xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 6622d41e2c469a326aa1f15314b35c87531a8617)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/WithColor.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cctype>
66 #include <cstring>
67 #include <system_error>
68 #include <unordered_map>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace object;
73 
74 cl::opt<bool>
75     llvm::AllHeaders("all-headers",
76                      cl::desc("Display all available header information"));
77 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
78                                  cl::aliasopt(AllHeaders));
79 
80 static cl::list<std::string>
81 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
82 
83 cl::opt<bool>
84 llvm::Disassemble("disassemble",
85   cl::desc("Display assembler mnemonics for the machine instructions"));
86 static cl::alias
87 Disassembled("d", cl::desc("Alias for --disassemble"),
88              cl::aliasopt(Disassemble));
89 
90 cl::opt<bool>
91 llvm::DisassembleAll("disassemble-all",
92   cl::desc("Display assembler mnemonics for the machine instructions"));
93 static cl::alias
94 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
95              cl::aliasopt(DisassembleAll));
96 
97 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
98                              cl::init(false));
99 
100 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
101                                cl::aliasopt(llvm::Demangle));
102 
103 static cl::list<std::string>
104 DisassembleFunctions("df",
105                      cl::CommaSeparated,
106                      cl::desc("List of functions to disassemble"));
107 static StringSet<> DisasmFuncsSet;
108 
109 cl::opt<bool>
110 llvm::Relocations("reloc",
111                   cl::desc("Display the relocation entries in the file"));
112 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
113                                   cl::NotHidden,
114                                   cl::aliasopt(llvm::Relocations));
115 
116 cl::opt<bool>
117 llvm::DynamicRelocations("dynamic-reloc",
118   cl::desc("Display the dynamic relocation entries in the file"));
119 static cl::alias
120 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
121              cl::aliasopt(DynamicRelocations));
122 
123 cl::opt<bool>
124     llvm::SectionContents("full-contents",
125                           cl::desc("Display the content of each section"));
126 static cl::alias SectionContentsShort("s",
127                                       cl::desc("Alias for --full-contents"),
128                                       cl::aliasopt(SectionContents));
129 
130 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
131 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
132                                   cl::NotHidden,
133                                   cl::aliasopt(llvm::SymbolTable));
134 
135 cl::opt<bool>
136 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
137 
138 cl::opt<bool>
139 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
140 
141 cl::opt<bool>
142 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
143 
144 cl::opt<bool>
145 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
146 
147 cl::opt<bool>
148 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
149 
150 cl::opt<bool>
151 llvm::RawClangAST("raw-clang-ast",
152     cl::desc("Dump the raw binary contents of the clang AST section"));
153 
154 static cl::opt<bool>
155 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
156 static cl::alias
157 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
158 
159 cl::opt<std::string>
160 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
161                                     "see -version for available targets"));
162 
163 cl::opt<std::string>
164 llvm::MCPU("mcpu",
165      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
166      cl::value_desc("cpu-name"),
167      cl::init(""));
168 
169 cl::opt<std::string>
170 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
171                                 "see -version for available targets"));
172 
173 cl::opt<bool>
174 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
175                                                  "headers for each section."));
176 static cl::alias
177 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
178                     cl::aliasopt(SectionHeaders));
179 static cl::alias
180 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
181                       cl::aliasopt(SectionHeaders));
182 
183 cl::list<std::string>
184 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
185                                          "With -macho dump segment,section"));
186 cl::alias
187 static FilterSectionsj("j", cl::desc("Alias for --section"),
188                  cl::aliasopt(llvm::FilterSections));
189 
190 cl::list<std::string>
191 llvm::MAttrs("mattr",
192   cl::CommaSeparated,
193   cl::desc("Target specific attributes"),
194   cl::value_desc("a1,+a2,-a3,..."));
195 
196 cl::opt<bool>
197 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
198                                                  "instructions, do not print "
199                                                  "the instruction bytes."));
200 cl::opt<bool>
201 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
202 
203 cl::opt<bool>
204 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
205 
206 static cl::alias
207 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
208                 cl::aliasopt(UnwindInfo));
209 
210 cl::opt<bool>
211 llvm::PrivateHeaders("private-headers",
212                      cl::desc("Display format specific file headers"));
213 
214 cl::opt<bool>
215 llvm::FirstPrivateHeader("private-header",
216                          cl::desc("Display only the first format specific file "
217                                   "header"));
218 
219 static cl::alias
220 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
221                     cl::aliasopt(PrivateHeaders));
222 
223 cl::opt<bool> llvm::FileHeaders(
224     "file-headers",
225     cl::desc("Display the contents of the overall file header"));
226 
227 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
228                                   cl::aliasopt(FileHeaders));
229 
230 cl::opt<bool>
231     llvm::ArchiveHeaders("archive-headers",
232                          cl::desc("Display archive header information"));
233 
234 cl::alias
235 ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
236                     cl::aliasopt(ArchiveHeaders));
237 
238 cl::opt<bool>
239     llvm::PrintImmHex("print-imm-hex",
240                       cl::desc("Use hex format for immediate values"));
241 
242 cl::opt<bool> PrintFaultMaps("fault-map-section",
243                              cl::desc("Display contents of faultmap section"));
244 
245 cl::opt<DIDumpType> llvm::DwarfDumpType(
246     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
247     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
248 
249 cl::opt<bool> PrintSource(
250     "source",
251     cl::desc(
252         "Display source inlined with disassembly. Implies disassemble object"));
253 
254 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
255                            cl::aliasopt(PrintSource));
256 
257 cl::opt<bool> PrintLines("line-numbers",
258                          cl::desc("Display source line numbers with "
259                                   "disassembly. Implies disassemble object"));
260 
261 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
262                           cl::aliasopt(PrintLines));
263 
264 cl::opt<unsigned long long>
265     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
266                  cl::value_desc("address"), cl::init(0));
267 cl::opt<unsigned long long>
268     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
269                 cl::value_desc("address"), cl::init(UINT64_MAX));
270 static StringRef ToolName;
271 
272 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
273 
274 namespace {
275 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
276 
277 class SectionFilterIterator {
278 public:
279   SectionFilterIterator(FilterPredicate P,
280                         llvm::object::section_iterator const &I,
281                         llvm::object::section_iterator const &E)
282       : Predicate(std::move(P)), Iterator(I), End(E) {
283     ScanPredicate();
284   }
285   const llvm::object::SectionRef &operator*() const { return *Iterator; }
286   SectionFilterIterator &operator++() {
287     ++Iterator;
288     ScanPredicate();
289     return *this;
290   }
291   bool operator!=(SectionFilterIterator const &Other) const {
292     return Iterator != Other.Iterator;
293   }
294 
295 private:
296   void ScanPredicate() {
297     while (Iterator != End && !Predicate(*Iterator)) {
298       ++Iterator;
299     }
300   }
301   FilterPredicate Predicate;
302   llvm::object::section_iterator Iterator;
303   llvm::object::section_iterator End;
304 };
305 
306 class SectionFilter {
307 public:
308   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
309       : Predicate(std::move(P)), Object(O) {}
310   SectionFilterIterator begin() {
311     return SectionFilterIterator(Predicate, Object.section_begin(),
312                                  Object.section_end());
313   }
314   SectionFilterIterator end() {
315     return SectionFilterIterator(Predicate, Object.section_end(),
316                                  Object.section_end());
317   }
318 
319 private:
320   FilterPredicate Predicate;
321   llvm::object::ObjectFile const &Object;
322 };
323 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
324   return SectionFilter(
325       [](llvm::object::SectionRef const &S) {
326         if (FilterSections.empty())
327           return true;
328         llvm::StringRef String;
329         std::error_code error = S.getName(String);
330         if (error)
331           return false;
332         return is_contained(FilterSections, String);
333       },
334       O);
335 }
336 }
337 
338 void llvm::error(std::error_code EC) {
339   if (!EC)
340     return;
341   WithColor::error(errs(), ToolName)
342       << "reading file: " << EC.message() << ".\n";
343   errs().flush();
344   exit(1);
345 }
346 
347 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
348   WithColor::error(errs(), ToolName) << Message << ".\n";
349   errs().flush();
350   exit(1);
351 }
352 
353 void llvm::warn(StringRef Message) {
354   WithColor::warning(errs(), ToolName) << Message << ".\n";
355   errs().flush();
356 }
357 
358 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
359                                                 Twine Message) {
360   WithColor::error(errs(), ToolName)
361       << "'" << File << "': " << Message << ".\n";
362   exit(1);
363 }
364 
365 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
366                                                 std::error_code EC) {
367   assert(EC);
368   WithColor::error(errs(), ToolName)
369       << "'" << File << "': " << EC.message() << ".\n";
370   exit(1);
371 }
372 
373 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
374                                                 llvm::Error E) {
375   assert(E);
376   std::string Buf;
377   raw_string_ostream OS(Buf);
378   logAllUnhandledErrors(std::move(E), OS);
379   OS.flush();
380   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
381   exit(1);
382 }
383 
384 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
385                                                 StringRef FileName,
386                                                 llvm::Error E,
387                                                 StringRef ArchitectureName) {
388   assert(E);
389   WithColor::error(errs(), ToolName);
390   if (ArchiveName != "")
391     errs() << ArchiveName << "(" << FileName << ")";
392   else
393     errs() << "'" << FileName << "'";
394   if (!ArchitectureName.empty())
395     errs() << " (for architecture " << ArchitectureName << ")";
396   std::string Buf;
397   raw_string_ostream OS(Buf);
398   logAllUnhandledErrors(std::move(E), OS);
399   OS.flush();
400   errs() << ": " << Buf;
401   exit(1);
402 }
403 
404 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
405                                                 const object::Archive::Child &C,
406                                                 llvm::Error E,
407                                                 StringRef ArchitectureName) {
408   Expected<StringRef> NameOrErr = C.getName();
409   // TODO: if we have a error getting the name then it would be nice to print
410   // the index of which archive member this is and or its offset in the
411   // archive instead of "???" as the name.
412   if (!NameOrErr) {
413     consumeError(NameOrErr.takeError());
414     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
415   } else
416     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
417                        ArchitectureName);
418 }
419 
420 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
421   // Figure out the target triple.
422   llvm::Triple TheTriple("unknown-unknown-unknown");
423   if (TripleName.empty()) {
424     if (Obj) {
425       TheTriple = Obj->makeTriple();
426     }
427   } else {
428     TheTriple.setTriple(Triple::normalize(TripleName));
429 
430     // Use the triple, but also try to combine with ARM build attributes.
431     if (Obj) {
432       auto Arch = Obj->getArch();
433       if (Arch == Triple::arm || Arch == Triple::armeb) {
434         Obj->setARMSubArch(TheTriple);
435       }
436     }
437   }
438 
439   // Get the target specific parser.
440   std::string Error;
441   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
442                                                          Error);
443   if (!TheTarget) {
444     if (Obj)
445       report_error(Obj->getFileName(), "can't find target: " + Error);
446     else
447       error("can't find target: " + Error);
448   }
449 
450   // Update the triple name and return the found target.
451   TripleName = TheTriple.getTriple();
452   return TheTarget;
453 }
454 
455 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
456   return a.getOffset() < b.getOffset();
457 }
458 
459 template <class ELFT>
460 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
461                                                 const RelocationRef &RelRef,
462                                                 SmallVectorImpl<char> &Result) {
463   DataRefImpl Rel = RelRef.getRawDataRefImpl();
464 
465   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
466   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
467   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
468 
469   const ELFFile<ELFT> &EF = *Obj->getELFFile();
470 
471   auto SecOrErr = EF.getSection(Rel.d.a);
472   if (!SecOrErr)
473     return errorToErrorCode(SecOrErr.takeError());
474   const Elf_Shdr *Sec = *SecOrErr;
475   auto SymTabOrErr = EF.getSection(Sec->sh_link);
476   if (!SymTabOrErr)
477     return errorToErrorCode(SymTabOrErr.takeError());
478   const Elf_Shdr *SymTab = *SymTabOrErr;
479   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
480          SymTab->sh_type == ELF::SHT_DYNSYM);
481   auto StrTabSec = EF.getSection(SymTab->sh_link);
482   if (!StrTabSec)
483     return errorToErrorCode(StrTabSec.takeError());
484   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
485   if (!StrTabOrErr)
486     return errorToErrorCode(StrTabOrErr.takeError());
487   StringRef StrTab = *StrTabOrErr;
488   int64_t addend = 0;
489   // If there is no Symbol associated with the relocation, we set the undef
490   // boolean value to 'true'. This will prevent us from calling functions that
491   // requires the relocation to be associated with a symbol.
492   bool undef = false;
493   switch (Sec->sh_type) {
494   default:
495     return object_error::parse_failed;
496   case ELF::SHT_REL: {
497     // TODO: Read implicit addend from section data.
498     break;
499   }
500   case ELF::SHT_RELA: {
501     const Elf_Rela *ERela = Obj->getRela(Rel);
502     addend = ERela->r_addend;
503     undef = ERela->getSymbol(false) == 0;
504     break;
505   }
506   }
507   std::string Target;
508   if (!undef) {
509     symbol_iterator SI = RelRef.getSymbol();
510     const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
511     if (symb->getType() == ELF::STT_SECTION) {
512       Expected<section_iterator> SymSI = SI->getSection();
513       if (!SymSI)
514         return errorToErrorCode(SymSI.takeError());
515       const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
516       auto SecName = EF.getSectionName(SymSec);
517       if (!SecName)
518         return errorToErrorCode(SecName.takeError());
519       Target = *SecName;
520     } else {
521       Expected<StringRef> SymName = symb->getName(StrTab);
522       if (!SymName)
523         return errorToErrorCode(SymName.takeError());
524       Target = Demangle ? demangle(*SymName) : *SymName;
525     }
526   } else
527     Target = "*ABS*";
528 
529   // Default scheme is to print Target, as well as "+ <addend>" for nonzero
530   // addend. Should be acceptable for all normal purposes.
531   std::string fmtbuf;
532   raw_string_ostream fmt(fmtbuf);
533   fmt << Target;
534   if (addend != 0)
535     fmt << (addend < 0 ? "" : "+") << addend;
536   fmt.flush();
537   Result.append(fmtbuf.begin(), fmtbuf.end());
538   return std::error_code();
539 }
540 
541 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
542                                                 const RelocationRef &Rel,
543                                                 SmallVectorImpl<char> &Result) {
544   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
545     return getRelocationValueString(ELF32LE, Rel, Result);
546   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
547     return getRelocationValueString(ELF64LE, Rel, Result);
548   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
549     return getRelocationValueString(ELF32BE, Rel, Result);
550   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
551   return getRelocationValueString(ELF64BE, Rel, Result);
552 }
553 
554 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
555                                                 const RelocationRef &Rel,
556                                                 SmallVectorImpl<char> &Result) {
557   symbol_iterator SymI = Rel.getSymbol();
558   Expected<StringRef> SymNameOrErr = SymI->getName();
559   if (!SymNameOrErr)
560     return errorToErrorCode(SymNameOrErr.takeError());
561   StringRef SymName = *SymNameOrErr;
562   Result.append(SymName.begin(), SymName.end());
563   return std::error_code();
564 }
565 
566 static void printRelocationTargetName(const MachOObjectFile *O,
567                                       const MachO::any_relocation_info &RE,
568                                       raw_string_ostream &fmt) {
569   bool IsScattered = O->isRelocationScattered(RE);
570 
571   // Target of a scattered relocation is an address.  In the interest of
572   // generating pretty output, scan through the symbol table looking for a
573   // symbol that aligns with that address.  If we find one, print it.
574   // Otherwise, we just print the hex address of the target.
575   if (IsScattered) {
576     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
577 
578     for (const SymbolRef &Symbol : O->symbols()) {
579       std::error_code ec;
580       Expected<uint64_t> Addr = Symbol.getAddress();
581       if (!Addr)
582         report_error(O->getFileName(), Addr.takeError());
583       if (*Addr != Val)
584         continue;
585       Expected<StringRef> Name = Symbol.getName();
586       if (!Name)
587         report_error(O->getFileName(), Name.takeError());
588       fmt << *Name;
589       return;
590     }
591 
592     // If we couldn't find a symbol that this relocation refers to, try
593     // to find a section beginning instead.
594     for (const SectionRef &Section : ToolSectionFilter(*O)) {
595       std::error_code ec;
596 
597       StringRef Name;
598       uint64_t Addr = Section.getAddress();
599       if (Addr != Val)
600         continue;
601       if ((ec = Section.getName(Name)))
602         report_error(O->getFileName(), ec);
603       fmt << Name;
604       return;
605     }
606 
607     fmt << format("0x%x", Val);
608     return;
609   }
610 
611   StringRef S;
612   bool isExtern = O->getPlainRelocationExternal(RE);
613   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
614 
615   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
616     fmt << format("0x%0" PRIx64, Val);
617     return;
618   } else if (isExtern) {
619     symbol_iterator SI = O->symbol_begin();
620     advance(SI, Val);
621     Expected<StringRef> SOrErr = SI->getName();
622     if (!SOrErr)
623       report_error(O->getFileName(), SOrErr.takeError());
624     S = *SOrErr;
625   } else {
626     section_iterator SI = O->section_begin();
627     // Adjust for the fact that sections are 1-indexed.
628     if (Val == 0) {
629       fmt << "0 (?,?)";
630       return;
631     }
632     uint32_t i = Val - 1;
633     while (i != 0 && SI != O->section_end()) {
634       i--;
635       advance(SI, 1);
636     }
637     if (SI == O->section_end())
638       fmt << Val << " (?,?)";
639     else
640       SI->getName(S);
641   }
642 
643   fmt << S;
644 }
645 
646 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
647                                                 const RelocationRef &RelRef,
648                                                 SmallVectorImpl<char> &Result) {
649   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
650   symbol_iterator SI = RelRef.getSymbol();
651   std::string fmtbuf;
652   raw_string_ostream fmt(fmtbuf);
653   if (SI == Obj->symbol_end()) {
654     // Not all wasm relocations have symbols associated with them.
655     // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
656     fmt << Rel.Index;
657   } else {
658     Expected<StringRef> SymNameOrErr = SI->getName();
659     if (!SymNameOrErr)
660       return errorToErrorCode(SymNameOrErr.takeError());
661     StringRef SymName = *SymNameOrErr;
662     Result.append(SymName.begin(), SymName.end());
663   }
664   fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
665   fmt.flush();
666   Result.append(fmtbuf.begin(), fmtbuf.end());
667   return std::error_code();
668 }
669 
670 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
671                                                 const RelocationRef &RelRef,
672                                                 SmallVectorImpl<char> &Result) {
673   DataRefImpl Rel = RelRef.getRawDataRefImpl();
674   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
675 
676   unsigned Arch = Obj->getArch();
677 
678   std::string fmtbuf;
679   raw_string_ostream fmt(fmtbuf);
680   unsigned Type = Obj->getAnyRelocationType(RE);
681   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
682 
683   // Determine any addends that should be displayed with the relocation.
684   // These require decoding the relocation type, which is triple-specific.
685 
686   // X86_64 has entirely custom relocation types.
687   if (Arch == Triple::x86_64) {
688     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
689 
690     switch (Type) {
691     case MachO::X86_64_RELOC_GOT_LOAD:
692     case MachO::X86_64_RELOC_GOT: {
693       printRelocationTargetName(Obj, RE, fmt);
694       fmt << "@GOT";
695       if (isPCRel)
696         fmt << "PCREL";
697       break;
698     }
699     case MachO::X86_64_RELOC_SUBTRACTOR: {
700       DataRefImpl RelNext = Rel;
701       Obj->moveRelocationNext(RelNext);
702       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
703 
704       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
705       // X86_64_RELOC_UNSIGNED.
706       // NOTE: Scattered relocations don't exist on x86_64.
707       unsigned RType = Obj->getAnyRelocationType(RENext);
708       if (RType != MachO::X86_64_RELOC_UNSIGNED)
709         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
710                      "X86_64_RELOC_SUBTRACTOR.");
711 
712       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
713       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
714       printRelocationTargetName(Obj, RENext, fmt);
715       fmt << "-";
716       printRelocationTargetName(Obj, RE, fmt);
717       break;
718     }
719     case MachO::X86_64_RELOC_TLV:
720       printRelocationTargetName(Obj, RE, fmt);
721       fmt << "@TLV";
722       if (isPCRel)
723         fmt << "P";
724       break;
725     case MachO::X86_64_RELOC_SIGNED_1:
726       printRelocationTargetName(Obj, RE, fmt);
727       fmt << "-1";
728       break;
729     case MachO::X86_64_RELOC_SIGNED_2:
730       printRelocationTargetName(Obj, RE, fmt);
731       fmt << "-2";
732       break;
733     case MachO::X86_64_RELOC_SIGNED_4:
734       printRelocationTargetName(Obj, RE, fmt);
735       fmt << "-4";
736       break;
737     default:
738       printRelocationTargetName(Obj, RE, fmt);
739       break;
740     }
741     // X86 and ARM share some relocation types in common.
742   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
743              Arch == Triple::ppc) {
744     // Generic relocation types...
745     switch (Type) {
746     case MachO::GENERIC_RELOC_PAIR: // prints no info
747       return std::error_code();
748     case MachO::GENERIC_RELOC_SECTDIFF: {
749       DataRefImpl RelNext = Rel;
750       Obj->moveRelocationNext(RelNext);
751       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
752 
753       // X86 sect diff's must be followed by a relocation of type
754       // GENERIC_RELOC_PAIR.
755       unsigned RType = Obj->getAnyRelocationType(RENext);
756 
757       if (RType != MachO::GENERIC_RELOC_PAIR)
758         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
759                      "GENERIC_RELOC_SECTDIFF.");
760 
761       printRelocationTargetName(Obj, RE, fmt);
762       fmt << "-";
763       printRelocationTargetName(Obj, RENext, fmt);
764       break;
765     }
766     }
767 
768     if (Arch == Triple::x86 || Arch == Triple::ppc) {
769       switch (Type) {
770       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
771         DataRefImpl RelNext = Rel;
772         Obj->moveRelocationNext(RelNext);
773         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
774 
775         // X86 sect diff's must be followed by a relocation of type
776         // GENERIC_RELOC_PAIR.
777         unsigned RType = Obj->getAnyRelocationType(RENext);
778         if (RType != MachO::GENERIC_RELOC_PAIR)
779           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
780                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
781 
782         printRelocationTargetName(Obj, RE, fmt);
783         fmt << "-";
784         printRelocationTargetName(Obj, RENext, fmt);
785         break;
786       }
787       case MachO::GENERIC_RELOC_TLV: {
788         printRelocationTargetName(Obj, RE, fmt);
789         fmt << "@TLV";
790         if (IsPCRel)
791           fmt << "P";
792         break;
793       }
794       default:
795         printRelocationTargetName(Obj, RE, fmt);
796       }
797     } else { // ARM-specific relocations
798       switch (Type) {
799       case MachO::ARM_RELOC_HALF:
800       case MachO::ARM_RELOC_HALF_SECTDIFF: {
801         // Half relocations steal a bit from the length field to encode
802         // whether this is an upper16 or a lower16 relocation.
803         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
804 
805         if (isUpper)
806           fmt << ":upper16:(";
807         else
808           fmt << ":lower16:(";
809         printRelocationTargetName(Obj, RE, fmt);
810 
811         DataRefImpl RelNext = Rel;
812         Obj->moveRelocationNext(RelNext);
813         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
814 
815         // ARM half relocs must be followed by a relocation of type
816         // ARM_RELOC_PAIR.
817         unsigned RType = Obj->getAnyRelocationType(RENext);
818         if (RType != MachO::ARM_RELOC_PAIR)
819           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
820                        "ARM_RELOC_HALF");
821 
822         // NOTE: The half of the target virtual address is stashed in the
823         // address field of the secondary relocation, but we can't reverse
824         // engineer the constant offset from it without decoding the movw/movt
825         // instruction to find the other half in its immediate field.
826 
827         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
828         // symbol/section pointer of the follow-on relocation.
829         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
830           fmt << "-";
831           printRelocationTargetName(Obj, RENext, fmt);
832         }
833 
834         fmt << ")";
835         break;
836       }
837       default: { printRelocationTargetName(Obj, RE, fmt); }
838       }
839     }
840   } else
841     printRelocationTargetName(Obj, RE, fmt);
842 
843   fmt.flush();
844   Result.append(fmtbuf.begin(), fmtbuf.end());
845   return std::error_code();
846 }
847 
848 static std::error_code getRelocationValueString(const RelocationRef &Rel,
849                                                 SmallVectorImpl<char> &Result) {
850   const ObjectFile *Obj = Rel.getObject();
851   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
852     return getRelocationValueString(ELF, Rel, Result);
853   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
854     return getRelocationValueString(COFF, Rel, Result);
855   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
856     return getRelocationValueString(Wasm, Rel, Result);
857   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
858     return getRelocationValueString(MachO, Rel, Result);
859   llvm_unreachable("unknown object file format");
860 }
861 
862 /// Indicates whether this relocation should hidden when listing
863 /// relocations, usually because it is the trailing part of a multipart
864 /// relocation that will be printed as part of the leading relocation.
865 static bool getHidden(RelocationRef RelRef) {
866   const ObjectFile *Obj = RelRef.getObject();
867   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
868   if (!MachO)
869     return false;
870 
871   unsigned Arch = MachO->getArch();
872   DataRefImpl Rel = RelRef.getRawDataRefImpl();
873   uint64_t Type = MachO->getRelocationType(Rel);
874 
875   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
876   // is always hidden.
877   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
878     if (Type == MachO::GENERIC_RELOC_PAIR)
879       return true;
880   } else if (Arch == Triple::x86_64) {
881     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
882     // an X86_64_RELOC_SUBTRACTOR.
883     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
884       DataRefImpl RelPrev = Rel;
885       RelPrev.d.a--;
886       uint64_t PrevType = MachO->getRelocationType(RelPrev);
887       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
888         return true;
889     }
890   }
891 
892   return false;
893 }
894 
895 namespace {
896 class SourcePrinter {
897 protected:
898   DILineInfo OldLineInfo;
899   const ObjectFile *Obj = nullptr;
900   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
901   // File name to file contents of source
902   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
903   // Mark the line endings of the cached source
904   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
905 
906 private:
907   bool cacheSource(const DILineInfo& LineInfoFile);
908 
909 public:
910   SourcePrinter() = default;
911   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
912     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
913         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
914         DefaultArch);
915     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
916   }
917   virtual ~SourcePrinter() = default;
918   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
919                                StringRef Delimiter = "; ");
920 };
921 
922 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
923   std::unique_ptr<MemoryBuffer> Buffer;
924   if (LineInfo.Source) {
925     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
926   } else {
927     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
928     if (!BufferOrError)
929       return false;
930     Buffer = std::move(*BufferOrError);
931   }
932   // Chomp the file to get lines
933   size_t BufferSize = Buffer->getBufferSize();
934   const char *BufferStart = Buffer->getBufferStart();
935   for (const char *Start = BufferStart, *End = BufferStart;
936        End < BufferStart + BufferSize; End++)
937     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
938         (*End == '\r' && *(End + 1) == '\n')) {
939       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
940       if (*End == '\r')
941         End++;
942       Start = End + 1;
943     }
944   SourceCache[LineInfo.FileName] = std::move(Buffer);
945   return true;
946 }
947 
948 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
949                                     StringRef Delimiter) {
950   if (!Symbolizer)
951     return;
952   DILineInfo LineInfo = DILineInfo();
953   auto ExpectecLineInfo =
954       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
955   if (!ExpectecLineInfo)
956     consumeError(ExpectecLineInfo.takeError());
957   else
958     LineInfo = *ExpectecLineInfo;
959 
960   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
961       LineInfo.Line == 0)
962     return;
963 
964   if (PrintLines)
965     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
966   if (PrintSource) {
967     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
968       if (!cacheSource(LineInfo))
969         return;
970     auto FileBuffer = SourceCache.find(LineInfo.FileName);
971     if (FileBuffer != SourceCache.end()) {
972       auto LineBuffer = LineCache.find(LineInfo.FileName);
973       if (LineBuffer != LineCache.end()) {
974         if (LineInfo.Line > LineBuffer->second.size())
975           return;
976         // Vector begins at 0, line numbers are non-zero
977         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
978            << "\n";
979       }
980     }
981   }
982   OldLineInfo = LineInfo;
983 }
984 
985 static bool isArmElf(const ObjectFile *Obj) {
986   return (Obj->isELF() &&
987           (Obj->getArch() == Triple::aarch64 ||
988            Obj->getArch() == Triple::aarch64_be ||
989            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
990            Obj->getArch() == Triple::thumb ||
991            Obj->getArch() == Triple::thumbeb));
992 }
993 
994 class PrettyPrinter {
995 public:
996   virtual ~PrettyPrinter() = default;
997   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
998                          ArrayRef<uint8_t> Bytes, uint64_t Address,
999                          raw_ostream &OS, StringRef Annot,
1000                          MCSubtargetInfo const &STI, SourcePrinter *SP,
1001                          std::vector<RelocationRef> *Rels = nullptr) {
1002     if (SP && (PrintSource || PrintLines))
1003       SP->printSourceLine(OS, Address);
1004     if (!NoLeadingAddr)
1005       OS << format("%8" PRIx64 ":", Address);
1006     if (!NoShowRawInsn) {
1007       OS << "\t";
1008       dumpBytes(Bytes, OS);
1009     }
1010     if (MI)
1011       IP.printInst(MI, OS, "", STI);
1012     else
1013       OS << " <unknown>";
1014   }
1015 };
1016 PrettyPrinter PrettyPrinterInst;
1017 class HexagonPrettyPrinter : public PrettyPrinter {
1018 public:
1019   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1020                  raw_ostream &OS) {
1021     uint32_t opcode =
1022       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1023     if (!NoLeadingAddr)
1024       OS << format("%8" PRIx64 ":", Address);
1025     if (!NoShowRawInsn) {
1026       OS << "\t";
1027       dumpBytes(Bytes.slice(0, 4), OS);
1028       OS << format("%08" PRIx32, opcode);
1029     }
1030   }
1031   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1032                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1033                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1034                  std::vector<RelocationRef> *Rels) override {
1035     if (SP && (PrintSource || PrintLines))
1036       SP->printSourceLine(OS, Address, "");
1037     if (!MI) {
1038       printLead(Bytes, Address, OS);
1039       OS << " <unknown>";
1040       return;
1041     }
1042     std::string Buffer;
1043     {
1044       raw_string_ostream TempStream(Buffer);
1045       IP.printInst(MI, TempStream, "", STI);
1046     }
1047     StringRef Contents(Buffer);
1048     // Split off bundle attributes
1049     auto PacketBundle = Contents.rsplit('\n');
1050     // Split off first instruction from the rest
1051     auto HeadTail = PacketBundle.first.split('\n');
1052     auto Preamble = " { ";
1053     auto Separator = "";
1054     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
1055     std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin();
1056     std::vector<RelocationRef>::const_iterator rel_end = Rels->end();
1057 
1058     // Hexagon's packets require relocations to be inline rather than
1059     // clustered at the end of the packet.
1060     auto PrintReloc = [&]() -> void {
1061       while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) {
1062         if (rel_cur->getOffset() == Address) {
1063           SmallString<16> name;
1064           SmallString<32> val;
1065           rel_cur->getTypeName(name);
1066           error(getRelocationValueString(*rel_cur, val));
1067           OS << Separator << format(Fmt.data(), Address) << name << "\t" << val
1068                 << "\n";
1069           return;
1070         }
1071         rel_cur++;
1072       }
1073     };
1074 
1075     while(!HeadTail.first.empty()) {
1076       OS << Separator;
1077       Separator = "\n";
1078       if (SP && (PrintSource || PrintLines))
1079         SP->printSourceLine(OS, Address, "");
1080       printLead(Bytes, Address, OS);
1081       OS << Preamble;
1082       Preamble = "   ";
1083       StringRef Inst;
1084       auto Duplex = HeadTail.first.split('\v');
1085       if(!Duplex.second.empty()){
1086         OS << Duplex.first;
1087         OS << "; ";
1088         Inst = Duplex.second;
1089       }
1090       else
1091         Inst = HeadTail.first;
1092       OS << Inst;
1093       HeadTail = HeadTail.second.split('\n');
1094       if (HeadTail.first.empty())
1095         OS << " } " << PacketBundle.second;
1096       PrintReloc();
1097       Bytes = Bytes.slice(4);
1098       Address += 4;
1099     }
1100   }
1101 };
1102 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1103 
1104 class AMDGCNPrettyPrinter : public PrettyPrinter {
1105 public:
1106   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1107                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1108                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1109                  std::vector<RelocationRef> *Rels) override {
1110     if (SP && (PrintSource || PrintLines))
1111       SP->printSourceLine(OS, Address);
1112 
1113     typedef support::ulittle32_t U32;
1114 
1115     if (MI) {
1116       SmallString<40> InstStr;
1117       raw_svector_ostream IS(InstStr);
1118 
1119       IP.printInst(MI, IS, "", STI);
1120 
1121       OS << left_justify(IS.str(), 60);
1122     } else {
1123       // an unrecognized encoding - this is probably data so represent it
1124       // using the .long directive, or .byte directive if fewer than 4 bytes
1125       // remaining
1126       if (Bytes.size() >= 4) {
1127         OS << format("\t.long 0x%08" PRIx32 " ",
1128                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
1129         OS.indent(42);
1130       } else {
1131           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1132           for (unsigned int i = 1; i < Bytes.size(); i++)
1133             OS << format(", 0x%02" PRIx8, Bytes[i]);
1134           OS.indent(55 - (6 * Bytes.size()));
1135       }
1136     }
1137 
1138     OS << format("// %012" PRIX64 ": ", Address);
1139     if (Bytes.size() >=4) {
1140       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
1141                                  Bytes.size() / sizeof(U32)))
1142         // D should be explicitly casted to uint32_t here as it is passed
1143         // by format to snprintf as vararg.
1144         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
1145     } else {
1146       for (unsigned int i = 0; i < Bytes.size(); i++)
1147         OS << format("%02" PRIX8 " ", Bytes[i]);
1148     }
1149 
1150     if (!Annot.empty())
1151       OS << "// " << Annot;
1152   }
1153 };
1154 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1155 
1156 class BPFPrettyPrinter : public PrettyPrinter {
1157 public:
1158   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1159                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1160                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1161                  std::vector<RelocationRef> *Rels) override {
1162     if (SP && (PrintSource || PrintLines))
1163       SP->printSourceLine(OS, Address);
1164     if (!NoLeadingAddr)
1165       OS << format("%8" PRId64 ":", Address / 8);
1166     if (!NoShowRawInsn) {
1167       OS << "\t";
1168       dumpBytes(Bytes, OS);
1169     }
1170     if (MI)
1171       IP.printInst(MI, OS, "", STI);
1172     else
1173       OS << " <unknown>";
1174   }
1175 };
1176 BPFPrettyPrinter BPFPrettyPrinterInst;
1177 
1178 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1179   switch(Triple.getArch()) {
1180   default:
1181     return PrettyPrinterInst;
1182   case Triple::hexagon:
1183     return HexagonPrettyPrinterInst;
1184   case Triple::amdgcn:
1185     return AMDGCNPrettyPrinterInst;
1186   case Triple::bpfel:
1187   case Triple::bpfeb:
1188     return BPFPrettyPrinterInst;
1189   }
1190 }
1191 }
1192 
1193 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1194   assert(Obj->isELF());
1195   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1196     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1197   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1198     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1199   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1200     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1201   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1202     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1203   llvm_unreachable("Unsupported binary format");
1204 }
1205 
1206 template <class ELFT> static void
1207 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1208                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1209   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1210     uint8_t SymbolType = Symbol.getELFType();
1211     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1212       continue;
1213 
1214     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1215     if (!AddressOrErr)
1216       report_error(Obj->getFileName(), AddressOrErr.takeError());
1217     uint64_t Address = *AddressOrErr;
1218 
1219     Expected<StringRef> Name = Symbol.getName();
1220     if (!Name)
1221       report_error(Obj->getFileName(), Name.takeError());
1222     if (Name->empty())
1223       continue;
1224 
1225     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1226     if (!SectionOrErr)
1227       report_error(Obj->getFileName(), SectionOrErr.takeError());
1228     section_iterator SecI = *SectionOrErr;
1229     if (SecI == Obj->section_end())
1230       continue;
1231 
1232     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1233   }
1234 }
1235 
1236 static void
1237 addDynamicElfSymbols(const ObjectFile *Obj,
1238                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1239   assert(Obj->isELF());
1240   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1241     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1242   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1243     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1244   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1245     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1246   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1247     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1248   else
1249     llvm_unreachable("Unsupported binary format");
1250 }
1251 
1252 static void addPltEntries(const ObjectFile *Obj,
1253                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1254                           StringSaver &Saver) {
1255   Optional<SectionRef> Plt = None;
1256   for (const SectionRef &Section : Obj->sections()) {
1257     StringRef Name;
1258     if (Section.getName(Name))
1259       continue;
1260     if (Name == ".plt")
1261       Plt = Section;
1262   }
1263   if (!Plt)
1264     return;
1265   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1266     for (auto PltEntry : ElfObj->getPltAddresses()) {
1267       SymbolRef Symbol(PltEntry.first, ElfObj);
1268 
1269       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1270 
1271       Expected<StringRef> NameOrErr = Symbol.getName();
1272       if (!NameOrErr)
1273         report_error(Obj->getFileName(), NameOrErr.takeError());
1274       if (NameOrErr->empty())
1275         continue;
1276       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
1277 
1278       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
1279     }
1280   }
1281 }
1282 
1283 static std::string demangle(StringRef Name) {
1284   char *Demangled = nullptr;
1285   size_t Size = 0;
1286   if (Name.startswith("_Z"))
1287     Demangled = itaniumDemangle(Name.data(), Demangled, &Size, nullptr);
1288   else if (Name.startswith("?"))
1289     Demangled = microsoftDemangle(Name.data(), Demangled, &Size, nullptr);
1290 
1291   if (!Demangled)
1292     return Name;
1293 
1294   std::string Ret = Demangled;
1295   free(Demangled);
1296   return Ret;
1297 }
1298 
1299 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1300   if (StartAddress > StopAddress)
1301     error("Start address should be less than stop address");
1302 
1303   const Target *TheTarget = getTarget(Obj);
1304 
1305   // Package up features to be passed to target/subtarget
1306   SubtargetFeatures Features = Obj->getFeatures();
1307   if (MAttrs.size()) {
1308     for (unsigned i = 0; i != MAttrs.size(); ++i)
1309       Features.AddFeature(MAttrs[i]);
1310   }
1311 
1312   std::unique_ptr<const MCRegisterInfo> MRI(
1313       TheTarget->createMCRegInfo(TripleName));
1314   if (!MRI)
1315     report_error(Obj->getFileName(), "no register info for target " +
1316                  TripleName);
1317 
1318   // Set up disassembler.
1319   std::unique_ptr<const MCAsmInfo> AsmInfo(
1320       TheTarget->createMCAsmInfo(*MRI, TripleName));
1321   if (!AsmInfo)
1322     report_error(Obj->getFileName(), "no assembly info for target " +
1323                  TripleName);
1324   std::unique_ptr<const MCSubtargetInfo> STI(
1325       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1326   if (!STI)
1327     report_error(Obj->getFileName(), "no subtarget info for target " +
1328                  TripleName);
1329   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1330   if (!MII)
1331     report_error(Obj->getFileName(), "no instruction info for target " +
1332                  TripleName);
1333   MCObjectFileInfo MOFI;
1334   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1335   // FIXME: for now initialize MCObjectFileInfo with default values
1336   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1337 
1338   std::unique_ptr<MCDisassembler> DisAsm(
1339     TheTarget->createMCDisassembler(*STI, Ctx));
1340   if (!DisAsm)
1341     report_error(Obj->getFileName(), "no disassembler for target " +
1342                  TripleName);
1343 
1344   std::unique_ptr<const MCInstrAnalysis> MIA(
1345       TheTarget->createMCInstrAnalysis(MII.get()));
1346 
1347   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1348   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1349       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1350   if (!IP)
1351     report_error(Obj->getFileName(), "no instruction printer for target " +
1352                  TripleName);
1353   IP->setPrintImmHex(PrintImmHex);
1354   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1355 
1356   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1357                                                  "\t\t\t%08" PRIx64 ":  ";
1358 
1359   SourcePrinter SP(Obj, TheTarget->getName());
1360 
1361   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1362   // in RelocSecs contain the relocations for section S.
1363   std::error_code EC;
1364   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1365   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1366     section_iterator Sec2 = Section.getRelocatedSection();
1367     if (Sec2 != Obj->section_end())
1368       SectionRelocMap[*Sec2].push_back(Section);
1369   }
1370 
1371   // Create a mapping from virtual address to symbol name.  This is used to
1372   // pretty print the symbols while disassembling.
1373   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1374   SectionSymbolsTy AbsoluteSymbols;
1375   for (const SymbolRef &Symbol : Obj->symbols()) {
1376     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1377     if (!AddressOrErr)
1378       report_error(Obj->getFileName(), AddressOrErr.takeError());
1379     uint64_t Address = *AddressOrErr;
1380 
1381     Expected<StringRef> Name = Symbol.getName();
1382     if (!Name)
1383       report_error(Obj->getFileName(), Name.takeError());
1384     if (Name->empty())
1385       continue;
1386 
1387     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1388     if (!SectionOrErr)
1389       report_error(Obj->getFileName(), SectionOrErr.takeError());
1390 
1391     uint8_t SymbolType = ELF::STT_NOTYPE;
1392     if (Obj->isELF())
1393       SymbolType = getElfSymbolType(Obj, Symbol);
1394 
1395     section_iterator SecI = *SectionOrErr;
1396     if (SecI != Obj->section_end())
1397       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1398     else
1399       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
1400 
1401 
1402   }
1403   if (AllSymbols.empty() && Obj->isELF())
1404     addDynamicElfSymbols(Obj, AllSymbols);
1405 
1406   BumpPtrAllocator A;
1407   StringSaver Saver(A);
1408   addPltEntries(Obj, AllSymbols, Saver);
1409 
1410   // Create a mapping from virtual address to section.
1411   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1412   for (SectionRef Sec : Obj->sections())
1413     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1414   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1415 
1416   // Linked executables (.exe and .dll files) typically don't include a real
1417   // symbol table but they might contain an export table.
1418   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1419     for (const auto &ExportEntry : COFFObj->export_directories()) {
1420       StringRef Name;
1421       error(ExportEntry.getSymbolName(Name));
1422       if (Name.empty())
1423         continue;
1424       uint32_t RVA;
1425       error(ExportEntry.getExportRVA(RVA));
1426 
1427       uint64_t VA = COFFObj->getImageBase() + RVA;
1428       auto Sec = std::upper_bound(
1429           SectionAddresses.begin(), SectionAddresses.end(), VA,
1430           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1431             return LHS < RHS.first;
1432           });
1433       if (Sec != SectionAddresses.begin())
1434         --Sec;
1435       else
1436         Sec = SectionAddresses.end();
1437 
1438       if (Sec != SectionAddresses.end())
1439         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1440       else
1441         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1442     }
1443   }
1444 
1445   // Sort all the symbols, this allows us to use a simple binary search to find
1446   // a symbol near an address.
1447   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1448     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1449   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1450 
1451   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1452     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1453       continue;
1454 
1455     uint64_t SectionAddr = Section.getAddress();
1456     uint64_t SectSize = Section.getSize();
1457     if (!SectSize)
1458       continue;
1459 
1460     // Get the list of all the symbols in this section.
1461     SectionSymbolsTy &Symbols = AllSymbols[Section];
1462     std::vector<uint64_t> DataMappingSymsAddr;
1463     std::vector<uint64_t> TextMappingSymsAddr;
1464     if (isArmElf(Obj)) {
1465       for (const auto &Symb : Symbols) {
1466         uint64_t Address = std::get<0>(Symb);
1467         StringRef Name = std::get<1>(Symb);
1468         if (Name.startswith("$d"))
1469           DataMappingSymsAddr.push_back(Address - SectionAddr);
1470         if (Name.startswith("$x"))
1471           TextMappingSymsAddr.push_back(Address - SectionAddr);
1472         if (Name.startswith("$a"))
1473           TextMappingSymsAddr.push_back(Address - SectionAddr);
1474         if (Name.startswith("$t"))
1475           TextMappingSymsAddr.push_back(Address - SectionAddr);
1476       }
1477     }
1478 
1479     llvm::sort(DataMappingSymsAddr);
1480     llvm::sort(TextMappingSymsAddr);
1481 
1482     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1483       // AMDGPU disassembler uses symbolizer for printing labels
1484       std::unique_ptr<MCRelocationInfo> RelInfo(
1485         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1486       if (RelInfo) {
1487         std::unique_ptr<MCSymbolizer> Symbolizer(
1488           TheTarget->createMCSymbolizer(
1489             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1490         DisAsm->setSymbolizer(std::move(Symbolizer));
1491       }
1492     }
1493 
1494     // Make a list of all the relocations for this section.
1495     std::vector<RelocationRef> Rels;
1496     if (InlineRelocs) {
1497       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1498         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1499           Rels.push_back(Reloc);
1500         }
1501       }
1502     }
1503 
1504     // Sort relocations by address.
1505     llvm::sort(Rels, RelocAddressLess);
1506 
1507     StringRef SegmentName = "";
1508     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1509       DataRefImpl DR = Section.getRawDataRefImpl();
1510       SegmentName = MachO->getSectionFinalSegmentName(DR);
1511     }
1512     StringRef SectionName;
1513     error(Section.getName(SectionName));
1514 
1515     // If the section has no symbol at the start, just insert a dummy one.
1516     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1517       Symbols.insert(
1518           Symbols.begin(),
1519           std::make_tuple(SectionAddr, SectionName,
1520                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1521     }
1522 
1523     SmallString<40> Comments;
1524     raw_svector_ostream CommentStream(Comments);
1525 
1526     StringRef BytesStr;
1527     error(Section.getContents(BytesStr));
1528     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1529                             BytesStr.size());
1530 
1531     uint64_t Size;
1532     uint64_t Index;
1533     bool PrintedSection = false;
1534 
1535     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1536     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1537     // Disassemble symbol by symbol.
1538     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1539       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1540       // The end is either the section end or the beginning of the next
1541       // symbol.
1542       uint64_t End =
1543           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1544       // Don't try to disassemble beyond the end of section contents.
1545       if (End > SectSize)
1546         End = SectSize;
1547       // If this symbol has the same address as the next symbol, then skip it.
1548       if (Start >= End)
1549         continue;
1550 
1551       // Check if we need to skip symbol
1552       // Skip if the symbol's data is not between StartAddress and StopAddress
1553       if (End + SectionAddr < StartAddress ||
1554           Start + SectionAddr > StopAddress) {
1555         continue;
1556       }
1557 
1558       /// Skip if user requested specific symbols and this is not in the list
1559       if (!DisasmFuncsSet.empty() &&
1560           !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1561         continue;
1562 
1563       if (!PrintedSection) {
1564         PrintedSection = true;
1565         outs() << "Disassembly of section ";
1566         if (!SegmentName.empty())
1567           outs() << SegmentName << ",";
1568         outs() << SectionName << ':';
1569       }
1570 
1571       // Stop disassembly at the stop address specified
1572       if (End + SectionAddr > StopAddress)
1573         End = StopAddress - SectionAddr;
1574 
1575       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1576         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1577           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1578           Start += 256;
1579         }
1580         if (si == se - 1 ||
1581             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1582           // cut trailing zeroes at the end of kernel
1583           // cut up to 256 bytes
1584           const uint64_t EndAlign = 256;
1585           const auto Limit = End - (std::min)(EndAlign, End - Start);
1586           while (End > Limit &&
1587             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1588             End -= 4;
1589         }
1590       }
1591 
1592       outs() << '\n';
1593       StringRef SymbolName = std::get<1>(Symbols[si]);
1594       if (Demangle)
1595         outs() << demangle(SymbolName) << ":\n";
1596       else
1597         outs() << SymbolName << ":\n";
1598 
1599       // Don't print raw contents of a virtual section. A virtual section
1600       // doesn't have any contents in the file.
1601       if (Section.isVirtual()) {
1602         outs() << "...\n";
1603         continue;
1604       }
1605 
1606 #ifndef NDEBUG
1607       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1608 #else
1609       raw_ostream &DebugOut = nulls();
1610 #endif
1611 
1612       for (Index = Start; Index < End; Index += Size) {
1613         MCInst Inst;
1614 
1615         if (Index + SectionAddr < StartAddress ||
1616             Index + SectionAddr > StopAddress) {
1617           // skip byte by byte till StartAddress is reached
1618           Size = 1;
1619           continue;
1620         }
1621         // AArch64 ELF binaries can interleave data and text in the
1622         // same section. We rely on the markers introduced to
1623         // understand what we need to dump. If the data marker is within a
1624         // function, it is denoted as a word/short etc
1625         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1626             !DisassembleAll) {
1627           uint64_t Stride = 0;
1628 
1629           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1630                                       DataMappingSymsAddr.end(), Index);
1631           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1632             // Switch to data.
1633             while (Index < End) {
1634               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1635               outs() << "\t";
1636               if (Index + 4 <= End) {
1637                 Stride = 4;
1638                 dumpBytes(Bytes.slice(Index, 4), outs());
1639                 outs() << "\t.word\t";
1640                 uint32_t Data = 0;
1641                 if (Obj->isLittleEndian()) {
1642                   const auto Word =
1643                       reinterpret_cast<const support::ulittle32_t *>(
1644                           Bytes.data() + Index);
1645                   Data = *Word;
1646                 } else {
1647                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1648                       Bytes.data() + Index);
1649                   Data = *Word;
1650                 }
1651                 outs() << "0x" << format("%08" PRIx32, Data);
1652               } else if (Index + 2 <= End) {
1653                 Stride = 2;
1654                 dumpBytes(Bytes.slice(Index, 2), outs());
1655                 outs() << "\t\t.short\t";
1656                 uint16_t Data = 0;
1657                 if (Obj->isLittleEndian()) {
1658                   const auto Short =
1659                       reinterpret_cast<const support::ulittle16_t *>(
1660                           Bytes.data() + Index);
1661                   Data = *Short;
1662                 } else {
1663                   const auto Short =
1664                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1665                                                                   Index);
1666                   Data = *Short;
1667                 }
1668                 outs() << "0x" << format("%04" PRIx16, Data);
1669               } else {
1670                 Stride = 1;
1671                 dumpBytes(Bytes.slice(Index, 1), outs());
1672                 outs() << "\t\t.byte\t";
1673                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1674               }
1675               Index += Stride;
1676               outs() << "\n";
1677               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1678                                           TextMappingSymsAddr.end(), Index);
1679               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1680                 break;
1681             }
1682           }
1683         }
1684 
1685         // If there is a data symbol inside an ELF text section and we are only
1686         // disassembling text (applicable all architectures),
1687         // we are in a situation where we must print the data and not
1688         // disassemble it.
1689         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1690             !DisassembleAll && Section.isText()) {
1691           // print out data up to 8 bytes at a time in hex and ascii
1692           uint8_t AsciiData[9] = {'\0'};
1693           uint8_t Byte;
1694           int NumBytes = 0;
1695 
1696           for (Index = Start; Index < End; Index += 1) {
1697             if (((SectionAddr + Index) < StartAddress) ||
1698                 ((SectionAddr + Index) > StopAddress))
1699               continue;
1700             if (NumBytes == 0) {
1701               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1702               outs() << "\t";
1703             }
1704             Byte = Bytes.slice(Index)[0];
1705             outs() << format(" %02x", Byte);
1706             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1707 
1708             uint8_t IndentOffset = 0;
1709             NumBytes++;
1710             if (Index == End - 1 || NumBytes > 8) {
1711               // Indent the space for less than 8 bytes data.
1712               // 2 spaces for byte and one for space between bytes
1713               IndentOffset = 3 * (8 - NumBytes);
1714               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1715                 AsciiData[Excess] = '\0';
1716               NumBytes = 8;
1717             }
1718             if (NumBytes == 8) {
1719               AsciiData[8] = '\0';
1720               outs() << std::string(IndentOffset, ' ') << "         ";
1721               outs() << reinterpret_cast<char *>(AsciiData);
1722               outs() << '\n';
1723               NumBytes = 0;
1724             }
1725           }
1726         }
1727         if (Index >= End)
1728           break;
1729 
1730         // Disassemble a real instruction or a data when disassemble all is
1731         // provided
1732         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1733                                                    SectionAddr + Index, DebugOut,
1734                                                    CommentStream);
1735         if (Size == 0)
1736           Size = 1;
1737 
1738         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1739                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1740                       *STI, &SP, &Rels);
1741         outs() << CommentStream.str();
1742         Comments.clear();
1743 
1744         // Try to resolve the target of a call, tail call, etc. to a specific
1745         // symbol.
1746         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1747                     MIA->isConditionalBranch(Inst))) {
1748           uint64_t Target;
1749           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1750             // In a relocatable object, the target's section must reside in
1751             // the same section as the call instruction or it is accessed
1752             // through a relocation.
1753             //
1754             // In a non-relocatable object, the target may be in any section.
1755             //
1756             // N.B. We don't walk the relocations in the relocatable case yet.
1757             auto *TargetSectionSymbols = &Symbols;
1758             if (!Obj->isRelocatableObject()) {
1759               auto SectionAddress = std::upper_bound(
1760                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1761                   [](uint64_t LHS,
1762                       const std::pair<uint64_t, SectionRef> &RHS) {
1763                     return LHS < RHS.first;
1764                   });
1765               if (SectionAddress != SectionAddresses.begin()) {
1766                 --SectionAddress;
1767                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1768               } else {
1769                 TargetSectionSymbols = &AbsoluteSymbols;
1770               }
1771             }
1772 
1773             // Find the first symbol in the section whose offset is less than
1774             // or equal to the target. If there isn't a section that contains
1775             // the target, find the nearest preceding absolute symbol.
1776             auto TargetSym = std::upper_bound(
1777                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1778                 Target, [](uint64_t LHS,
1779                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1780                   return LHS < std::get<0>(RHS);
1781                 });
1782             if (TargetSym == TargetSectionSymbols->begin()) {
1783               TargetSectionSymbols = &AbsoluteSymbols;
1784               TargetSym = std::upper_bound(
1785                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1786                   Target, [](uint64_t LHS,
1787                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1788                             return LHS < std::get<0>(RHS);
1789                           });
1790             }
1791             if (TargetSym != TargetSectionSymbols->begin()) {
1792               --TargetSym;
1793               uint64_t TargetAddress = std::get<0>(*TargetSym);
1794               StringRef TargetName = std::get<1>(*TargetSym);
1795               outs() << " <" << TargetName;
1796               uint64_t Disp = Target - TargetAddress;
1797               if (Disp)
1798                 outs() << "+0x" << Twine::utohexstr(Disp);
1799               outs() << '>';
1800             }
1801           }
1802         }
1803         outs() << "\n";
1804 
1805         // Hexagon does this in pretty printer
1806         if (Obj->getArch() != Triple::hexagon)
1807           // Print relocation for instruction.
1808           while (rel_cur != rel_end) {
1809             bool hidden = getHidden(*rel_cur);
1810             uint64_t addr = rel_cur->getOffset();
1811             SmallString<16> name;
1812             SmallString<32> val;
1813 
1814             // If this relocation is hidden, skip it.
1815             if (hidden || ((SectionAddr + addr) < StartAddress)) {
1816               ++rel_cur;
1817               continue;
1818             }
1819 
1820             // Stop when rel_cur's address is past the current instruction.
1821             if (addr >= Index + Size) break;
1822             rel_cur->getTypeName(name);
1823             error(getRelocationValueString(*rel_cur, val));
1824             outs() << format(Fmt.data(), SectionAddr + addr) << name
1825                    << "\t" << val << "\n";
1826             ++rel_cur;
1827           }
1828       }
1829     }
1830   }
1831 }
1832 
1833 void llvm::PrintRelocations(const ObjectFile *Obj) {
1834   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1835                                                  "%08" PRIx64;
1836   // Regular objdump doesn't print relocations in non-relocatable object
1837   // files.
1838   if (!Obj->isRelocatableObject())
1839     return;
1840 
1841   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1842     if (Section.relocation_begin() == Section.relocation_end())
1843       continue;
1844     StringRef secname;
1845     error(Section.getName(secname));
1846     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1847     for (const RelocationRef &Reloc : Section.relocations()) {
1848       bool hidden = getHidden(Reloc);
1849       uint64_t address = Reloc.getOffset();
1850       SmallString<32> relocname;
1851       SmallString<32> valuestr;
1852       if (address < StartAddress || address > StopAddress || hidden)
1853         continue;
1854       Reloc.getTypeName(relocname);
1855       error(getRelocationValueString(Reloc, valuestr));
1856       outs() << format(Fmt.data(), address) << " " << relocname << " "
1857              << valuestr << "\n";
1858     }
1859     outs() << "\n";
1860   }
1861 }
1862 
1863 void llvm::PrintDynamicRelocations(const ObjectFile *Obj) {
1864 
1865   // For the moment, this option is for ELF only
1866   if (!Obj->isELF())
1867     return;
1868 
1869   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1870 
1871   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1872     error("not a dynamic object");
1873     return;
1874   }
1875 
1876   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1877 
1878   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1879   if (DynRelSec.empty())
1880     return;
1881 
1882   outs() << "DYNAMIC RELOCATION RECORDS\n";
1883   for (const SectionRef &Section : DynRelSec) {
1884     if (Section.relocation_begin() == Section.relocation_end())
1885       continue;
1886     for (const RelocationRef &Reloc : Section.relocations()) {
1887       uint64_t address = Reloc.getOffset();
1888       SmallString<32> relocname;
1889       SmallString<32> valuestr;
1890       Reloc.getTypeName(relocname);
1891       error(getRelocationValueString(Reloc, valuestr));
1892       outs() << format(Fmt.data(), address) << " " << relocname << " "
1893              << valuestr << "\n";
1894     }
1895   }
1896 }
1897 
1898 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1899   outs() << "Sections:\n"
1900             "Idx Name          Size      Address          Type\n";
1901   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1902     StringRef Name;
1903     error(Section.getName(Name));
1904     uint64_t Address = Section.getAddress();
1905     uint64_t Size = Section.getSize();
1906     bool Text = Section.isText();
1907     bool Data = Section.isData();
1908     bool BSS = Section.isBSS();
1909     std::string Type = (std::string(Text ? "TEXT " : "") +
1910                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1911     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1912                      (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1913                      Address, Type.c_str());
1914   }
1915   outs() << "\n";
1916 }
1917 
1918 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1919   std::error_code EC;
1920   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1921     StringRef Name;
1922     StringRef Contents;
1923     error(Section.getName(Name));
1924     uint64_t BaseAddr = Section.getAddress();
1925     uint64_t Size = Section.getSize();
1926     if (!Size)
1927       continue;
1928 
1929     outs() << "Contents of section " << Name << ":\n";
1930     if (Section.isBSS()) {
1931       outs() << format("<skipping contents of bss section at [%04" PRIx64
1932                        ", %04" PRIx64 ")>\n",
1933                        BaseAddr, BaseAddr + Size);
1934       continue;
1935     }
1936 
1937     error(Section.getContents(Contents));
1938 
1939     // Dump out the content as hex and printable ascii characters.
1940     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1941       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1942       // Dump line of hex.
1943       for (std::size_t i = 0; i < 16; ++i) {
1944         if (i != 0 && i % 4 == 0)
1945           outs() << ' ';
1946         if (addr + i < end)
1947           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1948                  << hexdigit(Contents[addr + i] & 0xF, true);
1949         else
1950           outs() << "  ";
1951       }
1952       // Print ascii.
1953       outs() << "  ";
1954       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1955         if (isPrint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1956           outs() << Contents[addr + i];
1957         else
1958           outs() << ".";
1959       }
1960       outs() << "\n";
1961     }
1962   }
1963 }
1964 
1965 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1966                             StringRef ArchitectureName) {
1967   outs() << "SYMBOL TABLE:\n";
1968 
1969   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1970     printCOFFSymbolTable(coff);
1971     return;
1972   }
1973   for (const SymbolRef &Symbol : o->symbols()) {
1974     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1975     if (!AddressOrError)
1976       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1977                    ArchitectureName);
1978     uint64_t Address = *AddressOrError;
1979     if ((Address < StartAddress) || (Address > StopAddress))
1980       continue;
1981     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1982     if (!TypeOrError)
1983       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1984                    ArchitectureName);
1985     SymbolRef::Type Type = *TypeOrError;
1986     uint32_t Flags = Symbol.getFlags();
1987     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1988     if (!SectionOrErr)
1989       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1990                    ArchitectureName);
1991     section_iterator Section = *SectionOrErr;
1992     StringRef Name;
1993     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1994       Section->getName(Name);
1995     } else {
1996       Expected<StringRef> NameOrErr = Symbol.getName();
1997       if (!NameOrErr)
1998         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1999                      ArchitectureName);
2000       Name = *NameOrErr;
2001     }
2002 
2003     bool Global = Flags & SymbolRef::SF_Global;
2004     bool Weak = Flags & SymbolRef::SF_Weak;
2005     bool Absolute = Flags & SymbolRef::SF_Absolute;
2006     bool Common = Flags & SymbolRef::SF_Common;
2007     bool Hidden = Flags & SymbolRef::SF_Hidden;
2008 
2009     char GlobLoc = ' ';
2010     if (Type != SymbolRef::ST_Unknown)
2011       GlobLoc = Global ? 'g' : 'l';
2012     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2013                  ? 'd' : ' ';
2014     char FileFunc = ' ';
2015     if (Type == SymbolRef::ST_File)
2016       FileFunc = 'f';
2017     else if (Type == SymbolRef::ST_Function)
2018       FileFunc = 'F';
2019     else if (Type == SymbolRef::ST_Data)
2020       FileFunc = 'O';
2021 
2022     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
2023                                                    "%08" PRIx64;
2024 
2025     outs() << format(Fmt, Address) << " "
2026            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2027            << (Weak ? 'w' : ' ') // Weak?
2028            << ' ' // Constructor. Not supported yet.
2029            << ' ' // Warning. Not supported yet.
2030            << ' ' // Indirect reference to another symbol.
2031            << Debug // Debugging (d) or dynamic (D) symbol.
2032            << FileFunc // Name of function (F), file (f) or object (O).
2033            << ' ';
2034     if (Absolute) {
2035       outs() << "*ABS*";
2036     } else if (Common) {
2037       outs() << "*COM*";
2038     } else if (Section == o->section_end()) {
2039       outs() << "*UND*";
2040     } else {
2041       if (const MachOObjectFile *MachO =
2042           dyn_cast<const MachOObjectFile>(o)) {
2043         DataRefImpl DR = Section->getRawDataRefImpl();
2044         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
2045         outs() << SegmentName << ",";
2046       }
2047       StringRef SectionName;
2048       error(Section->getName(SectionName));
2049       outs() << SectionName;
2050     }
2051 
2052     outs() << '\t';
2053     if (Common || isa<ELFObjectFileBase>(o)) {
2054       uint64_t Val =
2055           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2056       outs() << format("\t %08" PRIx64 " ", Val);
2057     }
2058 
2059     if (Hidden) {
2060       outs() << ".hidden ";
2061     }
2062 
2063     if (Demangle)
2064       outs() << demangle(Name) << '\n';
2065     else
2066       outs() << Name << '\n';
2067   }
2068 }
2069 
2070 static void PrintUnwindInfo(const ObjectFile *o) {
2071   outs() << "Unwind info:\n\n";
2072 
2073   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
2074     printCOFFUnwindInfo(coff);
2075   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2076     printMachOUnwindInfo(MachO);
2077   else {
2078     // TODO: Extract DWARF dump tool to objdump.
2079     WithColor::error(errs(), ToolName)
2080         << "This operation is only currently supported "
2081            "for COFF and MachO object files.\n";
2082     return;
2083   }
2084 }
2085 
2086 void llvm::printExportsTrie(const ObjectFile *o) {
2087   outs() << "Exports trie:\n";
2088   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2089     printMachOExportsTrie(MachO);
2090   else {
2091     WithColor::error(errs(), ToolName)
2092         << "This operation is only currently supported "
2093            "for Mach-O executable files.\n";
2094     return;
2095   }
2096 }
2097 
2098 void llvm::printRebaseTable(ObjectFile *o) {
2099   outs() << "Rebase table:\n";
2100   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2101     printMachORebaseTable(MachO);
2102   else {
2103     WithColor::error(errs(), ToolName)
2104         << "This operation is only currently supported "
2105            "for Mach-O executable files.\n";
2106     return;
2107   }
2108 }
2109 
2110 void llvm::printBindTable(ObjectFile *o) {
2111   outs() << "Bind table:\n";
2112   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2113     printMachOBindTable(MachO);
2114   else {
2115     WithColor::error(errs(), ToolName)
2116         << "This operation is only currently supported "
2117            "for Mach-O executable files.\n";
2118     return;
2119   }
2120 }
2121 
2122 void llvm::printLazyBindTable(ObjectFile *o) {
2123   outs() << "Lazy bind table:\n";
2124   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2125     printMachOLazyBindTable(MachO);
2126   else {
2127     WithColor::error(errs(), ToolName)
2128         << "This operation is only currently supported "
2129            "for Mach-O executable files.\n";
2130     return;
2131   }
2132 }
2133 
2134 void llvm::printWeakBindTable(ObjectFile *o) {
2135   outs() << "Weak bind table:\n";
2136   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2137     printMachOWeakBindTable(MachO);
2138   else {
2139     WithColor::error(errs(), ToolName)
2140         << "This operation is only currently supported "
2141            "for Mach-O executable files.\n";
2142     return;
2143   }
2144 }
2145 
2146 /// Dump the raw contents of the __clangast section so the output can be piped
2147 /// into llvm-bcanalyzer.
2148 void llvm::printRawClangAST(const ObjectFile *Obj) {
2149   if (outs().is_displayed()) {
2150     WithColor::error(errs(), ToolName)
2151         << "The -raw-clang-ast option will dump the raw binary contents of "
2152            "the clang ast section.\n"
2153            "Please redirect the output to a file or another program such as "
2154            "llvm-bcanalyzer.\n";
2155     return;
2156   }
2157 
2158   StringRef ClangASTSectionName("__clangast");
2159   if (isa<COFFObjectFile>(Obj)) {
2160     ClangASTSectionName = "clangast";
2161   }
2162 
2163   Optional<object::SectionRef> ClangASTSection;
2164   for (auto Sec : ToolSectionFilter(*Obj)) {
2165     StringRef Name;
2166     Sec.getName(Name);
2167     if (Name == ClangASTSectionName) {
2168       ClangASTSection = Sec;
2169       break;
2170     }
2171   }
2172   if (!ClangASTSection)
2173     return;
2174 
2175   StringRef ClangASTContents;
2176   error(ClangASTSection.getValue().getContents(ClangASTContents));
2177   outs().write(ClangASTContents.data(), ClangASTContents.size());
2178 }
2179 
2180 static void printFaultMaps(const ObjectFile *Obj) {
2181   const char *FaultMapSectionName = nullptr;
2182 
2183   if (isa<ELFObjectFileBase>(Obj)) {
2184     FaultMapSectionName = ".llvm_faultmaps";
2185   } else if (isa<MachOObjectFile>(Obj)) {
2186     FaultMapSectionName = "__llvm_faultmaps";
2187   } else {
2188     WithColor::error(errs(), ToolName)
2189         << "This operation is only currently supported "
2190            "for ELF and Mach-O executable files.\n";
2191     return;
2192   }
2193 
2194   Optional<object::SectionRef> FaultMapSection;
2195 
2196   for (auto Sec : ToolSectionFilter(*Obj)) {
2197     StringRef Name;
2198     Sec.getName(Name);
2199     if (Name == FaultMapSectionName) {
2200       FaultMapSection = Sec;
2201       break;
2202     }
2203   }
2204 
2205   outs() << "FaultMap table:\n";
2206 
2207   if (!FaultMapSection.hasValue()) {
2208     outs() << "<not found>\n";
2209     return;
2210   }
2211 
2212   StringRef FaultMapContents;
2213   error(FaultMapSection.getValue().getContents(FaultMapContents));
2214 
2215   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2216                      FaultMapContents.bytes_end());
2217 
2218   outs() << FMP;
2219 }
2220 
2221 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2222   if (o->isELF()) {
2223     printELFFileHeader(o);
2224     return printELFDynamicSection(o);
2225   }
2226   if (o->isCOFF())
2227     return printCOFFFileHeader(o);
2228   if (o->isWasm())
2229     return printWasmFileHeader(o);
2230   if (o->isMachO()) {
2231     printMachOFileHeader(o);
2232     if (!onlyFirst)
2233       printMachOLoadCommands(o);
2234     return;
2235   }
2236   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2237 }
2238 
2239 static void printFileHeaders(const ObjectFile *o) {
2240   if (!o->isELF() && !o->isCOFF())
2241     report_error(o->getFileName(), "Invalid/Unsupported object file format");
2242 
2243   Triple::ArchType AT = o->getArch();
2244   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2245   Expected<uint64_t> StartAddrOrErr = o->getStartAddress();
2246   if (!StartAddrOrErr)
2247     report_error(o->getFileName(), StartAddrOrErr.takeError());
2248 
2249   StringRef Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2250   uint64_t Address = StartAddrOrErr.get();
2251   outs() << "start address: "
2252          << "0x" << format(Fmt.data(), Address)
2253          << "\n";
2254 }
2255 
2256 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2257   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2258   if (!ModeOrErr) {
2259     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2260     consumeError(ModeOrErr.takeError());
2261     return;
2262   }
2263   sys::fs::perms Mode = ModeOrErr.get();
2264   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2265   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2266   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2267   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2268   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2269   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2270   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2271   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2272   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2273 
2274   outs() << " ";
2275 
2276   Expected<unsigned> UIDOrErr = C.getUID();
2277   if (!UIDOrErr)
2278     report_error(Filename, UIDOrErr.takeError());
2279   unsigned UID = UIDOrErr.get();
2280   outs() << format("%d/", UID);
2281 
2282   Expected<unsigned> GIDOrErr = C.getGID();
2283   if (!GIDOrErr)
2284     report_error(Filename, GIDOrErr.takeError());
2285   unsigned GID = GIDOrErr.get();
2286   outs() << format("%-d ", GID);
2287 
2288   Expected<uint64_t> Size = C.getRawSize();
2289   if (!Size)
2290     report_error(Filename, Size.takeError());
2291   outs() << format("%6" PRId64, Size.get()) << " ";
2292 
2293   StringRef RawLastModified = C.getRawLastModified();
2294   unsigned Seconds;
2295   if (RawLastModified.getAsInteger(10, Seconds))
2296     outs() << "(date: \"" << RawLastModified
2297            << "\" contains non-decimal chars) ";
2298   else {
2299     // Since ctime(3) returns a 26 character string of the form:
2300     // "Sun Sep 16 01:03:52 1973\n\0"
2301     // just print 24 characters.
2302     time_t t = Seconds;
2303     outs() << format("%.24s ", ctime(&t));
2304   }
2305 
2306   StringRef Name = "";
2307   Expected<StringRef> NameOrErr = C.getName();
2308   if (!NameOrErr) {
2309     consumeError(NameOrErr.takeError());
2310     Expected<StringRef> RawNameOrErr = C.getRawName();
2311     if (!RawNameOrErr)
2312       report_error(Filename, NameOrErr.takeError());
2313     Name = RawNameOrErr.get();
2314   } else {
2315     Name = NameOrErr.get();
2316   }
2317   outs() << Name << "\n";
2318 }
2319 
2320 static void DumpObject(ObjectFile *o, const Archive *a = nullptr,
2321                        const Archive::Child *c = nullptr) {
2322   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2323   // Avoid other output when using a raw option.
2324   if (!RawClangAST) {
2325     outs() << '\n';
2326     if (a)
2327       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2328     else
2329       outs() << o->getFileName();
2330     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2331   }
2332 
2333   if (ArchiveHeaders && !MachOOpt && c)
2334     printArchiveChild(ArchiveName, *c);
2335   if (Disassemble)
2336     DisassembleObject(o, Relocations);
2337   if (Relocations && !Disassemble)
2338     PrintRelocations(o);
2339   if (DynamicRelocations)
2340     PrintDynamicRelocations(o);
2341   if (SectionHeaders)
2342     PrintSectionHeaders(o);
2343   if (SectionContents)
2344     PrintSectionContents(o);
2345   if (SymbolTable)
2346     PrintSymbolTable(o, ArchiveName);
2347   if (UnwindInfo)
2348     PrintUnwindInfo(o);
2349   if (PrivateHeaders || FirstPrivateHeader)
2350     printPrivateFileHeaders(o, FirstPrivateHeader);
2351   if (FileHeaders)
2352     printFileHeaders(o);
2353   if (ExportsTrie)
2354     printExportsTrie(o);
2355   if (Rebase)
2356     printRebaseTable(o);
2357   if (Bind)
2358     printBindTable(o);
2359   if (LazyBind)
2360     printLazyBindTable(o);
2361   if (WeakBind)
2362     printWeakBindTable(o);
2363   if (RawClangAST)
2364     printRawClangAST(o);
2365   if (PrintFaultMaps)
2366     printFaultMaps(o);
2367   if (DwarfDumpType != DIDT_Null) {
2368     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2369     // Dump the complete DWARF structure.
2370     DIDumpOptions DumpOpts;
2371     DumpOpts.DumpType = DwarfDumpType;
2372     DICtx->dump(outs(), DumpOpts);
2373   }
2374 }
2375 
2376 static void DumpObject(const COFFImportFile *I, const Archive *A,
2377                        const Archive::Child *C = nullptr) {
2378   StringRef ArchiveName = A ? A->getFileName() : "";
2379 
2380   // Avoid other output when using a raw option.
2381   if (!RawClangAST)
2382     outs() << '\n'
2383            << ArchiveName << "(" << I->getFileName() << ")"
2384            << ":\tfile format COFF-import-file"
2385            << "\n\n";
2386 
2387   if (ArchiveHeaders && !MachOOpt && C)
2388     printArchiveChild(ArchiveName, *C);
2389   if (SymbolTable)
2390     printCOFFSymbolTable(I);
2391 }
2392 
2393 /// Dump each object file in \a a;
2394 static void DumpArchive(const Archive *a) {
2395   Error Err = Error::success();
2396   for (auto &C : a->children(Err)) {
2397     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2398     if (!ChildOrErr) {
2399       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2400         report_error(a->getFileName(), C, std::move(E));
2401       continue;
2402     }
2403     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2404       DumpObject(o, a, &C);
2405     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2406       DumpObject(I, a, &C);
2407     else
2408       report_error(a->getFileName(), object_error::invalid_file_type);
2409   }
2410   if (Err)
2411     report_error(a->getFileName(), std::move(Err));
2412 }
2413 
2414 /// Open file and figure out how to dump it.
2415 static void DumpInput(StringRef file) {
2416 
2417   // If we are using the Mach-O specific object file parser, then let it parse
2418   // the file and process the command line options.  So the -arch flags can
2419   // be used to select specific slices, etc.
2420   if (MachOOpt) {
2421     ParseInputMachO(file);
2422     return;
2423   }
2424 
2425   // Attempt to open the binary.
2426   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2427   if (!BinaryOrErr)
2428     report_error(file, BinaryOrErr.takeError());
2429   Binary &Binary = *BinaryOrErr.get().getBinary();
2430 
2431   if (Archive *a = dyn_cast<Archive>(&Binary))
2432     DumpArchive(a);
2433   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2434     DumpObject(o);
2435   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2436     ParseInputMachO(UB);
2437   else
2438     report_error(file, object_error::invalid_file_type);
2439 }
2440 
2441 int main(int argc, char **argv) {
2442   InitLLVM X(argc, argv);
2443 
2444   // Initialize targets and assembly printers/parsers.
2445   llvm::InitializeAllTargetInfos();
2446   llvm::InitializeAllTargetMCs();
2447   llvm::InitializeAllDisassemblers();
2448 
2449   // Register the target printer for --version.
2450   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2451 
2452   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2453 
2454   ToolName = argv[0];
2455 
2456   // Defaults to a.out if no filenames specified.
2457   if (InputFilenames.size() == 0)
2458     InputFilenames.push_back("a.out");
2459 
2460   if (AllHeaders)
2461     PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true;
2462 
2463   if (DisassembleAll || PrintSource || PrintLines)
2464     Disassemble = true;
2465 
2466   if (!Disassemble
2467       && !Relocations
2468       && !DynamicRelocations
2469       && !SectionHeaders
2470       && !SectionContents
2471       && !SymbolTable
2472       && !UnwindInfo
2473       && !PrivateHeaders
2474       && !FileHeaders
2475       && !FirstPrivateHeader
2476       && !ExportsTrie
2477       && !Rebase
2478       && !Bind
2479       && !LazyBind
2480       && !WeakBind
2481       && !RawClangAST
2482       && !(UniversalHeaders && MachOOpt)
2483       && !ArchiveHeaders
2484       && !(IndirectSymbols && MachOOpt)
2485       && !(DataInCode && MachOOpt)
2486       && !(LinkOptHints && MachOOpt)
2487       && !(InfoPlist && MachOOpt)
2488       && !(DylibsUsed && MachOOpt)
2489       && !(DylibId && MachOOpt)
2490       && !(ObjcMetaData && MachOOpt)
2491       && !(FilterSections.size() != 0 && MachOOpt)
2492       && !PrintFaultMaps
2493       && DwarfDumpType == DIDT_Null) {
2494     cl::PrintHelpMessage();
2495     return 2;
2496   }
2497 
2498   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2499                         DisassembleFunctions.end());
2500 
2501   llvm::for_each(InputFilenames, DumpInput);
2502 
2503   return EXIT_SUCCESS;
2504 }
2505