1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "OffloadDump.h" 24 #include "SourcePrinter.h" 25 #include "WasmDump.h" 26 #include "XCOFFDump.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetOperations.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/DebugInfo/BTF/BTFParser.h" 33 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 34 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 35 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 36 #include "llvm/Debuginfod/BuildIDFetcher.h" 37 #include "llvm/Debuginfod/Debuginfod.h" 38 #include "llvm/Debuginfod/HTTPClient.h" 39 #include "llvm/Demangle/Demangle.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 43 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 44 #include "llvm/MC/MCInst.h" 45 #include "llvm/MC/MCInstPrinter.h" 46 #include "llvm/MC/MCInstrAnalysis.h" 47 #include "llvm/MC/MCInstrInfo.h" 48 #include "llvm/MC/MCObjectFileInfo.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/MC/MCTargetOptions.h" 51 #include "llvm/MC/TargetRegistry.h" 52 #include "llvm/Object/Archive.h" 53 #include "llvm/Object/BuildID.h" 54 #include "llvm/Object/COFF.h" 55 #include "llvm/Object/COFFImportFile.h" 56 #include "llvm/Object/ELFObjectFile.h" 57 #include "llvm/Object/ELFTypes.h" 58 #include "llvm/Object/FaultMapParser.h" 59 #include "llvm/Object/MachO.h" 60 #include "llvm/Object/MachOUniversal.h" 61 #include "llvm/Object/ObjectFile.h" 62 #include "llvm/Object/OffloadBinary.h" 63 #include "llvm/Object/Wasm.h" 64 #include "llvm/Option/Arg.h" 65 #include "llvm/Option/ArgList.h" 66 #include "llvm/Option/Option.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/Errc.h" 70 #include "llvm/Support/FileSystem.h" 71 #include "llvm/Support/Format.h" 72 #include "llvm/Support/FormatVariadic.h" 73 #include "llvm/Support/GraphWriter.h" 74 #include "llvm/Support/InitLLVM.h" 75 #include "llvm/Support/LLVMDriver.h" 76 #include "llvm/Support/MemoryBuffer.h" 77 #include "llvm/Support/SourceMgr.h" 78 #include "llvm/Support/StringSaver.h" 79 #include "llvm/Support/TargetSelect.h" 80 #include "llvm/Support/WithColor.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/TargetParser/Host.h" 83 #include "llvm/TargetParser/Triple.h" 84 #include <algorithm> 85 #include <cctype> 86 #include <cstring> 87 #include <optional> 88 #include <set> 89 #include <system_error> 90 #include <unordered_map> 91 #include <utility> 92 93 using namespace llvm; 94 using namespace llvm::object; 95 using namespace llvm::objdump; 96 using namespace llvm::opt; 97 98 namespace { 99 100 class CommonOptTable : public opt::GenericOptTable { 101 public: 102 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 103 const char *Description) 104 : opt::GenericOptTable(OptionInfos), Usage(Usage), 105 Description(Description) { 106 setGroupedShortOptions(true); 107 } 108 109 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 110 Argv0 = sys::path::filename(Argv0); 111 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), 112 Description, ShowHidden, ShowHidden); 113 // TODO Replace this with OptTable API once it adds extrahelp support. 114 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 115 } 116 117 private: 118 const char *Usage; 119 const char *Description; 120 }; 121 122 // ObjdumpOptID is in ObjdumpOptID.h 123 namespace objdump_opt { 124 #define PREFIX(NAME, VALUE) \ 125 static constexpr StringLiteral NAME##_init[] = VALUE; \ 126 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 127 std::size(NAME##_init) - 1); 128 #include "ObjdumpOpts.inc" 129 #undef PREFIX 130 131 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 132 #define OPTION(...) \ 133 LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__), 134 #include "ObjdumpOpts.inc" 135 #undef OPTION 136 }; 137 } // namespace objdump_opt 138 139 class ObjdumpOptTable : public CommonOptTable { 140 public: 141 ObjdumpOptTable() 142 : CommonOptTable(objdump_opt::ObjdumpInfoTable, 143 " [options] <input object files>", 144 "llvm object file dumper") {} 145 }; 146 147 enum OtoolOptID { 148 OTOOL_INVALID = 0, // This is not an option ID. 149 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 150 #include "OtoolOpts.inc" 151 #undef OPTION 152 }; 153 154 namespace otool { 155 #define PREFIX(NAME, VALUE) \ 156 static constexpr StringLiteral NAME##_init[] = VALUE; \ 157 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 158 std::size(NAME##_init) - 1); 159 #include "OtoolOpts.inc" 160 #undef PREFIX 161 162 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 163 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 164 #include "OtoolOpts.inc" 165 #undef OPTION 166 }; 167 } // namespace otool 168 169 class OtoolOptTable : public CommonOptTable { 170 public: 171 OtoolOptTable() 172 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", 173 "Mach-O object file displaying tool") {} 174 }; 175 176 } // namespace 177 178 #define DEBUG_TYPE "objdump" 179 180 enum class ColorOutput { 181 Auto, 182 Enable, 183 Disable, 184 Invalid, 185 }; 186 187 static uint64_t AdjustVMA; 188 static bool AllHeaders; 189 static std::string ArchName; 190 bool objdump::ArchiveHeaders; 191 bool objdump::Demangle; 192 bool objdump::Disassemble; 193 bool objdump::DisassembleAll; 194 bool objdump::SymbolDescription; 195 bool objdump::TracebackTable; 196 static std::vector<std::string> DisassembleSymbols; 197 static bool DisassembleZeroes; 198 static std::vector<std::string> DisassemblerOptions; 199 static ColorOutput DisassemblyColor; 200 DIDumpType objdump::DwarfDumpType; 201 static bool DynamicRelocations; 202 static bool FaultMapSection; 203 static bool FileHeaders; 204 bool objdump::SectionContents; 205 static std::vector<std::string> InputFilenames; 206 bool objdump::PrintLines; 207 static bool MachOOpt; 208 std::string objdump::MCPU; 209 std::vector<std::string> objdump::MAttrs; 210 bool objdump::ShowRawInsn; 211 bool objdump::LeadingAddr; 212 static bool Offloading; 213 static bool RawClangAST; 214 bool objdump::Relocations; 215 bool objdump::PrintImmHex; 216 bool objdump::PrivateHeaders; 217 std::vector<std::string> objdump::FilterSections; 218 bool objdump::SectionHeaders; 219 static bool ShowAllSymbols; 220 static bool ShowLMA; 221 bool objdump::PrintSource; 222 223 static uint64_t StartAddress; 224 static bool HasStartAddressFlag; 225 static uint64_t StopAddress = UINT64_MAX; 226 static bool HasStopAddressFlag; 227 228 bool objdump::SymbolTable; 229 static bool SymbolizeOperands; 230 static bool DynamicSymbolTable; 231 std::string objdump::TripleName; 232 bool objdump::UnwindInfo; 233 static bool Wide; 234 std::string objdump::Prefix; 235 uint32_t objdump::PrefixStrip; 236 237 DebugVarsFormat objdump::DbgVariables = DVDisabled; 238 239 int objdump::DbgIndent = 52; 240 241 static StringSet<> DisasmSymbolSet; 242 StringSet<> objdump::FoundSectionSet; 243 static StringRef ToolName; 244 245 std::unique_ptr<BuildIDFetcher> BIDFetcher; 246 247 Dumper::Dumper(const object::ObjectFile &O) : O(O) { 248 WarningHandler = [this](const Twine &Msg) { 249 if (Warnings.insert(Msg.str()).second) 250 reportWarning(Msg, this->O.getFileName()); 251 return Error::success(); 252 }; 253 } 254 255 void Dumper::reportUniqueWarning(Error Err) { 256 reportUniqueWarning(toString(std::move(Err))); 257 } 258 259 void Dumper::reportUniqueWarning(const Twine &Msg) { 260 cantFail(WarningHandler(Msg)); 261 } 262 263 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) { 264 if (const auto *O = dyn_cast<COFFObjectFile>(&Obj)) 265 return createCOFFDumper(*O); 266 if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj)) 267 return createELFDumper(*O); 268 if (const auto *O = dyn_cast<MachOObjectFile>(&Obj)) 269 return createMachODumper(*O); 270 if (const auto *O = dyn_cast<WasmObjectFile>(&Obj)) 271 return createWasmDumper(*O); 272 if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj)) 273 return createXCOFFDumper(*O); 274 275 return createStringError(errc::invalid_argument, 276 "unsupported object file format"); 277 } 278 279 namespace { 280 struct FilterResult { 281 // True if the section should not be skipped. 282 bool Keep; 283 284 // True if the index counter should be incremented, even if the section should 285 // be skipped. For example, sections may be skipped if they are not included 286 // in the --section flag, but we still want those to count toward the section 287 // count. 288 bool IncrementIndex; 289 }; 290 } // namespace 291 292 static FilterResult checkSectionFilter(object::SectionRef S) { 293 if (FilterSections.empty()) 294 return {/*Keep=*/true, /*IncrementIndex=*/true}; 295 296 Expected<StringRef> SecNameOrErr = S.getName(); 297 if (!SecNameOrErr) { 298 consumeError(SecNameOrErr.takeError()); 299 return {/*Keep=*/false, /*IncrementIndex=*/false}; 300 } 301 StringRef SecName = *SecNameOrErr; 302 303 // StringSet does not allow empty key so avoid adding sections with 304 // no name (such as the section with index 0) here. 305 if (!SecName.empty()) 306 FoundSectionSet.insert(SecName); 307 308 // Only show the section if it's in the FilterSections list, but always 309 // increment so the indexing is stable. 310 return {/*Keep=*/is_contained(FilterSections, SecName), 311 /*IncrementIndex=*/true}; 312 } 313 314 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 315 uint64_t *Idx) { 316 // Start at UINT64_MAX so that the first index returned after an increment is 317 // zero (after the unsigned wrap). 318 if (Idx) 319 *Idx = UINT64_MAX; 320 return SectionFilter( 321 [Idx](object::SectionRef S) { 322 FilterResult Result = checkSectionFilter(S); 323 if (Idx != nullptr && Result.IncrementIndex) 324 *Idx += 1; 325 return Result.Keep; 326 }, 327 O); 328 } 329 330 std::string objdump::getFileNameForError(const object::Archive::Child &C, 331 unsigned Index) { 332 Expected<StringRef> NameOrErr = C.getName(); 333 if (NameOrErr) 334 return std::string(NameOrErr.get()); 335 // If we have an error getting the name then we print the index of the archive 336 // member. Since we are already in an error state, we just ignore this error. 337 consumeError(NameOrErr.takeError()); 338 return "<file index: " + std::to_string(Index) + ">"; 339 } 340 341 void objdump::reportWarning(const Twine &Message, StringRef File) { 342 // Output order between errs() and outs() matters especially for archive 343 // files where the output is per member object. 344 outs().flush(); 345 WithColor::warning(errs(), ToolName) 346 << "'" << File << "': " << Message << "\n"; 347 } 348 349 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 350 outs().flush(); 351 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 352 exit(1); 353 } 354 355 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 356 StringRef ArchiveName, 357 StringRef ArchitectureName) { 358 assert(E); 359 outs().flush(); 360 WithColor::error(errs(), ToolName); 361 if (ArchiveName != "") 362 errs() << ArchiveName << "(" << FileName << ")"; 363 else 364 errs() << "'" << FileName << "'"; 365 if (!ArchitectureName.empty()) 366 errs() << " (for architecture " << ArchitectureName << ")"; 367 errs() << ": "; 368 logAllUnhandledErrors(std::move(E), errs()); 369 exit(1); 370 } 371 372 static void reportCmdLineWarning(const Twine &Message) { 373 WithColor::warning(errs(), ToolName) << Message << "\n"; 374 } 375 376 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 377 WithColor::error(errs(), ToolName) << Message << "\n"; 378 exit(1); 379 } 380 381 static void warnOnNoMatchForSections() { 382 SetVector<StringRef> MissingSections; 383 for (StringRef S : FilterSections) { 384 if (FoundSectionSet.count(S)) 385 return; 386 // User may specify a unnamed section. Don't warn for it. 387 if (!S.empty()) 388 MissingSections.insert(S); 389 } 390 391 // Warn only if no section in FilterSections is matched. 392 for (StringRef S : MissingSections) 393 reportCmdLineWarning("section '" + S + 394 "' mentioned in a -j/--section option, but not " 395 "found in any input file"); 396 } 397 398 static const Target *getTarget(const ObjectFile *Obj) { 399 // Figure out the target triple. 400 Triple TheTriple("unknown-unknown-unknown"); 401 if (TripleName.empty()) { 402 TheTriple = Obj->makeTriple(); 403 } else { 404 TheTriple.setTriple(Triple::normalize(TripleName)); 405 auto Arch = Obj->getArch(); 406 if (Arch == Triple::arm || Arch == Triple::armeb) 407 Obj->setARMSubArch(TheTriple); 408 } 409 410 // Get the target specific parser. 411 std::string Error; 412 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 413 Error); 414 if (!TheTarget) 415 reportError(Obj->getFileName(), "can't find target: " + Error); 416 417 // Update the triple name and return the found target. 418 TripleName = TheTriple.getTriple(); 419 return TheTarget; 420 } 421 422 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 423 return A.getOffset() < B.getOffset(); 424 } 425 426 static Error getRelocationValueString(const RelocationRef &Rel, 427 SmallVectorImpl<char> &Result) { 428 const ObjectFile *Obj = Rel.getObject(); 429 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 430 return getELFRelocationValueString(ELF, Rel, Result); 431 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 432 return getCOFFRelocationValueString(COFF, Rel, Result); 433 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 434 return getWasmRelocationValueString(Wasm, Rel, Result); 435 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 436 return getMachORelocationValueString(MachO, Rel, Result); 437 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 438 return getXCOFFRelocationValueString(*XCOFF, Rel, Result); 439 llvm_unreachable("unknown object file format"); 440 } 441 442 /// Indicates whether this relocation should hidden when listing 443 /// relocations, usually because it is the trailing part of a multipart 444 /// relocation that will be printed as part of the leading relocation. 445 static bool getHidden(RelocationRef RelRef) { 446 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 447 if (!MachO) 448 return false; 449 450 unsigned Arch = MachO->getArch(); 451 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 452 uint64_t Type = MachO->getRelocationType(Rel); 453 454 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 455 // is always hidden. 456 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 457 return Type == MachO::GENERIC_RELOC_PAIR; 458 459 if (Arch == Triple::x86_64) { 460 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 461 // an X86_64_RELOC_SUBTRACTOR. 462 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 463 DataRefImpl RelPrev = Rel; 464 RelPrev.d.a--; 465 uint64_t PrevType = MachO->getRelocationType(RelPrev); 466 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 467 return true; 468 } 469 } 470 471 return false; 472 } 473 474 /// Get the column at which we want to start printing the instruction 475 /// disassembly, taking into account anything which appears to the left of it. 476 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) { 477 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 478 } 479 480 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, 481 raw_ostream &OS) { 482 // The output of printInst starts with a tab. Print some spaces so that 483 // the tab has 1 column and advances to the target tab stop. 484 unsigned TabStop = getInstStartColumn(STI); 485 unsigned Column = OS.tell() - Start; 486 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 487 } 488 489 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address, 490 formatted_raw_ostream &OS, 491 MCSubtargetInfo const &STI) { 492 size_t Start = OS.tell(); 493 if (LeadingAddr) 494 OS << format("%8" PRIx64 ":", Address); 495 if (ShowRawInsn) { 496 OS << ' '; 497 dumpBytes(Bytes, OS); 498 } 499 AlignToInstStartColumn(Start, STI, OS); 500 } 501 502 namespace { 503 504 static bool isAArch64Elf(const ObjectFile &Obj) { 505 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 506 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 507 } 508 509 static bool isArmElf(const ObjectFile &Obj) { 510 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 511 return Elf && Elf->getEMachine() == ELF::EM_ARM; 512 } 513 514 static bool isCSKYElf(const ObjectFile &Obj) { 515 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 516 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 517 } 518 519 static bool hasMappingSymbols(const ObjectFile &Obj) { 520 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 521 } 522 523 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 524 const RelocationRef &Rel, uint64_t Address, 525 bool Is64Bits) { 526 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; 527 SmallString<16> Name; 528 SmallString<32> Val; 529 Rel.getTypeName(Name); 530 if (Error E = getRelocationValueString(Rel, Val)) 531 reportError(std::move(E), FileName); 532 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); 533 if (LeadingAddr) 534 OS << format(Fmt.data(), Address); 535 OS << Name << "\t" << Val; 536 } 537 538 static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF, 539 object::SectionedAddress Address, 540 LiveVariablePrinter &LVP) { 541 const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address); 542 if (!Reloc) 543 return; 544 545 SmallString<64> Val; 546 BTF.symbolize(Reloc, Val); 547 FOS << "\t\t"; 548 if (LeadingAddr) 549 FOS << format("%016" PRIx64 ": ", Address.Address + AdjustVMA); 550 FOS << "CO-RE " << Val; 551 LVP.printAfterOtherLine(FOS, true); 552 } 553 554 class PrettyPrinter { 555 public: 556 virtual ~PrettyPrinter() = default; 557 virtual void 558 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 559 object::SectionedAddress Address, formatted_raw_ostream &OS, 560 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 561 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 562 LiveVariablePrinter &LVP) { 563 if (SP && (PrintSource || PrintLines)) 564 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 565 LVP.printBetweenInsts(OS, false); 566 567 printRawData(Bytes, Address.Address, OS, STI); 568 569 if (MI) { 570 // See MCInstPrinter::printInst. On targets where a PC relative immediate 571 // is relative to the next instruction and the length of a MCInst is 572 // difficult to measure (x86), this is the address of the next 573 // instruction. 574 uint64_t Addr = 575 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 576 IP.printInst(MI, Addr, "", STI, OS); 577 } else 578 OS << "\t<unknown>"; 579 } 580 }; 581 PrettyPrinter PrettyPrinterInst; 582 583 class HexagonPrettyPrinter : public PrettyPrinter { 584 public: 585 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 586 formatted_raw_ostream &OS) { 587 uint32_t opcode = 588 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 589 if (LeadingAddr) 590 OS << format("%8" PRIx64 ":", Address); 591 if (ShowRawInsn) { 592 OS << "\t"; 593 dumpBytes(Bytes.slice(0, 4), OS); 594 OS << format("\t%08" PRIx32, opcode); 595 } 596 } 597 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 598 object::SectionedAddress Address, formatted_raw_ostream &OS, 599 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 600 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 601 LiveVariablePrinter &LVP) override { 602 if (SP && (PrintSource || PrintLines)) 603 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 604 if (!MI) { 605 printLead(Bytes, Address.Address, OS); 606 OS << " <unknown>"; 607 return; 608 } 609 std::string Buffer; 610 { 611 raw_string_ostream TempStream(Buffer); 612 IP.printInst(MI, Address.Address, "", STI, TempStream); 613 } 614 StringRef Contents(Buffer); 615 // Split off bundle attributes 616 auto PacketBundle = Contents.rsplit('\n'); 617 // Split off first instruction from the rest 618 auto HeadTail = PacketBundle.first.split('\n'); 619 auto Preamble = " { "; 620 auto Separator = ""; 621 622 // Hexagon's packets require relocations to be inline rather than 623 // clustered at the end of the packet. 624 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 625 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 626 auto PrintReloc = [&]() -> void { 627 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 628 if (RelCur->getOffset() == Address.Address) { 629 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 630 return; 631 } 632 ++RelCur; 633 } 634 }; 635 636 while (!HeadTail.first.empty()) { 637 OS << Separator; 638 Separator = "\n"; 639 if (SP && (PrintSource || PrintLines)) 640 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 641 printLead(Bytes, Address.Address, OS); 642 OS << Preamble; 643 Preamble = " "; 644 StringRef Inst; 645 auto Duplex = HeadTail.first.split('\v'); 646 if (!Duplex.second.empty()) { 647 OS << Duplex.first; 648 OS << "; "; 649 Inst = Duplex.second; 650 } 651 else 652 Inst = HeadTail.first; 653 OS << Inst; 654 HeadTail = HeadTail.second.split('\n'); 655 if (HeadTail.first.empty()) 656 OS << " } " << PacketBundle.second; 657 PrintReloc(); 658 Bytes = Bytes.slice(4); 659 Address.Address += 4; 660 } 661 } 662 }; 663 HexagonPrettyPrinter HexagonPrettyPrinterInst; 664 665 class AMDGCNPrettyPrinter : public PrettyPrinter { 666 public: 667 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 668 object::SectionedAddress Address, formatted_raw_ostream &OS, 669 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 670 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 671 LiveVariablePrinter &LVP) override { 672 if (SP && (PrintSource || PrintLines)) 673 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 674 675 if (MI) { 676 SmallString<40> InstStr; 677 raw_svector_ostream IS(InstStr); 678 679 IP.printInst(MI, Address.Address, "", STI, IS); 680 681 OS << left_justify(IS.str(), 60); 682 } else { 683 // an unrecognized encoding - this is probably data so represent it 684 // using the .long directive, or .byte directive if fewer than 4 bytes 685 // remaining 686 if (Bytes.size() >= 4) { 687 OS << format( 688 "\t.long 0x%08" PRIx32 " ", 689 support::endian::read32<llvm::endianness::little>(Bytes.data())); 690 OS.indent(42); 691 } else { 692 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 693 for (unsigned int i = 1; i < Bytes.size(); i++) 694 OS << format(", 0x%02" PRIx8, Bytes[i]); 695 OS.indent(55 - (6 * Bytes.size())); 696 } 697 } 698 699 OS << format("// %012" PRIX64 ":", Address.Address); 700 if (Bytes.size() >= 4) { 701 // D should be casted to uint32_t here as it is passed by format to 702 // snprintf as vararg. 703 for (uint32_t D : 704 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), 705 Bytes.size() / 4)) 706 OS << format(" %08" PRIX32, D); 707 } else { 708 for (unsigned char B : Bytes) 709 OS << format(" %02" PRIX8, B); 710 } 711 712 if (!Annot.empty()) 713 OS << " // " << Annot; 714 } 715 }; 716 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 717 718 class BPFPrettyPrinter : public PrettyPrinter { 719 public: 720 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 721 object::SectionedAddress Address, formatted_raw_ostream &OS, 722 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 723 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 724 LiveVariablePrinter &LVP) override { 725 if (SP && (PrintSource || PrintLines)) 726 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 727 if (LeadingAddr) 728 OS << format("%8" PRId64 ":", Address.Address / 8); 729 if (ShowRawInsn) { 730 OS << "\t"; 731 dumpBytes(Bytes, OS); 732 } 733 if (MI) 734 IP.printInst(MI, Address.Address, "", STI, OS); 735 else 736 OS << "\t<unknown>"; 737 } 738 }; 739 BPFPrettyPrinter BPFPrettyPrinterInst; 740 741 class ARMPrettyPrinter : public PrettyPrinter { 742 public: 743 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 744 object::SectionedAddress Address, formatted_raw_ostream &OS, 745 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 746 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 747 LiveVariablePrinter &LVP) override { 748 if (SP && (PrintSource || PrintLines)) 749 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 750 LVP.printBetweenInsts(OS, false); 751 752 size_t Start = OS.tell(); 753 if (LeadingAddr) 754 OS << format("%8" PRIx64 ":", Address.Address); 755 if (ShowRawInsn) { 756 size_t Pos = 0, End = Bytes.size(); 757 if (STI.checkFeatures("+thumb-mode")) { 758 for (; Pos + 2 <= End; Pos += 2) 759 OS << ' ' 760 << format_hex_no_prefix( 761 llvm::support::endian::read<uint16_t>( 762 Bytes.data() + Pos, InstructionEndianness), 763 4); 764 } else { 765 for (; Pos + 4 <= End; Pos += 4) 766 OS << ' ' 767 << format_hex_no_prefix( 768 llvm::support::endian::read<uint32_t>( 769 Bytes.data() + Pos, InstructionEndianness), 770 8); 771 } 772 if (Pos < End) { 773 OS << ' '; 774 dumpBytes(Bytes.slice(Pos), OS); 775 } 776 } 777 778 AlignToInstStartColumn(Start, STI, OS); 779 780 if (MI) { 781 IP.printInst(MI, Address.Address, "", STI, OS); 782 } else 783 OS << "\t<unknown>"; 784 } 785 786 void setInstructionEndianness(llvm::endianness Endianness) { 787 InstructionEndianness = Endianness; 788 } 789 790 private: 791 llvm::endianness InstructionEndianness = llvm::endianness::little; 792 }; 793 ARMPrettyPrinter ARMPrettyPrinterInst; 794 795 class AArch64PrettyPrinter : public PrettyPrinter { 796 public: 797 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 798 object::SectionedAddress Address, formatted_raw_ostream &OS, 799 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 800 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 801 LiveVariablePrinter &LVP) override { 802 if (SP && (PrintSource || PrintLines)) 803 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 804 LVP.printBetweenInsts(OS, false); 805 806 size_t Start = OS.tell(); 807 if (LeadingAddr) 808 OS << format("%8" PRIx64 ":", Address.Address); 809 if (ShowRawInsn) { 810 size_t Pos = 0, End = Bytes.size(); 811 for (; Pos + 4 <= End; Pos += 4) 812 OS << ' ' 813 << format_hex_no_prefix( 814 llvm::support::endian::read<uint32_t>( 815 Bytes.data() + Pos, llvm::endianness::little), 816 8); 817 if (Pos < End) { 818 OS << ' '; 819 dumpBytes(Bytes.slice(Pos), OS); 820 } 821 } 822 823 AlignToInstStartColumn(Start, STI, OS); 824 825 if (MI) { 826 IP.printInst(MI, Address.Address, "", STI, OS); 827 } else 828 OS << "\t<unknown>"; 829 } 830 }; 831 AArch64PrettyPrinter AArch64PrettyPrinterInst; 832 833 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 834 switch(Triple.getArch()) { 835 default: 836 return PrettyPrinterInst; 837 case Triple::hexagon: 838 return HexagonPrettyPrinterInst; 839 case Triple::amdgcn: 840 return AMDGCNPrettyPrinterInst; 841 case Triple::bpfel: 842 case Triple::bpfeb: 843 return BPFPrettyPrinterInst; 844 case Triple::arm: 845 case Triple::armeb: 846 case Triple::thumb: 847 case Triple::thumbeb: 848 return ARMPrettyPrinterInst; 849 case Triple::aarch64: 850 case Triple::aarch64_be: 851 case Triple::aarch64_32: 852 return AArch64PrettyPrinterInst; 853 } 854 } 855 856 class DisassemblerTarget { 857 public: 858 const Target *TheTarget; 859 std::unique_ptr<const MCSubtargetInfo> SubtargetInfo; 860 std::shared_ptr<MCContext> Context; 861 std::unique_ptr<MCDisassembler> DisAsm; 862 std::shared_ptr<MCInstrAnalysis> InstrAnalysis; 863 std::shared_ptr<MCInstPrinter> InstPrinter; 864 PrettyPrinter *Printer; 865 866 DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 867 StringRef TripleName, StringRef MCPU, 868 SubtargetFeatures &Features); 869 DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features); 870 871 private: 872 MCTargetOptions Options; 873 std::shared_ptr<const MCRegisterInfo> RegisterInfo; 874 std::shared_ptr<const MCAsmInfo> AsmInfo; 875 std::shared_ptr<const MCInstrInfo> InstrInfo; 876 std::shared_ptr<MCObjectFileInfo> ObjectFileInfo; 877 }; 878 879 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 880 StringRef TripleName, StringRef MCPU, 881 SubtargetFeatures &Features) 882 : TheTarget(TheTarget), 883 Printer(&selectPrettyPrinter(Triple(TripleName))), 884 RegisterInfo(TheTarget->createMCRegInfo(TripleName)) { 885 if (!RegisterInfo) 886 reportError(Obj.getFileName(), "no register info for target " + TripleName); 887 888 // Set up disassembler. 889 AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options)); 890 if (!AsmInfo) 891 reportError(Obj.getFileName(), "no assembly info for target " + TripleName); 892 893 SubtargetInfo.reset( 894 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 895 if (!SubtargetInfo) 896 reportError(Obj.getFileName(), 897 "no subtarget info for target " + TripleName); 898 InstrInfo.reset(TheTarget->createMCInstrInfo()); 899 if (!InstrInfo) 900 reportError(Obj.getFileName(), 901 "no instruction info for target " + TripleName); 902 Context = 903 std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(), 904 RegisterInfo.get(), SubtargetInfo.get()); 905 906 // FIXME: for now initialize MCObjectFileInfo with default values 907 ObjectFileInfo.reset( 908 TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false)); 909 Context->setObjectFileInfo(ObjectFileInfo.get()); 910 911 DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)); 912 if (!DisAsm) 913 reportError(Obj.getFileName(), "no disassembler for target " + TripleName); 914 915 InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get())); 916 917 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 918 InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName), 919 AsmPrinterVariant, *AsmInfo, 920 *InstrInfo, *RegisterInfo)); 921 if (!InstPrinter) 922 reportError(Obj.getFileName(), 923 "no instruction printer for target " + TripleName); 924 InstPrinter->setPrintImmHex(PrintImmHex); 925 InstPrinter->setPrintBranchImmAsAddress(true); 926 InstPrinter->setSymbolizeOperands(SymbolizeOperands); 927 InstPrinter->setMCInstrAnalysis(InstrAnalysis.get()); 928 929 switch (DisassemblyColor) { 930 case ColorOutput::Enable: 931 InstPrinter->setUseColor(true); 932 break; 933 case ColorOutput::Auto: 934 InstPrinter->setUseColor(outs().has_colors()); 935 break; 936 case ColorOutput::Disable: 937 case ColorOutput::Invalid: 938 InstPrinter->setUseColor(false); 939 break; 940 }; 941 } 942 943 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other, 944 SubtargetFeatures &Features) 945 : TheTarget(Other.TheTarget), 946 SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 947 Features.getString())), 948 Context(Other.Context), 949 DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)), 950 InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter), 951 Printer(Other.Printer), RegisterInfo(Other.RegisterInfo), 952 AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo), 953 ObjectFileInfo(Other.ObjectFileInfo) {} 954 } // namespace 955 956 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { 957 assert(Obj.isELF()); 958 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 959 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 960 Obj.getFileName()) 961 ->getType(); 962 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 963 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 964 Obj.getFileName()) 965 ->getType(); 966 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 967 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 968 Obj.getFileName()) 969 ->getType(); 970 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 971 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 972 Obj.getFileName()) 973 ->getType(); 974 llvm_unreachable("Unsupported binary format"); 975 } 976 977 template <class ELFT> 978 static void 979 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, 980 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 981 for (auto Symbol : Obj.getDynamicSymbolIterators()) { 982 uint8_t SymbolType = Symbol.getELFType(); 983 if (SymbolType == ELF::STT_SECTION) 984 continue; 985 986 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); 987 // ELFSymbolRef::getAddress() returns size instead of value for common 988 // symbols which is not desirable for disassembly output. Overriding. 989 if (SymbolType == ELF::STT_COMMON) 990 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), 991 Obj.getFileName()) 992 ->st_value; 993 994 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); 995 if (Name.empty()) 996 continue; 997 998 section_iterator SecI = 999 unwrapOrError(Symbol.getSection(), Obj.getFileName()); 1000 if (SecI == Obj.section_end()) 1001 continue; 1002 1003 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1004 } 1005 } 1006 1007 static void 1008 addDynamicElfSymbols(const ELFObjectFileBase &Obj, 1009 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1010 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1011 addDynamicElfSymbols(*Elf32LEObj, AllSymbols); 1012 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1013 addDynamicElfSymbols(*Elf64LEObj, AllSymbols); 1014 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1015 addDynamicElfSymbols(*Elf32BEObj, AllSymbols); 1016 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1017 addDynamicElfSymbols(*Elf64BEObj, AllSymbols); 1018 else 1019 llvm_unreachable("Unsupported binary format"); 1020 } 1021 1022 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { 1023 for (auto SecI : Obj.sections()) { 1024 const WasmSection &Section = Obj.getWasmSection(SecI); 1025 if (Section.Type == wasm::WASM_SEC_CODE) 1026 return SecI; 1027 } 1028 return std::nullopt; 1029 } 1030 1031 static void 1032 addMissingWasmCodeSymbols(const WasmObjectFile &Obj, 1033 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1034 std::optional<SectionRef> Section = getWasmCodeSection(Obj); 1035 if (!Section) 1036 return; 1037 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 1038 1039 std::set<uint64_t> SymbolAddresses; 1040 for (const auto &Sym : Symbols) 1041 SymbolAddresses.insert(Sym.Addr); 1042 1043 for (const wasm::WasmFunction &Function : Obj.functions()) { 1044 uint64_t Address = Function.CodeSectionOffset; 1045 // Only add fallback symbols for functions not already present in the symbol 1046 // table. 1047 if (SymbolAddresses.count(Address)) 1048 continue; 1049 // This function has no symbol, so it should have no SymbolName. 1050 assert(Function.SymbolName.empty()); 1051 // We use DebugName for the name, though it may be empty if there is no 1052 // "name" custom section, or that section is missing a name for this 1053 // function. 1054 StringRef Name = Function.DebugName; 1055 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 1056 } 1057 } 1058 1059 static void addPltEntries(const ObjectFile &Obj, 1060 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 1061 StringSaver &Saver) { 1062 auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj); 1063 if (!ElfObj) 1064 return; 1065 DenseMap<StringRef, SectionRef> Sections; 1066 for (SectionRef Section : Obj.sections()) { 1067 Expected<StringRef> SecNameOrErr = Section.getName(); 1068 if (!SecNameOrErr) { 1069 consumeError(SecNameOrErr.takeError()); 1070 continue; 1071 } 1072 Sections[*SecNameOrErr] = Section; 1073 } 1074 for (auto Plt : ElfObj->getPltEntries()) { 1075 if (Plt.Symbol) { 1076 SymbolRef Symbol(*Plt.Symbol, ElfObj); 1077 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 1078 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 1079 if (!NameOrErr->empty()) 1080 AllSymbols[Sections[Plt.Section]].emplace_back( 1081 Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType); 1082 continue; 1083 } else { 1084 // The warning has been reported in disassembleObject(). 1085 consumeError(NameOrErr.takeError()); 1086 } 1087 } 1088 reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) + 1089 " references an invalid symbol", 1090 Obj.getFileName()); 1091 } 1092 } 1093 1094 // Normally the disassembly output will skip blocks of zeroes. This function 1095 // returns the number of zero bytes that can be skipped when dumping the 1096 // disassembly of the instructions in Buf. 1097 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 1098 // Find the number of leading zeroes. 1099 size_t N = 0; 1100 while (N < Buf.size() && !Buf[N]) 1101 ++N; 1102 1103 // We may want to skip blocks of zero bytes, but unless we see 1104 // at least 8 of them in a row. 1105 if (N < 8) 1106 return 0; 1107 1108 // We skip zeroes in multiples of 4 because do not want to truncate an 1109 // instruction if it starts with a zero byte. 1110 return N & ~0x3; 1111 } 1112 1113 // Returns a map from sections to their relocations. 1114 static std::map<SectionRef, std::vector<RelocationRef>> 1115 getRelocsMap(object::ObjectFile const &Obj) { 1116 std::map<SectionRef, std::vector<RelocationRef>> Ret; 1117 uint64_t I = (uint64_t)-1; 1118 for (SectionRef Sec : Obj.sections()) { 1119 ++I; 1120 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 1121 if (!RelocatedOrErr) 1122 reportError(Obj.getFileName(), 1123 "section (" + Twine(I) + 1124 "): failed to get a relocated section: " + 1125 toString(RelocatedOrErr.takeError())); 1126 1127 section_iterator Relocated = *RelocatedOrErr; 1128 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 1129 continue; 1130 std::vector<RelocationRef> &V = Ret[*Relocated]; 1131 append_range(V, Sec.relocations()); 1132 // Sort relocations by address. 1133 llvm::stable_sort(V, isRelocAddressLess); 1134 } 1135 return Ret; 1136 } 1137 1138 // Used for --adjust-vma to check if address should be adjusted by the 1139 // specified value for a given section. 1140 // For ELF we do not adjust non-allocatable sections like debug ones, 1141 // because they are not loadable. 1142 // TODO: implement for other file formats. 1143 static bool shouldAdjustVA(const SectionRef &Section) { 1144 const ObjectFile *Obj = Section.getObject(); 1145 if (Obj->isELF()) 1146 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1147 return false; 1148 } 1149 1150 1151 typedef std::pair<uint64_t, char> MappingSymbolPair; 1152 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1153 uint64_t Address) { 1154 auto It = 1155 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1156 return Val.first <= Address; 1157 }); 1158 // Return zero for any address before the first mapping symbol; this means 1159 // we should use the default disassembly mode, depending on the target. 1160 if (It == MappingSymbols.begin()) 1161 return '\x00'; 1162 return (It - 1)->second; 1163 } 1164 1165 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1166 uint64_t End, const ObjectFile &Obj, 1167 ArrayRef<uint8_t> Bytes, 1168 ArrayRef<MappingSymbolPair> MappingSymbols, 1169 const MCSubtargetInfo &STI, raw_ostream &OS) { 1170 llvm::endianness Endian = 1171 Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; 1172 size_t Start = OS.tell(); 1173 OS << format("%8" PRIx64 ": ", SectionAddr + Index); 1174 if (Index + 4 <= End) { 1175 dumpBytes(Bytes.slice(Index, 4), OS); 1176 AlignToInstStartColumn(Start, STI, OS); 1177 OS << "\t.word\t" 1178 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 1179 10); 1180 return 4; 1181 } 1182 if (Index + 2 <= End) { 1183 dumpBytes(Bytes.slice(Index, 2), OS); 1184 AlignToInstStartColumn(Start, STI, OS); 1185 OS << "\t.short\t" 1186 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); 1187 return 2; 1188 } 1189 dumpBytes(Bytes.slice(Index, 1), OS); 1190 AlignToInstStartColumn(Start, STI, OS); 1191 OS << "\t.byte\t" << format_hex(Bytes[Index], 4); 1192 return 1; 1193 } 1194 1195 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1196 ArrayRef<uint8_t> Bytes) { 1197 // print out data up to 8 bytes at a time in hex and ascii 1198 uint8_t AsciiData[9] = {'\0'}; 1199 uint8_t Byte; 1200 int NumBytes = 0; 1201 1202 for (; Index < End; ++Index) { 1203 if (NumBytes == 0) 1204 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1205 Byte = Bytes.slice(Index)[0]; 1206 outs() << format(" %02x", Byte); 1207 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1208 1209 uint8_t IndentOffset = 0; 1210 NumBytes++; 1211 if (Index == End - 1 || NumBytes > 8) { 1212 // Indent the space for less than 8 bytes data. 1213 // 2 spaces for byte and one for space between bytes 1214 IndentOffset = 3 * (8 - NumBytes); 1215 for (int Excess = NumBytes; Excess < 8; Excess++) 1216 AsciiData[Excess] = '\0'; 1217 NumBytes = 8; 1218 } 1219 if (NumBytes == 8) { 1220 AsciiData[8] = '\0'; 1221 outs() << std::string(IndentOffset, ' ') << " "; 1222 outs() << reinterpret_cast<char *>(AsciiData); 1223 outs() << '\n'; 1224 NumBytes = 0; 1225 } 1226 } 1227 } 1228 1229 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, 1230 const SymbolRef &Symbol, 1231 bool IsMappingSymbol) { 1232 const StringRef FileName = Obj.getFileName(); 1233 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 1234 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1235 1236 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) { 1237 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); 1238 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 1239 1240 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); 1241 std::optional<XCOFF::StorageMappingClass> Smc = 1242 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 1243 return SymbolInfoTy(Smc, Addr, Name, SymbolIndex, 1244 isLabel(XCOFFObj, Symbol)); 1245 } else if (Obj.isXCOFF()) { 1246 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 1247 return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false, 1248 /*IsXCOFF=*/true); 1249 } else { 1250 uint8_t Type = 1251 Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE; 1252 return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol); 1253 } 1254 } 1255 1256 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, 1257 const uint64_t Addr, StringRef &Name, 1258 uint8_t Type) { 1259 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) 1260 return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false); 1261 else 1262 return SymbolInfoTy(Addr, Name, Type); 1263 } 1264 1265 static void 1266 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, 1267 uint64_t SectionAddr, uint64_t Start, uint64_t End, 1268 std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { 1269 if (AddrToBBAddrMap.empty()) 1270 return; 1271 Labels.clear(); 1272 uint64_t StartAddress = SectionAddr + Start; 1273 uint64_t EndAddress = SectionAddr + End; 1274 auto Iter = AddrToBBAddrMap.find(StartAddress); 1275 if (Iter == AddrToBBAddrMap.end()) 1276 return; 1277 for (const BBAddrMap::BBEntry &BBEntry : Iter->second.getBBEntries()) { 1278 uint64_t BBAddress = BBEntry.Offset + Iter->second.getFunctionAddress(); 1279 if (BBAddress >= EndAddress) 1280 continue; 1281 Labels[BBAddress].push_back(("BB" + Twine(BBEntry.ID)).str()); 1282 } 1283 } 1284 1285 static void 1286 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA, 1287 MCDisassembler *DisAsm, MCInstPrinter *IP, 1288 const MCSubtargetInfo *STI, uint64_t SectionAddr, 1289 uint64_t Start, uint64_t End, 1290 std::unordered_map<uint64_t, std::string> &Labels) { 1291 // So far only supports PowerPC and X86. 1292 if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) 1293 return; 1294 1295 if (MIA) 1296 MIA->resetState(); 1297 1298 Labels.clear(); 1299 unsigned LabelCount = 0; 1300 Start += SectionAddr; 1301 End += SectionAddr; 1302 uint64_t Index = Start; 1303 while (Index < End) { 1304 // Disassemble a real instruction and record function-local branch labels. 1305 MCInst Inst; 1306 uint64_t Size; 1307 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); 1308 bool Disassembled = 1309 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); 1310 if (Size == 0) 1311 Size = std::min<uint64_t>(ThisBytes.size(), 1312 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1313 1314 if (Disassembled && MIA) { 1315 uint64_t Target; 1316 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1317 // On PowerPC, if the address of a branch is the same as the target, it 1318 // means that it's a function call. Do not mark the label for this case. 1319 if (TargetKnown && (Target >= Start && Target < End) && 1320 !Labels.count(Target) && 1321 !(STI->getTargetTriple().isPPC() && Target == Index)) 1322 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1323 MIA->updateState(Inst, Index); 1324 } else if (!Disassembled && MIA) { 1325 MIA->resetState(); 1326 } 1327 Index += Size; 1328 } 1329 } 1330 1331 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1332 // This is currently only used on AMDGPU, and assumes the format of the 1333 // void * argument passed to AMDGPU's createMCSymbolizer. 1334 static void addSymbolizer( 1335 MCContext &Ctx, const Target *Target, StringRef TripleName, 1336 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1337 SectionSymbolsTy &Symbols, 1338 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1339 1340 std::unique_ptr<MCRelocationInfo> RelInfo( 1341 Target->createMCRelocationInfo(TripleName, Ctx)); 1342 if (!RelInfo) 1343 return; 1344 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1345 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1346 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1347 DisAsm->setSymbolizer(std::move(Symbolizer)); 1348 1349 if (!SymbolizeOperands) 1350 return; 1351 1352 // Synthesize labels referenced by branch instructions by 1353 // disassembling, discarding the output, and collecting the referenced 1354 // addresses from the symbolizer. 1355 for (size_t Index = 0; Index != Bytes.size();) { 1356 MCInst Inst; 1357 uint64_t Size; 1358 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1359 const uint64_t ThisAddr = SectionAddr + Index; 1360 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); 1361 if (Size == 0) 1362 Size = std::min<uint64_t>(ThisBytes.size(), 1363 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1364 Index += Size; 1365 } 1366 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1367 // Copy and sort to remove duplicates. 1368 std::vector<uint64_t> LabelAddrs; 1369 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1370 LabelAddrsRef.end()); 1371 llvm::sort(LabelAddrs); 1372 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1373 LabelAddrs.begin()); 1374 // Add the labels. 1375 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1376 auto Name = std::make_unique<std::string>(); 1377 *Name = (Twine("L") + Twine(LabelNum)).str(); 1378 SynthesizedLabelNames.push_back(std::move(Name)); 1379 Symbols.push_back(SymbolInfoTy( 1380 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1381 } 1382 llvm::stable_sort(Symbols); 1383 // Recreate the symbolizer with the new symbols list. 1384 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1385 Symbolizer.reset(Target->createMCSymbolizer( 1386 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1387 DisAsm->setSymbolizer(std::move(Symbolizer)); 1388 } 1389 1390 static StringRef getSegmentName(const MachOObjectFile *MachO, 1391 const SectionRef &Section) { 1392 if (MachO) { 1393 DataRefImpl DR = Section.getRawDataRefImpl(); 1394 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1395 return SegmentName; 1396 } 1397 return ""; 1398 } 1399 1400 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1401 const MCAsmInfo &MAI, 1402 const MCSubtargetInfo &STI, 1403 StringRef Comments, 1404 LiveVariablePrinter &LVP) { 1405 do { 1406 if (!Comments.empty()) { 1407 // Emit a line of comments. 1408 StringRef Comment; 1409 std::tie(Comment, Comments) = Comments.split('\n'); 1410 // MAI.getCommentColumn() assumes that instructions are printed at the 1411 // position of 8, while getInstStartColumn() returns the actual position. 1412 unsigned CommentColumn = 1413 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1414 FOS.PadToColumn(CommentColumn); 1415 FOS << MAI.getCommentString() << ' ' << Comment; 1416 } 1417 LVP.printAfterInst(FOS); 1418 FOS << '\n'; 1419 } while (!Comments.empty()); 1420 FOS.flush(); 1421 } 1422 1423 static void createFakeELFSections(ObjectFile &Obj) { 1424 assert(Obj.isELF()); 1425 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1426 Elf32LEObj->createFakeSections(); 1427 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1428 Elf64LEObj->createFakeSections(); 1429 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1430 Elf32BEObj->createFakeSections(); 1431 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1432 Elf64BEObj->createFakeSections(); 1433 else 1434 llvm_unreachable("Unsupported binary format"); 1435 } 1436 1437 // Tries to fetch a more complete version of the given object file using its 1438 // Build ID. Returns std::nullopt if nothing was found. 1439 static std::optional<OwningBinary<Binary>> 1440 fetchBinaryByBuildID(const ObjectFile &Obj) { 1441 object::BuildIDRef BuildID = getBuildID(&Obj); 1442 if (BuildID.empty()) 1443 return std::nullopt; 1444 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 1445 if (!Path) 1446 return std::nullopt; 1447 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); 1448 if (!DebugBinary) { 1449 reportWarning(toString(DebugBinary.takeError()), *Path); 1450 return std::nullopt; 1451 } 1452 return std::move(*DebugBinary); 1453 } 1454 1455 static void 1456 disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj, 1457 DisassemblerTarget &PrimaryTarget, 1458 std::optional<DisassemblerTarget> &SecondaryTarget, 1459 SourcePrinter &SP, bool InlineRelocs) { 1460 DisassemblerTarget *DT = &PrimaryTarget; 1461 bool PrimaryIsThumb = false; 1462 SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap; 1463 1464 if (SecondaryTarget) { 1465 if (isArmElf(Obj)) { 1466 PrimaryIsThumb = 1467 PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"); 1468 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1469 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); 1470 if (CHPEMetadata && CHPEMetadata->CodeMapCount) { 1471 uintptr_t CodeMapInt; 1472 cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt)); 1473 auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt); 1474 1475 for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) { 1476 if (CodeMap[i].getType() == chpe_range_type::Amd64 && 1477 CodeMap[i].Length) { 1478 // Store x86_64 CHPE code ranges. 1479 uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase(); 1480 CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length); 1481 } 1482 } 1483 llvm::sort(CHPECodeMap); 1484 } 1485 } 1486 } 1487 1488 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1489 if (InlineRelocs) 1490 RelocMap = getRelocsMap(Obj); 1491 bool Is64Bits = Obj.getBytesInAddress() > 4; 1492 1493 // Create a mapping from virtual address to symbol name. This is used to 1494 // pretty print the symbols while disassembling. 1495 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1496 std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols; 1497 SectionSymbolsTy AbsoluteSymbols; 1498 const StringRef FileName = Obj.getFileName(); 1499 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); 1500 for (const SymbolRef &Symbol : Obj.symbols()) { 1501 Expected<StringRef> NameOrErr = Symbol.getName(); 1502 if (!NameOrErr) { 1503 reportWarning(toString(NameOrErr.takeError()), FileName); 1504 continue; 1505 } 1506 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) 1507 continue; 1508 1509 if (Obj.isELF() && 1510 (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) { 1511 // Symbol is intended not to be displayed by default (STT_FILE, 1512 // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will 1513 // synthesize a section symbol if no symbol is defined at offset 0. 1514 // 1515 // For a mapping symbol, store it within both AllSymbols and 1516 // AllMappingSymbols. If --show-all-symbols is unspecified, its label will 1517 // not be printed in disassembly listing. 1518 if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION && 1519 hasMappingSymbols(Obj)) { 1520 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1521 if (SecI != Obj.section_end()) { 1522 uint64_t SectionAddr = SecI->getAddress(); 1523 uint64_t Address = cantFail(Symbol.getAddress()); 1524 StringRef Name = *NameOrErr; 1525 if (Name.consume_front("$") && Name.size() && 1526 strchr("adtx", Name[0])) { 1527 AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr, 1528 Name[0]); 1529 AllSymbols[*SecI].push_back( 1530 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true)); 1531 } 1532 } 1533 } 1534 continue; 1535 } 1536 1537 if (MachO) { 1538 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1539 // symbols that support MachO header introspection. They do not bind to 1540 // code locations and are irrelevant for disassembly. 1541 if (NameOrErr->starts_with("__mh_") && NameOrErr->ends_with("_header")) 1542 continue; 1543 // Don't ask a Mach-O STAB symbol for its section unless you know that 1544 // STAB symbol's section field refers to a valid section index. Otherwise 1545 // the symbol may error trying to load a section that does not exist. 1546 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1547 uint8_t NType = (MachO->is64Bit() ? 1548 MachO->getSymbol64TableEntry(SymDRI).n_type: 1549 MachO->getSymbolTableEntry(SymDRI).n_type); 1550 if (NType & MachO::N_STAB) 1551 continue; 1552 } 1553 1554 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1555 if (SecI != Obj.section_end()) 1556 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1557 else 1558 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1559 } 1560 1561 if (AllSymbols.empty() && Obj.isELF()) 1562 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); 1563 1564 if (Obj.isWasm()) 1565 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1566 1567 if (Obj.isELF() && Obj.sections().empty()) 1568 createFakeELFSections(Obj); 1569 1570 BumpPtrAllocator A; 1571 StringSaver Saver(A); 1572 addPltEntries(Obj, AllSymbols, Saver); 1573 1574 // Create a mapping from virtual address to section. An empty section can 1575 // cause more than one section at the same address. Sort such sections to be 1576 // before same-addressed non-empty sections so that symbol lookups prefer the 1577 // non-empty section. 1578 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1579 for (SectionRef Sec : Obj.sections()) 1580 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1581 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1582 if (LHS.first != RHS.first) 1583 return LHS.first < RHS.first; 1584 return LHS.second.getSize() < RHS.second.getSize(); 1585 }); 1586 1587 // Linked executables (.exe and .dll files) typically don't include a real 1588 // symbol table but they might contain an export table. 1589 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1590 for (const auto &ExportEntry : COFFObj->export_directories()) { 1591 StringRef Name; 1592 if (Error E = ExportEntry.getSymbolName(Name)) 1593 reportError(std::move(E), Obj.getFileName()); 1594 if (Name.empty()) 1595 continue; 1596 1597 uint32_t RVA; 1598 if (Error E = ExportEntry.getExportRVA(RVA)) 1599 reportError(std::move(E), Obj.getFileName()); 1600 1601 uint64_t VA = COFFObj->getImageBase() + RVA; 1602 auto Sec = partition_point( 1603 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1604 return O.first <= VA; 1605 }); 1606 if (Sec != SectionAddresses.begin()) { 1607 --Sec; 1608 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1609 } else 1610 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1611 } 1612 } 1613 1614 // Sort all the symbols, this allows us to use a simple binary search to find 1615 // Multiple symbols can have the same address. Use a stable sort to stabilize 1616 // the output. 1617 StringSet<> FoundDisasmSymbolSet; 1618 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1619 llvm::stable_sort(SecSyms.second); 1620 llvm::stable_sort(AbsoluteSymbols); 1621 1622 std::unique_ptr<DWARFContext> DICtx; 1623 LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo); 1624 1625 if (DbgVariables != DVDisabled) { 1626 DICtx = DWARFContext::create(DbgObj); 1627 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1628 LVP.addCompileUnit(CU->getUnitDIE(false)); 1629 } 1630 1631 LLVM_DEBUG(LVP.dump()); 1632 1633 std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; 1634 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = 1635 std::nullopt) { 1636 AddrToBBAddrMap.clear(); 1637 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { 1638 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); 1639 if (!BBAddrMapsOrErr) { 1640 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); 1641 return; 1642 } 1643 for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) 1644 AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, 1645 std::move(FunctionBBAddrMap)); 1646 } 1647 }; 1648 1649 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a 1650 // single mapping, since they don't have any conflicts. 1651 if (SymbolizeOperands && !Obj.isRelocatableObject()) 1652 ReadBBAddrMap(); 1653 1654 std::optional<llvm::BTFParser> BTF; 1655 if (InlineRelocs && BTFParser::hasBTFSections(Obj)) { 1656 BTF.emplace(); 1657 BTFParser::ParseOptions Opts = {}; 1658 Opts.LoadTypes = true; 1659 Opts.LoadRelocs = true; 1660 if (Error E = BTF->parse(Obj, Opts)) 1661 WithColor::defaultErrorHandler(std::move(E)); 1662 } 1663 1664 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 1665 if (FilterSections.empty() && !DisassembleAll && 1666 (!Section.isText() || Section.isVirtual())) 1667 continue; 1668 1669 uint64_t SectionAddr = Section.getAddress(); 1670 uint64_t SectSize = Section.getSize(); 1671 if (!SectSize) 1672 continue; 1673 1674 // For relocatable object files, read the LLVM_BB_ADDR_MAP section 1675 // corresponding to this section, if present. 1676 if (SymbolizeOperands && Obj.isRelocatableObject()) 1677 ReadBBAddrMap(Section.getIndex()); 1678 1679 // Get the list of all the symbols in this section. 1680 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1681 auto &MappingSymbols = AllMappingSymbols[Section]; 1682 llvm::sort(MappingSymbols); 1683 1684 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1685 unwrapOrError(Section.getContents(), Obj.getFileName())); 1686 1687 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1688 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { 1689 // AMDGPU disassembler uses symbolizer for printing labels 1690 addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(), 1691 SectionAddr, Bytes, Symbols, SynthesizedLabelNames); 1692 } 1693 1694 StringRef SegmentName = getSegmentName(MachO, Section); 1695 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); 1696 // If the section has no symbol at the start, just insert a dummy one. 1697 // Without --show-all-symbols, also insert one if all symbols at the start 1698 // are mapping symbols. 1699 bool CreateDummy = Symbols.empty(); 1700 if (!CreateDummy) { 1701 CreateDummy = true; 1702 for (auto &Sym : Symbols) { 1703 if (Sym.Addr != SectionAddr) 1704 break; 1705 if (!Sym.IsMappingSymbol || ShowAllSymbols) 1706 CreateDummy = false; 1707 } 1708 } 1709 if (CreateDummy) { 1710 SymbolInfoTy Sym = createDummySymbolInfo( 1711 Obj, SectionAddr, SectionName, 1712 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT); 1713 if (Obj.isXCOFF()) 1714 Symbols.insert(Symbols.begin(), Sym); 1715 else 1716 Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym); 1717 } 1718 1719 SmallString<40> Comments; 1720 raw_svector_ostream CommentStream(Comments); 1721 1722 uint64_t VMAAdjustment = 0; 1723 if (shouldAdjustVA(Section)) 1724 VMAAdjustment = AdjustVMA; 1725 1726 // In executable and shared objects, r_offset holds a virtual address. 1727 // Subtract SectionAddr from the r_offset field of a relocation to get 1728 // the section offset. 1729 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; 1730 uint64_t Size; 1731 uint64_t Index; 1732 bool PrintedSection = false; 1733 std::vector<RelocationRef> Rels = RelocMap[Section]; 1734 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1735 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1736 1737 // Loop over each chunk of code between two points where at least 1738 // one symbol is defined. 1739 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { 1740 // Advance SI past all the symbols starting at the same address, 1741 // and make an ArrayRef of them. 1742 unsigned FirstSI = SI; 1743 uint64_t Start = Symbols[SI].Addr; 1744 ArrayRef<SymbolInfoTy> SymbolsHere; 1745 while (SI != SE && Symbols[SI].Addr == Start) 1746 ++SI; 1747 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); 1748 1749 // Get the demangled names of all those symbols. We end up with a vector 1750 // of StringRef that holds the names we're going to use, and a vector of 1751 // std::string that stores the new strings returned by demangle(), if 1752 // any. If we don't call demangle() then that vector can stay empty. 1753 std::vector<StringRef> SymNamesHere; 1754 std::vector<std::string> DemangledSymNamesHere; 1755 if (Demangle) { 1756 // Fetch the demangled names and store them locally. 1757 for (const SymbolInfoTy &Symbol : SymbolsHere) 1758 DemangledSymNamesHere.push_back(demangle(Symbol.Name)); 1759 // Now we've finished modifying that vector, it's safe to make 1760 // a vector of StringRefs pointing into it. 1761 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), 1762 DemangledSymNamesHere.end()); 1763 } else { 1764 for (const SymbolInfoTy &Symbol : SymbolsHere) 1765 SymNamesHere.push_back(Symbol.Name); 1766 } 1767 1768 // Distinguish ELF data from code symbols, which will be used later on to 1769 // decide whether to 'disassemble' this chunk as a data declaration via 1770 // dumpELFData(), or whether to treat it as code. 1771 // 1772 // If data _and_ code symbols are defined at the same address, the code 1773 // takes priority, on the grounds that disassembling code is our main 1774 // purpose here, and it would be a worse failure to _not_ interpret 1775 // something that _was_ meaningful as code than vice versa. 1776 // 1777 // Any ELF symbol type that is not clearly data will be regarded as code. 1778 // In particular, one of the uses of STT_NOTYPE is for branch targets 1779 // inside functions, for which STT_FUNC would be inaccurate. 1780 // 1781 // So here, we spot whether there's any non-data symbol present at all, 1782 // and only set the DisassembleAsELFData flag if there isn't. Also, we use 1783 // this distinction to inform the decision of which symbol to print at 1784 // the head of the section, so that if we're printing code, we print a 1785 // code-related symbol name to go with it. 1786 bool DisassembleAsELFData = false; 1787 size_t DisplaySymIndex = SymbolsHere.size() - 1; 1788 if (Obj.isELF() && !DisassembleAll && Section.isText()) { 1789 DisassembleAsELFData = true; // unless we find a code symbol below 1790 1791 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1792 uint8_t SymTy = SymbolsHere[i].Type; 1793 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { 1794 DisassembleAsELFData = false; 1795 DisplaySymIndex = i; 1796 } 1797 } 1798 } 1799 1800 // Decide which symbol(s) from this collection we're going to print. 1801 std::vector<bool> SymsToPrint(SymbolsHere.size(), false); 1802 // If the user has given the --disassemble-symbols option, then we must 1803 // display every symbol in that set, and no others. 1804 if (!DisasmSymbolSet.empty()) { 1805 bool FoundAny = false; 1806 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1807 if (DisasmSymbolSet.count(SymNamesHere[i])) { 1808 SymsToPrint[i] = true; 1809 FoundAny = true; 1810 } 1811 } 1812 1813 // And if none of the symbols here is one that the user asked for, skip 1814 // disassembling this entire chunk of code. 1815 if (!FoundAny) 1816 continue; 1817 } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) { 1818 // Otherwise, print whichever symbol at this location is last in the 1819 // Symbols array, because that array is pre-sorted in a way intended to 1820 // correlate with priority of which symbol to display. 1821 SymsToPrint[DisplaySymIndex] = true; 1822 } 1823 1824 // Now that we know we're disassembling this section, override the choice 1825 // of which symbols to display by printing _all_ of them at this address 1826 // if the user asked for all symbols. 1827 // 1828 // That way, '--show-all-symbols --disassemble-symbol=foo' will print 1829 // only the chunk of code headed by 'foo', but also show any other 1830 // symbols defined at that address, such as aliases for 'foo', or the ARM 1831 // mapping symbol preceding its code. 1832 if (ShowAllSymbols) { 1833 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1834 SymsToPrint[i] = true; 1835 } 1836 1837 if (Start < SectionAddr || StopAddress <= Start) 1838 continue; 1839 1840 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1841 FoundDisasmSymbolSet.insert(SymNamesHere[i]); 1842 1843 // The end is the section end, the beginning of the next symbol, or 1844 // --stop-address. 1845 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1846 if (SI < SE) 1847 End = std::min(End, Symbols[SI].Addr); 1848 if (Start >= End || End <= StartAddress) 1849 continue; 1850 Start -= SectionAddr; 1851 End -= SectionAddr; 1852 1853 if (!PrintedSection) { 1854 PrintedSection = true; 1855 outs() << "\nDisassembly of section "; 1856 if (!SegmentName.empty()) 1857 outs() << SegmentName << ","; 1858 outs() << SectionName << ":\n"; 1859 } 1860 1861 bool PrintedLabel = false; 1862 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1863 if (!SymsToPrint[i]) 1864 continue; 1865 1866 const SymbolInfoTy &Symbol = SymbolsHere[i]; 1867 const StringRef SymbolName = SymNamesHere[i]; 1868 1869 if (!PrintedLabel) { 1870 outs() << '\n'; 1871 PrintedLabel = true; 1872 } 1873 if (LeadingAddr) 1874 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1875 SectionAddr + Start + VMAAdjustment); 1876 if (Obj.isXCOFF() && SymbolDescription) { 1877 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; 1878 } else 1879 outs() << '<' << SymbolName << ">:\n"; 1880 } 1881 1882 // Don't print raw contents of a virtual section. A virtual section 1883 // doesn't have any contents in the file. 1884 if (Section.isVirtual()) { 1885 outs() << "...\n"; 1886 continue; 1887 } 1888 1889 // See if any of the symbols defined at this location triggers target- 1890 // specific disassembly behavior, e.g. of special descriptors or function 1891 // prelude information. 1892 // 1893 // We stop this loop at the first symbol that triggers some kind of 1894 // interesting behavior (if any), on the assumption that if two symbols 1895 // defined at the same address trigger two conflicting symbol handlers, 1896 // the object file is probably confused anyway, and it would make even 1897 // less sense to present the output of _both_ handlers, because that 1898 // would describe the same data twice. 1899 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { 1900 SymbolInfoTy Symbol = SymbolsHere[SHI]; 1901 1902 auto Status = DT->DisAsm->onSymbolStart( 1903 Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start, 1904 CommentStream); 1905 1906 if (!Status) { 1907 // If onSymbolStart returns std::nullopt, that means it didn't trigger 1908 // any interesting handling for this symbol. Try the other symbols 1909 // defined at this address. 1910 continue; 1911 } 1912 1913 if (*Status == MCDisassembler::Fail) { 1914 // If onSymbolStart returns Fail, that means it identified some kind 1915 // of special data at this address, but wasn't able to disassemble it 1916 // meaningfully. So we fall back to disassembling the failed region 1917 // as bytes, assuming that the target detected the failure before 1918 // printing anything. 1919 // 1920 // Return values Success or SoftFail (i.e no 'real' failure) are 1921 // expected to mean that the target has emitted its own output. 1922 // 1923 // Either way, 'Size' will have been set to the amount of data 1924 // covered by whatever prologue the target identified. So we advance 1925 // our own position to beyond that. Sometimes that will be the entire 1926 // distance to the next symbol, and sometimes it will be just a 1927 // prologue and we should start disassembling instructions from where 1928 // it left off. 1929 outs() << DT->Context->getAsmInfo()->getCommentString() 1930 << " error in decoding " << SymNamesHere[SHI] 1931 << " : decoding failed region as bytes.\n"; 1932 for (uint64_t I = 0; I < Size; ++I) { 1933 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1934 << "\n"; 1935 } 1936 } 1937 Start += Size; 1938 break; 1939 } 1940 1941 Index = Start; 1942 if (SectionAddr < StartAddress) 1943 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1944 1945 if (DisassembleAsELFData) { 1946 dumpELFData(SectionAddr, Index, End, Bytes); 1947 Index = End; 1948 continue; 1949 } 1950 1951 // Skip relocations from symbols that are not dumped. 1952 for (; RelCur != RelEnd; ++RelCur) { 1953 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 1954 if (Index <= Offset) 1955 break; 1956 } 1957 1958 bool DumpARMELFData = false; 1959 bool DumpTracebackTableForXCOFFFunction = 1960 Obj.isXCOFF() && Section.isText() && TracebackTable && 1961 Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass && 1962 (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR); 1963 1964 formatted_raw_ostream FOS(outs()); 1965 1966 // FIXME: Workaround for bug in formatted_raw_ostream. Color escape codes 1967 // are (incorrectly) written directly to the unbuffered raw_ostream 1968 // wrapped by the formatted_raw_ostream. 1969 if (DisassemblyColor == ColorOutput::Enable || 1970 DisassemblyColor == ColorOutput::Auto) 1971 FOS.SetUnbuffered(); 1972 1973 std::unordered_map<uint64_t, std::string> AllLabels; 1974 std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; 1975 if (SymbolizeOperands) { 1976 collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(), 1977 DT->DisAsm.get(), DT->InstPrinter.get(), 1978 PrimaryTarget.SubtargetInfo.get(), 1979 SectionAddr, Index, End, AllLabels); 1980 collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, 1981 BBAddrMapLabels); 1982 } 1983 1984 if (DT->InstrAnalysis) 1985 DT->InstrAnalysis->resetState(); 1986 1987 while (Index < End) { 1988 // ARM and AArch64 ELF binaries can interleave data and text in the 1989 // same section. We rely on the markers introduced to understand what 1990 // we need to dump. If the data marker is within a function, it is 1991 // denoted as a word/short etc. 1992 if (!MappingSymbols.empty()) { 1993 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1994 DumpARMELFData = Kind == 'd'; 1995 if (SecondaryTarget) { 1996 if (Kind == 'a') { 1997 DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget; 1998 } else if (Kind == 't') { 1999 DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget; 2000 } 2001 } 2002 } else if (!CHPECodeMap.empty()) { 2003 uint64_t Address = SectionAddr + Index; 2004 auto It = partition_point( 2005 CHPECodeMap, 2006 [Address](const std::pair<uint64_t, uint64_t> &Entry) { 2007 return Entry.first <= Address; 2008 }); 2009 if (It != CHPECodeMap.begin() && Address < (It - 1)->second) { 2010 DT = &*SecondaryTarget; 2011 } else { 2012 DT = &PrimaryTarget; 2013 // X64 disassembler range may have left Index unaligned, so 2014 // make sure that it's aligned when we switch back to ARM64 2015 // code. 2016 Index = llvm::alignTo(Index, 4); 2017 if (Index >= End) 2018 break; 2019 } 2020 } 2021 2022 if (DumpARMELFData) { 2023 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 2024 MappingSymbols, *DT->SubtargetInfo, FOS); 2025 } else { 2026 // When -z or --disassemble-zeroes are given we always dissasemble 2027 // them. Otherwise we might want to skip zero bytes we see. 2028 if (!DisassembleZeroes) { 2029 uint64_t MaxOffset = End - Index; 2030 // For --reloc: print zero blocks patched by relocations, so that 2031 // relocations can be shown in the dump. 2032 if (RelCur != RelEnd) 2033 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 2034 MaxOffset); 2035 2036 if (size_t N = 2037 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 2038 FOS << "\t\t..." << '\n'; 2039 Index += N; 2040 continue; 2041 } 2042 } 2043 2044 if (DumpTracebackTableForXCOFFFunction && 2045 doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) { 2046 dumpTracebackTable(Bytes.slice(Index), 2047 SectionAddr + Index + VMAAdjustment, FOS, 2048 SectionAddr + End + VMAAdjustment, 2049 *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj)); 2050 Index = End; 2051 continue; 2052 } 2053 2054 // Print local label if there's any. 2055 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); 2056 if (Iter1 != BBAddrMapLabels.end()) { 2057 for (StringRef Label : Iter1->second) 2058 FOS << "<" << Label << ">:\n"; 2059 } else { 2060 auto Iter2 = AllLabels.find(SectionAddr + Index); 2061 if (Iter2 != AllLabels.end()) 2062 FOS << "<" << Iter2->second << ">:\n"; 2063 } 2064 2065 // Disassemble a real instruction or a data when disassemble all is 2066 // provided 2067 MCInst Inst; 2068 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 2069 uint64_t ThisAddr = SectionAddr + Index; 2070 bool Disassembled = DT->DisAsm->getInstruction( 2071 Inst, Size, ThisBytes, ThisAddr, CommentStream); 2072 if (Size == 0) 2073 Size = std::min<uint64_t>( 2074 ThisBytes.size(), 2075 DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); 2076 2077 LVP.update({Index, Section.getIndex()}, 2078 {Index + Size, Section.getIndex()}, Index + Size != End); 2079 2080 DT->InstPrinter->setCommentStream(CommentStream); 2081 2082 DT->Printer->printInst( 2083 *DT->InstPrinter, Disassembled ? &Inst : nullptr, 2084 Bytes.slice(Index, Size), 2085 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 2086 "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP); 2087 2088 DT->InstPrinter->setCommentStream(llvm::nulls()); 2089 2090 // If disassembly has failed, avoid analysing invalid/incomplete 2091 // instruction information. Otherwise, try to resolve the target 2092 // address (jump target or memory operand address) and print it on the 2093 // right of the instruction. 2094 if (Disassembled && DT->InstrAnalysis) { 2095 // Branch targets are printed just after the instructions. 2096 llvm::raw_ostream *TargetOS = &FOS; 2097 uint64_t Target; 2098 bool PrintTarget = DT->InstrAnalysis->evaluateBranch( 2099 Inst, SectionAddr + Index, Size, Target); 2100 if (!PrintTarget) 2101 if (std::optional<uint64_t> MaybeTarget = 2102 DT->InstrAnalysis->evaluateMemoryOperandAddress( 2103 Inst, DT->SubtargetInfo.get(), SectionAddr + Index, 2104 Size)) { 2105 Target = *MaybeTarget; 2106 PrintTarget = true; 2107 // Do not print real address when symbolizing. 2108 if (!SymbolizeOperands) { 2109 // Memory operand addresses are printed as comments. 2110 TargetOS = &CommentStream; 2111 *TargetOS << "0x" << Twine::utohexstr(Target); 2112 } 2113 } 2114 if (PrintTarget) { 2115 // In a relocatable object, the target's section must reside in 2116 // the same section as the call instruction or it is accessed 2117 // through a relocation. 2118 // 2119 // In a non-relocatable object, the target may be in any section. 2120 // In that case, locate the section(s) containing the target 2121 // address and find the symbol in one of those, if possible. 2122 // 2123 // N.B. We don't walk the relocations in the relocatable case yet. 2124 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 2125 if (!Obj.isRelocatableObject()) { 2126 auto It = llvm::partition_point( 2127 SectionAddresses, 2128 [=](const std::pair<uint64_t, SectionRef> &O) { 2129 return O.first <= Target; 2130 }); 2131 uint64_t TargetSecAddr = 0; 2132 while (It != SectionAddresses.begin()) { 2133 --It; 2134 if (TargetSecAddr == 0) 2135 TargetSecAddr = It->first; 2136 if (It->first != TargetSecAddr) 2137 break; 2138 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 2139 } 2140 } else { 2141 TargetSectionSymbols.push_back(&Symbols); 2142 } 2143 TargetSectionSymbols.push_back(&AbsoluteSymbols); 2144 2145 // Find the last symbol in the first candidate section whose 2146 // offset is less than or equal to the target. If there are no 2147 // such symbols, try in the next section and so on, before finally 2148 // using the nearest preceding absolute symbol (if any), if there 2149 // are no other valid symbols. 2150 const SymbolInfoTy *TargetSym = nullptr; 2151 for (const SectionSymbolsTy *TargetSymbols : 2152 TargetSectionSymbols) { 2153 auto It = llvm::partition_point( 2154 *TargetSymbols, 2155 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 2156 while (It != TargetSymbols->begin()) { 2157 --It; 2158 // Skip mapping symbols to avoid possible ambiguity as they 2159 // do not allow uniquely identifying the target address. 2160 if (!It->IsMappingSymbol) { 2161 TargetSym = &*It; 2162 break; 2163 } 2164 } 2165 if (TargetSym) 2166 break; 2167 } 2168 2169 // Print the labels corresponding to the target if there's any. 2170 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); 2171 bool LabelAvailable = AllLabels.count(Target); 2172 if (TargetSym != nullptr) { 2173 uint64_t TargetAddress = TargetSym->Addr; 2174 uint64_t Disp = Target - TargetAddress; 2175 std::string TargetName = Demangle ? demangle(TargetSym->Name) 2176 : TargetSym->Name.str(); 2177 2178 *TargetOS << " <"; 2179 if (!Disp) { 2180 // Always Print the binary symbol precisely corresponding to 2181 // the target address. 2182 *TargetOS << TargetName; 2183 } else if (BBAddrMapLabelAvailable) { 2184 *TargetOS << BBAddrMapLabels[Target].front(); 2185 } else if (LabelAvailable) { 2186 *TargetOS << AllLabels[Target]; 2187 } else { 2188 // Always Print the binary symbol plus an offset if there's no 2189 // local label corresponding to the target address. 2190 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 2191 } 2192 *TargetOS << ">"; 2193 } else if (BBAddrMapLabelAvailable) { 2194 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; 2195 } else if (LabelAvailable) { 2196 *TargetOS << " <" << AllLabels[Target] << ">"; 2197 } 2198 // By convention, each record in the comment stream should be 2199 // terminated. 2200 if (TargetOS == &CommentStream) 2201 *TargetOS << "\n"; 2202 } 2203 2204 DT->InstrAnalysis->updateState(Inst, SectionAddr + Index); 2205 } else if (!Disassembled && DT->InstrAnalysis) { 2206 DT->InstrAnalysis->resetState(); 2207 } 2208 } 2209 2210 assert(DT->Context->getAsmInfo()); 2211 emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(), 2212 *DT->SubtargetInfo, CommentStream.str(), LVP); 2213 Comments.clear(); 2214 2215 if (BTF) 2216 printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP); 2217 2218 // Hexagon does this in pretty printer 2219 if (Obj.getArch() != Triple::hexagon) { 2220 // Print relocation for instruction and data. 2221 while (RelCur != RelEnd) { 2222 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 2223 // If this relocation is hidden, skip it. 2224 if (getHidden(*RelCur)) { 2225 ++RelCur; 2226 continue; 2227 } 2228 2229 // Stop when RelCur's offset is past the disassembled 2230 // instruction/data. Note that it's possible the disassembled data 2231 // is not the complete data: we might see the relocation printed in 2232 // the middle of the data, but this matches the binutils objdump 2233 // output. 2234 if (Offset >= Index + Size) 2235 break; 2236 2237 // When --adjust-vma is used, update the address printed. 2238 if (RelCur->getSymbol() != Obj.symbol_end()) { 2239 Expected<section_iterator> SymSI = 2240 RelCur->getSymbol()->getSection(); 2241 if (SymSI && *SymSI != Obj.section_end() && 2242 shouldAdjustVA(**SymSI)) 2243 Offset += AdjustVMA; 2244 } 2245 2246 printRelocation(FOS, Obj.getFileName(), *RelCur, 2247 SectionAddr + Offset, Is64Bits); 2248 LVP.printAfterOtherLine(FOS, true); 2249 ++RelCur; 2250 } 2251 } 2252 2253 Index += Size; 2254 } 2255 } 2256 } 2257 StringSet<> MissingDisasmSymbolSet = 2258 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 2259 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 2260 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 2261 } 2262 2263 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { 2264 // If information useful for showing the disassembly is missing, try to find a 2265 // more complete binary and disassemble that instead. 2266 OwningBinary<Binary> FetchedBinary; 2267 if (Obj->symbols().empty()) { 2268 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = 2269 fetchBinaryByBuildID(*Obj)) { 2270 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { 2271 if (!O->symbols().empty() || 2272 (!O->sections().empty() && Obj->sections().empty())) { 2273 FetchedBinary = std::move(*FetchedBinaryOpt); 2274 Obj = O; 2275 } 2276 } 2277 } 2278 } 2279 2280 const Target *TheTarget = getTarget(Obj); 2281 2282 // Package up features to be passed to target/subtarget 2283 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); 2284 if (!FeaturesValue) 2285 reportError(FeaturesValue.takeError(), Obj->getFileName()); 2286 SubtargetFeatures Features = *FeaturesValue; 2287 if (!MAttrs.empty()) { 2288 for (unsigned I = 0; I != MAttrs.size(); ++I) 2289 Features.AddFeature(MAttrs[I]); 2290 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { 2291 Features.AddFeature("+all"); 2292 } 2293 2294 if (MCPU.empty()) 2295 MCPU = Obj->tryGetCPUName().value_or("").str(); 2296 2297 if (isArmElf(*Obj)) { 2298 // When disassembling big-endian Arm ELF, the instruction endianness is 2299 // determined in a complex way. In relocatable objects, AAELF32 mandates 2300 // that instruction endianness matches the ELF file endianness; in 2301 // executable images, that's true unless the file header has the EF_ARM_BE8 2302 // flag, in which case instructions are little-endian regardless of data 2303 // endianness. 2304 // 2305 // We must set the big-endian-instructions SubtargetFeature to make the 2306 // disassembler read the instructions the right way round, and also tell 2307 // our own prettyprinter to retrieve the encodings the same way to print in 2308 // hex. 2309 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); 2310 2311 if (Elf32BE && (Elf32BE->isRelocatableObject() || 2312 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { 2313 Features.AddFeature("+big-endian-instructions"); 2314 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big); 2315 } else { 2316 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little); 2317 } 2318 } 2319 2320 DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features); 2321 2322 // If we have an ARM object file, we need a second disassembler, because 2323 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2324 // We use mapping symbols to switch between the two assemblers, where 2325 // appropriate. 2326 std::optional<DisassemblerTarget> SecondaryTarget; 2327 2328 if (isArmElf(*Obj)) { 2329 if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) { 2330 if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode")) 2331 Features.AddFeature("-thumb-mode"); 2332 else 2333 Features.AddFeature("+thumb-mode"); 2334 SecondaryTarget.emplace(PrimaryTarget, Features); 2335 } 2336 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 2337 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); 2338 if (CHPEMetadata && CHPEMetadata->CodeMapCount) { 2339 // Set up x86_64 disassembler for ARM64EC binaries. 2340 Triple X64Triple(TripleName); 2341 X64Triple.setArch(Triple::ArchType::x86_64); 2342 2343 std::string Error; 2344 const Target *X64Target = 2345 TargetRegistry::lookupTarget("", X64Triple, Error); 2346 if (X64Target) { 2347 SubtargetFeatures X64Features; 2348 SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "", 2349 X64Features); 2350 } else { 2351 reportWarning(Error, Obj->getFileName()); 2352 } 2353 } 2354 } 2355 2356 const ObjectFile *DbgObj = Obj; 2357 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { 2358 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = 2359 fetchBinaryByBuildID(*Obj)) { 2360 if (auto *FetchedObj = 2361 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { 2362 if (FetchedObj->hasDebugInfo()) { 2363 FetchedBinary = std::move(*DebugBinaryOpt); 2364 DbgObj = FetchedObj; 2365 } 2366 } 2367 } 2368 } 2369 2370 std::unique_ptr<object::Binary> DSYMBinary; 2371 std::unique_ptr<MemoryBuffer> DSYMBuf; 2372 if (!DbgObj->hasDebugInfo()) { 2373 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { 2374 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), 2375 DSYMBinary, DSYMBuf); 2376 if (!DbgObj) 2377 return; 2378 } 2379 } 2380 2381 SourcePrinter SP(DbgObj, TheTarget->getName()); 2382 2383 for (StringRef Opt : DisassemblerOptions) 2384 if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt)) 2385 reportError(Obj->getFileName(), 2386 "Unrecognized disassembler option: " + Opt); 2387 2388 disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP, 2389 InlineRelocs); 2390 } 2391 2392 void Dumper::printRelocations() { 2393 StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2394 2395 // Build a mapping from relocation target to a vector of relocation 2396 // sections. Usually, there is an only one relocation section for 2397 // each relocated section. 2398 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2399 uint64_t Ndx; 2400 for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) { 2401 if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) 2402 continue; 2403 if (Section.relocation_begin() == Section.relocation_end()) 2404 continue; 2405 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2406 if (!SecOrErr) 2407 reportError(O.getFileName(), 2408 "section (" + Twine(Ndx) + 2409 "): unable to get a relocation target: " + 2410 toString(SecOrErr.takeError())); 2411 SecToRelSec[**SecOrErr].push_back(Section); 2412 } 2413 2414 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2415 StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName()); 2416 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 2417 uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8); 2418 uint32_t TypePadding = 24; 2419 outs() << left_justify("OFFSET", OffsetPadding) << " " 2420 << left_justify("TYPE", TypePadding) << " " 2421 << "VALUE\n"; 2422 2423 for (SectionRef Section : P.second) { 2424 for (const RelocationRef &Reloc : Section.relocations()) { 2425 uint64_t Address = Reloc.getOffset(); 2426 SmallString<32> RelocName; 2427 SmallString<32> ValueStr; 2428 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2429 continue; 2430 Reloc.getTypeName(RelocName); 2431 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2432 reportUniqueWarning(std::move(E)); 2433 2434 outs() << format(Fmt.data(), Address) << " " 2435 << left_justify(RelocName, TypePadding) << " " << ValueStr 2436 << "\n"; 2437 } 2438 } 2439 } 2440 } 2441 2442 // Returns true if we need to show LMA column when dumping section headers. We 2443 // show it only when the platform is ELF and either we have at least one section 2444 // whose VMA and LMA are different and/or when --show-lma flag is used. 2445 static bool shouldDisplayLMA(const ObjectFile &Obj) { 2446 if (!Obj.isELF()) 2447 return false; 2448 for (const SectionRef &S : ToolSectionFilter(Obj)) 2449 if (S.getAddress() != getELFSectionLMA(S)) 2450 return true; 2451 return ShowLMA; 2452 } 2453 2454 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { 2455 // Default column width for names is 13 even if no names are that long. 2456 size_t MaxWidth = 13; 2457 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 2458 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2459 MaxWidth = std::max(MaxWidth, Name.size()); 2460 } 2461 return MaxWidth; 2462 } 2463 2464 void objdump::printSectionHeaders(ObjectFile &Obj) { 2465 if (Obj.isELF() && Obj.sections().empty()) 2466 createFakeELFSections(Obj); 2467 2468 size_t NameWidth = getMaxSectionNameWidth(Obj); 2469 size_t AddressWidth = 2 * Obj.getBytesInAddress(); 2470 bool HasLMAColumn = shouldDisplayLMA(Obj); 2471 outs() << "\nSections:\n"; 2472 if (HasLMAColumn) 2473 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2474 << left_justify("VMA", AddressWidth) << " " 2475 << left_justify("LMA", AddressWidth) << " Type\n"; 2476 else 2477 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2478 << left_justify("VMA", AddressWidth) << " Type\n"; 2479 2480 uint64_t Idx; 2481 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { 2482 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2483 uint64_t VMA = Section.getAddress(); 2484 if (shouldAdjustVA(Section)) 2485 VMA += AdjustVMA; 2486 2487 uint64_t Size = Section.getSize(); 2488 2489 std::string Type = Section.isText() ? "TEXT" : ""; 2490 if (Section.isData()) 2491 Type += Type.empty() ? "DATA" : ", DATA"; 2492 if (Section.isBSS()) 2493 Type += Type.empty() ? "BSS" : ", BSS"; 2494 if (Section.isDebugSection()) 2495 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 2496 2497 if (HasLMAColumn) 2498 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2499 Name.str().c_str(), Size) 2500 << format_hex_no_prefix(VMA, AddressWidth) << " " 2501 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2502 << " " << Type << "\n"; 2503 else 2504 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2505 Name.str().c_str(), Size) 2506 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2507 } 2508 } 2509 2510 void objdump::printSectionContents(const ObjectFile *Obj) { 2511 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 2512 2513 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2514 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2515 uint64_t BaseAddr = Section.getAddress(); 2516 uint64_t Size = Section.getSize(); 2517 if (!Size) 2518 continue; 2519 2520 outs() << "Contents of section "; 2521 StringRef SegmentName = getSegmentName(MachO, Section); 2522 if (!SegmentName.empty()) 2523 outs() << SegmentName << ","; 2524 outs() << Name << ":\n"; 2525 if (Section.isBSS()) { 2526 outs() << format("<skipping contents of bss section at [%04" PRIx64 2527 ", %04" PRIx64 ")>\n", 2528 BaseAddr, BaseAddr + Size); 2529 continue; 2530 } 2531 2532 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2533 2534 // Dump out the content as hex and printable ascii characters. 2535 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2536 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2537 // Dump line of hex. 2538 for (std::size_t I = 0; I < 16; ++I) { 2539 if (I != 0 && I % 4 == 0) 2540 outs() << ' '; 2541 if (Addr + I < End) 2542 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2543 << hexdigit(Contents[Addr + I] & 0xF, true); 2544 else 2545 outs() << " "; 2546 } 2547 // Print ascii. 2548 outs() << " "; 2549 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2550 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2551 outs() << Contents[Addr + I]; 2552 else 2553 outs() << "."; 2554 } 2555 outs() << "\n"; 2556 } 2557 } 2558 } 2559 2560 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName, 2561 bool DumpDynamic) { 2562 if (O.isCOFF() && !DumpDynamic) { 2563 outs() << "\nSYMBOL TABLE:\n"; 2564 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 2565 return; 2566 } 2567 2568 const StringRef FileName = O.getFileName(); 2569 2570 if (!DumpDynamic) { 2571 outs() << "\nSYMBOL TABLE:\n"; 2572 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) 2573 printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic); 2574 return; 2575 } 2576 2577 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 2578 if (!O.isELF()) { 2579 reportWarning( 2580 "this operation is not currently supported for this file format", 2581 FileName); 2582 return; 2583 } 2584 2585 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); 2586 auto Symbols = ELF->getDynamicSymbolIterators(); 2587 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 2588 ELF->readDynsymVersions(); 2589 if (!SymbolVersionsOrErr) { 2590 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 2591 SymbolVersionsOrErr = std::vector<VersionEntry>(); 2592 (void)!SymbolVersionsOrErr; 2593 } 2594 for (auto &Sym : Symbols) 2595 printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 2596 ArchitectureName, DumpDynamic); 2597 } 2598 2599 void Dumper::printSymbol(const SymbolRef &Symbol, 2600 ArrayRef<VersionEntry> SymbolVersions, 2601 StringRef FileName, StringRef ArchiveName, 2602 StringRef ArchitectureName, bool DumpDynamic) { 2603 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); 2604 Expected<uint64_t> AddrOrErr = Symbol.getAddress(); 2605 if (!AddrOrErr) { 2606 reportUniqueWarning(AddrOrErr.takeError()); 2607 return; 2608 } 2609 uint64_t Address = *AddrOrErr; 2610 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 2611 if (SecI != O.section_end() && shouldAdjustVA(*SecI)) 2612 Address += AdjustVMA; 2613 if ((Address < StartAddress) || (Address > StopAddress)) 2614 return; 2615 SymbolRef::Type Type = 2616 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 2617 uint32_t Flags = 2618 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 2619 2620 // Don't ask a Mach-O STAB symbol for its section unless you know that 2621 // STAB symbol's section field refers to a valid section index. Otherwise 2622 // the symbol may error trying to load a section that does not exist. 2623 bool IsSTAB = false; 2624 if (MachO) { 2625 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2626 uint8_t NType = 2627 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 2628 : MachO->getSymbolTableEntry(SymDRI).n_type); 2629 if (NType & MachO::N_STAB) 2630 IsSTAB = true; 2631 } 2632 section_iterator Section = IsSTAB 2633 ? O.section_end() 2634 : unwrapOrError(Symbol.getSection(), FileName, 2635 ArchiveName, ArchitectureName); 2636 2637 StringRef Name; 2638 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { 2639 if (Expected<StringRef> NameOrErr = Section->getName()) 2640 Name = *NameOrErr; 2641 else 2642 consumeError(NameOrErr.takeError()); 2643 2644 } else { 2645 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2646 ArchitectureName); 2647 } 2648 2649 bool Global = Flags & SymbolRef::SF_Global; 2650 bool Weak = Flags & SymbolRef::SF_Weak; 2651 bool Absolute = Flags & SymbolRef::SF_Absolute; 2652 bool Common = Flags & SymbolRef::SF_Common; 2653 bool Hidden = Flags & SymbolRef::SF_Hidden; 2654 2655 char GlobLoc = ' '; 2656 if ((Section != O.section_end() || Absolute) && !Weak) 2657 GlobLoc = Global ? 'g' : 'l'; 2658 char IFunc = ' '; 2659 if (O.isELF()) { 2660 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2661 IFunc = 'i'; 2662 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2663 GlobLoc = 'u'; 2664 } 2665 2666 char Debug = ' '; 2667 if (DumpDynamic) 2668 Debug = 'D'; 2669 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2670 Debug = 'd'; 2671 2672 char FileFunc = ' '; 2673 if (Type == SymbolRef::ST_File) 2674 FileFunc = 'f'; 2675 else if (Type == SymbolRef::ST_Function) 2676 FileFunc = 'F'; 2677 else if (Type == SymbolRef::ST_Data) 2678 FileFunc = 'O'; 2679 2680 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2681 2682 outs() << format(Fmt, Address) << " " 2683 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2684 << (Weak ? 'w' : ' ') // Weak? 2685 << ' ' // Constructor. Not supported yet. 2686 << ' ' // Warning. Not supported yet. 2687 << IFunc // Indirect reference to another symbol. 2688 << Debug // Debugging (d) or dynamic (D) symbol. 2689 << FileFunc // Name of function (F), file (f) or object (O). 2690 << ' '; 2691 if (Absolute) { 2692 outs() << "*ABS*"; 2693 } else if (Common) { 2694 outs() << "*COM*"; 2695 } else if (Section == O.section_end()) { 2696 if (O.isXCOFF()) { 2697 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( 2698 Symbol.getRawDataRefImpl()); 2699 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2700 outs() << "*DEBUG*"; 2701 else 2702 outs() << "*UND*"; 2703 } else 2704 outs() << "*UND*"; 2705 } else { 2706 StringRef SegmentName = getSegmentName(MachO, *Section); 2707 if (!SegmentName.empty()) 2708 outs() << SegmentName << ","; 2709 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2710 outs() << SectionName; 2711 if (O.isXCOFF()) { 2712 std::optional<SymbolRef> SymRef = 2713 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); 2714 if (SymRef) { 2715 2716 Expected<StringRef> NameOrErr = SymRef->getName(); 2717 2718 if (NameOrErr) { 2719 outs() << " (csect:"; 2720 std::string SymName = 2721 Demangle ? demangle(*NameOrErr) : NameOrErr->str(); 2722 2723 if (SymbolDescription) 2724 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), 2725 SymName); 2726 2727 outs() << ' ' << SymName; 2728 outs() << ") "; 2729 } else 2730 reportWarning(toString(NameOrErr.takeError()), FileName); 2731 } 2732 } 2733 } 2734 2735 if (Common) 2736 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2737 else if (O.isXCOFF()) 2738 outs() << '\t' 2739 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( 2740 Symbol.getRawDataRefImpl())); 2741 else if (O.isELF()) 2742 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2743 2744 if (O.isELF()) { 2745 if (!SymbolVersions.empty()) { 2746 const VersionEntry &Ver = 2747 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2748 std::string Str; 2749 if (!Ver.Name.empty()) 2750 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2751 outs() << ' ' << left_justify(Str, 12); 2752 } 2753 2754 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2755 switch (Other) { 2756 case ELF::STV_DEFAULT: 2757 break; 2758 case ELF::STV_INTERNAL: 2759 outs() << " .internal"; 2760 break; 2761 case ELF::STV_HIDDEN: 2762 outs() << " .hidden"; 2763 break; 2764 case ELF::STV_PROTECTED: 2765 outs() << " .protected"; 2766 break; 2767 default: 2768 outs() << format(" 0x%02x", Other); 2769 break; 2770 } 2771 } else if (Hidden) { 2772 outs() << " .hidden"; 2773 } 2774 2775 std::string SymName = Demangle ? demangle(Name) : Name.str(); 2776 if (O.isXCOFF() && SymbolDescription) 2777 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2778 2779 outs() << ' ' << SymName << '\n'; 2780 } 2781 2782 static void printUnwindInfo(const ObjectFile *O) { 2783 outs() << "Unwind info:\n\n"; 2784 2785 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2786 printCOFFUnwindInfo(Coff); 2787 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2788 printMachOUnwindInfo(MachO); 2789 else 2790 // TODO: Extract DWARF dump tool to objdump. 2791 WithColor::error(errs(), ToolName) 2792 << "This operation is only currently supported " 2793 "for COFF and MachO object files.\n"; 2794 } 2795 2796 /// Dump the raw contents of the __clangast section so the output can be piped 2797 /// into llvm-bcanalyzer. 2798 static void printRawClangAST(const ObjectFile *Obj) { 2799 if (outs().is_displayed()) { 2800 WithColor::error(errs(), ToolName) 2801 << "The -raw-clang-ast option will dump the raw binary contents of " 2802 "the clang ast section.\n" 2803 "Please redirect the output to a file or another program such as " 2804 "llvm-bcanalyzer.\n"; 2805 return; 2806 } 2807 2808 StringRef ClangASTSectionName("__clangast"); 2809 if (Obj->isCOFF()) { 2810 ClangASTSectionName = "clangast"; 2811 } 2812 2813 std::optional<object::SectionRef> ClangASTSection; 2814 for (auto Sec : ToolSectionFilter(*Obj)) { 2815 StringRef Name; 2816 if (Expected<StringRef> NameOrErr = Sec.getName()) 2817 Name = *NameOrErr; 2818 else 2819 consumeError(NameOrErr.takeError()); 2820 2821 if (Name == ClangASTSectionName) { 2822 ClangASTSection = Sec; 2823 break; 2824 } 2825 } 2826 if (!ClangASTSection) 2827 return; 2828 2829 StringRef ClangASTContents = 2830 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); 2831 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2832 } 2833 2834 static void printFaultMaps(const ObjectFile *Obj) { 2835 StringRef FaultMapSectionName; 2836 2837 if (Obj->isELF()) { 2838 FaultMapSectionName = ".llvm_faultmaps"; 2839 } else if (Obj->isMachO()) { 2840 FaultMapSectionName = "__llvm_faultmaps"; 2841 } else { 2842 WithColor::error(errs(), ToolName) 2843 << "This operation is only currently supported " 2844 "for ELF and Mach-O executable files.\n"; 2845 return; 2846 } 2847 2848 std::optional<object::SectionRef> FaultMapSection; 2849 2850 for (auto Sec : ToolSectionFilter(*Obj)) { 2851 StringRef Name; 2852 if (Expected<StringRef> NameOrErr = Sec.getName()) 2853 Name = *NameOrErr; 2854 else 2855 consumeError(NameOrErr.takeError()); 2856 2857 if (Name == FaultMapSectionName) { 2858 FaultMapSection = Sec; 2859 break; 2860 } 2861 } 2862 2863 outs() << "FaultMap table:\n"; 2864 2865 if (!FaultMapSection) { 2866 outs() << "<not found>\n"; 2867 return; 2868 } 2869 2870 StringRef FaultMapContents = 2871 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); 2872 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2873 FaultMapContents.bytes_end()); 2874 2875 outs() << FMP; 2876 } 2877 2878 void Dumper::printPrivateHeaders() { 2879 reportError(O.getFileName(), "Invalid/Unsupported object file format"); 2880 } 2881 2882 static void printFileHeaders(const ObjectFile *O) { 2883 if (!O->isELF() && !O->isCOFF()) 2884 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2885 2886 Triple::ArchType AT = O->getArch(); 2887 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2888 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2889 2890 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2891 outs() << "start address: " 2892 << "0x" << format(Fmt.data(), Address) << "\n"; 2893 } 2894 2895 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2896 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2897 if (!ModeOrErr) { 2898 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2899 consumeError(ModeOrErr.takeError()); 2900 return; 2901 } 2902 sys::fs::perms Mode = ModeOrErr.get(); 2903 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2904 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2905 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2906 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2907 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2908 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2909 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2910 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2911 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2912 2913 outs() << " "; 2914 2915 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2916 unwrapOrError(C.getGID(), Filename), 2917 unwrapOrError(C.getRawSize(), Filename)); 2918 2919 StringRef RawLastModified = C.getRawLastModified(); 2920 unsigned Seconds; 2921 if (RawLastModified.getAsInteger(10, Seconds)) 2922 outs() << "(date: \"" << RawLastModified 2923 << "\" contains non-decimal chars) "; 2924 else { 2925 // Since ctime(3) returns a 26 character string of the form: 2926 // "Sun Sep 16 01:03:52 1973\n\0" 2927 // just print 24 characters. 2928 time_t t = Seconds; 2929 outs() << format("%.24s ", ctime(&t)); 2930 } 2931 2932 StringRef Name = ""; 2933 Expected<StringRef> NameOrErr = C.getName(); 2934 if (!NameOrErr) { 2935 consumeError(NameOrErr.takeError()); 2936 Name = unwrapOrError(C.getRawName(), Filename); 2937 } else { 2938 Name = NameOrErr.get(); 2939 } 2940 outs() << Name << "\n"; 2941 } 2942 2943 // For ELF only now. 2944 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2945 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2946 if (Elf->getEType() != ELF::ET_REL) 2947 return true; 2948 } 2949 return false; 2950 } 2951 2952 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2953 uint64_t Start, uint64_t Stop) { 2954 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2955 return; 2956 2957 for (const SectionRef &Section : Obj->sections()) 2958 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2959 uint64_t BaseAddr = Section.getAddress(); 2960 uint64_t Size = Section.getSize(); 2961 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2962 return; 2963 } 2964 2965 if (!HasStartAddressFlag) 2966 reportWarning("no section has address less than 0x" + 2967 Twine::utohexstr(Stop) + " specified by --stop-address", 2968 Obj->getFileName()); 2969 else if (!HasStopAddressFlag) 2970 reportWarning("no section has address greater than or equal to 0x" + 2971 Twine::utohexstr(Start) + " specified by --start-address", 2972 Obj->getFileName()); 2973 else 2974 reportWarning("no section overlaps the range [0x" + 2975 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2976 ") specified by --start-address/--stop-address", 2977 Obj->getFileName()); 2978 } 2979 2980 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2981 const Archive::Child *C = nullptr) { 2982 Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O); 2983 if (!DumperOrErr) { 2984 reportError(DumperOrErr.takeError(), O->getFileName(), 2985 A ? A->getFileName() : ""); 2986 return; 2987 } 2988 Dumper &D = **DumperOrErr; 2989 2990 // Avoid other output when using a raw option. 2991 if (!RawClangAST) { 2992 outs() << '\n'; 2993 if (A) 2994 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2995 else 2996 outs() << O->getFileName(); 2997 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2998 } 2999 3000 if (HasStartAddressFlag || HasStopAddressFlag) 3001 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 3002 3003 // TODO: Change print* free functions to Dumper member functions to utilitize 3004 // stateful functions like reportUniqueWarning. 3005 3006 // Note: the order here matches GNU objdump for compatability. 3007 StringRef ArchiveName = A ? A->getFileName() : ""; 3008 if (ArchiveHeaders && !MachOOpt && C) 3009 printArchiveChild(ArchiveName, *C); 3010 if (FileHeaders) 3011 printFileHeaders(O); 3012 if (PrivateHeaders || FirstPrivateHeader) 3013 D.printPrivateHeaders(); 3014 if (SectionHeaders) 3015 printSectionHeaders(*O); 3016 if (SymbolTable) 3017 D.printSymbolTable(ArchiveName); 3018 if (DynamicSymbolTable) 3019 D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"", 3020 /*DumpDynamic=*/true); 3021 if (DwarfDumpType != DIDT_Null) { 3022 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 3023 // Dump the complete DWARF structure. 3024 DIDumpOptions DumpOpts; 3025 DumpOpts.DumpType = DwarfDumpType; 3026 DICtx->dump(outs(), DumpOpts); 3027 } 3028 if (Relocations && !Disassemble) 3029 D.printRelocations(); 3030 if (DynamicRelocations) 3031 D.printDynamicRelocations(); 3032 if (SectionContents) 3033 printSectionContents(O); 3034 if (Disassemble) 3035 disassembleObject(O, Relocations); 3036 if (UnwindInfo) 3037 printUnwindInfo(O); 3038 3039 // Mach-O specific options: 3040 if (ExportsTrie) 3041 printExportsTrie(O); 3042 if (Rebase) 3043 printRebaseTable(O); 3044 if (Bind) 3045 printBindTable(O); 3046 if (LazyBind) 3047 printLazyBindTable(O); 3048 if (WeakBind) 3049 printWeakBindTable(O); 3050 3051 // Other special sections: 3052 if (RawClangAST) 3053 printRawClangAST(O); 3054 if (FaultMapSection) 3055 printFaultMaps(O); 3056 if (Offloading) 3057 dumpOffloadBinary(*O); 3058 } 3059 3060 static void dumpObject(const COFFImportFile *I, const Archive *A, 3061 const Archive::Child *C = nullptr) { 3062 StringRef ArchiveName = A ? A->getFileName() : ""; 3063 3064 // Avoid other output when using a raw option. 3065 if (!RawClangAST) 3066 outs() << '\n' 3067 << ArchiveName << "(" << I->getFileName() << ")" 3068 << ":\tfile format COFF-import-file" 3069 << "\n\n"; 3070 3071 if (ArchiveHeaders && !MachOOpt && C) 3072 printArchiveChild(ArchiveName, *C); 3073 if (SymbolTable) 3074 printCOFFSymbolTable(*I); 3075 } 3076 3077 /// Dump each object file in \a a; 3078 static void dumpArchive(const Archive *A) { 3079 Error Err = Error::success(); 3080 unsigned I = -1; 3081 for (auto &C : A->children(Err)) { 3082 ++I; 3083 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 3084 if (!ChildOrErr) { 3085 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 3086 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 3087 continue; 3088 } 3089 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 3090 dumpObject(O, A, &C); 3091 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 3092 dumpObject(I, A, &C); 3093 else 3094 reportError(errorCodeToError(object_error::invalid_file_type), 3095 A->getFileName()); 3096 } 3097 if (Err) 3098 reportError(std::move(Err), A->getFileName()); 3099 } 3100 3101 /// Open file and figure out how to dump it. 3102 static void dumpInput(StringRef file) { 3103 // If we are using the Mach-O specific object file parser, then let it parse 3104 // the file and process the command line options. So the -arch flags can 3105 // be used to select specific slices, etc. 3106 if (MachOOpt) { 3107 parseInputMachO(file); 3108 return; 3109 } 3110 3111 // Attempt to open the binary. 3112 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 3113 Binary &Binary = *OBinary.getBinary(); 3114 3115 if (Archive *A = dyn_cast<Archive>(&Binary)) 3116 dumpArchive(A); 3117 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 3118 dumpObject(O); 3119 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 3120 parseInputMachO(UB); 3121 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) 3122 dumpOffloadSections(*OB); 3123 else 3124 reportError(errorCodeToError(object_error::invalid_file_type), file); 3125 } 3126 3127 template <typename T> 3128 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 3129 T &Value) { 3130 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 3131 StringRef V(A->getValue()); 3132 if (!llvm::to_integer(V, Value, 0)) { 3133 reportCmdLineError(A->getSpelling() + 3134 ": expected a non-negative integer, but got '" + V + 3135 "'"); 3136 } 3137 } 3138 } 3139 3140 static object::BuildID parseBuildIDArg(const opt::Arg *A) { 3141 StringRef V(A->getValue()); 3142 object::BuildID BID = parseBuildID(V); 3143 if (BID.empty()) 3144 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + 3145 V + "'"); 3146 return BID; 3147 } 3148 3149 void objdump::invalidArgValue(const opt::Arg *A) { 3150 reportCmdLineError("'" + StringRef(A->getValue()) + 3151 "' is not a valid value for '" + A->getSpelling() + "'"); 3152 } 3153 3154 static std::vector<std::string> 3155 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 3156 std::vector<std::string> Values; 3157 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 3158 llvm::SmallVector<StringRef, 2> SplitValues; 3159 llvm::SplitString(Value, SplitValues, ","); 3160 for (StringRef SplitValue : SplitValues) 3161 Values.push_back(SplitValue.str()); 3162 } 3163 return Values; 3164 } 3165 3166 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 3167 MachOOpt = true; 3168 FullLeadingAddr = true; 3169 PrintImmHex = true; 3170 3171 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 3172 LinkOptHints = InputArgs.hasArg(OTOOL_C); 3173 if (InputArgs.hasArg(OTOOL_d)) 3174 FilterSections.push_back("__DATA,__data"); 3175 DylibId = InputArgs.hasArg(OTOOL_D); 3176 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 3177 DataInCode = InputArgs.hasArg(OTOOL_G); 3178 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 3179 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 3180 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 3181 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 3182 DylibsUsed = InputArgs.hasArg(OTOOL_L); 3183 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 3184 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 3185 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 3186 InfoPlist = InputArgs.hasArg(OTOOL_P); 3187 Relocations = InputArgs.hasArg(OTOOL_r); 3188 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 3189 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 3190 FilterSections.push_back(Filter); 3191 } 3192 if (InputArgs.hasArg(OTOOL_t)) 3193 FilterSections.push_back("__TEXT,__text"); 3194 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 3195 InputArgs.hasArg(OTOOL_o); 3196 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 3197 if (InputArgs.hasArg(OTOOL_x)) 3198 FilterSections.push_back(",__text"); 3199 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 3200 3201 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); 3202 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); 3203 3204 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 3205 if (InputFilenames.empty()) 3206 reportCmdLineError("no input file"); 3207 3208 for (const Arg *A : InputArgs) { 3209 const Option &O = A->getOption(); 3210 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 3211 reportCmdLineWarning(O.getPrefixedName() + 3212 " is obsolete and not implemented"); 3213 } 3214 } 3215 } 3216 3217 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 3218 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 3219 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 3220 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 3221 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 3222 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 3223 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 3224 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 3225 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 3226 TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table); 3227 DisassembleSymbols = 3228 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 3229 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 3230 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 3231 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 3232 .Case("frames", DIDT_DebugFrame) 3233 .Default(DIDT_Null); 3234 if (DwarfDumpType == DIDT_Null) 3235 invalidArgValue(A); 3236 } 3237 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 3238 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 3239 Offloading = InputArgs.hasArg(OBJDUMP_offloading); 3240 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 3241 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 3242 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 3243 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 3244 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 3245 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 3246 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 3247 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 3248 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 3249 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 3250 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 3251 PrintImmHex = 3252 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); 3253 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 3254 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 3255 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 3256 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); 3257 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 3258 PrintSource = InputArgs.hasArg(OBJDUMP_source); 3259 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 3260 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 3261 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 3262 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 3263 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 3264 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 3265 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 3266 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 3267 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 3268 Wide = InputArgs.hasArg(OBJDUMP_wide); 3269 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 3270 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 3271 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 3272 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 3273 .Case("ascii", DVASCII) 3274 .Case("unicode", DVUnicode) 3275 .Default(DVInvalid); 3276 if (DbgVariables == DVInvalid) 3277 invalidArgValue(A); 3278 } 3279 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) { 3280 DisassemblyColor = StringSwitch<ColorOutput>(A->getValue()) 3281 .Case("on", ColorOutput::Enable) 3282 .Case("off", ColorOutput::Disable) 3283 .Case("terminal", ColorOutput::Auto) 3284 .Default(ColorOutput::Invalid); 3285 if (DisassemblyColor == ColorOutput::Invalid) 3286 invalidArgValue(A); 3287 } 3288 3289 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 3290 3291 parseMachOOptions(InputArgs); 3292 3293 // Parse -M (--disassembler-options) and deprecated 3294 // --x86-asm-syntax={att,intel}. 3295 // 3296 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 3297 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 3298 // called too late. For now we have to use the internal cl::opt option. 3299 const char *AsmSyntax = nullptr; 3300 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 3301 OBJDUMP_x86_asm_syntax_att, 3302 OBJDUMP_x86_asm_syntax_intel)) { 3303 switch (A->getOption().getID()) { 3304 case OBJDUMP_x86_asm_syntax_att: 3305 AsmSyntax = "--x86-asm-syntax=att"; 3306 continue; 3307 case OBJDUMP_x86_asm_syntax_intel: 3308 AsmSyntax = "--x86-asm-syntax=intel"; 3309 continue; 3310 } 3311 3312 SmallVector<StringRef, 2> Values; 3313 llvm::SplitString(A->getValue(), Values, ","); 3314 for (StringRef V : Values) { 3315 if (V == "att") 3316 AsmSyntax = "--x86-asm-syntax=att"; 3317 else if (V == "intel") 3318 AsmSyntax = "--x86-asm-syntax=intel"; 3319 else 3320 DisassemblerOptions.push_back(V.str()); 3321 } 3322 } 3323 if (AsmSyntax) { 3324 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 3325 llvm::cl::ParseCommandLineOptions(2, Argv); 3326 } 3327 3328 // Look up any provided build IDs, then append them to the input filenames. 3329 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { 3330 object::BuildID BuildID = parseBuildIDArg(A); 3331 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 3332 if (!Path) { 3333 reportCmdLineError(A->getSpelling() + ": could not find build ID '" + 3334 A->getValue() + "'"); 3335 } 3336 InputFilenames.push_back(std::move(*Path)); 3337 } 3338 3339 // objdump defaults to a.out if no filenames specified. 3340 if (InputFilenames.empty()) 3341 InputFilenames.push_back("a.out"); 3342 } 3343 3344 int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) { 3345 using namespace llvm; 3346 InitLLVM X(argc, argv); 3347 3348 ToolName = argv[0]; 3349 std::unique_ptr<CommonOptTable> T; 3350 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 3351 3352 StringRef Stem = sys::path::stem(ToolName); 3353 auto Is = [=](StringRef Tool) { 3354 // We need to recognize the following filenames: 3355 // 3356 // llvm-objdump -> objdump 3357 // llvm-otool-10.exe -> otool 3358 // powerpc64-unknown-freebsd13-objdump -> objdump 3359 auto I = Stem.rfind_insensitive(Tool); 3360 return I != StringRef::npos && 3361 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 3362 }; 3363 if (Is("otool")) { 3364 T = std::make_unique<OtoolOptTable>(); 3365 Unknown = OTOOL_UNKNOWN; 3366 HelpFlag = OTOOL_help; 3367 HelpHiddenFlag = OTOOL_help_hidden; 3368 VersionFlag = OTOOL_version; 3369 } else { 3370 T = std::make_unique<ObjdumpOptTable>(); 3371 Unknown = OBJDUMP_UNKNOWN; 3372 HelpFlag = OBJDUMP_help; 3373 HelpHiddenFlag = OBJDUMP_help_hidden; 3374 VersionFlag = OBJDUMP_version; 3375 } 3376 3377 BumpPtrAllocator A; 3378 StringSaver Saver(A); 3379 opt::InputArgList InputArgs = 3380 T->parseArgs(argc, argv, Unknown, Saver, 3381 [&](StringRef Msg) { reportCmdLineError(Msg); }); 3382 3383 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 3384 T->printHelp(ToolName); 3385 return 0; 3386 } 3387 if (InputArgs.hasArg(HelpHiddenFlag)) { 3388 T->printHelp(ToolName, /*ShowHidden=*/true); 3389 return 0; 3390 } 3391 3392 // Initialize targets and assembly printers/parsers. 3393 InitializeAllTargetInfos(); 3394 InitializeAllTargetMCs(); 3395 InitializeAllDisassemblers(); 3396 3397 if (InputArgs.hasArg(VersionFlag)) { 3398 cl::PrintVersionMessage(); 3399 if (!Is("otool")) { 3400 outs() << '\n'; 3401 TargetRegistry::printRegisteredTargetsForVersion(outs()); 3402 } 3403 return 0; 3404 } 3405 3406 // Initialize debuginfod. 3407 const bool ShouldUseDebuginfodByDefault = 3408 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); 3409 std::vector<std::string> DebugFileDirectories = 3410 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); 3411 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, 3412 ShouldUseDebuginfodByDefault)) { 3413 HTTPClient::initialize(); 3414 BIDFetcher = 3415 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); 3416 } else { 3417 BIDFetcher = 3418 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); 3419 } 3420 3421 if (Is("otool")) 3422 parseOtoolOptions(InputArgs); 3423 else 3424 parseObjdumpOptions(InputArgs); 3425 3426 if (StartAddress >= StopAddress) 3427 reportCmdLineError("start address should be less than stop address"); 3428 3429 // Removes trailing separators from prefix. 3430 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 3431 Prefix.pop_back(); 3432 3433 if (AllHeaders) 3434 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 3435 SectionHeaders = SymbolTable = true; 3436 3437 if (DisassembleAll || PrintSource || PrintLines || TracebackTable || 3438 !DisassembleSymbols.empty()) 3439 Disassemble = true; 3440 3441 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 3442 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 3443 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 3444 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && 3445 !(MachOOpt && 3446 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || 3447 DylibsUsed || ExportsTrie || FirstPrivateHeader || 3448 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || 3449 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || 3450 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { 3451 T->printHelp(ToolName); 3452 return 2; 3453 } 3454 3455 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 3456 3457 llvm::for_each(InputFilenames, dumpInput); 3458 3459 warnOnNoMatchForSections(); 3460 3461 return EXIT_SUCCESS; 3462 } 3463