Unsupported binary format");
701 }
702 
703 template <class ELFT>
704 static void
705 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
706                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
707   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
708     uint8_t SymbolType = Symbol.getELFType();
709     if (SymbolType == ELF::STT_SECTION)
710       continue;
711 
712     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
713     // ELFSymbolRef::getAddress() returns size instead of value for common
714     // symbols which is not desirable for disassembly output. Overriding.
715     if (SymbolType == ELF::STT_COMMON)
716       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
717                               Obj.getFileName())
718                     ->st_value;
719 
720     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
721     if (Name.empty())
722       continue;
723 
724     section_iterator SecI =
725         unwrapOrError(Symbol.getSection(), Obj.getFileName());
726     if (SecI == Obj.section_end())
727       continue;
728 
729     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
730   }
731 }
732 
733 static void
734 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
735                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
736   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
737     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
738   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
739     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
740   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
741     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
742   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
743     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
744   else
745     llvm_unreachable("Unsupported binary format");
746 }
747 
748 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
749   for (auto SecI : Obj.sections()) {
750     const WasmSection &Section = Obj.getWasmSection(SecI);
751     if (Section.Type == wasm::WASM_SEC_CODE)
752       return SecI;
753   }
754   return None;
755 }
756 
757 static void
758 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
759                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
760   Optional<SectionRef> Section = getWasmCodeSection(Obj);
761   if (!Section)
762     return;
763   SectionSymbolsTy &Symbols = AllSymbols[*Section];
764 
765   std::set<uint64_t> SymbolAddresses;
766   for (const auto &Sym : Symbols)
767     SymbolAddresses.insert(Sym.Addr);
768 
769   for (const wasm::WasmFunction &Function : Obj.functions()) {
770     uint64_t Address = Function.CodeSectionOffset;
771     // Only add fallback symbols for functions not already present in the symbol
772     // table.
773     if (SymbolAddresses.count(Address))
774       continue;
775     // This function has no symbol, so it should have no SymbolName.
776     assert(Function.SymbolName.empty());
777     // We use DebugName for the name, though it may be empty if there is no
778     // "name" custom section, or that section is missing a name for this
779     // function.
780     StringRef Name = Function.DebugName;
781     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
782   }
783 }
784 
785 static void addPltEntries(const ObjectFile &Obj,
786                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
787                           StringSaver &Saver) {
788   Optional<SectionRef> Plt = None;
789   for (const SectionRef &Section : Obj.sections()) {
790     Expected<StringRef> SecNameOrErr = Section.getName();
791     if (!SecNameOrErr) {
792       consumeError(SecNameOrErr.takeError());
793       continue;
794     }
795     if (*SecNameOrErr == ".plt")
796       Plt = Section;
797   }
798   if (!Plt)
799     return;
800   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) {
801     for (auto PltEntry : ElfObj->getPltAddresses()) {
802       if (PltEntry.first) {
803         SymbolRef Symbol(*PltEntry.first, ElfObj);
804         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
805         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
806           if (!NameOrErr->empty())
807             AllSymbols[*Plt].emplace_back(
808                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
809                 SymbolType);
810           continue;
811         } else {
812           // The warning has been reported in disassembleObject().
813           consumeError(NameOrErr.takeError());
814         }
815       }
816       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
817                         " references an invalid symbol",
818                     Obj.getFileName());
819     }
820   }
821 }
822 
823 // Normally the disassembly output will skip blocks of zeroes. This function
824 // returns the number of zero bytes that can be skipped when dumping the
825 // disassembly of the instructions in Buf.
826 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
827   // Find the number of leading zeroes.
828   size_t N = 0;
829   while (N < Buf.size() && !Buf[N])
830     ++N;
831 
832   // We may want to skip blocks of zero bytes, but unless we see
833   // at least 8 of them in a row.
834   if (N < 8)
835     return 0;
836 
837   // We skip zeroes in multiples of 4 because do not want to truncate an
838   // instruction if it starts with a zero byte.
839   return N & ~0x3;
840 }
841 
842 // Returns a map from sections to their relocations.
843 static std::map<SectionRef, std::vector<RelocationRef>>
844 getRelocsMap(object::ObjectFile const &Obj) {
845   std::map<SectionRef, std::vector<RelocationRef>> Ret;
846   uint64_t I = (uint64_t)-1;
847   for (SectionRef Sec : Obj.sections()) {
848     ++I;
849     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
850     if (!RelocatedOrErr)
851       reportError(Obj.getFileName(),
852                   "section (" + Twine(I) +
853                       "): failed to get a relocated section: " +
854                       toString(RelocatedOrErr.takeError()));
855 
856     section_iterator Relocated = *RelocatedOrErr;
857     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
858       continue;
859     std::vector<RelocationRef> &V = Ret[*Relocated];
860     append_range(V, Sec.relocations());
861     // Sort relocations by address.
862     llvm::stable_sort(V, isRelocAddressLess);
863   }
864   return Ret;
865 }
866 
867 // Used for --adjust-vma to check if address should be adjusted by the
868 // specified value for a given section.
869 // For ELF we do not adjust non-allocatable sections like debug ones,
870 // because they are not loadable.
871 // TODO: implement for other file formats.
872 static bool shouldAdjustVA(const SectionRef &Section) {
873   const ObjectFile *Obj = Section.getObject();
874   if (Obj->isELF())
875     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
876   return false;
877 }
878 
879 
880 typedef std::pair<uint64_t, char> MappingSymbolPair;
881 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
882                                  uint64_t Address) {
883   auto It =
884       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
885         return Val.first <= Address;
886       });
887   // Return zero for any address before the first mapping symbol; this means
888   // we should use the default disassembly mode, depending on the target.
889   if (It == MappingSymbols.begin())
890     return '\x00';
891   return (It - 1)->second;
892 }
893 
894 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
895                                uint64_t End, const ObjectFile &Obj,
896                                ArrayRef<uint8_t> Bytes,
897                                ArrayRef<MappingSymbolPair> MappingSymbols,
898                                raw_ostream &OS) {
899   support::endianness Endian =
900       Obj.isLittleEndian() ? support::little : support::big;
901   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
902   if (Index + 4 <= End) {
903     dumpBytes(Bytes.slice(Index, 4), OS);
904     OS << "\t.word\t"
905            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
906                          10);
907     return 4;
908   }
909   if (Index + 2 <= End) {
910     dumpBytes(Bytes.slice(Index, 2), OS);
911     OS << "\t\t.short\t"
912            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
913                          6);
914     return 2;
915   }
916   dumpBytes(Bytes.slice(Index, 1), OS);
917   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
918   return 1;
919 }
920 
921 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
922                         ArrayRef<uint8_t> Bytes) {
923   // print out data up to 8 bytes at a time in hex and ascii
924   uint8_t AsciiData[9] = {'\0'};
925   uint8_t Byte;
926   int NumBytes = 0;
927 
928   for (; Index < End; ++Index) {
929     if (NumBytes == 0)
930       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
931     Byte = Bytes.slice(Index)[0];
932     outs() << format(" %02x", Byte);
933     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
934 
935     uint8_t IndentOffset = 0;
936     NumBytes++;
937     if (Index == End - 1 || NumBytes > 8) {
938       // Indent the space for less than 8 bytes data.
939       // 2 spaces for byte and one for space between bytes
940       IndentOffset = 3 * (8 - NumBytes);
941       for (int Excess = NumBytes; Excess < 8; Excess++)
942         AsciiData[Excess] = '\0';
943       NumBytes = 8;
944     }
945     if (NumBytes == 8) {
946       AsciiData[8] = '\0';
947       outs() << std::string(IndentOffset, ' ') << "         ";
948       outs() << reinterpret_cast<char *>(AsciiData);
949       outs() << '\n';
950       NumBytes = 0;
951     }
952   }
953 }
954 
955 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
956                                        const SymbolRef &Symbol) {
957   const StringRef FileName = Obj.getFileName();
958   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
959   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
960 
961   if (Obj.isXCOFF() && SymbolDescription) {
962     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
963     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
964 
965     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
966     Optional<XCOFF::StorageMappingClass> Smc =
967         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
968     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
969                         isLabel(XCOFFObj, Symbol));
970   } else if (Obj.isXCOFF()) {
971     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
972     return SymbolInfoTy(Addr, Name, SymType, true);
973   } else
974     return SymbolInfoTy(Addr, Name,
975                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
976                                     : (uint8_t)ELF::STT_NOTYPE);
977 }
978 
979 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
980                                           const uint64_t Addr, StringRef &Name,
981                                           uint8_t Type) {
982   if (Obj.isXCOFF() && SymbolDescription)
983     return SymbolInfoTy(Addr, Name, None, None, false);
984   else
985     return SymbolInfoTy(Addr, Name, Type);
986 }
987 
988 static void
989 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
990                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
991                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
992   if (AddrToBBAddrMap.empty())
993     return;
994   Labels.clear();
995   uint64_t StartAddress = SectionAddr + Start;
996   uint64_t EndAddress = SectionAddr + End;
997   auto Iter = AddrToBBAddrMap.find(StartAddress);
998   if (Iter == AddrToBBAddrMap.end())
999     return;
1000   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1001     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1002     if (BBAddress >= EndAddress)
1003       continue;
1004     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1005   }
1006 }
1007 
1008 static void collectLocalBranchTargets(
1009     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1010     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1011     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1012   // So far only supports PowerPC and X86.
1013   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1014     return;
1015 
1016   Labels.clear();
1017   unsigned LabelCount = 0;
1018   Start += SectionAddr;
1019   End += SectionAddr;
1020   uint64_t Index = Start;
1021   while (Index < End) {
1022     // Disassemble a real instruction and record function-local branch labels.
1023     MCInst Inst;
1024     uint64_t Size;
1025     bool Disassembled = DisAsm->getInstruction(
1026         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
1027     if (Size == 0)
1028       Size = 1;
1029 
1030     if (Disassembled && MIA) {
1031       uint64_t Target;
1032       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1033       // On PowerPC, if the address of a branch is the same as the target, it
1034       // means that it's a function call. Do not mark the label for this case.
1035       if (TargetKnown && (Target >= Start && Target < End) &&
1036           !Labels.count(Target) &&
1037           !(STI->getTargetTriple().isPPC() && Target == Index))
1038         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1039     }
1040     Index += Size;
1041   }
1042 }
1043 
1044 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1045 // This is currently only used on AMDGPU, and assumes the format of the
1046 // void * argument passed to AMDGPU's createMCSymbolizer.
1047 static void addSymbolizer(
1048     MCContext &Ctx, const Target *Target, StringRef TripleName,
1049     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1050     SectionSymbolsTy &Symbols,
1051     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1052 
1053   std::unique_ptr<MCRelocationInfo> RelInfo(
1054       Target->createMCRelocationInfo(TripleName, Ctx));
1055   if (!RelInfo)
1056     return;
1057   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1058       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1059   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1060   DisAsm->setSymbolizer(std::move(Symbolizer));
1061 
1062   if (!SymbolizeOperands)
1063     return;
1064 
1065   // Synthesize labels referenced by branch instructions by
1066   // disassembling, discarding the output, and collecting the referenced
1067   // addresses from the symbolizer.
1068   for (size_t Index = 0; Index != Bytes.size();) {
1069     MCInst Inst;
1070     uint64_t Size;
1071     DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index,
1072                            nulls());
1073     if (Size == 0)
1074       Size = 1;
1075     Index += Size;
1076   }
1077   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1078   // Copy and sort to remove duplicates.
1079   std::vector<uint64_t> LabelAddrs;
1080   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1081                     LabelAddrsRef.end());
1082   llvm::sort(LabelAddrs);
1083   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1084                     LabelAddrs.begin());
1085   // Add the labels.
1086   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1087     auto Name = std::make_unique<std::string>();
1088     *Name = (Twine("L") + Twine(LabelNum)).str();
1089     SynthesizedLabelNames.push_back(std::move(Name));
1090     Symbols.push_back(SymbolInfoTy(
1091         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1092   }
1093   llvm::stable_sort(Symbols);
1094   // Recreate the symbolizer with the new symbols list.
1095   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1096   Symbolizer.reset(Target->createMCSymbolizer(
1097       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1098   DisAsm->setSymbolizer(std::move(Symbolizer));
1099 }
1100 
1101 static StringRef getSegmentName(const MachOObjectFile *MachO,
1102                                 const SectionRef &Section) {
1103   if (MachO) {
1104     DataRefImpl DR = Section.getRawDataRefImpl();
1105     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1106     return SegmentName;
1107   }
1108   return "";
1109 }
1110 
1111 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1112                                     const MCAsmInfo &MAI,
1113                                     const MCSubtargetInfo &STI,
1114                                     StringRef Comments,
1115                                     LiveVariablePrinter &LVP) {
1116   do {
1117     if (!Comments.empty()) {
1118       // Emit a line of comments.
1119       StringRef Comment;
1120       std::tie(Comment, Comments) = Comments.split('\n');
1121       // MAI.getCommentColumn() assumes that instructions are printed at the
1122       // position of 8, while getInstStartColumn() returns the actual position.
1123       unsigned CommentColumn =
1124           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1125       FOS.PadToColumn(CommentColumn);
1126       FOS << MAI.getCommentString() << ' ' << Comment;
1127     }
1128     LVP.printAfterInst(FOS);
1129     FOS << '\n';
1130   } while (!Comments.empty());
1131   FOS.flush();
1132 }
1133 
1134 static void createFakeELFSections(ObjectFile &Obj) {
1135   assert(Obj.isELF());
1136   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1137     Elf32LEObj->createFakeSections();
1138   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1139     Elf64LEObj->createFakeSections();
1140   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1141     Elf32BEObj->createFakeSections();
1142   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1143     Elf64BEObj->createFakeSections();
1144   else
1145     llvm_unreachable("Unsupported binary format");
1146 }
1147 
1148 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1149                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1150                               MCDisassembler *SecondaryDisAsm,
1151                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1152                               const MCSubtargetInfo *PrimarySTI,
1153                               const MCSubtargetInfo *SecondarySTI,
1154                               PrettyPrinter &PIP, SourcePrinter &SP,
1155                               bool InlineRelocs) {
1156   const MCSubtargetInfo *STI = PrimarySTI;
1157   MCDisassembler *DisAsm = PrimaryDisAsm;
1158   bool PrimaryIsThumb = false;
1159   if (isArmElf(Obj))
1160     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1161 
1162   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1163   if (InlineRelocs)
1164     RelocMap = getRelocsMap(Obj);
1165   bool Is64Bits = Obj.getBytesInAddress() > 4;
1166 
1167   // Create a mapping from virtual address to symbol name.  This is used to
1168   // pretty print the symbols while disassembling.
1169   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1170   SectionSymbolsTy AbsoluteSymbols;
1171   const StringRef FileName = Obj.getFileName();
1172   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1173   for (const SymbolRef &Symbol : Obj.symbols()) {
1174     Expected<StringRef> NameOrErr = Symbol.getName();
1175     if (!NameOrErr) {
1176       reportWarning(toString(NameOrErr.takeError()), FileName);
1177       continue;
1178     }
1179     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1180       continue;
1181 
1182     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1183       continue;
1184 
1185     if (MachO) {
1186       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1187       // symbols that support MachO header introspection. They do not bind to
1188       // code locations and are irrelevant for disassembly.
1189       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1190         continue;
1191       // Don't ask a Mach-O STAB symbol for its section unless you know that
1192       // STAB symbol's section field refers to a valid section index. Otherwise
1193       // the symbol may error trying to load a section that does not exist.
1194       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1195       uint8_t NType = (MachO->is64Bit() ?
1196                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1197                        MachO->getSymbolTableEntry(SymDRI).n_type);
1198       if (NType & MachO::N_STAB)
1199         continue;
1200     }
1201 
1202     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1203     if (SecI != Obj.section_end())
1204       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1205     else
1206       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1207   }
1208 
1209   if (AllSymbols.empty() && Obj.isELF())
1210     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1211 
1212   if (Obj.isWasm())
1213     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1214 
1215   if (Obj.isELF() && Obj.sections().empty())
1216     createFakeELFSections(Obj);
1217 
1218   BumpPtrAllocator A;
1219   StringSaver Saver(A);
1220   addPltEntries(Obj, AllSymbols, Saver);
1221 
1222   // Create a mapping from virtual address to section. An empty section can
1223   // cause more than one section at the same address. Sort such sections to be
1224   // before same-addressed non-empty sections so that symbol lookups prefer the
1225   // non-empty section.
1226   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1227   for (SectionRef Sec : Obj.sections())
1228     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1229   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1230     if (LHS.first != RHS.first)
1231       return LHS.first < RHS.first;
1232     return LHS.second.getSize() < RHS.second.getSize();
1233   });
1234 
1235   // Linked executables (.exe and .dll files) typically don't include a real
1236   // symbol table but they might contain an export table.
1237   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1238     for (const auto &ExportEntry : COFFObj->export_directories()) {
1239       StringRef Name;
1240       if (Error E = ExportEntry.getSymbolName(Name))
1241         reportError(std::move(E), Obj.getFileName());
1242       if (Name.empty())
1243         continue;
1244 
1245       uint32_t RVA;
1246       if (Error E = ExportEntry.getExportRVA(RVA))
1247         reportError(std::move(E), Obj.getFileName());
1248 
1249       uint64_t VA = COFFObj->getImageBase() + RVA;
1250       auto Sec = partition_point(
1251           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1252             return O.first <= VA;
1253           });
1254       if (Sec != SectionAddresses.begin()) {
1255         --Sec;
1256         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1257       } else
1258         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1259     }
1260   }
1261 
1262   // Sort all the symbols, this allows us to use a simple binary search to find
1263   // Multiple symbols can have the same address. Use a stable sort to stabilize
1264   // the output.
1265   StringSet<> FoundDisasmSymbolSet;
1266   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1267     llvm::stable_sort(SecSyms.second);
1268   llvm::stable_sort(AbsoluteSymbols);
1269 
1270   std::unique_ptr<DWARFContext> DICtx;
1271   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1272 
1273   if (DbgVariables != DVDisabled) {
1274     DICtx = DWARFContext::create(Obj);
1275     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1276       LVP.addCompileUnit(CU->getUnitDIE(false));
1277   }
1278 
1279   LLVM_DEBUG(LVP.dump());
1280 
1281   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1282     if (FilterSections.empty() && !DisassembleAll &&
1283         (!Section.isText() || Section.isVirtual()))
1284       continue;
1285 
1286     uint64_t SectionAddr = Section.getAddress();
1287     uint64_t SectSize = Section.getSize();
1288     if (!SectSize)
1289       continue;
1290 
1291     std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1292     if (SymbolizeOperands) {
1293       if (auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1294         // Read the BB-address-map corresponding to this section, if present.
1295         auto SectionBBAddrMapsOrErr = Elf->readBBAddrMap(Section.getIndex());
1296         if (!SectionBBAddrMapsOrErr)
1297           reportWarning(toString(SectionBBAddrMapsOrErr.takeError()),
1298                         Obj.getFileName());
1299         for (auto &FunctionBBAddrMap : *SectionBBAddrMapsOrErr)
1300           AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1301                                   std::move(FunctionBBAddrMap));
1302       }
1303     }
1304 
1305     // Get the list of all the symbols in this section.
1306     SectionSymbolsTy &Symbols = AllSymbols[Section];
1307     std::vector<MappingSymbolPair> MappingSymbols;
1308     if (hasMappingSymbols(Obj)) {
1309       for (const auto &Symb : Symbols) {
1310         uint64_t Address = Symb.Addr;
1311         StringRef Name = Symb.Name;
1312         if (Name.startswith("$d"))
1313           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1314         if (Name.startswith("$x"))
1315           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1316         if (Name.startswith("$a"))
1317           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1318         if (Name.startswith("$t"))
1319           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1320       }
1321     }
1322 
1323     llvm::sort(MappingSymbols);
1324 
1325     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1326         unwrapOrError(Section.getContents(), Obj.getFileName()));
1327 
1328     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1329     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1330       // AMDGPU disassembler uses symbolizer for printing labels
1331       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1332                     Symbols, SynthesizedLabelNames);
1333     }
1334 
1335     StringRef SegmentName = getSegmentName(MachO, Section);
1336     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1337     // If the section has no symbol at the start, just insert a dummy one.
1338     if (Symbols.empty() || Symbols[0].Addr != 0) {
1339       Symbols.insert(Symbols.begin(),
1340                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1341                                            Section.isText() ? ELF::STT_FUNC
1342                                                             : ELF::STT_OBJECT));
1343     }
1344 
1345     SmallString<40> Comments;
1346     raw_svector_ostream CommentStream(Comments);
1347 
1348     uint64_t VMAAdjustment = 0;
1349     if (shouldAdjustVA(Section))
1350       VMAAdjustment = AdjustVMA;
1351 
1352     // In executable and shared objects, r_offset holds a virtual address.
1353     // Subtract SectionAddr from the r_offset field of a relocation to get
1354     // the section offset.
1355     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1356     uint64_t Size;
1357     uint64_t Index;
1358     bool PrintedSection = false;
1359     std::vector<RelocationRef> Rels = RelocMap[Section];
1360     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1361     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1362     // Disassemble symbol by symbol.
1363     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1364       std::string SymbolName = Symbols[SI].Name.str();
1365       if (Demangle)
1366         SymbolName = demangle(SymbolName);
1367 
1368       // Skip if --disassemble-symbols is not empty and the symbol is not in
1369       // the list.
1370       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1371         continue;
1372 
1373       uint64_t Start = Symbols[SI].Addr;
1374       if (Start < SectionAddr || StopAddress <= Start)
1375         continue;
1376       else
1377         FoundDisasmSymbolSet.insert(SymbolName);
1378 
1379       // The end is the section end, the beginning of the next symbol, or
1380       // --stop-address.
1381       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1382       if (SI + 1 < SE)
1383         End = std::min(End, Symbols[SI + 1].Addr);
1384       if (Start >= End || End <= StartAddress)
1385         continue;
1386       Start -= SectionAddr;
1387       End -= SectionAddr;
1388 
1389       if (!PrintedSection) {
1390         PrintedSection = true;
1391         outs() << "\nDisassembly of section ";
1392         if (!SegmentName.empty())
1393           outs() << SegmentName << ",";
1394         outs() << SectionName << ":\n";
1395       }
1396 
1397       outs() << '\n';
1398       if (LeadingAddr)
1399         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1400                          SectionAddr + Start + VMAAdjustment);
1401       if (Obj.isXCOFF() && SymbolDescription) {
1402         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1403       } else
1404         outs() << '<' << SymbolName << ">:\n";
1405 
1406       // Don't print raw contents of a virtual section. A virtual section
1407       // doesn't have any contents in the file.
1408       if (Section.isVirtual()) {
1409         outs() << "...\n";
1410         continue;
1411       }
1412 
1413       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1414                                           Bytes.slice(Start, End - Start),
1415                                           SectionAddr + Start, CommentStream);
1416       // To have round trippable disassembly, we fall back to decoding the
1417       // remaining bytes as instructions.
1418       //
1419       // If there is a failure, we disassemble the failed region as bytes before
1420       // falling back. The target is expected to print nothing in this case.
1421       //
1422       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1423       // Size bytes before falling back.
1424       // So if the entire symbol is 'eaten' by the target:
1425       //   Start += Size  // Now Start = End and we will never decode as
1426       //                  // instructions
1427       //
1428       // Right now, most targets return None i.e ignore to treat a symbol
1429       // separately. But WebAssembly decodes preludes for some symbols.
1430       //
1431       if (Status) {
1432         if (Status.value() == MCDisassembler::Fail) {
1433           outs() << "// Error in decoding " << SymbolName
1434                  << " : Decoding failed region as bytes.\n";
1435           for (uint64_t I = 0; I < Size; ++I) {
1436             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1437                    << "\n";
1438           }
1439         }
1440       } else {
1441         Size = 0;
1442       }
1443 
1444       Start += Size;
1445 
1446       Index = Start;
1447       if (SectionAddr < StartAddress)
1448         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1449 
1450       // If there is a data/common symbol inside an ELF text section and we are
1451       // only disassembling text (applicable all architectures), we are in a
1452       // situation where we must print the data and not disassemble it.
1453       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1454         uint8_t SymTy = Symbols[SI].Type;
1455         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1456           dumpELFData(SectionAddr, Index, End, Bytes);
1457           Index = End;
1458         }
1459       }
1460 
1461       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1462                              Symbols[SI].Type != ELF::STT_OBJECT &&
1463                              !DisassembleAll;
1464       bool DumpARMELFData = false;
1465       formatted_raw_ostream FOS(outs());
1466 
1467       std::unordered_map<uint64_t, std::string> AllLabels;
1468       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1469       if (SymbolizeOperands) {
1470         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1471                                   SectionAddr, Index, End, AllLabels);
1472         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1473                                BBAddrMapLabels);
1474       }
1475 
1476       while (Index < End) {
1477         // ARM and AArch64 ELF binaries can interleave data and text in the
1478         // same section. We rely on the markers introduced to understand what
1479         // we need to dump. If the data marker is within a function, it is
1480         // denoted as a word/short etc.
1481         if (CheckARMELFData) {
1482           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1483           DumpARMELFData = Kind == 'd';
1484           if (SecondarySTI) {
1485             if (Kind == 'a') {
1486               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1487               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1488             } else if (Kind == 't') {
1489               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1490               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1491             }
1492           }
1493         }
1494 
1495         if (DumpARMELFData) {
1496           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1497                                 MappingSymbols, FOS);
1498         } else {
1499           // When -z or --disassemble-zeroes are given we always dissasemble
1500           // them. Otherwise we might want to skip zero bytes we see.
1501           if (!DisassembleZeroes) {
1502             uint64_t MaxOffset = End - Index;
1503             // For --reloc: print zero blocks patched by relocations, so that
1504             // relocations can be shown in the dump.
1505             if (RelCur != RelEnd)
1506               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1507                                    MaxOffset);
1508 
1509             if (size_t N =
1510                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1511               FOS << "\t\t..." << '\n';
1512               Index += N;
1513               continue;
1514             }
1515           }
1516 
1517           // Print local label if there's any.
1518           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1519           if (Iter1 != BBAddrMapLabels.end()) {
1520             for (StringRef Label : Iter1->second)
1521               FOS << "<" << Label << ">:\n";
1522           } else {
1523             auto Iter2 = AllLabels.find(SectionAddr + Index);
1524             if (Iter2 != AllLabels.end())
1525               FOS << "<" << Iter2->second << ">:\n";
1526           }
1527 
1528           // Disassemble a real instruction or a data when disassemble all is
1529           // provided
1530           MCInst Inst;
1531           bool Disassembled =
1532               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1533                                      SectionAddr + Index, CommentStream);
1534           if (Size == 0)
1535             Size = 1;
1536 
1537           LVP.update({Index, Section.getIndex()},
1538                      {Index + Size, Section.getIndex()}, Index + Size != End);
1539 
1540           IP->setCommentStream(CommentStream);
1541 
1542           PIP.printInst(
1543               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1544               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1545               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1546 
1547           IP->setCommentStream(llvm::nulls());
1548 
1549           // If disassembly has failed, avoid analysing invalid/incomplete
1550           // instruction information. Otherwise, try to resolve the target
1551           // address (jump target or memory operand address) and print it on the
1552           // right of the instruction.
1553           if (Disassembled && MIA) {
1554             // Branch targets are printed just after the instructions.
1555             llvm::raw_ostream *TargetOS = &FOS;
1556             uint64_t Target;
1557             bool PrintTarget =
1558                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1559             if (!PrintTarget)
1560               if (Optional<uint64_t> MaybeTarget =
1561                       MIA->evaluateMemoryOperandAddress(
1562                           Inst, STI, SectionAddr + Index, Size)) {
1563                 Target = *MaybeTarget;
1564                 PrintTarget = true;
1565                 // Do not print real address when symbolizing.
1566                 if (!SymbolizeOperands) {
1567                   // Memory operand addresses are printed as comments.
1568                   TargetOS = &CommentStream;
1569                   *TargetOS << "0x" << Twine::utohexstr(Target);
1570                 }
1571               }
1572             if (PrintTarget) {
1573               // In a relocatable object, the target's section must reside in
1574               // the same section as the call instruction or it is accessed
1575               // through a relocation.
1576               //
1577               // In a non-relocatable object, the target may be in any section.
1578               // In that case, locate the section(s) containing the target
1579               // address and find the symbol in one of those, if possible.
1580               //
1581               // N.B. We don't walk the relocations in the relocatable case yet.
1582               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1583               if (!Obj.isRelocatableObject()) {
1584                 auto It = llvm::partition_point(
1585                     SectionAddresses,
1586                     [=](const std::pair<uint64_t, SectionRef> &O) {
1587                       return O.first <= Target;
1588                     });
1589                 uint64_t TargetSecAddr = 0;
1590                 while (It != SectionAddresses.begin()) {
1591                   --It;
1592                   if (TargetSecAddr == 0)
1593                     TargetSecAddr = It->first;
1594                   if (It->first != TargetSecAddr)
1595                     break;
1596                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1597                 }
1598               } else {
1599                 TargetSectionSymbols.push_back(&Symbols);
1600               }
1601               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1602 
1603               // Find the last symbol in the first candidate section whose
1604               // offset is less than or equal to the target. If there are no
1605               // such symbols, try in the next section and so on, before finally
1606               // using the nearest preceding absolute symbol (if any), if there
1607               // are no other valid symbols.
1608               const SymbolInfoTy *TargetSym = nullptr;
1609               for (const SectionSymbolsTy *TargetSymbols :
1610                    TargetSectionSymbols) {
1611                 auto It = llvm::partition_point(
1612                     *TargetSymbols,
1613                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1614                 if (It != TargetSymbols->begin()) {
1615                   TargetSym = &*(It - 1);
1616                   break;
1617                 }
1618               }
1619 
1620               // Print the labels corresponding to the target if there's any.
1621               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1622               bool LabelAvailable = AllLabels.count(Target);
1623               if (TargetSym != nullptr) {
1624                 uint64_t TargetAddress = TargetSym->Addr;
1625                 uint64_t Disp = Target - TargetAddress;
1626                 std::string TargetName = TargetSym->Name.str();
1627                 if (Demangle)
1628                   TargetName = demangle(TargetName);
1629 
1630                 *TargetOS << " <";
1631                 if (!Disp) {
1632                   // Always Print the binary symbol precisely corresponding to
1633                   // the target address.
1634                   *TargetOS << TargetName;
1635                 } else if (BBAddrMapLabelAvailable) {
1636                   *TargetOS << BBAddrMapLabels[Target].front();
1637                 } else if (LabelAvailable) {
1638                   *TargetOS << AllLabels[Target];
1639                 } else {
1640                   // Always Print the binary symbol plus an offset if there's no
1641                   // local label corresponding to the target address.
1642                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1643                 }
1644                 *TargetOS << ">";
1645               } else if (BBAddrMapLabelAvailable) {
1646                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1647               } else if (LabelAvailable) {
1648                 *TargetOS << " <" << AllLabels[Target] << ">";
1649               }
1650               // By convention, each record in the comment stream should be
1651               // terminated.
1652               if (TargetOS == &CommentStream)
1653                 *TargetOS << "\n";
1654             }
1655           }
1656         }
1657 
1658         assert(Ctx.getAsmInfo());
1659         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1660                                 CommentStream.str(), LVP);
1661         Comments.clear();
1662 
1663         // Hexagon does this in pretty printer
1664         if (Obj.getArch() != Triple::hexagon) {
1665           // Print relocation for instruction and data.
1666           while (RelCur != RelEnd) {
1667             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1668             // If this relocation is hidden, skip it.
1669             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1670               ++RelCur;
1671               continue;
1672             }
1673 
1674             // Stop when RelCur's offset is past the disassembled
1675             // instruction/data. Note that it's possible the disassembled data
1676             // is not the complete data: we might see the relocation printed in
1677             // the middle of the data, but this matches the binutils objdump
1678             // output.
1679             if (Offset >= Index + Size)
1680               break;
1681 
1682             // When --adjust-vma is used, update the address printed.
1683             if (RelCur->getSymbol() != Obj.symbol_end()) {
1684               Expected<section_iterator> SymSI =
1685                   RelCur->getSymbol()->getSection();
1686               if (SymSI && *SymSI != Obj.section_end() &&
1687                   shouldAdjustVA(**SymSI))
1688                 Offset += AdjustVMA;
1689             }
1690 
1691             printRelocation(FOS, Obj.getFileName(), *RelCur,
1692                             SectionAddr + Offset, Is64Bits);
1693             LVP.printAfterOtherLine(FOS, true);
1694             ++RelCur;
1695           }
1696         }
1697 
1698         Index += Size;
1699       }
1700     }
1701   }
1702   StringSet<> MissingDisasmSymbolSet =
1703       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1704   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1705     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1706 }
1707 
1708 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
1709   const Target *TheTarget = getTarget(Obj);
1710 
1711   // Package up features to be passed to target/subtarget
1712   SubtargetFeatures Features = Obj->getFeatures();
1713   if (!MAttrs.empty()) {
1714     for (unsigned I = 0; I != MAttrs.size(); ++I)
1715       Features.AddFeature(MAttrs[I]);
1716   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
1717     Features.AddFeature("+all");
1718   }
1719 
1720   std::unique_ptr<const MCRegisterInfo> MRI(
1721       TheTarget->createMCRegInfo(TripleName));
1722   if (!MRI)
1723     reportError(Obj->getFileName(),
1724                 "no register info for target " + TripleName);
1725 
1726   // Set up disassembler.
1727   MCTargetOptions MCOptions;
1728   std::unique_ptr<const MCAsmInfo> AsmInfo(
1729       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1730   if (!AsmInfo)
1731     reportError(Obj->getFileName(),
1732                 "no assembly info for target " + TripleName);
1733 
1734   if (MCPU.empty())
1735     MCPU = Obj->tryGetCPUName().value_or("").str();
1736 
1737   std::unique_ptr<const MCSubtargetInfo> STI(
1738       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1739   if (!STI)
1740     reportError(Obj->getFileName(),
1741                 "no subtarget info for target " + TripleName);
1742   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1743   if (!MII)
1744     reportError(Obj->getFileName(),
1745                 "no instruction info for target " + TripleName);
1746   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
1747   // FIXME: for now initialize MCObjectFileInfo with default values
1748   std::unique_ptr<MCObjectFileInfo> MOFI(
1749       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
1750   Ctx.setObjectFileInfo(MOFI.get());
1751 
1752   std::unique_ptr<MCDisassembler> DisAsm(
1753       TheTarget->createMCDisassembler(*STI, Ctx));
1754   if (!DisAsm)
1755     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1756 
1757   // If we have an ARM object file, we need a second disassembler, because
1758   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1759   // We use mapping symbols to switch between the two assemblers, where
1760   // appropriate.
1761   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1762   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1763   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
1764     if (STI->checkFeatures("+thumb-mode"))
1765       Features.AddFeature("-thumb-mode");
1766     else
1767       Features.AddFeature("+thumb-mode");
1768     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1769                                                         Features.getString()));
1770     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1771   }
1772 
1773   std::unique_ptr<const MCInstrAnalysis> MIA(
1774       TheTarget->createMCInstrAnalysis(MII.get()));
1775 
1776   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1777   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1778       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1779   if (!IP)
1780     reportError(Obj->getFileName(),
1781                 "no instruction printer for target " + TripleName);
1782   IP->setPrintImmHex(PrintImmHex);
1783   IP->setPrintBranchImmAsAddress(true);
1784   IP->setSymbolizeOperands(SymbolizeOperands);
1785   IP->setMCInstrAnalysis(MIA.get());
1786 
1787   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1788   SourcePrinter SP(Obj, TheTarget->getName());
1789 
1790   for (StringRef Opt : DisassemblerOptions)
1791     if (!IP->applyTargetSpecificCLOption(Opt))
1792       reportError(Obj->getFileName(),
1793                   "Unrecognized disassembler option: " + Opt);
1794 
1795   disassembleObject(TheTarget, *Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1796                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, SP,
1797                     InlineRelocs);
1798 }
1799 
1800 void objdump::printRelocations(const ObjectFile *Obj) {
1801   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1802                                                  "%08" PRIx64;
1803 
1804   // Build a mapping from relocation target to a vector of relocation
1805   // sections. Usually, there is an only one relocation section for
1806   // each relocated section.
1807   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1808   uint64_t Ndx;
1809   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1810     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
1811       continue;
1812     if (Section.relocation_begin() == Section.relocation_end())
1813       continue;
1814     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1815     if (!SecOrErr)
1816       reportError(Obj->getFileName(),
1817                   "section (" + Twine(Ndx) +
1818                       "): unable to get a relocation target: " +
1819                       toString(SecOrErr.takeError()));
1820     SecToRelSec[**SecOrErr].push_back(Section);
1821   }
1822 
1823   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1824     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1825     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
1826     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1827     uint32_t TypePadding = 24;
1828     outs() << left_justify("OFFSET", OffsetPadding) << " "
1829            << left_justify("TYPE", TypePadding) << " "
1830            << "VALUE\n";
1831 
1832     for (SectionRef Section : P.second) {
1833       for (const RelocationRef &Reloc : Section.relocations()) {
1834         uint64_t Address = Reloc.getOffset();
1835         SmallString<32> RelocName;
1836         SmallString<32> ValueStr;
1837         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1838           continue;
1839         Reloc.getTypeName(RelocName);
1840         if (Error E = getRelocationValueString(Reloc, ValueStr))
1841           reportError(std::move(E), Obj->getFileName());
1842 
1843         outs() << format(Fmt.data(), Address) << " "
1844                << left_justify(RelocName, TypePadding) << " " << ValueStr
1845                << "\n";
1846       }
1847     }
1848   }
1849 }
1850 
1851 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
1852   // For the moment, this option is for ELF only
1853   if (!Obj->isELF())
1854     return;
1855 
1856   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1857   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
1858         return Sec.getType() == ELF::SHT_DYNAMIC;
1859       })) {
1860     reportError(Obj->getFileName(), "not a dynamic object");
1861     return;
1862   }
1863 
1864   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1865   if (DynRelSec.empty())
1866     return;
1867 
1868   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
1869   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1870   const uint32_t TypePadding = 24;
1871   outs() << left_justify("OFFSET", OffsetPadding) << ' '
1872          << left_justify("TYPE", TypePadding) << " VALUE\n";
1873 
1874   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1875   for (const SectionRef &Section : DynRelSec)
1876     for (const RelocationRef &Reloc : Section.relocations()) {
1877       uint64_t Address = Reloc.getOffset();
1878       SmallString<32> RelocName;
1879       SmallString<32> ValueStr;
1880       Reloc.getTypeName(RelocName);
1881       if (Error E = getRelocationValueString(Reloc, ValueStr))
1882         reportError(std::move(E), Obj->getFileName());
1883       outs() << format(Fmt.data(), Address) << ' '
1884              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
1885     }
1886 }
1887 
1888 // Returns true if we need to show LMA column when dumping section headers. We
1889 // show it only when the platform is ELF and either we have at least one section
1890 // whose VMA and LMA are different and/or when --show-lma flag is used.
1891 static bool shouldDisplayLMA(const ObjectFile &Obj) {
1892   if (!Obj.isELF())
1893     return false;
1894   for (const SectionRef &S : ToolSectionFilter(Obj))
1895     if (S.getAddress() != getELFSectionLMA(S))
1896       return true;
1897   return ShowLMA;
1898 }
1899 
1900 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
1901   // Default column width for names is 13 even if no names are that long.
1902   size_t MaxWidth = 13;
1903   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1904     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
1905     MaxWidth = std::max(MaxWidth, Name.size());
1906   }
1907   return MaxWidth;
1908 }
1909 
1910 void objdump::printSectionHeaders(ObjectFile &Obj) {
1911   size_t NameWidth = getMaxSectionNameWidth(Obj);
1912   size_t AddressWidth = 2 * Obj.getBytesInAddress();
1913   bool HasLMAColumn = shouldDisplayLMA(Obj);
1914   outs() << "\nSections:\n";
1915   if (HasLMAColumn)
1916     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1917            << left_justify("VMA", AddressWidth) << " "
1918            << left_justify("LMA", AddressWidth) << " Type\n";
1919   else
1920     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1921            << left_justify("VMA", AddressWidth) << " Type\n";
1922 
1923   if (Obj.isELF() && Obj.sections().empty())
1924     createFakeELFSections(Obj);
1925 
1926   uint64_t Idx;
1927   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
1928     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
1929     uint64_t VMA = Section.getAddress();
1930     if (shouldAdjustVA(Section))
1931       VMA += AdjustVMA;
1932 
1933     uint64_t Size = Section.getSize();
1934 
1935     std::string Type = Section.isText() ? "TEXT" : "";
1936     if (Section.isData())
1937       Type += Type.empty() ? "DATA" : ", DATA";
1938     if (Section.isBSS())
1939       Type += Type.empty() ? "BSS" : ", BSS";
1940     if (Section.isDebugSection())
1941       Type += Type.empty() ? "DEBUG" : ", DEBUG";
1942 
1943     if (HasLMAColumn)
1944       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1945                        Name.str().c_str(), Size)
1946              << format_hex_no_prefix(VMA, AddressWidth) << " "
1947              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1948              << " " << Type << "\n";
1949     else
1950       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1951                        Name.str().c_str(), Size)
1952              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1953   }
1954 }
1955 
1956 void objdump::printSectionContents(const ObjectFile *Obj) {
1957   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1958 
1959   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1960     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1961     uint64_t BaseAddr = Section.getAddress();
1962     uint64_t Size = Section.getSize();
1963     if (!Size)
1964       continue;
1965 
1966     outs() << "Contents of section ";
1967     StringRef SegmentName = getSegmentName(MachO, Section);
1968     if (!SegmentName.empty())
1969       outs() << SegmentName << ",";
1970     outs() << Name << ":\n";
1971     if (Section.isBSS()) {
1972       outs() << format("<skipping contents of bss section at [%04" PRIx64
1973                        ", %04" PRIx64 ")>\n",
1974                        BaseAddr, BaseAddr + Size);
1975       continue;
1976     }
1977 
1978     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1979 
1980     // Dump out the content as hex and printable ascii characters.
1981     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1982       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1983       // Dump line of hex.
1984       for (std::size_t I = 0; I < 16; ++I) {
1985         if (I != 0 && I % 4 == 0)
1986           outs() << ' ';
1987         if (Addr + I < End)
1988           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1989                  << hexdigit(Contents[Addr + I] & 0xF, true);
1990         else
1991           outs() << "  ";
1992       }
1993       // Print ascii.
1994       outs() << "  ";
1995       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1996         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1997           outs() << Contents[Addr + I];
1998         else
1999           outs() << ".";
2000       }
2001       outs() << "\n";
2002     }
2003   }
2004 }
2005 
2006 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2007                                StringRef ArchitectureName, bool DumpDynamic) {
2008   if (O.isCOFF() && !DumpDynamic) {
2009     outs() << "\nSYMBOL TABLE:\n";
2010     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2011     return;
2012   }
2013 
2014   const StringRef FileName = O.getFileName();
2015 
2016   if (!DumpDynamic) {
2017     outs() << "\nSYMBOL TABLE:\n";
2018     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2019       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2020                   DumpDynamic);
2021     return;
2022   }
2023 
2024   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2025   if (!O.isELF()) {
2026     reportWarning(
2027         "this operation is not currently supported for this file format",
2028         FileName);
2029     return;
2030   }
2031 
2032   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2033   auto Symbols = ELF->getDynamicSymbolIterators();
2034   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2035       ELF->readDynsymVersions();
2036   if (!SymbolVersionsOrErr) {
2037     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2038     SymbolVersionsOrErr = std::vector<VersionEntry>();
2039     (void)!SymbolVersionsOrErr;
2040   }
2041   for (auto &Sym : Symbols)
2042     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2043                 ArchitectureName, DumpDynamic);
2044 }
2045 
2046 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2047                           ArrayRef<VersionEntry> SymbolVersions,
2048                           StringRef FileName, StringRef ArchiveName,
2049                           StringRef ArchitectureName, bool DumpDynamic) {
2050   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2051   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2052                                    ArchitectureName);
2053   if ((Address < StartAddress) || (Address > StopAddress))
2054     return;
2055   SymbolRef::Type Type =
2056       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2057   uint32_t Flags =
2058       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2059 
2060   // Don't ask a Mach-O STAB symbol for its section unless you know that
2061   // STAB symbol's section field refers to a valid section index. Otherwise
2062   // the symbol may error trying to load a section that does not exist.
2063   bool IsSTAB = false;
2064   if (MachO) {
2065     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2066     uint8_t NType =
2067         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2068                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2069     if (NType & MachO::N_STAB)
2070       IsSTAB = true;
2071   }
2072   section_iterator Section = IsSTAB
2073                                  ? O.section_end()
2074                                  : unwrapOrError(Symbol.getSection(), FileName,
2075                                                  ArchiveName, ArchitectureName);
2076 
2077   StringRef Name;
2078   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2079     if (Expected<StringRef> NameOrErr = Section->getName())
2080       Name = *NameOrErr;
2081     else
2082       consumeError(NameOrErr.takeError());
2083 
2084   } else {
2085     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2086                          ArchitectureName);
2087   }
2088 
2089   bool Global = Flags & SymbolRef::SF_Global;
2090   bool Weak = Flags & SymbolRef::SF_Weak;
2091   bool Absolute = Flags & SymbolRef::SF_Absolute;
2092   bool Common = Flags & SymbolRef::SF_Common;
2093   bool Hidden = Flags & SymbolRef::SF_Hidden;
2094 
2095   char GlobLoc = ' ';
2096   if ((Section != O.section_end() || Absolute) && !Weak)
2097     GlobLoc = Global ? 'g' : 'l';
2098   char IFunc = ' ';
2099   if (O.isELF()) {
2100     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2101       IFunc = 'i';
2102     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2103       GlobLoc = 'u';
2104   }
2105 
2106   char Debug = ' ';
2107   if (DumpDynamic)
2108     Debug = 'D';
2109   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2110     Debug = 'd';
2111 
2112   char FileFunc = ' ';
2113   if (Type == SymbolRef::ST_File)
2114     FileFunc = 'f';
2115   else if (Type == SymbolRef::ST_Function)
2116     FileFunc = 'F';
2117   else if (Type == SymbolRef::ST_Data)
2118     FileFunc = 'O';
2119 
2120   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2121 
2122   outs() << format(Fmt, Address) << " "
2123          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2124          << (Weak ? 'w' : ' ') // Weak?
2125          << ' '                // Constructor. Not supported yet.
2126          << ' '                // Warning. Not supported yet.
2127          << IFunc              // Indirect reference to another symbol.
2128          << Debug              // Debugging (d) or dynamic (D) symbol.
2129          << FileFunc           // Name of function (F), file (f) or object (O).
2130          << ' ';
2131   if (Absolute) {
2132     outs() << "*ABS*";
2133   } else if (Common) {
2134     outs() << "*COM*";
2135   } else if (Section == O.section_end()) {
2136     if (O.isXCOFF()) {
2137       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2138           Symbol.getRawDataRefImpl());
2139       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2140         outs() << "*DEBUG*";
2141       else
2142         outs() << "*UND*";
2143     } else
2144       outs() << "*UND*";
2145   } else {
2146     StringRef SegmentName = getSegmentName(MachO, *Section);
2147     if (!SegmentName.empty())
2148       outs() << SegmentName << ",";
2149     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2150     outs() << SectionName;
2151     if (O.isXCOFF()) {
2152       Optional<SymbolRef> SymRef =
2153           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2154       if (SymRef) {
2155 
2156         Expected<StringRef> NameOrErr = SymRef->getName();
2157 
2158         if (NameOrErr) {
2159           outs() << " (csect:";
2160           std::string SymName(NameOrErr.get());
2161 
2162           if (Demangle)
2163             SymName = demangle(SymName);
2164 
2165           if (SymbolDescription)
2166             SymName = getXCOFFSymbolDescription(
2167                 createSymbolInfo(O, SymRef.value()), SymName);
2168 
2169           outs() << ' ' << SymName;
2170           outs() << ") ";
2171         } else
2172           reportWarning(toString(NameOrErr.takeError()), FileName);
2173       }
2174     }
2175   }
2176 
2177   if (Common)
2178     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2179   else if (O.isXCOFF())
2180     outs() << '\t'
2181            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2182                               Symbol.getRawDataRefImpl()));
2183   else if (O.isELF())
2184     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2185 
2186   if (O.isELF()) {
2187     if (!SymbolVersions.empty()) {
2188       const VersionEntry &Ver =
2189           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2190       std::string Str;
2191       if (!Ver.Name.empty())
2192         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2193       outs() << ' ' << left_justify(Str, 12);
2194     }
2195 
2196     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2197     switch (Other) {
2198     case ELF::STV_DEFAULT:
2199       break;
2200     case ELF::STV_INTERNAL:
2201       outs() << " .internal";
2202       break;
2203     case ELF::STV_HIDDEN:
2204       outs() << " .hidden";
2205       break;
2206     case ELF::STV_PROTECTED:
2207       outs() << " .protected";
2208       break;
2209     default:
2210       outs() << format(" 0x%02x", Other);
2211       break;
2212     }
2213   } else if (Hidden) {
2214     outs() << " .hidden";
2215   }
2216 
2217   std::string SymName(Name);
2218   if (Demangle)
2219     SymName = demangle(SymName);
2220 
2221   if (O.isXCOFF() && SymbolDescription)
2222     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2223 
2224   outs() << ' ' << SymName << '\n';
2225 }
2226 
2227 static void printUnwindInfo(const ObjectFile *O) {
2228   outs() << "Unwind info:\n\n";
2229 
2230   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2231     printCOFFUnwindInfo(Coff);
2232   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2233     printMachOUnwindInfo(MachO);
2234   else
2235     // TODO: Extract DWARF dump tool to objdump.
2236     WithColor::error(errs(), ToolName)
2237         << "This operation is only currently supported "
2238            "for COFF and MachO object files.\n";
2239 }
2240 
2241 /// Dump the raw contents of the __clangast section so the output can be piped
2242 /// into llvm-bcanalyzer.
2243 static void printRawClangAST(const ObjectFile *Obj) {
2244   if (outs().is_displayed()) {
2245     WithColor::error(errs(), ToolName)
2246         << "The -raw-clang-ast option will dump the raw binary contents of "
2247            "the clang ast section.\n"
2248            "Please redirect the output to a file or another program such as "
2249            "llvm-bcanalyzer.\n";
2250     return;
2251   }
2252 
2253   StringRef ClangASTSectionName("__clangast");
2254   if (Obj->isCOFF()) {
2255     ClangASTSectionName = "clangast";
2256   }
2257 
2258   Optional<object::SectionRef> ClangASTSection;
2259   for (auto Sec : ToolSectionFilter(*Obj)) {
2260     StringRef Name;
2261     if (Expected<StringRef> NameOrErr = Sec.getName())
2262       Name = *NameOrErr;
2263     else
2264       consumeError(NameOrErr.takeError());
2265 
2266     if (Name == ClangASTSectionName) {
2267       ClangASTSection = Sec;
2268       break;
2269     }
2270   }
2271   if (!ClangASTSection)
2272     return;
2273 
2274   StringRef ClangASTContents =
2275       unwrapOrError(ClangASTSection.value().getContents(), Obj->getFileName());
2276   outs().write(ClangASTContents.data(), ClangASTContents.size());
2277 }
2278 
2279 static void printFaultMaps(const ObjectFile *Obj) {
2280   StringRef FaultMapSectionName;
2281 
2282   if (Obj->isELF()) {
2283     FaultMapSectionName = ".llvm_faultmaps";
2284   } else if (Obj->isMachO()) {
2285     FaultMapSectionName = "__llvm_faultmaps";
2286   } else {
2287     WithColor::error(errs(), ToolName)
2288         << "This operation is only currently supported "
2289            "for ELF and Mach-O executable files.\n";
2290     return;
2291   }
2292 
2293   Optional<object::SectionRef> FaultMapSection;
2294 
2295   for (auto Sec : ToolSectionFilter(*Obj)) {
2296     StringRef Name;
2297     if (Expected<StringRef> NameOrErr = Sec.getName())
2298       Name = *NameOrErr;
2299     else
2300       consumeError(NameOrErr.takeError());
2301 
2302     if (Name == FaultMapSectionName) {
2303       FaultMapSection = Sec;
2304       break;
2305     }
2306   }
2307 
2308   outs() << "FaultMap table:\n";
2309 
2310   if (!FaultMapSection) {
2311     outs() << "<not found>\n";
2312     return;
2313   }
2314 
2315   StringRef FaultMapContents =
2316       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2317   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2318                      FaultMapContents.bytes_end());
2319 
2320   outs() << FMP;
2321 }
2322 
2323 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2324   if (O->isELF()) {
2325     printELFFileHeader(O);
2326     printELFDynamicSection(O);
2327     printELFSymbolVersionInfo(O);
2328     return;
2329   }
2330   if (O->isCOFF())
2331     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2332   if (O->isWasm())
2333     return printWasmFileHeader(O);
2334   if (O->isMachO()) {
2335     printMachOFileHeader(O);
2336     if (!OnlyFirst)
2337       printMachOLoadCommands(O);
2338     return;
2339   }
2340   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2341 }
2342 
2343 static void printFileHeaders(const ObjectFile *O) {
2344   if (!O->isELF() && !O->isCOFF())
2345     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2346 
2347   Triple::ArchType AT = O->getArch();
2348   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2349   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2350 
2351   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2352   outs() << "start address: "
2353          << "0x" << format(Fmt.data(), Address) << "\n";
2354 }
2355 
2356 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2357   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2358   if (!ModeOrErr) {
2359     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2360     consumeError(ModeOrErr.takeError());
2361     return;
2362   }
2363   sys::fs::perms Mode = ModeOrErr.get();
2364   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2365   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2366   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2367   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2368   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2369   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2370   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2371   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2372   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2373 
2374   outs() << " ";
2375 
2376   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2377                    unwrapOrError(C.getGID(), Filename),
2378                    unwrapOrError(C.getRawSize(), Filename));
2379 
2380   StringRef RawLastModified = C.getRawLastModified();
2381   unsigned Seconds;
2382   if (RawLastModified.getAsInteger(10, Seconds))
2383     outs() << "(date: \"" << RawLastModified
2384            << "\" contains non-decimal chars) ";
2385   else {
2386     // Since ctime(3) returns a 26 character string of the form:
2387     // "Sun Sep 16 01:03:52 1973\n\0"
2388     // just print 24 characters.
2389     time_t t = Seconds;
2390     outs() << format("%.24s ", ctime(&t));
2391   }
2392 
2393   StringRef Name = "";
2394   Expected<StringRef> NameOrErr = C.getName();
2395   if (!NameOrErr) {
2396     consumeError(NameOrErr.takeError());
2397     Name = unwrapOrError(C.getRawName(), Filename);
2398   } else {
2399     Name = NameOrErr.get();
2400   }
2401   outs() << Name << "\n";
2402 }
2403 
2404 // For ELF only now.
2405 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2406   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2407     if (Elf->getEType() != ELF::ET_REL)
2408       return true;
2409   }
2410   return false;
2411 }
2412 
2413 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2414                                             uint64_t Start, uint64_t Stop) {
2415   if (!shouldWarnForInvalidStartStopAddress(Obj))
2416     return;
2417 
2418   for (const SectionRef &Section : Obj->sections())
2419     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2420       uint64_t BaseAddr = Section.getAddress();
2421       uint64_t Size = Section.getSize();
2422       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2423         return;
2424     }
2425 
2426   if (!HasStartAddressFlag)
2427     reportWarning("no section has address less than 0x" +
2428                       Twine::utohexstr(Stop) + " specified by --stop-address",
2429                   Obj->getFileName());
2430   else if (!HasStopAddressFlag)
2431     reportWarning("no section has address greater than or equal to 0x" +
2432                       Twine::utohexstr(Start) + " specified by --start-address",
2433                   Obj->getFileName());
2434   else
2435     reportWarning("no section overlaps the range [0x" +
2436                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2437                       ") specified by --start-address/--stop-address",
2438                   Obj->getFileName());
2439 }
2440 
2441 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2442                        const Archive::Child *C = nullptr) {
2443   // Avoid other output when using a raw option.
2444   if (!RawClangAST) {
2445     outs() << '\n';
2446     if (A)
2447       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2448     else
2449       outs() << O->getFileName();
2450     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2451   }
2452 
2453   if (HasStartAddressFlag || HasStopAddressFlag)
2454     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2455 
2456   // Note: the order here matches GNU objdump for compatability.
2457   StringRef ArchiveName = A ? A->getFileName() : "";
2458   if (ArchiveHeaders && !MachOOpt && C)
2459     printArchiveChild(ArchiveName, *C);
2460   if (FileHeaders)
2461     printFileHeaders(O);
2462   if (PrivateHeaders || FirstPrivateHeader)
2463     printPrivateFileHeaders(O, FirstPrivateHeader);
2464   if (SectionHeaders)
2465     printSectionHeaders(*O);
2466   if (SymbolTable)
2467     printSymbolTable(*O, ArchiveName);
2468   if (DynamicSymbolTable)
2469     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2470                      /*DumpDynamic=*/true);
2471   if (DwarfDumpType != DIDT_Null) {
2472     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2473     // Dump the complete DWARF structure.
2474     DIDumpOptions DumpOpts;
2475     DumpOpts.DumpType = DwarfDumpType;
2476     DICtx->dump(outs(), DumpOpts);
2477   }
2478   if (Relocations && !Disassemble)
2479     printRelocations(O);
2480   if (DynamicRelocations)
2481     printDynamicRelocations(O);
2482   if (SectionContents)
2483     printSectionContents(O);
2484   if (Disassemble)
2485     disassembleObject(O, Relocations);
2486   if (UnwindInfo)
2487     printUnwindInfo(O);
2488 
2489   // Mach-O specific options:
2490   if (ExportsTrie)
2491     printExportsTrie(O);
2492   if (Rebase)
2493     printRebaseTable(O);
2494   if (Bind)
2495     printBindTable(O);
2496   if (LazyBind)
2497     printLazyBindTable(O);
2498   if (WeakBind)
2499     printWeakBindTable(O);
2500 
2501   // Other special sections:
2502   if (RawClangAST)
2503     printRawClangAST(O);
2504   if (FaultMapSection)
2505     printFaultMaps(O);
2506   if (Offloading)
2507     dumpOffloadBinary(*O);
2508 }
2509 
2510 static void dumpObject(const COFFImportFile *I, const Archive *A,
2511                        const Archive::Child *C = nullptr) {
2512   StringRef ArchiveName = A ? A->getFileName() : "";
2513 
2514   // Avoid other output when using a raw option.
2515   if (!RawClangAST)
2516     outs() << '\n'
2517            << ArchiveName << "(" << I->getFileName() << ")"
2518            << ":\tfile format COFF-import-file"
2519            << "\n\n";
2520 
2521   if (ArchiveHeaders && !MachOOpt && C)
2522     printArchiveChild(ArchiveName, *C);
2523   if (SymbolTable)
2524     printCOFFSymbolTable(*I);
2525 }
2526 
2527 /// Dump each object file in \a a;
2528 static void dumpArchive(const Archive *A) {
2529   Error Err = Error::success();
2530   unsigned I = -1;
2531   for (auto &C : A->children(Err)) {
2532     ++I;
2533     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2534     if (!ChildOrErr) {
2535       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2536         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2537       continue;
2538     }
2539     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2540       dumpObject(O, A, &C);
2541     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2542       dumpObject(I, A, &C);
2543     else
2544       reportError(errorCodeToError(object_error::invalid_file_type),
2545                   A->getFileName());
2546   }
2547   if (Err)
2548     reportError(std::move(Err), A->getFileName());
2549 }
2550 
2551 /// Open file and figure out how to dump it.
2552 static void dumpInput(StringRef file) {
2553   // If we are using the Mach-O specific object file parser, then let it parse
2554   // the file and process the command line options.  So the -arch flags can
2555   // be used to select specific slices, etc.
2556   if (MachOOpt) {
2557     parseInputMachO(file);
2558     return;
2559   }
2560 
2561   // Attempt to open the binary.
2562   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2563   Binary &Binary = *OBinary.getBinary();
2564 
2565   if (Archive *A = dyn_cast<Archive>(&Binary))
2566     dumpArchive(A);
2567   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2568     dumpObject(O);
2569   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2570     parseInputMachO(UB);
2571   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2572     dumpOffloadSections(*OB);
2573   else
2574     reportError(errorCodeToError(object_error::invalid_file_type), file);
2575 }
2576 
2577 template <typename T>
2578 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2579                         T &Value) {
2580   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2581     StringRef V(A->getValue());
2582     if (!llvm::to_integer(V, Value, 0)) {
2583       reportCmdLineError(A->getSpelling() +
2584                          ": expected a non-negative integer, but got '" + V +
2585                          "'");
2586     }
2587   }
2588 }
2589 
2590 static void invalidArgValue(const opt::Arg *A) {
2591   reportCmdLineError("'" + StringRef(A->getValue()) +
2592                      "' is not a valid value for '" + A->getSpelling() + "'");
2593 }
2594 
2595 static std::vector<std::string>
2596 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2597   std::vector<std::string> Values;
2598   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2599     llvm::SmallVector<StringRef, 2> SplitValues;
2600     llvm::SplitString(Value, SplitValues, ",");
2601     for (StringRef SplitValue : SplitValues)
2602       Values.push_back(SplitValue.str());
2603   }
2604   return Values;
2605 }
2606 
2607 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2608   MachOOpt = true;
2609   FullLeadingAddr = true;
2610   PrintImmHex = true;
2611 
2612   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2613   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2614   if (InputArgs.hasArg(OTOOL_d))
2615     FilterSections.push_back("__DATA,__data");
2616   DylibId = InputArgs.hasArg(OTOOL_D);
2617   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2618   DataInCode = InputArgs.hasArg(OTOOL_G);
2619   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2620   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2621   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2622   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2623   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2624   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2625   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2626   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2627   InfoPlist = InputArgs.hasArg(OTOOL_P);
2628   Relocations = InputArgs.hasArg(OTOOL_r);
2629   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2630     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2631     FilterSections.push_back(Filter);
2632   }
2633   if (InputArgs.hasArg(OTOOL_t))
2634     FilterSections.push_back("__TEXT,__text");
2635   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2636             InputArgs.hasArg(OTOOL_o);
2637   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2638   if (InputArgs.hasArg(OTOOL_x))
2639     FilterSections.push_back(",__text");
2640   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2641 
2642   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2643   if (InputFilenames.empty())
2644     reportCmdLineError("no input file");
2645 
2646   for (const Arg *A : InputArgs) {
2647     const Option &O = A->getOption();
2648     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2649       reportCmdLineWarning(O.getPrefixedName() +
2650                            " is obsolete and not implemented");
2651     }
2652   }
2653 }
2654 
2655 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2656   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2657   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2658   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2659   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2660   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2661   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2662   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2663   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2664   DisassembleSymbols =
2665       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2666   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2667   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2668     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
2669                         .Case("frames", DIDT_DebugFrame)
2670                         .Default(DIDT_Null);
2671     if (DwarfDumpType == DIDT_Null)
2672       invalidArgValue(A);
2673   }
2674   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2675   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2676   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
2677   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2678   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2679   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2680   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2681   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2682   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2683   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2684   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2685   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2686   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2687   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2688   PrintImmHex =
2689       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2690   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2691   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2692   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2693   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2694   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2695   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2696   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2697   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2698   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2699   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2700   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2701   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2702   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2703   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2704   Wide = InputArgs.hasArg(OBJDUMP_wide);
2705   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2706   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2707   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2708     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2709                        .Case("ascii", DVASCII)
2710                        .Case("unicode", DVUnicode)
2711                        .Default(DVInvalid);
2712     if (DbgVariables == DVInvalid)
2713       invalidArgValue(A);
2714   }
2715   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2716 
2717   parseMachOOptions(InputArgs);
2718 
2719   // Parse -M (--disassembler-options) and deprecated
2720   // --x86-asm-syntax={att,intel}.
2721   //
2722   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2723   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2724   // called too late. For now we have to use the internal cl::opt option.
2725   const char *AsmSyntax = nullptr;
2726   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2727                                           OBJDUMP_x86_asm_syntax_att,
2728                                           OBJDUMP_x86_asm_syntax_intel)) {
2729     switch (A->getOption().getID()) {
2730     case OBJDUMP_x86_asm_syntax_att:
2731       AsmSyntax = "--x86-asm-syntax=att";
2732       continue;
2733     case OBJDUMP_x86_asm_syntax_intel:
2734       AsmSyntax = "--x86-asm-syntax=intel";
2735       continue;
2736     }
2737 
2738     SmallVector<StringRef, 2> Values;
2739     llvm::SplitString(A->getValue(), Values, ",");
2740     for (StringRef V : Values) {
2741       if (V == "att")
2742         AsmSyntax = "--x86-asm-syntax=att";
2743       else if (V == "intel")
2744         AsmSyntax = "--x86-asm-syntax=intel";
2745       else
2746         DisassemblerOptions.push_back(V.str());
2747     }
2748   }
2749   if (AsmSyntax) {
2750     const char *Argv[] = {"llvm-objdump", AsmSyntax};
2751     llvm::cl::ParseCommandLineOptions(2, Argv);
2752   }
2753 
2754   // objdump defaults to a.out if no filenames specified.
2755   if (InputFilenames.empty())
2756     InputFilenames.push_back("a.out");
2757 }
2758 
2759 int main(int argc, char **argv) {
2760   using namespace llvm;
2761   InitLLVM X(argc, argv);
2762 
2763   ToolName = argv[0];
2764   std::unique_ptr<CommonOptTable> T;
2765   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2766 
2767   StringRef Stem = sys::path::stem(ToolName);
2768   auto Is = [=](StringRef Tool) {
2769     // We need to recognize the following filenames:
2770     //
2771     // llvm-objdump -> objdump
2772     // llvm-otool-10.exe -> otool
2773     // powerpc64-unknown-freebsd13-objdump -> objdump
2774     auto I = Stem.rfind_insensitive(Tool);
2775     return I != StringRef::npos &&
2776            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
2777   };
2778   if (Is("otool")) {
2779     T = std::make_unique<OtoolOptTable>();
2780     Unknown = OTOOL_UNKNOWN;
2781     HelpFlag = OTOOL_help;
2782     HelpHiddenFlag = OTOOL_help_hidden;
2783     VersionFlag = OTOOL_version;
2784   } else {
2785     T = std::make_unique<ObjdumpOptTable>();
2786     Unknown = OBJDUMP_UNKNOWN;
2787     HelpFlag = OBJDUMP_help;
2788     HelpHiddenFlag = OBJDUMP_help_hidden;
2789     VersionFlag = OBJDUMP_version;
2790   }
2791 
2792   BumpPtrAllocator A;
2793   StringSaver Saver(A);
2794   opt::InputArgList InputArgs =
2795       T->parseArgs(argc, argv, Unknown, Saver,
2796                    [&](StringRef Msg) { reportCmdLineError(Msg); });
2797 
2798   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
2799     T->printHelp(ToolName);
2800     return 0;
2801   }
2802   if (InputArgs.hasArg(HelpHiddenFlag)) {
2803     T->printHelp(ToolName, /*ShowHidden=*/true);
2804     return 0;
2805   }
2806 
2807   // Initialize targets and assembly printers/parsers.
2808   InitializeAllTargetInfos();
2809   InitializeAllTargetMCs();
2810   InitializeAllDisassemblers();
2811 
2812   if (InputArgs.hasArg(VersionFlag)) {
2813     cl::PrintVersionMessage();
2814     if (!Is("otool")) {
2815       outs() << '\n';
2816       TargetRegistry::printRegisteredTargetsForVersion(outs());
2817     }
2818     return 0;
2819   }
2820 
2821   if (Is("otool"))
2822     parseOtoolOptions(InputArgs);
2823   else
2824     parseObjdumpOptions(InputArgs);
2825 
2826   if (StartAddress >= StopAddress)
2827     reportCmdLineError("start address should be less than stop address");
2828 
2829   // Removes trailing separators from prefix.
2830   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2831     Prefix.pop_back();
2832 
2833   if (AllHeaders)
2834     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2835         SectionHeaders = SymbolTable = true;
2836 
2837   if (DisassembleAll || PrintSource || PrintLines ||
2838       !DisassembleSymbols.empty())
2839     Disassemble = true;
2840 
2841   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2842       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2843       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2844       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
2845       !(MachOOpt && (Bind || DataInCode || DyldInfo || DylibId || DylibsUsed ||
2846                      ExportsTrie || FirstPrivateHeader || FunctionStarts ||
2847                      IndirectSymbols || InfoPlist || LazyBind || LinkOptHints ||
2848                      ObjcMetaData || Rebase || Rpaths || UniversalHeaders ||
2849                      WeakBind || !FilterSections.empty()))) {
2850     T->printHelp(ToolName);
2851     return 2;
2852   }
2853 
2854   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2855 
2856   llvm::for_each(InputFilenames, dumpInput);
2857 
2858   warnOnNoMatchForSections();
2859 
2860   return EXIT_SUCCESS;
2861 }
2862